1
|
Jin S, Zhao Q, Sun X, Su J, Wang P, Li P, Guo J, Zhang Y, Zong H, Gan X. L-741626 inhibits hepatocellular carcinoma progression by targeting Ref-1 to suppress MAPK/ERK signalling pathway activity. Biol Direct 2025; 20:54. [PMID: 40241114 PMCID: PMC12001403 DOI: 10.1186/s13062-025-00624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and challenging malignancy of the digestive tract. Unfortunately, patients with advanced HCC frequently experience limited long-term benefits from current treatments, highlighting the critical need for innovative therapeutic agents. The discovery and development of new small-molecule compounds that target tumours have become crucial aspects of cancer research. In this study, we report on L-741626, a compound that has significant inhibitory effects on HCC. Both in vivo and in vitro experiments confirmed that L-741626 inhibited the growth of HCC by suppressing the MAPK/ERK signalling pathway. Molecular docking simulations and drug affinity responsive target stability assays further identified redox Factor 1 (Ref-1) as a target of L-741626. Ref-1 is overexpressed in HCC and is correlated with poor prognosis and high stage. Further studies demonstrated that Ref-1 interacts with CRAF, a crucial component of the MAPK/ERK signalling pathway. Knockdown of Ref-1 in HCC cells led to inhibition of the MAPK/ERK pathway. Sorafenib is a well-established targeted therapy for the treatment of HCC, with its primary antitumor mechanism being the inhibition of the MAPK/ERK signalling pathway. However, the presence of tumor stem cells is a key factor contributing to resistance to sorafenib. Our study demonstrates that L-741626 can suppress tumor stemness in HCC. The combination of L-741626 and sorafenib significantly enhances the sensitivity of HCC, resulting in increased tumoricidal effects. Our findings reveal a novel pharmacological effect of L-741626, which inhibits MAPK/ERK signalling activity in HCC by targeting Ref-1. Furthermore, L-741626 exhibits a synergistic effect when combined with sorafenib, suggesting a new potential approach for HCC treatment.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinsong Su
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peiwen Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peixian Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Guo
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Yibing Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Gan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Cheng Y, Wang Y, Zhou X, You L, Xie X, Li H, Wu M, Guo J. Identification of Safety Biomarkers for Autologous Blood Transfusion in Hepatocellular Carcinoma Patients. J Cell Mol Med 2025; 29:e70504. [PMID: 40193290 PMCID: PMC11975049 DOI: 10.1111/jcmm.70504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents the predominant form of primary liver cancer, constituting 75%-85% of all liver cancer cases. Despite advances in understanding HCC mechanisms and treatment options, challenges remain and further research is needed to uncover new therapeutic targets and improve patient outcomes. intraoperative cell salvage (IOCS) is an important surgical method that minimises the necessity for transfusions of donor blood, improves haemodynamic stability and may enhance recovery. This study aims to identify safety biomarkers for autologous blood transfusion in HCC patients. We conducted a prospective case-control study on 80 HCC patients undergoing radical surgery. Blood and tumour tissues were collected for analysis. The control group provided blood directly from the surgical site without IOCS processing, while the experimental group used blood collected through the IOCS system. Dual-Luciferase reporter gene assays, immunofluorescence, Western blot and qRT-PCR techniques were employed to assess the expression of key proteins and microRNAs. Comparable demographic and baseline clinical characteristics were observed between groups. The experimental group showed significantly improved pathological features, with an increase in PTEN-positive cells and upregulated protein expression of PTEN, mTOR, c-Met and IGF1R. Additionally, miRNA levels (miRNA-21, miRNA-122, miRNA-223, miRNA-199a and miRNA-375) were significantly reduced in the experimental group (p < 0.05), while mRNA levels for PTEN, mTOR, c-Met, YAP1 and IGF1R were significantly upregulated (p < 0.05). IOCS has a positive impact on liver tissue pathology in HCC patients by reducing apoptosis and modulating key molecular pathways. These findings suggest that IOCS could be a valuable therapeutic strategy for HCC, potentially guiding future treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Yong Cheng
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Yue Wang
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Xiao‐fang Zhou
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Lai‐wei You
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Xiao‐yi Xie
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Hao Li
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Mandi Wu
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jianrong Guo
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| |
Collapse
|
3
|
Rahimi-Farsi N, Bostanian F, Shahbazi T, Shamsinejad FS, Bolideei M, Mohseni P, Zangooie A, Boustani F, Shoorei H. Novel oncogenes and tumor suppressor genes in Hepatocellular Carcinoma: Carcinogenesis, progression, and therapeutic targets. Gene 2025; 941:149229. [PMID: 39800198 DOI: 10.1016/j.gene.2025.149229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is the primary malignancy affecting the liver and the leading cause of mortality among individuals with cirrhosis. This complex disease is associated with various risk factors, including environmental, pathological, and genetic influences, which dysregulate gene expression crucial for the cell cycle and cellular/molecular pathways. The disruption of the balance between tumor suppressors and proto-oncogenes amplifies the pathogenic cascade. Given its predilection for diseased or cirrhotic livers and late-stage diagnosis, HCC prognosis is typically poor. Current therapies offer limited benefits, with conventional non-specific cytotoxic agents exhibiting suboptimal efficacy. However, molecularly targeted therapies have emerged as a promising avenue, leveraging the strategic inhibition of carcinogenic molecules to provide heightened specificity and potency compared to cytotoxic chemotherapy. Several clinical trials have demonstrated promising outcomes in advanced HCC with targeted pharmacotherapies. Many genes have been implicated in HCC pathogenesis, underscoring the need to elucidate their molecular functions and roles. This has profound implications for early HCC prognostication via biomarkers and for identifying therapeutic targets to impede neoplastic progression. Notably, evidence highlights the pivotal roles of oncogenes and tumor suppressors in HCC pathophysiology. This discourse examines the potential involvement of ABL1, Annexins, FAK, FOX, and KIF as candidate oncogenes, contrasted with SORBS2, HPCAL1, PCDH10, PLAC8, and CXXC5 as plausible tumor suppressors. Their signaling cascades and relevance to HCC prognosis and progression are delineated to identify targets for improving HCC diagnosis, prognostication, and therapy.
Collapse
Affiliation(s)
| | | | - Taha Shahbazi
- Neurosurgery Research Group (NRG), Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Zangooie
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Boustani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2025; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
5
|
Wang Y, Ma X, Chen X, Wen Z, Bi C, Xu Z, Liu W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur J Med Chem 2025; 283:117137. [PMID: 39693862 DOI: 10.1016/j.ejmech.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited. Herein, we developed a series of novel gold(I) complexes using a "dual-targeting strategy" by combining gold(I) complexes with different gefitinib derivatives. Among them, the best complex 6g exhibits significant antiproliferative activity against Huh7 cells and Huh7R (lenvatinib-resistant) cells. Remarkably, complex 6g inhibits the expression of phosphorylated EGFR while also effectively inhibiting intracellular TrxR activity. In addition, complex 6g causes a significant increase in the accumulation of reactive oxygen species (ROS), disrupts mitochondrial membrane potential (MMP), arrests the cell cycle in the G0/G1 phase, and induces apoptosis. Collectively, our findings demonstrate that complex 6g exhibits potential anti-HCC effects via dual-targeting of EGFR and TrxR.
