1
|
Fedosenko S, Venegas Garrido C, Nair P. Recent advances in asthma mucus biology and emerging treatment strategies. Curr Opin Pulm Med 2025; 31:251-261. [PMID: 40047213 DOI: 10.1097/mcp.0000000000001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
PURPOSE OF REVIEW To describe the recent advances in the pathobiology and treatment of mucus hypersecretion in asthma, a critical factor contributing to airway obstruction, inflammation, and impaired lung function. RECENT FINDINGS Significant progress has been made in understanding how mucin protein regulation, mucus viscosity, and adhesion are affected by cytokine-driven inflammation, especially interleukin-13, and defects in ion transport mechanisms. Advances in imaging techniques, such as multidetector computed tomography (MDCT) and hyperpolarized gas MRI, allow for a more precise assessment of mucus plugging and associated ventilation defects. Emerging therapies, including biologicals targeting type-2 (T2) inflammation, and novel mucolytics aimed at modifying mucus properties and secretion, offer promising effects in reducing mucus in severe asthmatics. SUMMARY The growing understanding of mucus biology and the development of advanced imaging and therapeutic strategies could significantly improve the management of mucus-related complications in asthma. By targeting mucus characteristics, these findings support future approaches to reduce airway obstruction, enhance lung function, and improve clinical outcomes in patients with severe asthma. A deeper understanding of the glycobiology of mucus is critical to develop new therapies.
Collapse
Affiliation(s)
- Sergey Fedosenko
- Division of Respirology, Department of Medicine, St Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
2
|
Botelho HM, Lopes-Pacheco M, Pinto MC, Railean V, Pankonien I, Caleiro MF, Clarke LA, Cachatra V, Neumann B, Tischer C, Moiteiro C, Ousingsawat J, Kunzelmann K, Pepperkok R, Amaral MD. Global functional genomics reveals GRK5 as a cystic fibrosis therapeutic target synergistic with current modulators. iScience 2025; 28:111942. [PMID: 40040803 PMCID: PMC11876911 DOI: 10.1016/j.isci.2025.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening disease affecting >160,000 individuals worldwide predominantly with respiratory symptoms. About 80% of individuals with CF have the p.Phe508del variant that causes the CF transmembrane conductance regulator (CFTR) protein to misfold and be targeted for premature degradation by the endoplasmic reticulum (ER) quality control (ERQC), thus preventing its plasma membrane (PM) traffic. Despite the recent approval of a "highly effective" drug rescuing p.Phe508del-CFTR, maximal lung function improvement is ∼14%. To identify global modulators of p.Phe508del traffic, we performed a high-content small interfering RNA (siRNA) microscopy-based screen of >9,000 genes and monitored p.Phe508del-CFTR PM rescue in human airway cells. This primary screen identified 227 p.Phe508del-CFTR traffic regulators, of which 35 could be validated by additional siRNAs. Subsequent mechanistic studies established GRK5 as a robust regulator whose inhibition rescues p.Phe508del-CFTR PM traffic and function in primary and immortalized cells, thus emerging as a novel potential drug target for CF.
Collapse
Affiliation(s)
- Hugo M. Botelho
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Madalena C. Pinto
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Department of Physiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Violeta Railean
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ines Pankonien
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana F. Caleiro
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Luka A. Clarke
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vasco Cachatra
- Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beate Neumann
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christian Tischer
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
- Centre for Bioimage Analysis, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Cristina Moiteiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jiraporn Ousingsawat
- Department of Physiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Margarida D. Amaral
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Wang X, Tse C, Singh A. Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis. J Med Chem 2025; 68:2255-2300. [PMID: 39882833 DOI: 10.1021/acs.jmedchem.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which regulates ion and fluid transport across epithelial cells. Mutations lead to complications, with life-limiting lung disease being the most severe manifestation. Traditional treatments focused on managing symptoms, but advances in understanding CF's molecular basis led to small-molecule CFTR modulators. Ivacaftor, which is a potentiator, was approved for gating mutations. Dual combinations like ivacaftor/lumacaftor and ivacaftor/tezacaftor brought together a potentiator and a class 1 corrector for F508del homozygous patients. Triple-combination CFTR modulators, including ivacaftor/tezacaftor/elexacaftor with an additional class 2 corrector, are now the standard of care for most CF patients, transforming the outlook for this disease. These drugs stabilize and potentiate the CFTR protein, improving lung function, sweat chloride levels, quality of life, and survival. This Perspective discusses CFTR structure and mutations, biological assays, medicinal chemistry research in identifying CFTR modulators, and clinical data of these agents.
Collapse
Affiliation(s)
- Xueqing Wang
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chris Tse
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
4
|
Danahay H, Gosling M, Fox R, Lilley S, Charlton H, Hargrave JD, Schofield TB, Hay DA, Went N, McMahon P, Marlin F, Scott J, Vile J, Hewison S, Ellam S, Brown S, Sabater J, Kennet G, Lightowler S, Collingwood SP. Optimisation of a novel series of ENaC inhibitors, leading to the selection of the long-acting inhaled clinical candidate ETD001, a potential new treatment for cystic fibrosis. Eur J Med Chem 2025; 282:117040. [PMID: 39561495 DOI: 10.1016/j.ejmech.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Cystic Fibrosis (CF) results from the loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel of key importance in the airway epithelia. CFTR helps control optimal hydration of the airways, a crucial requirement for healthy lungs. CFTR modulators have recently been approved as an effective treatment option for many genetic variants of CF. The epithelial sodium channel (ENaC), unlike CFTR which is secretory, is an absorptive pathway, and therefore its inhibition is an alternative and potentially complementary approach to aid hydration of the airways. Due to the adverse effect of ENaC inhibition in the kidney we, as have several others, focused on the design and synthesis of novel ENaC inhibitors for direct delivery to the airways via inhalation. A new series of ENaC inhibitors is described, wherein the well-established pyrazine core of first-generation inhibitors was replaced with a pyrrolopyrazine. Aiming for high retention at the surface of the lung following inhalation, optimisation of this template focused on significantly increasing polarity to minimize passive cellular permeability. The resulting optimized clinical candidate ETD001 demonstrates potent inhibition of ENaC (59 nM) prolonged retention in the airways of rats (13 % of the delivered dose retained after 6h) following intratracheal administration and a potent and long-acting effect in a sheep model of mucociliary clearance following inhalation (ED100 (4-6h) = 9 μg/kg). ETD001 entered a phase II study in CF patients in July 2024.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom
| | - Martin Gosling
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Sarah Lilley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Jonathan D Hargrave
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Thomas B Schofield
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Duncan A Hay
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Naomi Went
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Pearl McMahon
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Frederic Marlin
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - John Scott
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Julia Vile
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Steve Hewison
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Sarah Ellam
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Samantha Brown
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Juan Sabater
- Department of Research, Mount Sinai Medical centre, 4300 Alton Rd, Miami Beach FL 3340, USA
| | - Guy Kennet
- Saretius, Whiteknights House (B10), University of Reading, Reading, RG6 6UR, United Kingdom
| | - Sean Lightowler
- Saretius, Whiteknights House (B10), University of Reading, Reading, RG6 6UR, United Kingdom
| | - Stephen P Collingwood
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom.