Collapse
Affiliation(s)
- Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejie Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215031, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
6
|
Guo Z, Yao Z, Huang B, Wu D, Li Y, Chen X, Lu Y, Wang L, Lv W. MAFLD-related hepatocellular carcinoma: Exploring the potent combination of immunotherapy and molecular targeted therapy. Int Immunopharmacol 2024; 140:112821. [PMID: 39088919 DOI: 10.1016/j.intimp.2024.112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People 's Hospital, Beijing 100044, China
| | - Bohao Huang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanbo Li
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaohan Chen
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, China.
| | - Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
Liu H, Wang L. MicroRNA-34a negatively regulates Netrin1 and mediates MEK/ERK pathway to regulate chemosensitivity of gastric cancer cells. Discov Oncol 2024; 15:563. [PMID: 39404782 PMCID: PMC11480279 DOI: 10.1007/s12672-024-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE To explore the mechanism of action of MicroRNAs-34a (miR-34a) and Eurite growth guiding factor 1 (Netrin1) in cisplatin resistance in gastric cancer (GC), providing new clues for overcoming tumor resistance and optimizing anti-tumor therapy for GC. METHODS The Cancer Genome Atlas (TCGA), Differentially Expressed MicroRNAs (miRNAs) in human cancers (dbDEMC), and Starbase online databases were used to analyze the correlation between miR-34a and Netrin-1 and prognosis in GC, and to predict and verify the targeted binding of miR-34a to Netrin-1. The experimental methods including Cell transfection, real-time polymerase chain reaction (RT-PCR), Cell-Counting-Kit-8 (CCK8) assay, flow cytometry, wound scratch assay, transwell assay, and western blotting were used to investigate the effects of miR-34a and Netrin1 on chemotherapy resistance and biological characteristics in cisplatin-resistant GC cells (HGC27/DDP), and to analyze the molecular mechanism of cisplatin resistance. RESULTS miR-34a expression was downregulated in gastric cancer clinical samples and cisplatin-resistant cells, while Netrin1 was upregulated, and was related to overall survival (OS). Upregulation of miR-34a can significantly reduce the IC50 value of cisplatin(0.65 vs 1.6 ng/mL) and Multidrug Resistance 1 (MDR-1) protein level, inhibit the proliferation activity, reduce the expression levels of proliferating cell nuclear antigen (PCNA) and ki-67 protein, and induce the increase of apoptosis rate and the enhancement of cycle arrest. Upregulation of miR-34a can also significantly reduce the expression level of Matrix metalloproteinase 9 (MMP9) protein, promote the expression of E-cadherin protein, reduce the wound healing rate and invasion number to inhibit migration and invasion ability in drug-resistant gastric cancer cells. Moreover, overexpression of Netrin1 on the basis of upregulation of miR-34a can weaken the above changes caused by upregulation of miR-34a. In addition, upregulation of miR-34a can significantly inhibit the Mitogen-activated protein kinase kinase (MEK) / Extracellular regulated protein kinases (ERK) pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway, and inhibition of MEK/ERK pathway can effectively counteract the protein expression of Netrin1, and reverse changes in the expression of cisplatin IC50 and MDR-1 proteins caused by co-upregulation of miR-34a/Netrin1 in HGC27/DDP, as well as changes in proliferation, apoptosis, migration and invasion. In addition, upregulation of miR-34a can significantly inhibit the MEK/ERK pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway. If the MEK/ERK pathway was inhibited, it can effectively counteract the protein overexpression of Netrin1, and reverse the changes in the expression of cisplatin IC50 and MDR-1 proteins in HGC27/DDP induced by co-upregulation of miR-34a / Netrin1, as well as changes in proliferation, apoptosis, migration and invasion. CONCLUSION miR-34a targets and negatively regulates Netrin1 to mediate the proliferation, apoptosis, apoptosis, migration, and invasion of drug-resistant gastric cancer cells via the MEK/ERK pathway, and change the chemosensitivity in GC cells. miR-34a/Netrin1/MEK/ERK axis may serve as a novel therapeutic target for chemoresistance in GC, it is of great significance for overcoming drug resistance and developing new therapeutic strategies for GC.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China
| | - Limin Wang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
8
|
Ma D, Liu S, Liu K, He Q, Hu L, Shi W, Cao Y, Zhang G, Xin Q, Wang Z, Wu J, Jiang C. CuET overcomes regorafenib resistance by inhibiting epithelial-mesenchymal transition through suppression of the ERK pathway in hepatocellular carcinoma. Transl Oncol 2024; 47:102040. [PMID: 38954975 PMCID: PMC11267041 DOI: 10.1016/j.tranon.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.
Collapse
Affiliation(s)
- Ding Ma
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kua Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qinyu He
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lili Hu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Shi
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guang Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Zhongxia Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China.
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
9
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
10
|
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, Li J, Ye M, Jin X. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon 2024; 10:e32855. [PMID: 38994114 PMCID: PMC11237970 DOI: 10.1016/j.heliyon.2024.e32855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
LZTR1 is a substrate specific adaptor for E3 ligase involved in the ubiquitination and degradation of RAS GTPases, which inhibits the RAS/RAF/MEK/ERK signaling to suppress the pathogenesis of Noonan syndrome and glioblastoma. However, it's still unknown whether LZTR1 destabilizes RAS GTPases to suppress HCC progression by inhibiting these signaling pathway. Lenvatinib is the first-line drug for the treatment of advanced HCC, however, it has high drug resistance. To explore the roles of LZTR1 in HCC progression and the underlying mechanisms of lenvatinib resistance, techniques such as bioinformatics analysis, immunohistochemical staining, RT-qPCR, Western blot, cell functional experiments, small interfering RNA transfection and cycloheximide chase assay were applied in our study. Among these, bioinformatics analysis and immunohistochemical staining results indicated that LZTR1 protein was aberrantly expressed at low levels in HCC tissues, and low protein expression of LZTR1 was associated with poor prognosis of HCC patients. In vitro functional experiments confirmed that low expression of LZTR1 promoted HCC cell proliferation and migration via the aberrant activation of the RAS/RAF/MEK/ERK signaling due to the dysregulation of LZTR1-induced KRAS ubiquitination and degradation. Transwell assays revealed that blocking of LZTR1-mediated KRAS degradation could induce lenvatinib resistance in HCC cells. In conclusion, our study revealed that LZTR1 knockdown promoted HCC cell proliferation and migration, and induced lenvatinib resistance via activating the RAS/RAF/MEK/ERK signaling, which may provide new ideas for HCC treatment.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyi Xia
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chenlu Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chaoyu Gu
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xinming Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyun Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
11
|
Abdel-Bakky MS, Mohammed HA, Mahmoud NI, Amin E, Alsharidah M, Al Rugaie O, Ewees MG. Targeting the PI3K/pAKT/mTOR/NF-κB/FOXO3a signaling pathway for suppressing the development of hepatocellular carcinoma in rats: Role of the natural remedic Suaeda vermiculata forssk. ENVIRONMENTAL TOXICOLOGY 2024; 39:3666-3678. [PMID: 38506534 DOI: 10.1002/tox.24217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| |
Collapse
|
12
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Luo J, Chen QX, Li P, Yu H, Yu L, Lu JL, Yin HZ, Huang BJ, Zhang SJ. Lobelia chinensis Lour inhibits the progression of hepatocellular carcinoma via the regulation of the PTEN/AKT signaling pathway in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116886. [PMID: 37429502 DOI: 10.1016/j.jep.2023.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lobelia chinensis Lour. (LCL) is a common herb used for clearing heat and detoxifying, and it has antitumor activity. Quercetin is one of its important components, which may play an important role in the treatment of hepatocellular carcinoma (HCC). AIM OF THE STUDY To study the active ingredients of LCL, their mechanism of action on HCC, and lay the foundations for the development of new drugs for the treatment of HCC. MATERIALS AND METHODS Network pharmacology was used to examine the probable active ingredients and mechanisms of action of LCL in HCC treatment. Based on an oral bioavailability of ≥30% and a drug-likeness index of ≥0.18, relevant compounds were selected from the Traditional Chinese Medicine Systems Pharmacology database and TCM Database@Taiwan. HCC-related targets were identified using gene cards and the Online Mendelian Inheritance in Man (OMIM) database. A Venn diagram was created to assess the relationship between the intersection of disease and medication targets by creating a protein-protein interaction network, and the hub targets were selected by topology. Gene Ontology enrichment analyses were performed using the DAVID tool. Finally, in vivo and in vitro experiments (qRT-PCR, western blotting, hematoxylin and eosin staining, transwell assays, scratch tests, and flow cytometry assays) verified that LCL demonstrated notable therapeutic effects on HCC. RESULTS In total, 16 bioactive LCL compounds met the screening criteria. The 30 most important LCL therapeutic target genes were identified. Of these, AKT1 and MAPK1 were the most important target genes, and the AKT signaling pathway was identified as the key pathway. Transwell and scratch assays showed that LCL prevented cell migration, and flow cytometry tests revealed that the LCL-treated group showed a considerably higher rate of apoptosis than the control group. LCL reduced tumor formation in mice in vivo, and Western blot analysis of tumor tissues treated with LCL indicated variations in PTEN, p-MAPK and p-AKT1 levels. The results show that LCL may inhibit the progression of HCC through the PTEN/AKT signaling pathway to achieve the goal of treating HCC. CONCLUSION LCL is a broad-spectrum anticancer agent. These findings reveal potential treatment targets and strategies for preventing the spread of cancer, which could aid in screening potential traditional Chinese medicine for anticancer and clarifying their mechanisms.
Collapse
Affiliation(s)
- Jin Luo
- The First Affiliated Hospital of Sun Yat-sen, Department of Traditional Chinese Medicine, Guangzhou, 510800, China; Shenzhen Children's Hospital, Futian District, Shenzhen, 518000, Guangdong, PR China
| | - Qiu-Xia Chen
- The First Affiliated Hospital of Sun Yat-sen, Department of Traditional Chinese Medicine, Guangzhou, 510800, China
| | - Pan Li
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450003, China
| | - He Yu
- The First Affiliated Hospital of Sun Yat-sen, Department of Traditional Chinese Medicine, Guangzhou, 510800, China
| | - Ling Yu
- The First Affiliated Hospital of Sun Yat-sen, Department of Traditional Chinese Medicine, Guangzhou, 510800, China
| | - Jia-Li Lu
- Department of General Practice, Shenzhen Longgang Fourth People's Hospital, Shenzhen, 518100, China
| | - Hong-Zhi Yin
- Department of Pediatrics, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, 518100, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Shi-Jun Zhang
- The First Affiliated Hospital of Sun Yat-sen, Department of Traditional Chinese Medicine, Guangzhou, 510800, China.
| |
Collapse
|
14
|
Peng F, Zhu F, Cao B, Peng L. Multidimensional Analysis of PANoptosis-Related Molecule CASP8: Prognostic Significance, Immune Microenvironment Effect, and Therapeutic Implications in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:2406193. [PMID: 38186679 PMCID: PMC10771335 DOI: 10.1155/2023/2406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) presents significant challenges in diagnosis and treatment. Understanding the role of PANoptosis-related molecules in HCC is crucial for advancing therapeutic strategies. Methods We conducted a comprehensive analysis using public data from the Cancer Genome Atlas, Human Protein Atlas, Tumor Immune Single Cell Hub, and STRING databases. Techniques included Kaplan-Meier survival curves, Cox regression, LASSO analysis, and various computational methods for understanding the tumor microenvironment. We also employed ClueGO, gene set enrichment analysis, and other algorithms for biological enrichment analysis. Results CASP8 emerged as a significant molecule in HCC, correlated with poor survival outcomes. Its expression was predominant in the nucleoplasm and cytosol and varied across different cancer types. Biological enrichment analysis revealed CASP8's association with critical cellular activities and immune responses. In the tumor microenvironment, CASP8 showed correlations with various immune cell types. A nomogram plot was developed for better clinical prognostication. Mutation analysis indicated a higher frequency of TP53 mutations in patients with elevated CASP8 expression. In addition, CASP8 was found to regulate YEATS2 in HCC, highlighting a potential pathway in tumor progression. Conclusions Our study underscores the multifaceted role of CASP8 in HCC, emphasizing its prognostic and therapeutic significance. The regulatory relationship between CASP8 and YEATS2 opens new avenues for understanding HCC pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Fei Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Fang Zhu
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Baodi Cao
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Liang Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| |
Collapse
|
15
|
Zhang F, Zhou K, Yuan W, Sun K. Radix Bupleuri-Radix Paeoniae Alba Inhibits the Development of Hepatocellular Carcinoma through Activation of the PTEN/PD-L1 Axis within the Immune Microenvironment. Nutr Cancer 2023; 76:63-79. [PMID: 37909316 DOI: 10.1080/01635581.2023.2276525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE This study investigated how Radix Bupleuri-Radix Paeoniae Alba (BP) was active against hepatocellular carcinoma (HCC). METHODS Traditional Chinese medicine systems pharmacology (TCMSP) database was employed to determine the active ingredients of BP and potential targets against HCC. Molecular docking analysis verified the binding activity of PTEN with BP ingredients. H22 cells were used to establish an HCC model in male balb/c mice. Immunofluorescence staining, immunohistochemistry, flow cytometry, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative PCR were used to study changes in proliferation, apoptosis, PTEN levels, inflammation, and T-cell differentiation in male balb/c mice. RESULTS The major active ingredients in BP were found to be quercetin, kaempferol, isorhamnetin, stigmasterol, and beta-sitosterol. Molecular docking demonstrated that these five active BP ingredients formed a stable complex with PTEN. BP exhibited an anti-tumor effect in our HCC mouse model. BP was found to increase the CD8+ and IFN-γ+/CD4+ T cell levels while decreasing the PD-1+/CD8+ T and Treg cell levels in HCC mice. BP up-regulated the IL-6, IFN-γ, and TNF-α levels but down-regulated the IL-10 levels in HCC mice. After PTEN knockdown, BP-induced effects were abrogated. CONCLUSION BP influenced the immune microenvironment through activation of the PTEN/PD-L1 axis, protecting against HCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of TCM, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kun Zhou
- Department of Hepatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Yuan
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Kewei Sun
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
16
|
Wang H, Wu D, Wang P, Gao C, Teng H, Liu D, Zhao Y, Du R. Albumin nanoparticles and their folate modified counterparts for delivery of a lupine derivative to hepatocellular carcinoma. Biomed Pharmacother 2023; 167:115485. [PMID: 37713994 DOI: 10.1016/j.biopha.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
In this study, folate polyethylene glycol CTr albumin nanoparticles (FA-PEG-CTr-NPs) targeting hepatocellular carcinoma (HCC) were prepared. The nanoparticle preparation method was optimized using single-factor and response surface analysis. The prepared nanoparticles were characterized for their particle size, zeta potential, and morphology. The particle size and zeta potential were also determined. Additionally, drug loading, encapsulation efficiency, and in vitro drug release of the nanoparticles were determined. Using the Cell Counting Kit-8 method, their cytotoxicity and their cell-targeted uptake were determined using confocal microscopy and flow cytometry. Finally, the in vivo antitumor impact and tumor-targeting ability of the nanoparticles were evaluated by determining tumor volume inhibition and drug biodistribution and performing hematoxylin-eosin (H&E) staining. It was found that CTr could be effectively encapsulated into albumin nanoparticles and functionalized. The drug loading of the two nanoparticles was 67.12 ± 2.4% and 69.33 ± 2.8%, respectively. Regarding drug release, FA-PEG-CTr-NPs (89.0%) exhibited a superior release rate to CTr-NPs (70.5%) in an acidic environment. The in vitro experiments confirmed that FA-PEG-CTr-NPs yielded better cytotoxicity and faster drug uptake results than CTr and CTr-NPs. In vivo experiments confirmed that FA-PEG-CTr-NPs exhibited markedly better tumor inhibitory activity (inhibition rate was 80.21%), drug safety, and targeting than CTr and CTr-NPs. In conclusion, functionalized nanoparticles (FA-PEG-CTr-NPs) can specifically inhibit the malignant proliferation of HCC cells and are thus a promising nanoagent for the treatment of HCC.
Collapse
Affiliation(s)
- Haohao Wang
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China
| | - Di Wu
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130118, China
| | - Pan Wang
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Dong Liu
- School of biological and pharmaceutical engineering, West Anhui University, Lu'an 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural engineering Research Center, Lu'an 237012, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
17
|
Han X, Sun Q, Xu M, Zhu G, Gao R, Ni B, Li J. Unraveling the Complexities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Semin Liver Dis 2023; 43:383-401. [PMID: 37931901 DOI: 10.1055/s-0043-1776127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qianhui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Li W, Yang Z, Ding L, Wang Y, Zhao X, Chu JJ, Ji Q, Yao M, Wang J. A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:489-502. [PMID: 37708962 DOI: 10.2478/acph-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound 4) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound 4 significantly inhibited HCT116 cell proliferation with IC 50 values of 8.04 ± 0.94 µmol L-1 after 48 h and 5.52 ± 0.42 µmol L-1 after 72 h, respectively. Compound 4 also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound 4 was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound 4 yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound 4 inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Ying Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710032, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Jian Jie Chu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Qing Ji
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| |
Collapse
|
19
|
Song D, An K, Zhai W, Feng L, Xu Y, Sun R, Wang Y, Yang YG, Kan Q, Tian X. NSUN2-mediated mRNA m 5C Modification Regulates the Progression of Hepatocellular Carcinoma. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:823-833. [PMID: 36183976 PMCID: PMC10787115 DOI: 10.1016/j.gpb.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
RNA modifications affect many biological processes and physiological diseases. The 5-methylcytosine (m5C) modification regulates the progression of multiple tumors. However, its characteristics and functions in hepatocellular carcinoma (HCC) remain largely unknown. Here, we found that HCC tissues had a higher m5C methylation level than the adjacent normal tissues. Transcriptome analysis revealed that the hypermethylated genes mainly participated in the phosphokinase signaling pathways, such as the Ras and PI3K-Akt pathways. The m5C methyltransferase NSUN2 was highly expressed in HCC tissues. Interestingly, the expression of many genes was positively correlated with the expression of NSUN2, including GRB2, RNF115, AATF, ADAM15, RTN3, and HDGF. Real-time PCR assays further revealed that the expression of the mRNAs of GRB2, RNF115, and AATF decreased significantly with the down-regulation of NSUN2 expression in HCC cells. Furthermore, NSUN2 could regulate the cellular sensitivity of HCC cells to sorafenib via modulating the Ras signaling pathway. Moreover, knocking down NSUN2 caused cell cycle arrest. Taken together, our study demonstrates the vital role of NSUN2 in the progression of HCC.