| |
Collapse
|
5
|
Douglas LE, Reihill JA, Martin SL. BOS-318 treatment enhances elexacaftor-tezacaftor-ivacaftor-mediated improvements in airway hydration and mucociliary transport. ERJ Open Res 2025; 11:00445-2024. [PMID: 40013020 PMCID: PMC11863070 DOI: 10.1183/23120541.00445-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 02/28/2025] Open
Abstract
Background Cystic fibrosis transmembrane conductance regulator (CFTR) triple modulator therapy, elexacaftor-tezacaftor-ivacaftor (ETI) has transformed care for people with cystic fibrosis (CF) who have eligible mutations. It is, however, not curative. Response to treatment also varies and lung disease, although slowed, remains progressive. We have previously demonstrated inhibition of the epithelial sodium channel (ENaC) by selective furin inhibition to be an alternative, mutation-agnostic approach that can enhance airways hydration and restore mucociliary transport (MCT) in CF. Inhibition of furin therefore, offers a potential therapeutic strategy for those ineligible, intolerant or nonresponsive to ETI and may provide a further opportunity for clinical benefit for those currently treated with ETI. The aim of this study was to determine the impact of furin inhibition on ETI responses to assess its utility as an adjunct therapy. Methods Differentiated primary CF human bronchial epithelial cells (HBECs) were treated with the highly selective furin inhibitor BOS-318 and with ETI. Ion channel function was measured using a 24-channel Transepithelial Current Clamp (TECC-24) system and airways surface hydration was investigated by measuring airway surface liquid (ASL) height and MCT rate. Results The presence of BOS-318 had no effect on the ability of ETI to stimulate CFTR-mediated Cl- secretion but contributed a reduced Na+ transport via robust inhibition of ENaC. This altered ion transport profile effected an improved ASL height and MCT rate, which were significantly greater than improvements observed with ETI alone, demonstrating the benefits of the dual approach. Conclusions Selective furin inhibition has the potential to further improve clinical outcomes for all people with CF and offers opportunity as an adjunct to improve responses to currently available CFTR modulator therapies.
Collapse
|
6
|
Moran J, Pugh C, Brown N, Thomas A, Zhang S, McCauley E, Cephas A, Shrestha CL, Partida-Sanchez S, Bai S, Bruscia E, Kopp BT. ENaC contributes to macrophage dysfunction in cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622340. [PMID: 39574739 PMCID: PMC11580935 DOI: 10.1101/2024.11.06.622340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Background Cystic fibrosis (CF) is a chronic systemic disease caused by dysfunctional or absent cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is expressed in human immune cells and plays a role in regulating innate immunity both directly and indirectly. Besides CFTR, research indicates that the epithelial sodium channel (ENaC) also contributes to dysfunction in CF airway epithelial cells. However, the impact of non-CFTR ion channel dysfunction on CF immune responses is not yet fully understood. A precise understanding of how CF immune function is regulated by ion channels may allow antibiotic-and mutation-agnostic treatment approaches to chronic bacterial infection and inflammation. Therefore, we hypothesized that ENaC is aberrantly expressed in CF macrophages and directly contributes to impaired phagocytic and inflammatory functions. Methods ENaC expression was characterized in human immune cells isolated from CF and non-CF blood donors. Monocyte-derived macrophage (MDM) function and bacterial killing was tested in the setting of ENaC modulation. Results Baseline expression of ENaC in human CF MDMs, lymphocytes, and granulocytes was increased at both the transcript and protein level relative to non-CF controls and persisted after exposure to bacteria. Inhibition of CFTR in non-CF MDMs resulted in ENaC overexpression.CFTR modulator treatment reduced but did not eliminate ENaC overexpression in CF MDMs. Interestingly, ENaC inhibition with Amiloride increased CFTR expression. Amiloride-treated CF MDMs also showed normalized ROS production, improved autophagy, and decreased pro-inflammatory cytokine production. Finally, results from an ion channel microarray indicated that sodium channel expression in CF MDMs normalized after Amiloride treatment with minimal effect on other ion channels. Discussion ENaC is overexpressed in CF immune cells and is associated with abnormal macrophage function. ENaC modulation in immune cells is a novel potential therapeutic target for infection control in CF, either in combination with CFTR modulators, or as a sole agent for patients not currently eligible for CFTR modulators.
Collapse
|
7
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
8
|
Luo S, Rollins S, Schmitz-Abe K, Tam A, Li Q, Shi J, Lin J, Wang R, Agrawal PB. The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 2024; 561:119765. [PMID: 38852790 DOI: 10.1016/j.cca.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA
| | - Klaus Schmitz-Abe
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Tam
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA; Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02115, USA.