Collapse
Affiliation(s)
- Dan Song
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ke An
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Digestive Organ Transplantation of Henan Province, Zhengzhou University, Zhengzhou 450052, China
| | - Luyao Feng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjie Xu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Ran Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| | - Xin Tian
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Chen S, Du Y, Guan XY, Yan Q. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma. Front Oncol 2023; 13:1204513. [PMID: 37576900 PMCID: PMC10412930 DOI: 10.3389/fonc.2023.1204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance. The tumor microenvironment, encompassing hypoxia, immune cells, stromal cells, and exosomes, exerts a significant impact on HCC progression and therapy response. Hypoxic conditions and immune cell infiltration create an immunosuppressive milieu, shielding tumor cells from immune surveillance and hindering therapeutic efficacy. Additionally, the presence of CSCs emerges as a prominent contributor to sorafenib resistance, with CD133+ CSCs implicated in drug resistance and tumor initiation. Moreover, CSCs undergo EMT, a process intimately linked to tumor progression, CSC activation, and further promotion of sorafenib resistance, metastasis, and tumor-initiating capacity. Elucidating the correlation between the tumor microenvironment, CSCs, and sorafenib resistance holds paramount importance in the quest to develop reliable biomarkers capable of predicting therapeutic response. Novel therapeutic strategies must consider the influence of the tumor microenvironment and CSC activation to effectively overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Long J, Chen B, Liu Z. Comparative efficacy and safety of molecular targeted agents combined with transarterial chemoembolization in the treatment of unresectable hepatocellular carcinoma: a network meta-analysis. Front Oncol 2023; 13:1179431. [PMID: 37265792 PMCID: PMC10230082 DOI: 10.3389/fonc.2023.1179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Objective At present, several molecular targeted agents(MTAs) combined with transarterial chemoembolization (TACE) have been employed to treat unresectable hepatocellular carcinoma (HCC). In this meta-analysis, we compared the efficacy and safety of different MTAs combined with TACE to enable effective decision-making for the clinical treatment of unresectable HCC. Methods Pubmed, Web of Science, EMBASE, and Cochrane Library were retrieved to evaluate the efficacy and safety of different MTAs combined with TACE in cohort studies and randomized controlled trials. The hazard ratios and 95% confidence intervals (CIs) were calculated to investigate the impact of various therapies on overall survival (OS) and progression-free survival. However, the objective response rate (ORR), disease control rate (DCR), adverse events (AEs), and ≥grade-3 adverse events (≥G3-AEs) were calculated using odd ratios and 95% CIs. The node-splitting approach was used to test the heterogeneity. The funnel plot was utilized to analyze the publication bias. Additionally, according to the ranking plots, we ranked various treatments. Results A total of 45 studies involving 10,774 patients with 8 treatment strategies were included in our network meta-analysis. Our network meta-analysis showed that apatinib+TACE provided the highest OS (62.2%), ORR (44.7%), and DCR (45.6%), while and lenvatinib+TACE offered the best PFS (78.9%). Besides, there was no statistically significant difference in AEs and ≥G3-AEs among treatment options. Conclusion Apatinib+TACE demonstrated the best OS, ORR, and DCR with no additional AEs and ≥G3-AEs. Therefore, for the treatment scheme of MTAs combined with TACE, apatinib+TACE may be the best option for patients with unresectable HCC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023388609.
Collapse
Affiliation(s)
- Jiaye Long
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Baoxiang Chen
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Zhaohui Liu
- Department of Urology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| |
Collapse
|
22
|
Liu R, Chen Z, Hu G, Yu Z, Li Q, Liu D, Li L, Liu Z. A Novel PDK1/MEK Dual Inhibitor Induces Cytoprotective Autophagy via the PDK1/Akt Signaling Pathway in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:244. [PMID: 37259393 PMCID: PMC9961937 DOI: 10.3390/ph16020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 10/29/2024] Open
Abstract
In a preliminary study, we synthesized a series of new PDK1/MEK dual inhibitors. Antitumor activity screening showed that Compound YZT exerts a strong inhibitory action in A549 cells. However, the specific mechanism of YZT against non-small cell lung cancer (NSCLC) is largely unknown. This work confirmed the anti-proliferation and pro-apoptosis effects of YZT in NSCLC cells. Furthermore, YZT promotes autophagy and provokes complete autophagic flux in NSCLC cells. Notably, compared with YZT alone, the combination of YZT with the autophagy inhibitor chloroquine (CQ) or 3-methyladenine (3-MA) markedly strengthened the anti-proliferative and pro-apoptotic actions, suggesting that YZT-induced autophagy is cytoprotective. We further found that YZT-induced autophagy may exert a cytoprotective function by preserving the integrity of mitochondria and decreasing mitochondrial apoptosis. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that PDK1 is an upstream protein of the Akt/mTOR axis and western blotting verified that YZT induces autophagy by the PDK1/Akt/mTOR signaling axis. Finally, YZT plus CQ significantly enhanced the anticancer activities compared to YZT alone in an animal study and immunohistochemistry showed that the level of LC3 was increased by YZT, which is in line with the in vitro results. In short, our study provides reliable experimental basis for developing Compound YZT as a new chemotherapeutic drug candidate and suggests that combined administration of YZT with CQ is a potential therapy against NSCLC.
Collapse
Affiliation(s)
- Rangru Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zutao Yu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
23
|
Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways. J Zhejiang Univ Sci B 2023; 24:50-63. [PMID: 36632750 PMCID: PMC9837375 DOI: 10.1631/jzus.b2200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Collapse
|
24
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
25
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
26
|
Kong Y, Li J, Lin H, Liang X, Zhou X. Landscapes of synchronous multiple primary cancers detected by next-generation sequencing. FEBS Open Bio 2022; 12:1996-2005. [PMID: 36128740 PMCID: PMC9623518 DOI: 10.1002/2211-5463.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
An increase in the detection rate of multiple primary cancers has been accompanied with declining cancer death rates over the past few decades. However, synchronous multiple primary tumors have gradually increased, and the molecular mechanisms involved in the synchronous occurrence of multiple primary cancers of different origins are unclear. To investigate these mechanisms, we sequenced cancer tissues by FoundationOne CDx. Data were annotated with annovar, and we then performed pathway enrichment analysis. A total of 109 genes that were mutated in all samples were clustered into different diseases, biological processes, and molecular functions. GO and KEGG analyses indicated that the P53 and PKB signaling pathways may be relevant to the occurrence of synchronous multiple primary cancers. In summary, patients with a concordance of mutations in pathogenetic genes may have a higher risk of developing a second cancer. Our research may provide a basis for the development of individualized treatments for synchronous multiple primary cancers.
Collapse
Affiliation(s)
- Yiru Kong
- Department of OncologyHuashan Hospital Fudan UniversityShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityChina
| | - Jing Li
- Department of OncologyHuashan Hospital Fudan UniversityShanghaiChina
| | - Hao Lin
- Department of OncologyHuashan Hospital Fudan UniversityShanghaiChina
| | - Xiaohua Liang
- Department of OncologyHuashan Hospital Fudan UniversityShanghaiChina
| | - Xinli Zhou
- Department of OncologyHuashan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
27
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
28
|
Fang Y, Ji W, Yan C. Research Progress of PI3K/PTEN/AKT Signaling Pathway Associated with Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:1195875. [PMID: 36046376 PMCID: PMC9420629 DOI: 10.1155/2022/1195875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma is a common renal malignancy of the urinary system and the most malignant type of kidney cancer. Phosphatidylinositol 3-kinase (PI3K) is an intracellular phosphatidylinositol kinase associated with oncogene products such as v-src and with serine/threonine kinase activity, and its increased activity correlates with the development of several cancers. Protein kinase B (AKT) is a cyclic guanosine phosphate-dependent protein kinase that plays an important role in cell survival and apoptosis. Phosphatase and tensin homolog (PTEN), a newly discovered oncogene in recent years, participates in tumorigenesis and development by competing with tyrosine kinases for common substrates. The product encoded by PTEN was found to negatively regulate the PI3K/Akt signaling pathway, thereby inhibiting cell proliferation and promoting apoptosis. The PI3K/PTEN/AKT signaling pathway has also been identified in several studies as being involved in the development of several malignancies, including renal cell carcinoma. Radiotherapy is currently one of the most effective means of treatment for renal cell carcinoma, whereas it is predisposed to significant tolerance during the course of radiotherapy, thereby leading to treatment failure. Therefore, new treatment options may potentiate the efficiency of renal cell carcinoma treatment. With the development of tumor molecular biology, targeted biological therapy for malignant tumors has gradually become a research hotspot. Given the above research background, this study reviews the application of the PI3K/PTEN/AKT signaling pathway in renal cell carcinoma, aiming to provide more references for the treatment of clinical renal cell carcinoma.