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
10
|
Blankenship S, Landis AR, Harrison Williams E, Peabody Lever JE, Garcia B, Solomon G, Krick S. What the future holds: cystic fibrosis and aging. Front Med (Lausanne) 2024; 10:1340388. [PMID: 38264036 PMCID: PMC10804849 DOI: 10.3389/fmed.2023.1340388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Cystic fibrosis (CF) is one of the most common genetic diseases with around 70,000 affected patients worldwide. CF is a multisystem disease caused by a mutation in the CF transmembrane conductance regulator gene, which has led to a significant decrease in life expectancy and a marked impairment in the quality of life for people with CF (pwCF). In recent years, the use of highly effective CFTR modulator therapy (HEMT) has led to improved pulmonary function, fewer CF exacerbations, lower symptom burden, and increased weight. This has coincided with an increased life expectancy for pwCF, with mean age of survival being now in the 50s. This being a major breakthrough, which the CF population has hoped for, pwCF are now facing new challenges by growing old with a chronic respiratory disease. In this mini review, we are attempting to summarize the current knowledge of the aging process and its effect on CF disease and its manifestations including new developments, the current research gaps and potential future developments in the field to allow healthy aging for the CF community.
Collapse
Affiliation(s)
- Sydney Blankenship
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aaron R. Landis
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Emily Harrison Williams
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacelyn E. Peabody Lever
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bryan Garcia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - George Solomon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
13
|
Chen L, Yu T, Zhai Y, Nie H, Li X, Ding Y. Luteolin Enhances Transepithelial Sodium Transport in the Lung Alveolar Model: Integrating Network Pharmacology and Mechanism Study. Int J Mol Sci 2023; 24:10122. [PMID: 37373270 DOI: 10.3390/ijms241210122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (Lut), a natural flavonoid compound existing in Perilla frutescens (L.) Britton, has been proven to play a protective role in the following biological aspects: inflammatory, viral, oxidant, and tumor-related. Lut can alleviate acute lung injury (ALI), manifested mainly by preventing the accumulation of inflammation-rich edematous fluid, while the protective actions of Lut on transepithelial ion transport in ALI were seldom researched. We found that Lut could improve the lung appearance/pathological structure in lipopolysaccharide (LPS)-induced mouse ALI models and reduce the wet/dry weight ratio, bronchoalveolar protein, and inflammatory cytokines. Meanwhile, Lut upregulated the expression level of the epithelial sodium channel (ENaC) in both the primary alveolar epithelial type 2 (AT2) cells and three-dimensional (3D) alveolar epithelial organoid model that recapitulated essential structural and functional aspects of the lung. Finally, by analyzing the 84 interaction genes between Lut and ALI/acute respiratory distress syndrome using GO and KEGG enrichment of network pharmacology, we found that the JAK/STAT signaling pathway might be involved in the network. Experimental data by knocking down STAT3 proved that Lut could reduce the phosphorylation of JAK/STAT and enhance the level of SOCS3, which abrogated the inhibition of ENaC expression induced by LPS accordingly. The evidence supported that Lut could attenuate inflammation-related ALI by enhancing transepithelial sodium transport, at least partially, via the JAK/STAT pathway, which may offer a promising therapeutic strategy for edematous lung diseases.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Xin Li
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Birimberg-Schwartz L, Ip W, Bartlett C, Avolio J, Vonk AM, Gunawardena T, Du K, Esmaeili M, Beekman JM, Rommens J, Strug L, Bear CE, Moraes TJ, Gonska T. Validating organoid-derived human intestinal monolayers for personalized therapy in cystic fibrosis. Life Sci Alliance 2023; 6:e202201857. [PMID: 37024122 PMCID: PMC10079552 DOI: 10.26508/lsa.202201857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Highly effective drugs modulating the defective protein encoded by the CFTR gene have revolutionized cystic fibrosis (CF) therapy. Preclinical drug-testing on human nasal epithelial (HNE) cell cultures and 3-dimensional human intestinal organoids (3D HIO) are used to address patient-specific variation in drug response and to optimize individual treatment for people with CF. This study is the first to report comparable CFTR functional responses to CFTR modulator treatment among patients with different classes of CFTR gene variants using the three methods of 2D HIO, 3D HIO, and HNE. Furthermore, 2D HIO showed good correlation to clinical outcome markers. A larger measurable CFTR functional range and access to the apical membrane were identified as advantages of 2D HIO over HNE and 3D HIO, respectively. Our study thus expands the utility of 2D intestinal monolayers as a preclinical drug testing tool for CF.
Collapse
Affiliation(s)
- Liron Birimberg-Schwartz
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Wan Ip
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Claire Bartlett
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Julie Avolio
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Annelotte M Vonk
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Tarini Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Kai Du
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jeffrey M Beekman
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherland
| | - Johanna Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lisa Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Statistical Sciences and Computer Science, University of Toronto, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Tanja Gonska
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
16
|
Paul D, Miller MH, Born J, Samaddar S, Ni H, Avila H, Krishnamurthy VR, Thirunavukkarasu K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin Drug Discov 2023; 18:193-206. [PMID: 36562410 DOI: 10.1080/17460441.2023.2160439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrotic lung diseases represent a large subset of diseases with an unmet clinical need. Oligonucleotide therapies (ONT) are a promising therapeutic approach for the treatment of pulmonary disease as they can inhibit pathways that are otherwise difficult to target. Additionally, targeting the lung specifically with ONT is advantageous because it reduces the possibilities of systemic side effects and tolerability concerns. AREAS COVERED This review presents the chemical basis of designing various ONTs currently known to treat fibrotic lung diseases. Further, the authors have also discussed the delivery vehicle, routes of administration, physiological barriers of the lung, and toxicity concerns with ONTs. EXPERT OPINION ONTs provide a promising therapeutic approach for the treatment of fibrotic diseases of the lung, particularly because ONTs directly delivered to the lung show little systemic side effects compared to current therapeutic strategies. Dry powder aerosolized inhalers may be a good strategy for getting ONTs into the lung in humans. However, as of now, no dry powder ONTs have been approved for use in the clinical setting, and this challenge must be overcome for future therapies. Various delivery methods that can aid in direct targeting may also improve the use of ONTs for lung fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Josh Born
- Genetic Medicine, Eli Lilly and Company
| | - Shayak Samaddar
- Bioproduct Drug Development, Eli Lilly and Company, Indianapolis, IN, US
| | | | | | | | | |
Collapse
|
17
|
Moni SS, Al Basheer A. Molecular targets for cystic fibrosis and therapeutic potential of monoclonal antibodies. Saudi Pharm J 2022; 30:1736-1747. [PMID: 36601503 PMCID: PMC9805982 DOI: 10.1016/j.jsps.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that affects the exocrine glands and is caused by cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations. Lung disease is the leading cause of morbidity in patients. Target-specific treatment of CF has been achieved using monoclonal antibodies (mAbs). The purpose of this article is to discuss the possibility of treating CF with mAbs through their significant target specificity. We searched electronic databases in Web of Science, PubMed, EMBASE, Scopus, and Google Scholar from 1984 to 2021. We discussed the critical role of targeted therapy in cystic fibrosis, as it will be more effective at suppressing the molecular networks. After conducting a critical review of the available literature, we concluded that it is critical to understand the fundamental molecular mechanisms underlying CF prior to incorporating biologics into the therapy regimen. Omalizumab, Mepolizumab, Benralizumab, Dupilumab and KB001-A have been successfully screened for asthma-complicated CF, and their efficacies have been well reported. Despite the availability of effective targeted biologics, treating CF has remained a difficult task, particularly when it comes to reduction of secondary inflammatory mediators. This review emphasizes the overall views on CF, the immunological mechanism of CF, and the prospective therapeutic use of mAbs as potential targeted biologics for enhancing the overall status of human health.
Collapse
|
18
|
Åstrand A, Libby EF, Shei RJ, Lever JEP, Kaza N, Adewale AT, Boitet E, Edwards L, Hemmerling M, Root J, Lindberg B, Wingren C, Malmgren A, Sabater J, Rowe SM. Preclinical evaluation of the epithelial sodium channel inhibitor AZD5634 and implications on human translation. Am J Physiol Lung Cell Mol Physiol 2022; 323:L536-L547. [PMID: 36098422 PMCID: PMC9602792 DOI: 10.1152/ajplung.00454.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.
Collapse
Affiliation(s)
- Annika Åstrand
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emily Falk Libby
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ren-Jay Shei
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Niroop Kaza
- 3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Evan Boitet
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lloyd Edwards
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Hemmerling
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James Root
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Malmgren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Steven M. Rowe
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama,5Department of Cellular, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama,6Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Rodenburg LW, Delpiano L, Railean V, Centeio R, Pinto MC, Smits SMA, van der Windt IS, van Hugten CFJ, van Beuningen SFB, Rodenburg RNP, van der Ent CK, Amaral MD, Kunzelmann K, Gray MA, Beekman JM, Amatngalim GD. Drug Repurposing for Cystic Fibrosis: Identification of Drugs That Induce CFTR-Independent Fluid Secretion in Nasal Organoids. Int J Mol Sci 2022; 23:12657. [PMID: 36293514 PMCID: PMC9603984 DOI: 10.3390/ijms232012657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including β2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.
Collapse
Affiliation(s)
- Lisa W. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Violeta Railean
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Madalena C. Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Shannon M. A. Smits
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Isabelle S. van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Casper F. J. van Hugten
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Remco N. P. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
| | - Margarida D. Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael A. Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Gimano D. Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
20
|
Amaral MD. Using the genome to correct the ion transport defect in cystic fibrosis. J Physiol 2022; 601:1573-1582. [PMID: 36068724 DOI: 10.1113/jp282308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human genome information can help finding drugs for human diseases. 'Omics' allow unbiased identification of novel drug targets. High-throughput (HT) approaches provide a global view on disease mechanisms. As a monogenic disease CF has led the way in multiple 'Omic' studies. 'Multi-omics' integration will generate maximal biological significance. ABSTRACT Today Biomedicine faces one of its greatest challenges, i.e. treating diseases through their causative dysfunctional processes and not just their symptoms. However, we still miss a global view of mechanisms and pathways involved in pathophysiology of most diseases. In fact, disease mechanisms and pathways can be achieved by holistic studies provided by 'Omic' approaches. Cystic Fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes an anion channel, is paradigmatic for monogenic disorders, namely channelopathies. A high number of 'omics studies' have focussed on CF, namely several cell-based high-throughput (HT) approaches were developed and applied towards a global mechanistic characterization of CF pathophysiology and the identification of novel and 'unbiased' drug targets. Notwithstanding, it is likely that, through the integration of all these 'layers' of large datasets into comprehensive disease maps that biological significance can be extracted so that the enormous potential of these approaches to identifying dysfunctional mechanisms and novel drugs may become a reality. Abstract figure legend Schematic overview of the 3 main approaches to discovery of new drugs/drug targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8 bdg, Lisboa, 1749-016, Portugal
| |
Collapse
|
21
|
Kim N, Kwak G, Rodriguez J, Livraghi-Butrico A, Zuo X, Simon V, Han E, Shenoy SK, Pandey N, Mazur M, Birket SE, Kim A, Rowe SM, Boucher R, Hanes J, Suk JS. Inhaled gene therapy of preclinical muco-obstructive lung diseases by nanoparticles capable of breaching the airway mucus barrier. Thorax 2022; 77:812-820. [PMID: 34697091 PMCID: PMC9129924 DOI: 10.1136/thoraxjnl-2020-215185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.
Collapse
Affiliation(s)
- Namho Kim
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Gijung Kwak
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jason Rodriguez
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alessandra Livraghi-Butrico
- Marisco Lung Institute and Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xinyuan Zuo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Valentina Simon
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Eric Han
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Siddharth Kaup Shenoy
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
- Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Anthony Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
- Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Richard Boucher
- Marisco Lung Institute and Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Justin Hanes
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
23
|
Blaconà G, Raso R, Castellani S, Pierandrei S, Del Porto P, Ferraguti G, Ascenzioni F, Conese M, Lucarelli M. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting. Cell Mol Life Sci 2022; 79:257. [PMID: 35462606 PMCID: PMC9035428 DOI: 10.1007/s00018-022-04190-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients’ treatment by epigenetic targeting.
Collapse
Affiliation(s)
- Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Raso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. .,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Kota P. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment. Curr Opin Pharmacol 2022; 64:102209. [PMID: 35483215 DOI: 10.1016/j.coph.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.