Collapse
Affiliation(s)
- Yakun Fang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Wenjun Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
29
|
Guo J, Jin K, Tang T, Liu HM, Xie YA. A new biomarker to enhance the radiosensitivity of hepatocellular cancer: miRNAs. Future Oncol 2022; 18:3217-3228. [PMID: 35968820 DOI: 10.2217/fon-2022-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This review summarizes findings regarding miRNAs that modulate radiation in hepatocellular carcinoma (HCC) and evaluates their potential clinical therapeutic uses. Materials & methods: We searched the relevant English-language medical databases for papers on miRNAs and radiation therapy for tumors to identify miRNAs that are linked with radiosensitivity and radioresistance, focusing on those associated with HCC radiation. Results: There were 88 papers assessed for miRNAs associated with tumor radiation, 56 of which dealt with radiosensitization, 21 with radioresistance and 11 with radiosensitization for HCC. Conclusion: Further work in this area would enable future evaluation of radiation responses and the potential use of miRNAs as therapeutic agents in HCC patients.
Collapse
Affiliation(s)
- Ju Guo
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China.,Guangxi Key Laboratory of Reproductive Health & Birth Defects Prevention, Nanning, Guangxi, 530002, PR China
| | - Kai Jin
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China
| | - Ting Tang
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China
| | - Hong-Mei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University & Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Yu-An Xie
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China.,Guangxi Key Laboratory of Reproductive Health & Birth Defects Prevention, Nanning, Guangxi, 530002, PR China.,Experimental Research Department, Affiliated Cancer Hospital of Guangxi Medical University & Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China.,Guangxi Zhuang Autonomous Region Women & Children Care Hospital, Nanning, Guangxi, 530002, PR China
| |
Collapse
|
30
|
KDM5B regulates the PTEN/PI3K/Akt pathway to increase sorafenib-resistance in hepatocellular carcinoma. Anticancer Drugs 2022; 33:840-849. [PMID: 35946516 DOI: 10.1097/cad.0000000000001329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lysine-specific demethylase 5B (KDM5B) exerts its tumor-promoting functions in numerous malignancies, although the possible mechanisms by which KDM5B promotes cancer aggressiveness in hepatocellular carcinoma (HCC) have been preliminarily explored, the role of this gene in regulating sorafenib-resistance in HCC has not been studied. Thus, the present study was designed to resolve this problem, and our data suggested that KDM5B was significantly upregulated in the HCC tissues collected from patients with sorafenib treatment history. Consistently, continuous low-dose sorafenib administration increased KDM5B expression levels in the sorafenib-resistant HCC cells compared to their sorafenib-sensitive counterparts. Next, by performing the functional experiments, we found that KDM5B positively regulated sorafenib-resistance and cancer stem cell (CSC) properties in HCC cells in vitro and in vivo. Furthermore, upregulation of KDM5B-degraded phosphatase and tensin homolog (PTEN), results in the activation of the downstream oncogenic PI3K/Akt pathway. Subsequently, the rescuing experiments verified that the promoting effects of KDM5B overexpression on chemoresistance and cancer stemness in HCC cells were all abrogated by PI3K (p110) knockdown and PTEN overexpression. Collectively, those data hinted that KDM5B influenced CSC properties and sorafenib-resistance in HCC cells through modulating the PTEN/PI3K/Akt pathway, and KDM5B could be used as a potential target for the treatment of HCC in clinic.
Collapse
|
31
|
Qi T, Luo Y, Cui W, Zhou Y, Ma X, Wang D, Tian X, Wang Q. Crosstalk between the CBM complex/NF-κB and MAPK/P27 signaling pathways of regulatory T cells contributes to the tumor microenvironment. Front Cell Dev Biol 2022; 10:911811. [PMID: 35927985 PMCID: PMC9343696 DOI: 10.3389/fcell.2022.911811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs), which execute their immunosuppressive functions by multiple mechanisms, have been verified to contribute to the tumor microenvironment (TME). Numerous studies have shown that the activation of the CBM complex/NF-κB signaling pathway results in the expression of hypoxia-inducible factor-1 (HIF-1α) and interleukin-6 (IL-6), which initiate the TME formation. HIF-1α and IL-6 promote regulatory T cells (Tregs) proliferation and migration through the MAPK/CDK4/6/Rb and STAT3/SIAH2/P27 signaling pathways, respectively. IL-6 also promotes the production of HIF-1α and enhances the self-regulation of Tregs in the process of tumor microenvironment (TME) formation. In this review, we discuss how the crosstalk between the CARMA1-BCL10-MALT1 signalosome complex (CBM complex)/NF-κB and MAPK/P27 signaling pathways contributes to the formation of the TME, which may provide evidence for potential therapeutic targets in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tongbing Qi
- College of Sport and Health, Shandong Sport University, Jinan, China
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Ying Luo
- Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Yue Zhou
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Xuan Ma
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Dongming Wang
- Department of Pediatrics, People’s Hospital of Huantai, Zibo, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, China
| |
Collapse
|
32
|
Che L, Du ZB, Wang WH, Wu JS, Han T, Chen YY, Han PY, Lei Z, Chen XX, He Y, Xu L, Lin X, Lin ZN, Lin YC. Intracellular antibody targeting HBx suppresses invasion and metastasis in hepatitis B virus-related hepatocarcinogenesis via protein phosphatase 2A-B56γ-mediated dephosphorylation of protein kinase B. Cell Prolif 2022; 55:e13304. [PMID: 35811356 PMCID: PMC9628248 DOI: 10.1111/cpr.13304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Hepatitis B virus X (HBx) is closely associated with HBV‐related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx‐associated hepatocarcinogenesis phenotypes and mediating anti‐HBx antibody‐mediated tumour suppression remains unknown. Materials and Methods We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx‐Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti‐HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx‐associated hepatocarcinogenesis. Results Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV‐infected liver tissues and HBV‐associated HCC tissues. Our results demonstrated that HBx‐expression promotes AKT phosphorylation (p‐AKTThr308/Ser473), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV‐associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site‐directed mutagenesis (AKTT308A, AKTS473A) of p‐AKTThr308/Ser473 mimics dephosphorylation, genetics‐based B56γ overexpression, and intracellular anti‐HBx antibody inhibited cell growth, migration, and invasion in HBx‐expressing HCC cells. Conclusions Our results demonstrated that B56γ inhibited HBV/HBx‐dependent hepatocarcinogenesis by regulating the dephosphorylation of p‐AKTThr308/Ser473 in HCC cells. The intracellular anti‐HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV‐related HCC.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wei-Hua Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tun Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ling Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Tumor cell-derived exosome RNF126 affects the immune microenvironment and promotes nasopharyngeal carcinoma progression by regulating PTEN ubiquitination. Apoptosis 2022; 27:590-605. [PMID: 35717659 DOI: 10.1007/s10495-022-01738-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to investigate the role and regulatory mechanism of RNF126 in nasopharyngeal carcinoma. Firstly, the expression and prognosis of RNF126 were analyzed by TCGA database. The expression of RNF126 was further verified by NPC tissue samples and cells. An ectopic xenograft model was constructed to verify the regulatory role of RNF126 in NPC tumor progression. The regulatory effect of RNF126 on macrophage polarization and migration was verified by co-culture of tumor cells and THP-1 cells. The role of RNF126 in tumor exosomes involved in intercellular communication was further verified by nanoparticle tracking technology, western blotting and immunofluorescence assays. QRT-PCR, half-life assay and WB assay were used to verify the regulatory effect of RNF126 on PTEN ubiquitination and PI3K/AKT pathway. Finally, an in vivo assay was used to verify the regulation of exosomes on tumor growth and metastasis. In summary, we found for the first time that tumor-derived exosomal PTEN degrades PTEN through ubiquitination to regulate the tumor immune microenvironment and promote NPC growth and metastasis. These results provide the basis for the screening of early markers of NPC and targeted therapy.