Collapse
Affiliation(s)
- Pradeep Kota
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Goss CH, Fajac I, Jain R, Seibold W, Gupta A, Hsu MC, Sutharsan S, Davies JC, Mall MA. Efficacy and safety of inhaled ENaC inhibitor BI 1265162 in patients with cystic fibrosis: BALANCE-CF 1, a randomised, phase II study. Eur Respir J 2022; 59:2100746. [PMID: 34385272 PMCID: PMC8850685 DOI: 10.1183/13993003.00746-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/19/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Inhibition of the epithelial sodium channel (ENaC) in cystic fibrosis (CF) airways provides a mutation-agnostic approach that could improve mucociliary clearance in all CF patients. BI 1265162 is an ENaC inhibitor with demonstrated pre-clinical efficacy and safety already demonstrated in humans. OBJECTIVE We present results from BALANCE-CFTM 1, a phase II, placebo-controlled, randomised, double-blind study of four dose levels of BI 1265162 versus placebo for 4 weeks on top of standard of care in adults and adolescents with CF. RESULTS Initially, 28 randomised subjects (BI 1265162 200 µg twice daily n=14, placebo twice daily n=14) were assessed at an interim futility analysis. Compared with placebo, numerical changes of -0.8% (95% CI -6.6 to 4.9%) in percentage predicted forced expiratory volume in 1s (ppFEV1) and +2.1 units (95% CI -2.4 to 6.5 units) in lung clearance index (LCI) were observed in the active group, meeting a pre-defined stopping rule; accordingly, the study was terminated. Recruitment had continued during the interim analysis and pending results; 24 patients were added across three dose levels and placebo. The final results including these patients (+1.5% ppFEV1, 200 µg twice-daily dose versus placebo) were not supportive of relevant clinical effect. Furthermore, LCI change was not supportive, although interpretation was limited due to insufficient traces meeting quality criteria. A 9.4-point improvement in the Cystic Fibrosis Questionnaire - Revised Respiratory Domain was observed in the 200 µg twice daily dose group versus placebo. BI 1265162 up to 200 µg twice daily was safe and well-tolerated. Pharmacokinetics were similar to those in healthy volunteers. CONCLUSION BI 1265162 was safe, but did not demonstrate a potential for clinical benefit. Development has been terminated.
Collapse
Affiliation(s)
- Christopher H Goss
- Dept of Medicine, Dept of Pediatrics, University of Washington, Seattle Children's Hospital and Research Institute, Seattle, WA, USA
| | | | - Raksha Jain
- Dept of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Ming-Chi Hsu
- Boehringer Ingelheim, Shanghai, China
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Sivagurunathan Sutharsan
- Division for Cystic Fibrosis, Dept of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, Essen, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Marcus A Mall
- Dept of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
26
|
Shah SA, Ishinaga H, Takeuchi K. Distinct Secretion of MUC5AC and MUC5B in Upper and Lower Chronic Airway Diseases. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The human airway is protected by a defensive mucus barrier. The most prominent components of mucus are the mucin glycoproteins MUC5AC and MUC5B. They are produced by goblet cells and submucosal gland cells in the upper and lower airways. Hyperplasia of these cells and hypersecretion of MUC5AC and MUC5B characterize chronic inflammatory diseases of the upper and lower airways. Recent studies have revealed that MUC5AC and MUC5B are expressed at specific sites in the respiratory tract through different molecular mechanisms and have distinct functions. Morphometric and histochemical studies have also examined the roles of goblet cells, submucosal gland cells, MUC5AC, and MUC5B in different chronic airway diseases individually. The individual study of goblet cells, submucosal gland cells, MUC5AC, and MUC5B in airway diseases would be helpful for precisely diagnosing chronic inflammatory diseases of the airway and establishing optimal treatments. This review focuses on the distinct secretion of MUC5AC and MUC5B and their producing cells in chronic inflammatory diseases of the upper and lower airway.
Collapse
|
27
|
Xia S, Bozóky Z, Di Paola M, Laselva O, Ahmadi S, Jiang JX, Pitstick AL, Jiang C, Rotin D, Mayhew CN, Jones NL, Bear CE. High-Throughput Functional Analysis of CFTR and Other Apically Localized Proteins in iPSC-Derived Human Intestinal Organoids. Cells 2021; 10:cells10123419. [PMID: 34943927 PMCID: PMC8699884 DOI: 10.3390/cells10123419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.
Collapse
Affiliation(s)
- Sunny Xia
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Zoltán Bozóky
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Michelle Di Paola
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Onofrio Laselva
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Saumel Ahmadi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Jia Xin Jiang
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Amy L. Pitstick
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Chong Jiang
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
| | - Daniela Rotin
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Nicola L. Jones
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christine E. Bear
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
- Correspondence:
| |
Collapse
|
28
|
TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis. Cells 2021; 10:cells10112867. [PMID: 34831090 PMCID: PMC8616501 DOI: 10.3390/cells10112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.
Collapse
|
29
|
Luan X, Le Y, Jagadeeshan S, Murray B, Carmalt JL, Duke T, Beazley S, Fujiyama M, Swekla K, Gray B, Burmester M, Campanucci VA, Shipley A, Machen TE, Tam JS, Ianowski JP. cAMP triggers Na + absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep 2021; 37:109795. [PMID: 34610318 DOI: 10.1016/j.celrep.2021.109795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
A controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na+ channel (ENaC), yielding increased Na+ reabsorption and airway dehydration. We use a non-invasive self-referencing Na+-selective microelectrode technique to measure Na+ transport across individual folds of distal airway surface epithelium preparations from CFTR-/- (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na+ transport that are unaffected by the ENaC blocker amiloride. However, in the presence of the cyclic AMP (cAMP)-elevating agents forskolin+IBMX (isobutylmethylxanthine), folds of WT tissues secrete large amounts of Na+, while CFTR-/- tissues absorb small, but potentially important, amounts of Na+. In cAMP-stimulated conditions, amiloride inhibits Na+ absorption in CFTR-/- tissues but does not affect secretion in WT tissues. Our results are consistent with the hypothesis that ENaC-mediated Na+ absorption may contribute to dehydration of CF distal airways.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yen Le
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brendan Murray
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Masako Fujiyama
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kurtis Swekla
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bridget Gray
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Veronica A Campanucci
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Juan P Ianowski
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Soares VEM, do Carmo TIT, Dos Anjos F, Wruck J, de Oliveira Maciel SFV, Bagatini MD, de Resende E Silva DT. Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy. Mol Cell Biochem 2021; 477:39-51. [PMID: 34529223 DOI: 10.1007/s11010-021-04263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.