Collapse
|
34
|
miR-382-5p promotes cell invasion in hepatocellular carcinoma by targeting PTEN to activate PI3K/Akt signaling pathway. World J Surg Oncol 2022; 20:175. [PMID: 35655254 PMCID: PMC9161500 DOI: 10.1186/s12957-022-02638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose This study aimed at investigating miR-382-5p expression in tissues and cell lines with hepatocellular carcinoma (HCC), its effects on the invasion of HCC cells, and related mechanisms. Methods miR-382-5p expression in HCC tissues, adjacent tissues, cell lines of normal hepatic cells, and HCC cells were detected by qRT-PCR, indicating its upregulation or downregulation in HCC cell lines (Hep3B and HCCLM3). The effect of miR-382-5p on cell invasion was observed by the Transwell experiment. The targeting relationship of miR-382-5p and the phosphatase and tensin homolog (PTEN) was analyzed using bioinformatics tools and the luciferase reporter gene assay. The correlation between miR-382-5p and PTEN was analyzed with Spearman correlation analysis. PTEN expression was observed after upregulation and downregulation of miR-382-5p expression. The effect of miR-382-5p on the expression of key proteins in PI3K/Akt signaling pathway was determined by Western blot. Results miR-382-5p expression was upregulated in both HCC tissues and cell lines (both P<0.05). Upregulation or downregulation of miR-382-5p significantly promoted or inhibited the invasion of cell lines, Hep3B, and HCCLM3. The luciferase reporter gene assay confirmed that PTEN is a target of miR-382-5p. The expressions of miR-382-5p and PTEN were negatively correlated (r=−0.742, P<0.001). Upregulation of PTEN expression by plasmid transfection can reverse the invasive effect of miR-382-5p on HCC cells. Upregulation of miR-382-5p can activate PI3K/Akt signaling pathway, and downregulation of miR-382-5p can inhibit PI3K/Akt signaling pathway. Conclusions miR-382-5p can activate the PI3K/Akt signaling pathway by targeting PTEN and promote HCC cell invasion.
Collapse
|
35
|
Yuan D, Ma R, Sun T, Zhu K, Dang C, Ye H, Li K. Knockdown of RSPH14 inhibits proliferation, migration, and invasion and promotes apoptosis of hepatocellular carcinoma via RelA. Cancer Cell Int 2022; 22:129. [PMID: 35305640 PMCID: PMC8933878 DOI: 10.1186/s12935-022-02515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background High RSPH14 expression appears to be related to poor prognosis of hepatocellular carcinoma (HCC). This study aimed to investigate the possible roles of RSPH14 in the proliferation, apoptosis, and invasion of HCC cells. Methods The UALCAN database and Kaplan–Meier Plotter were used to evaluate the expression level and prognostic role of RSPH14 in HCC. Lentiviral vectors containing shRNA against RSPH14 were constructed to transfect the BEL-7404 and SMMC-7721 HCC cell lines. Cell proliferation was investigated by BrdU, MTT, and colony-formation assays. Apoptosis was detected using flow cytometry. Cell migration and invasion were evaluated using the scratch wound-healing and Transwell assays. Immunohistochemistry and western blot were used to determine the expression levels of the proteins. The function of RSPH14 in vivo was evaluated using a xenograft mouse model. Results The expression of RSPH14 was higher in HCC tumor tissues than in adjacent normal tissues and was closely related to unfavorable prognostic factors and poorer survival (all P < 0.05). Knockdown of RSPH14 inhibited the cell proliferation, migration, and invasion of HCC cells and promoted apoptosis (all P < 0.05). Knockdown of RSPH14 inhibited tumor growth in vivo (P < 0.05). RSPH14 knockdown led to decreased expression of RelA (NF-κBp65), CDH2, and AKT1, thereby affecting the functions of the HCC cells (all P < 0.05). RelA overexpression could abate the inhibitory effect of BEL-7404 cell proliferation caused by RSPH14 depletion. Conclusion Knockdown of RSPH14 could decrease cell proliferation, migration, and invasion and increase apoptosis of HCC cells by inhibiting RelA expression. RSPH14 could be a new treatment target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02515-z.
Collapse
|
36
|
Ai J, Li J, Su Q, Ma H, Wei Q, Li H, Gao G. rAAV-delivered PTEN therapeutics for prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:122-132. [PMID: 34976432 PMCID: PMC8671520 DOI: 10.1016/j.omtn.2021.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Effective treatments for prostate cancer (PCa) require further development, and previous studies have reported that PTEN and its downstream target CDKN1B are significantly downregulated in PCa cells compared with normal cells. Therefore, modulation of PTEN and CDKN1B expression might be a promising therapeutic approach for PCa treatment. Expression of PTEN and CDKN1B was verified in specimens from PCa patients and transgenic adenocarcinoma mouse prostate (TRAMP) mice. The effect of PTEN on PCa cell migration, apoptosis, and the cell cycle was analyzed in vitro using a wound-healing assay and flow cytometry. We assessed the ability of intraprostatic and intratumoral injections of recombinant adeno-associated virus (rAAV) 9 expressing Pten or Cdkn1b into TRAMP mice and a subcutaneous tumor xenograft mouse model, respectively, to inhibit PCa progression. PTEN and CDKN1B were significantly downregulated in human and mouse PCa samples, and CDKN1B expression correlated positively with PTEN expression. PTEN overexpression significantly inhibited cell migration and cell-cycle progression and promoted apoptosis in PCa cells by decreasing Ccnd1 expression and increasing that of Cdkn1b. Importantly, treatment with the rAAV9.Pten or rAAV9.Cdkn1b extended the lifespan of TRAMP mice and inhibited the growth rate of tumor xenografts by regulating downstream gene expression. Moreover, neoplasia in treated prostates was significantly diminished compared with that in control prostates, and apoptosis was markedly observed in xenografts treated with Pten or Cdkn1b. These data indicate that rAAV-based PTEN/CDKN1B delivery is promising for the development of novel therapeutics for PCa.
Collapse
Affiliation(s)
- Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
37
|
Antitumor effects ofrhamnazinon sorafenib-treated human hepatocellular carcinoma cell lines via modulation of VEGF signalingand PI3K/NF-κBp38/caspase-3 axes cross talk. Life Sci 2022; 297:120443. [PMID: 35245519 DOI: 10.1016/j.lfs.2022.120443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is the most common livermalignancy,characterized by dysregulation of multiple oncogenicsignaling pathways, including the VEGF/PI3K/NF-κBandp38 MAPKaxes.Sorafenib is a multikinase inhibitor that targetsRaf kinases and receptor tyrosine kinases,which mediateHCC angiogenesis.Rhamnazinis a VEGFR2 signaling inhibitor, whichinhibits the phosphorylation of Vascular endothelial growth factor receptor 2(VEGFR2) and its downstream signaling regulators. This study was designed toassess the antitumor effects of rhamnazinon human HCC cell lines treated with sorafenib, and to investigate the molecular mechanisms mediating this effect. MAIN METHODS HepG2 and HUH-7 HCC cell lines were used.Cell viability was assessed by MTT assay. NF-κB, p38MAPK, VEGF, VEGFR2, PI3K, and Ki67 levels were assessedusing ELISA. Caspase-3 activity was measuredcolorimetrically. VEGFR2 expression was detected by RT-PCR. KEY FINDINGS MTT assay revealed that the sorafenib-rhamnazin combination showed significant cytotoxicity compared with sorafenib or rhamnazin alone. The sorafenib-rhamnazin combination also showed significant inhibition of the angiogenicVEGF/VEGFR2/PI3K/NF-κBsignaling axis associated with significant upregulation of the apoptotic p38MAPK/caspase-3 axis and inhibition of Ki67, a proliferation marker in HepG2 and HUH-7 cells. SIGNIFICANCE Rhamnazin potentiates the chemotherapeutic effect of sorafenibvia modulation ofthe VEGF/PI3K/NF-κBsignaling axis, downregulation of VEGFR2 expression, and upregulation of the p38MAPK/caspase-3 axisin human HCC cell lines.
Collapse
|
38
|
MiR-29a Curbs Hepatocellular Carcinoma Incidence via Targeting of HIF-1α and ANGPT2. Int J Mol Sci 2022; 23:ijms23031636. [PMID: 35163556 PMCID: PMC8835722 DOI: 10.3390/ijms23031636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However, the increased transparency of the correlation between miR-29a and the progression of human HCC is still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2 gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for 25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis confirms that miR-29a specific binding 3′UTR of HIF-1α and ANGPT2 to repress expression. In summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the incidence of HCC development.
Collapse
|
39
|
Sim KH, Shu MS, Kim S, Kim JY, Choi BH, Lee YJ. Cilostazol Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma Cells by Activating AMPK. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0002-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Xie J, Qi Z, Luo X, Yan F, Xing W, Zeng W, Chen D, Li Q. Integration Analysis of m6A Regulators and m6A-Related Genes in Hepatocellular Carcinoma. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in
HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO,
KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed
significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences
between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed
m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein‐protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.
Collapse
Affiliation(s)
- Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Zhenhua Qi
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaolin Luo
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| |
Collapse
|
41
|
Li R, Wang C, Chen Y, Li N, Wang Q, Zhang M, He C, Chen H. A combined network pharmacology and molecular biology approach to investigate the active ingredients and potential mechanisms of mulberry (Morus alba L.) leaf on obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153714. [PMID: 34508977 DOI: 10.1016/j.phymed.2021.153714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As one of traditional Chinese medicine, mulberry leaf is abundant in diverse active ingredients and widely used for the treatment of metabolic disease and its complications. However, there are a few of reports on its application in the prevention and treatment of obesity. And the molecular mechanism on the anti-obesity of mulberry leaf are unknown till now. PURPOSE The present study aimed to evaluate the potential ingredients and targets of mulberry leaf and uncover the anti-obesity mechanisms by using the network pharmacology tactics and verify its effect by biological experiments. STUDY DESIGN Active ingredients and key targets of mulberry leaf, genes related to obesity were screened through public database. Based on the results of network pharmacology, the flavonoids-enriched fraction of mulberry leaf (MLF) was extracted and composition of this fraction was identified. After that, HepG2 cells model of lipid accumulation was established for verifying the effect of MLF and related mechanisms. RESULTS A total of 37 active ingredients in mulberry leaf, 192 predicted biological targets and 8813 obesity-related targets were determined, of which 180 overlapping targets might have obvious curative effects on obesity. The networks showed that mulberry leaf might play a role through key targets, such as AKT, MAPK and IL-6, and regulated PI3K-Akt signaling pathway. Based on HPLC-ESI-QQQ-MS analysis, 13 constituents of MLF were identified, including 9 flavonoids. Furthermore, HepG2 cells model of lipid accumulation was established. The results indicated that MLF treatment could down-regulate the secretion of inflammatory cytokines, as well as clearly inhibited lipid droplets formation and alleviated TC, TG, HDL-C and LDL-C levels. Positive effect was observed on hypolipidemic efficacy due to the regulation of PI3K/Akt/Bcl-xl pathway, as indicated by the amelioration of PI3K, Akt and Bcl-xl gene and protein expression. CONCLUSION This study firstly systematically disclose the multi-ingredients, multi-targets mechanisms of mulberry leaf on obesity by using network pharmacology approach, and validate in HepG2 cells that the protective effect of MLF against obesity involved both inflammation response and lipid metabolism involving PI3K/Akt/Bcl-xl signaling pathway. It provides indications for further mechanistic research of mulberry leaf and also for the development as a potential candidate for the therapy for obese patients.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, P.R. China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
42
|
Lioulia E, Mokos P, Panteris E, Dafou D. UBE2T promotes β-catenin nuclear translocation in hepatocellular carcinoma through MAPK/ERK-dependent activation. Mol Oncol 2021; 16:1694-1713. [PMID: 34614271 PMCID: PMC9019890 DOI: 10.1002/1878-0261.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ubiquitin‐conjugating enzyme E2T (UBE2T) has been implicated in many types of cancer including hepatocellular carcinoma (HCC). Epithelial–mesenchymal transition (EMT) process plays a fundamental role during tumor metastasis and progression. However, the molecular mechanisms underlying EMT in HCC in accordance with UBE2T still remain unknown. In this study, we showed that UBE2T overexpression augmented the oncogenic properties and specifically EMT in HCC cell lines, while its silencing attenuated them. UBE2T affected the activation of EMT‐associated signaling pathways: MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin. In addition, we revealed that the epithelial protein complex of E‐cadherin/β‐catenin, a vital regulator of signal transduction in tumor initiation and progression, was totally disrupted at the cell membrane. In particular, we observed that UBE2T overexpression led to E‐cadherin loss accompanied by a simultaneous elevation of both cytoplasmic and nuclear β‐catenin, while its silencing resulted in a strong E‐cadherin turnover at the cell membrane. Interestingly, chemical inhibition of the MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin signaling pathways demonstrated that the nuclear translocation of β‐catenin and subsequent EMT was enhanced mainly by MAPK/ERK. Collectively, our findings demonstrate the UBE2T/MAPK‐ERK/β‐catenin axis as a critical regulator of cell state transition and EMT in HCC.
Collapse
Affiliation(s)
- Elisavet Lioulia
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Panagiotis Mokos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
43
|
Gao L, Chen Y. Autophagy controls programmed death-ligand 1 expression on cancer cells (Review). Biomed Rep 2021; 15:84. [PMID: 34512972 DOI: 10.3892/br.2021.1460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein mainly located on cancer cells, including renal cell carcinoma, breast, colorectal, gastric and non-small cell lung cancer. PD-L1 binds to the PD-1 receptor expressed on T lymphocytes to inhibit the activation of T lymphocytes, thus allowing tumour cells to escape immune surveillance, leading to tumour growth and the poor prognosis of patients with cancer. Inhibitors targeting the programmed death-1/PD-L1 axis have been widely used in the clinical treatment of a variety of solid tumours in recent years. However, the clinical efficacy of these inhibitors varies. Studies have demonstrated that the effect of the targeted drug is positively associated with the expression of PD-L1 on the tumour membrane. Hence, exploring the mechanism of PD-L1 expression is very important for the treatment of tumours. Autophagy is a physiological process that maintains the stability of the internal environment. Autophagy degrades aging organelles and long-lived proteins and produces nutrients for cell recycling. To the best of our knowledge, the present review is the first to summarize the research that has been conducted on autophagy-regulated PD-L1 expression, which may provide new avenues for tumour immunotherapy.
Collapse
Affiliation(s)
- Lijuan Gao
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,The First Clinical College of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,The First Clinical College of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
44
|
Luo J, Lu C, Feng M, Dai L, Wang M, Qiu Y, Zheng H, Liu Y, Li L, Tang B, Xu C, Wang Y, Yang X. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J Exp Clin Cancer Res 2021; 40:262. [PMID: 34416907 PMCID: PMC8377946 DOI: 10.1186/s13046-021-02061-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver cancer, mainly hepatocellular carcinoma, is one of the deadliest cancers worldwide and has a poor prognosis due to insufficient understanding of hepatocarcinogenesis. Previous studies have revealed that the mutations in PTEN and TP53 are the two most common genetic events in hepatocarcinogenesis. Here, we illustrated the crosstalk between aberrant Pten and Tp53 pathways during hepatocarcinogenesis in zebrafish. METHODS We used the CRISPR/Cas9 system to establish several transgenic zebrafish lines with single or double tissue-specific mutations of pten and tp53 to genetically induce liver tumorigenesis. Next, the morphological and histological determination were performed to investigate the roles of Pten and Tp53 signalling pathways in hepatocarcinogenesis in zebrafish. RESULTS We demonstrated that Pten loss alone induces hepatocarcinogenesis with only low efficiency, whereas single mutation of tp53 failed to induce tumour formation in liver tissue in zebrafish. Moreover, zebrafish with double mutations of pten and tp53 exhibits a much higher tumour incidence, higher-grade histology, and a shorter survival time than single-mutant zebrafish, indicating that these two signalling pathways play important roles in dynamic biological events critical for the initiation and progression of hepatocarcinogenesis in zebrafish. Further histological and pathological analyses showed significant similarity between the tumours generated from liver tissues of zebrafish and humans. Furthermore, the treatment with MK-2206, a specific Akt inhibitor, effectively suppressed hepatocarcinogenesis in zebrafish. CONCLUSION Our findings will offer a preclinical animal model for genetically investigating hepatocarcinogenesis and provide a useful platform for high-throughput anticancer drug screening.