Collapse
Affiliation(s)
- Victor Emanuel Miranda Soares
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Fernanda Dos Anjos
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jonatha Wruck
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
31
|
Giorgetti M, Klymiuk N, Bähr A, Hemmerling M, Jinton L, Tarran R, Malmgren A, Åstrand A, Hansson GC, Ermund A. New generation ENaC inhibitors detach cystic fibrosis airway mucus bundles via sodium/hydrogen exchanger inhibition. Eur J Pharmacol 2021; 904:174123. [PMID: 33974881 PMCID: PMC8477379 DOI: 10.1016/j.ejphar.2021.174123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.
Collapse
Affiliation(s)
- Melania Giorgetti
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Germany.
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Germany.
| | - Martin Hemmerling
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lisa Jinton
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, United States.
| | - Anna Malmgren
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Annika Åstrand
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| |
Collapse
|
32
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
34
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
35
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
36
|
Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, Conese M, Ascenzioni F, Lucarelli M. DNA Methylation Patterns Correlate with the Expression of SCNN1A, SCNN1B, and SCNN1G (Epithelial Sodium Channel, ENaC) Genes. Int J Mol Sci 2021; 22:ijms22073754. [PMID: 33916525 PMCID: PMC8038451 DOI: 10.3390/ijms22073754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, β and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.
Collapse
Affiliation(s)
- Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Gessica Truglio
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy;
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
- Correspondence: (F.A.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Roma, Italy
- Correspondence: (F.A.); (M.L.)
| |
Collapse
|
37
|
Zhang X, Zhao L, Jin R, Li M, Li MS, Li R, Liang X. CRISPR/Cas9-Mediated α-ENaC Knockout in a Murine Pancreatic β-Cell Line. Front Genet 2021; 12:664799. [PMID: 33868391 PMCID: PMC8047203 DOI: 10.3389/fgene.2021.664799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Many ion channels participate in controlling insulin synthesis and secretion of pancreatic β-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic β-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic β-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC−/−) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC−/− MIN6 cells. Therefore, α-ENaC−/− MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic β-cells.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Runbing Jin
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mei-Shuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Strandvik B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in the Membranes? Int J Mol Sci 2021; 22:ijms22052739. [PMID: 33800499 PMCID: PMC7962953 DOI: 10.3390/ijms22052739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
While approximately 2000 mutations have been discovered in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), only a small amount (about 10%) is associated with clinical cystic fibrosis (CF) disease. The discovery of the association between CFTR and the hyperactive epithelial sodium channel (ENaC) has raised the question of the influence of ENaC on the clinical CF phenotype. ENaC disturbance contributes to the pathological secretion, and overexpression of one ENaC subunit, the β-unit, can give a CF-like phenotype in mice with normal acting CFTR. The development of ENaC channel modulators is now in progress. Both CFTR and ENaC are located in the cell membrane and are influenced by its lipid configuration. Recent studies have emphasized the importance of the interaction of lipids and these proteins in the membranes. Linoleic acid deficiency is the most prevailing lipid abnormality in CF, and linoleic acid is an important constituent of membranes. The influence on sodium excretion by linoleic acid supplementation indicates that lipid-protein interaction is of importance for the clinical pathophysiology in CF. Further studies of this association can imply a simple clinical adjuvant in CF therapy.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, 14183 Stockholm, Sweden
| |
Collapse
|
39
|
Yadav S, Shaughnessy CA, Zeitlin PL, Bratcher PE. Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation. BMJ Open Respir Res 2021; 8:8/1/e000861. [PMID: 33622672 PMCID: PMC7907861 DOI: 10.1136/bmjresp-2020-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. Methods After differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. Results While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. Discussion Significant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.
Collapse
Affiliation(s)
- Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
40
|
Mackie A, Rascher J, Schmid M, Endriss V, Brand T, Seibold W. First clinical trials of the inhaled epithelial sodium channel inhibitor BI 1265162 in healthy volunteers. ERJ Open Res 2021; 7:00447-2020. [PMID: 33569494 PMCID: PMC7861022 DOI: 10.1183/23120541.00447-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Inhibition of the epithelial sodium channel (ENaC) represents a mutation-agnostic therapeutic approach to restore airway surface liquid hydration and mucociliary clearance in patients with cystic fibrosis. BI 1265162 is an inhaled ENaC inhibitor with demonstrated preclinical efficacy. Methods Three phase I trials of BI 1265162 in healthy male subjects are presented: NCT03349723 (single-rising-dose trial evaluating safety, tolerability and pharmacokinetics (PK)); NCT03576144 (multiple-rising-dose trial evaluating safety, tolerability and PK); and NCT03907280 (absolute bioavailability trial). Results BI 1265162 single doses ≤1200 µg and multiple doses of 600 µg were well tolerated. Adverse events were balanced across treatment groups, were of mainly mild or moderate intensity and resolved by trial-end. One subject discontinued from trial medication on day 7 (asymptomatic hyperkalaemia adverse event; recovered day 8). One subject experienced a serious adverse event (neuropathia vestibularis) leading to hospitalisation and missed one of the four dosing periods. Both events were not considered to be drug-related and subjects recovered. BI 1265162 displayed dose-proportional, time-independent PK; maximum accumulation was 1.6-fold; calculated effective elimination half-life was 3.6–8.7 h over the dose ranges tested. Renal excretion was not a major drug elimination route. Oral and inhaled dosing (±activated oral charcoal) absolute bioavailability was 0.50% and ∼40%, respectively. Conclusion BI 1265162 single or multiple doses up to 6.5 days were well tolerated. Systemic exposures mainly represent drug absorbed through the lungs and not the gastrointestinal tract, with ∼40% of the inhaled dose reaching the systemic circulation. Accumulation was minimal. Twice-daily dosing is supported for future development. Cell and animal studies have demonstrated that BI 1265162 is a potent ENaC inhibitor. Three phase I trials show that single- and multiple-dose BI 1265162 is safe. BI 1265162 is being tested in phase II studies, using twice-daily dosing, in people with CF.https://bit.ly/3nPUkrO
Collapse
Affiliation(s)
| | - Juliane Rascher
- SocraMetrics GmbH, Erfurt, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Tobias Brand
- Boehringer Ingelheim, Biberach an der Riss, Germany
| | | |
Collapse
|
41
|
Nickolaus P, Jung B, Sabater J, Constant S, Gupta A. Preclinical evaluation of the epithelial sodium channel inhibitor BI 1265162 for treatment of cystic fibrosis. ERJ Open Res 2020; 6:00429-2020. [PMID: 33313305 PMCID: PMC7720687 DOI: 10.1183/23120541.00429-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Background Epithelial sodium channel (ENaC) is an important regulator of airway surface liquid volume; ENaC is hyperactivated in cystic fibrosis (CF). ENaC inhibition is a potential therapeutic target for CF. Here, we report in vitro and in vivo results for BI 1265162, an inhaled ENaC inhibitor currently in Phase II clinical development, administered via the Respimat® Soft Mist™ inhaler. Methods In vitro inhibition of sodium ion (Na+) transport by BI 1265162 was tested in mouse renal collecting duct cells (M1) and human bronchial epithelial cells (NCI-H441); inhibition of water transport was measured using M1 cells. In vivo inhibition of liquid absorption from rat airway epithelium and acceleration of mucociliary clearance (MCC) in sheep lungs were assessed. Fully differentiated normal and CF human epithelium was used to measure the effect of BI 1265162 with or without ivacaftor and lumacaftor on water transport and MCC. Results BI 1265162 dose-dependently inhibited Na+ transport and decreased water resorption in cell line models. BI 1265162 reduced liquid absorption in rat lungs and increased MCC in sheep. No effects on renal function were seen in the animal models. BI 1265162 alone and in combination with CF transmembrane conductance regulator (CFTR) modulators decreased water transport and increased MCC in both normal and CF airway human epithelial models and also increased the effects of CFTR modulators in CF epithelium to reach the effect size seen in healthy epithelium with ivacaftor/lumacaftor alone. Conclusion These results demonstrate the potential of BI 1265162 as a mutation agnostic, ENaC-inhibitor-based therapy for CF. ENaC inhibition is a potential strategy for a mutation-agnostic therapy in CF. In preclinical studies, BI 1265162 is a potent ENaC inhibitor, alone and in synergy with CFTR modulators, supporting Phase I clinical development.https://bit.ly/3mCeWE9
Collapse
Affiliation(s)
| | | | - Juan Sabater
- Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | |
Collapse
|
42
|
Abstract
Cystic fibrosis (CF) is a hereditary, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. CF is mainly characterized by pulmonary dysfunction as a result of deterioration in the mucociliary clearance and anion transport of airways. Mortality is mostly caused by bronchiectasis, bronchiole obstruction, and progressive respiratory dysfunction in the early years of life. Over the last decade, new therapeutic strategies rather than symptomatic treatment have been proposed, such as the small molecule approach, ion channel therapy, and pulmonary gene therapy. Due to considerable progress in the treatment options, CF has become an adult disease rather than a pediatric disease in recent years. Pulmonary gene therapy has gained special attention due to its mutation type independent aspect, therefore being applicable to all CF patients. On the other hand, the major obstacle for CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity. The advancement of 3D culture systems has made it possible to extrapolate the disease modeling and individual drug response in vitro by producing mini adult organs called "organoids" obtained from rectal cell biopsies. In this review, we summarize the advances in the novel therapeutic approaches, clinical interventions, and precision medicine concept for CF.
Collapse
|
43
|
Mall MA. ENaC inhibition in cystic fibrosis: potential role in the new era of CFTR modulator therapies. Eur Respir J 2020; 56:2000946. [PMID: 32732328 PMCID: PMC7758539 DOI: 10.1183/13993003.00946-2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023]
Abstract
Small-molecule cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for cystic fibrosis are the first therapies since the disease was initially described by Fanconi et al. [1] in 1936 to target and partially restore the function of the CFTR Cl− channel. CFTR modulator therapy is expected to have significant clinical benefits for many, but it does not result in a cure and is not appropriate or available for all patients with cystic fibrosis [2, 3]. In this review, evidence is described suggesting that inhibiting the epithelial Na+ channel (ENaC) responsible for the Na+/fluid absorption that contributes to airway surface dehydration and impaired mucociliary clearance (MCC) observed in cystic fibrosis airways may significantly improve clinical outcomes irrespective of the CFTR genotype, and may synergise with currently approved CFTR modulators to further improve clinical outcomes. ENaC inhibition with BI 1265162 is a promising strategy to optimise outcomes in patients with CF either eligible, or ineligible, for CFTR modulator therapy. Phase II clinical trials of BI 1265162 must now show this translates into clinical benefit. https://bit.ly/2OQ1IUI
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
44
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
45
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
46
|
Reihill J, Moffitt K, Douglas L, Stuart Elborn J, Jones A, Lorraine Martin S. Sputum trypsin-like protease activity relates to clinical outcome in cystic fibrosis. J Cyst Fibros 2020; 19:647-653. [DOI: 10.1016/j.jcf.2019.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
47
|
TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis? Int J Mol Sci 2020; 21:ijms21072386. [PMID: 32235608 PMCID: PMC7177896 DOI: 10.3390/ijms21072386] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly becoming the standard of care in cystic fibrosis (CF), current CFTR modulators do not treat all patients nor do they restore the rate of decline in lung function to normal levels. As such, novel approaches are still required to ensure all with CF have effective therapies. Although CFTR plays a fundamental role in the regulation of fluid secretion across the airway mucosa, there are other ion channels and transporters that represent viable targets for future therapeutics. In this review article we will summarise the current progress with CFTR-independent approaches to restoring mucosal hydration, including epithelial sodium channel (ENaC) blockade and modulators of SLC26A9. A particular emphasis is given to modulation of the airway epithelial calcium-activated chloride channel (CaCC), TMEM16A, as there is controversy regarding whether it should be positively or negatively modulated. This is discussed in light of a recent report describing for the first time bona fide TMEM16A potentiators and their positive effects upon epithelial fluid secretion and mucus clearance.