Collapse
Affiliation(s)
- Juanjuan Luo
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Shantou University Medical College, Shantou, China
| | - Meilan Feng
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Lu Dai
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Maya Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Yang Qiu
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huilu Zheng
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Yao Liu
- Shantou University Medical College, Shantou, China
| | - Li Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Cancer Center, Sichuan Cancer Hospital & Institute Sichuan, School of Medicine University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yajun Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, China.
| |
Collapse
|
45
|
Wu Q, Liu TY, Hu BC, Li X, Wu YT, Sun XT, Jiang XW, Wang S, Qin XC, Ding HW, Zhao QC. CK-3, A Novel Methsulfonyl Pyridine Derivative, Suppresses Hepatocellular Carcinoma Proliferation and Invasion by Blocking the PI3K/AKT/mTOR and MAPK/ERK Pathways. Front Oncol 2021; 11:717626. [PMID: 34395292 PMCID: PMC8355706 DOI: 10.3389/fonc.2021.717626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis that highly expresses phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (ERK). The PI3K/AKT/mTOR and MAPK/ERK signaling pathways play a crucial role in HCC tumor formation, cell cycle, apoptosis and survival. However, no effective targeted therapies against these pathways is available, mainly due to the extensive and complex negative feedback loops between them. Here we used CK-3, a dual blocker of the PI3K/AKT/mTOR and MAPK/ERK pathways, against HCC cell lines to verify its anti-tumor activity in vitro. CK-3 exhibited cytotoxic activity against HCC, as demonstrated with MTT and colony formation assays. The anti-metastatic potential of CK-3 was demonstrated with wound healing and cell invasion assays. The ability of CK-3 to block both the PI3K/AKT/mTOR and MAPK/ERK pathways was also confirmed. CK-3 induced the apoptosis of Hep3B cells, while Bel7402 cells died via mitotic catastrophe (MC). Oral administration of CK-3 also inhibited the subcutaneous growth of BEL7402 cells in nude mice. Simultaneous PI3K/AKT/mTOR and MAPK/ERK pathway inhibition with CK-3 may be superior to single pathway monotherapies by inhibiting their feedback-regulation, and represents a potential treatment for HCC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bai-Chun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu-Ting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Tong Sun
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Shu Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Chun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huai-Wei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
46
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
47
|
Meng T, Tong Z, Yang MY, Zhang Y, Liu Y, Wang ZZ, Zhu LX, Wu J. Immune implication of FAM83D gene in hepatocellular carcinoma. Bioengineered 2021; 12:3578-3592. [PMID: 34308751 PMCID: PMC8806426 DOI: 10.1080/21655979.2021.1950260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FAM83D has been demonstrated to contribute to tumorigenesis. However, its immune effects in hepatocellular carcinoma (HCC) have not been reported. This study aimed to identify the immune role of FAM83D in HCC. FAM83D was over-expressed in HCC and contributed to poor prognosis according to the results of data analysis based on The Cancer Genome Atlas (TCGA). Afterward, the levels of immune cells infiltration were found to be correlated with the expression level of FAM83D in HCC. Through TISIDB and cBioPortal network tools, a total of 82 FAM83D-associated genes were screened out, including 12 immunoinhibitors, 20 immunostimulators and 50 tightly co-expressed genes. TCGA cohort was divided into train set and test set on the basis of the proportion of 7:3. According to FAM83D-associated immunomodulators, a four gene predicted model was established using train set via the Cox regression analysis. Survival analysis demonstrated that the overall survival (OS) of high-risk HCC patients was poor compared with the patients in low-risk group. The reliability and predicted power of the risk-score model were identified by a receiver operating characteristic (ROC) curve. A risk-score based nomogram as well as a calibration curve, which were created could be used to anticipate patient’s 1-year, 3-year and 5-year survival probabilities. The test set was used to validate these results. Our findings showed that the FAM83D gene was related with HCC immunity. The immune marker chosen could be a promising biomarker for HCC prognosis.
Collapse
Affiliation(s)
- Tao Meng
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong Tong
- Department of General Surgery, Hefei City First People's Hospital, Hefei, China
| | - Ming-Ya Yang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Liu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen-Zhen Wang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Xin Zhu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Wu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
Wei Y, Chen X, Ren X, Wang B, Zhang Q, Bu H, Qian J, Shao P. Identification of MX2 as a Novel Prognostic Biomarker for Sunitinib Resistance in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:680369. [PMID: 34306023 PMCID: PMC8299280 DOI: 10.3389/fgene.2021.680369] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Antiangiogenic agents that specifically target vascular endothelial growth factor receptor (VEGFR), such as sunitinib, have been utilized as the standard therapy for metastatic clear cell renal cell carcinoma (ccRCC) patients. However, most patients eventually show no responses to the targeted drugs, and the mechanisms for the resistance remain unclear. This study is aimed to identify pivotal molecules and to uncover their potential functions involved in this adverse event in ccRCC treatment. Methods Two datasets, GSE64052 and GSE76068, were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the limma package in R software. The gene set enrichment analysis (GSEA) was conducted using clusterProfiler package. A protein-protein interaction (PPI) network was built using the STRING database and Cytoscape software. Kaplan-Meier survival curves were plotted using R software. qRT-PCR and Western blotting were used to detect the MX2 and pathway expression in RCC cell lines. Sunitinib-resistant cell lines were constructed, and loss-of-function experiments were conducted by knocking down MX2. All statistical analyses were performed using R version 3.6.1 and SPSS 23.0. Results A total of 760 DEGs were derived from two datasets in GEO database, and five hub genes were identified, among which high-level MX2 exhibited a pronounced correlation with poor overall survival (OS) in sunitinib-resistant ccRCC patients. Clinical correlation analysis and Gene Set Variation Analysis (GSVA) on MX2 showed that the upregulation of MX2 was significantly related to the malignant phenotype of ccRCC, and it was involved in several pathways and biological processes associated with anticancer drug resistance. qRT-PCR and Western blotting revealed that MX2 was distinctly upregulated in sunitinib-resistant RCC cell lines. Colony formation assay and Cell Counting Kit-8 (CCK8) assay showed that MX2 strongly promoted resistant capability to sunitinib of ccRCC cells. Conclusion MX2 is a potent indicator for sunitinib resistance and a therapeutic target in ccRCC patients.
Collapse
Affiliation(s)
- Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinglin Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF- κB and Wnt/ β-Catenin Pathways. JOURNAL OF ONCOLOGY 2021; 2021:3554219. [PMID: 34257650 PMCID: PMC8249156 DOI: 10.1155/2021/3554219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF-κB and Wnt/β-catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF-κB and Wnt/β-catenin pathways to inhibit the progression of HCC cells via targeting FMNL2.
Collapse
|
50
|
High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma. Sci Rep 2021; 11:11078. [PMID: 34040099 PMCID: PMC8154901 DOI: 10.1038/s41598-021-90507-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly cancers with poor prognosis and drug response. Identifying accurate therapeutic targets would facilitate precision treatment and prolong survival for HCC. In this study, we analyzed liver hepatocellular carcinoma (LIHC) RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), and identified PARD3 as one of the most significantly differentially expressed genes (DEGs). Then, we investigated the relationship between PARD3 and outcomes of HCC, and assessed predictive capacity. Moreover, we performed functional enrichment and immune infiltration analysis to evaluate functional networks related to PARD3 in HCC and explore its role in tumor immunity. PARD3 expression levels in 371 HCC tissues were dramatically higher than those in 50 paired adjacent liver tissues (p < 0.001). High PARD3 expression was associated with poor clinicopathologic feathers, such as advanced pathologic stage (p = 0.002), vascular invasion (p = 0.012) and TP53 mutation (p = 0.009). Elevated PARD3 expression also correlated with lower overall survival (OS, HR = 2.08, 95% CI = 1.45-2.98, p < 0.001) and disease-specific survival (DSS, HR = 2.00, 95% CI = 1.27-3.16, p = 0.003). 242 up-regulated and 71 down-regulated genes showed significant association with PARD3 expression, which were involved in genomic instability, response to metal ions, and metabolisms. PARD3 is involved in diverse immune infiltration levels in HCC, especially negatively related to dendritic cells (DCs), cytotoxic cells, and plasmacytoid dendritic cells (pDCs). Altogether, PARD3 could be a potential prognostic biomarker and therapeutic target of HCC.
Collapse
|