Collapse
|
48
|
Noël S, Sermet-Gaudelus I. Mucoviscidosis: fisiopatología, genética, aspectos clínicos y terapéuticos. EMC. PEDIATRIA 2020; 55:1-23. [PMID: 32288518 PMCID: PMC7147672 DOI: 10.1016/s1245-1789(20)43427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
La mucoviscidosis es la enfermedad autosómica recesiva grave más frecuente que afecta a la población caucásica. En Francia, por ejemplo, la incidencia es de un caso por cada 4.500 nacimientos. Esta enfermedad se debe a mutaciones en el gen CFTR (cystic fibrosis transmembrane conductance regulator, regulador de conductancia transmembrana de la fibrosis quística), situado en el brazo largo del cromosoma 7, que codifica una proteína transmembrana implicada en la regulación del transporte transepitelial de iones cloruro (Cl–). En Francia, la mutación más frecuente (alrededor del 80% de los casos) es la deleción del aminoácido 508 (fenilalanina), denominada F508del. La ausencia o la disfunción de la proteína CFTR provoca un defecto en el transporte de Cl– y un aumento de la reabsorción de sal y agua, en particular en el epitelio bronquial, lo que conlleva una reducción del líquido de la superficie bronquial. Esta exocrinopatía generalizada conduce a la producción de «moco viscoso» (de ahí el nombre de mucoviscidosis), que obstruye varios sitios en el cuerpo, en particular el sistema respiratorio, el tracto digestivo y sus anexos (páncreas, vías biliares e hígado). La detección neonatal se ha generalizado desde 2002. La prueba del sudor es la prueba complementaria de referencia, validada por la identificación de dos mutaciones patógenas, para la confirmación del diagnóstico. El tratamiento es multidisciplinario. Se basa ante todo en la kinesiterapia respiratoria diaria y el tratamiento de las sobreinfecciones broncopulmonares, así como en las recomendaciones nutricionales con el uso de extractos pancreáticos. Es probable que el pronóstico, todavía muy desfavorable, se modifique con la llegada de terapias proteínicas o de edición de ácido ribonucleico o de gen.
Collapse
|
49
|
An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed Pharmacother 2020; 125:109983. [PMID: 32092816 DOI: 10.1016/j.biopha.2020.109983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (Nedd4-1 and Nedd4-2) is a member of the HECT E3 ubiquitin ligase family. It has been shown to mediate numerous pathophysiological processes, including the regulation of synaptic plasticity and Wnt-associated signaling, via promoting the ubiquitination of its substrates, such as cyclic adenosine monophosphate (cAMP)-response element binding protein regulated transcription coactivator 3 (CRTC3), alpha-amino-3-hydroxy-5-methyl-4-isoxazo-lepropionic acid receptor (AMPAR), and Dishevelled2 (Dvl2). In the respiratory system, both Nedd4-1 and Nedd4-2 are expressed in epithelial cells and functionally associated with lung cancer development and alveolar fluid regulation. Nedd4-1 mediates lung cancer migration, metastasis, or drug resistance mainly through inducing phosphate and tension homology deleted on chromsome ten (PTEN) degradation or promoting cathepsin B secretion. Unlike Nedd4-1, Nedd4-2 displays more complex effects in lung cancers. On one hand it suppresses lung cancer cell migration and metastasis, and on the other hand it has been shown to promote lung cancer survival via inducing general control nonrepressed 2 (GCN2) degradation. Another important function of Nedd4-2 is to regulate the activity of epithelial sodium channel (ENaC), a membrane channel which mediates the clearance of fluid from the alveolar space at birth or during pulmonary edema. Here, we make an outlined review for the expression and function of Nedd4-1 and Nedd4-2 in the respiratory system in hope of getting an in-depth insight into their roles in lung disorders.
Collapse
|
50
|
Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol 2020; 10:1662. [PMID: 32153386 PMCID: PMC7046560 DOI: 10.3389/fphar.2019.01662] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which result in impairment of CFTR mRNA and protein expression, function, stability or a combination of these. Although CF leads to multifaceted clinical manifestations, the respiratory disorder represents the major cause of morbidity and mortality of these patients. The life expectancy of CF patients has substantially lengthened due to early diagnosis and improvements in symptomatic therapeutic regimens. Quality of life remains nevertheless limited, as these individuals are subjected to considerable clinical, psychosocial and economic burdens. Since the discovery of the CFTR gene in 1989, tremendous efforts have been made to develop therapies acting more upstream on the pathogenesis cascade, thereby overcoming the underlying dysfunctions caused by CFTR mutations. In this line, the advances in cell-based high-throughput screenings have been facilitating the fast-tracking of CFTR modulators. These modulator drugs have the ability to enhance or even restore the functional expression of specific CF-causing mutations, and they have been classified into five main groups depending on their effects on CFTR mutations: potentiators, correctors, stabilizers, read-through agents, and amplifiers. To date, four CFTR modulators have reached the market, and these pharmaceutical therapies are transforming patients' lives with short- and long-term improvements in clinical outcomes. Such breakthroughs have paved the way for the development of novel CFTR modulators, which are currently under experimental and clinical investigations. Furthermore, recent insights into the CFTR structure will be useful for the rational design of next-generation modulator drugs. This review aims to provide a summary of recent developments in CFTR-directed therapeutics. Barriers and future directions are also discussed in order to optimize treatment adherence, identify feasible and sustainable solutions for equitable access to these therapies, and continue to expand the pipeline of novel modulators that may result in effective precision medicine for all individuals with CF.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|