1
|
Dixit T, Vaidya A, Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management. Future Sci OA 2025; 11:2467591. [PMID: 39973324 PMCID: PMC11845113 DOI: 10.1080/20565623.2025.2467591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
This review explores the potential of polymeric nanoparticles (PNPs) as targeted drug delivery systems for arthritic treatment, overcoming the limitations of the present therapy. A thorough literature search was conducted on the databases PubMed, Scopus, and Web of Science to find published articles on the use of polymeric nanoparticles in the treatment of arthritis. This includes synthesis methods, mechanisms in drug delivery, and applications of PNPs. Polymeric nanoparticles showed excellent promise in the management of arthritis through enhanced stability of drugs, controlled and sustained drug release, and reduced systemic side effects. Some of the highlighted biocompatible and targeting capabilities of natural and synthetic polymers include chitosan, hyaluronic acid, and PLGA. Bioactive compounds such as curcumin and resveratrol delivered by PNPs enhanced therapeutic efficacy in preclinical arthritis models. Despite their promise, challenges such as rapid clearance and manufacturing scalability remain critical barriers. Polymeric nanoparticles offer a transformative approach to arthritis management by enabling targeted, sustained, and safe drug delivery. Translation into clinical applications would thus require developments in nanoparticle design, personalized medicine, and scalable production techniques.
Collapse
Affiliation(s)
- Tanu Dixit
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Mao Q, Zhang P, Lin F, Fu X, Zhang B, Liu C, Liu Z, Chen X, Dai X, Yue X, Shi X, Pang J, Wang S. Design, synthesis and biological evaluation of 2-[1-(pyridin-2-ylmethyl)-1H-pyrazole-3-carboxamido]benzoic acids as promising urate transporter 1 inhibitors with potential nephroprotective efficacy for the treatment of hyperuricemic nephropathy. Eur J Med Chem 2025; 290:117507. [PMID: 40101451 DOI: 10.1016/j.ejmech.2025.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Hyperuricemic nephropathy (HN) is considered an important risk factor for mortality in patients with hyperuricemia. Reducing serum uric acid (UA) levels and mitigating kidney injury are essential components in the treatment of HN. Thus, UA-lowering drugs that can also protect the kidneys are urgently needed. We identified a urate transporter 1 (URAT-1) inhibitor, T29, with cytoprotective efficacy through screening an internal library against hyperuricemia using a UA-induced HK-2 cell injury model. A bioisosteric strategy was then employed to replace the indole core of T29 with pyrazole moieties; this resulted in a series of 2-[1-(pyridin-2-ylmethyl)-1H-pyrazole-3-carboxamido]benzoic acids. Among them, compound 18 demonstrated the best cytoprotective efficacy (cell viability = 92.2 % vs. model = 31.5 %), and the IC50 value of compound 18 against URAT-1 was 3.36 μM; both of these values exceeded T29. In an HN mice model induced by a 0.75 % adenine diet and intraperitoneal injection of potassium oxonate (400 mg/kg), compound 18 significantly reduced the serum UA levels by inhibiting URAT-1 activity. Furthermore, compound 18 improved kidney function by lowering serum creatinine (CRE) and urea nitrogen (BUN) levels while attenuating tubular dilation and inflammatory cell infiltration in the kidneys. Additionally, it suppressed the release of the proinflammatory cytokines IL-1β and TNF-α and reduced kidney fibrosis by downregulating the expression of α-SMA and TGF-β. In conclusion, compound 18 ameliorated HN by inhibiting URAT-1, alleviating immune-inflammatory responses and mitigating fibrosis; the results from this study demonstrate its potential as a therapeutic agent for HN.
Collapse
Affiliation(s)
- Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Chang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyuan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xing Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoyi Yue
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiang Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Ye L, Xu A, Huang J, Zhang Y, Yao J, Wang F. Purine xanthine oxidase inhibitors are not conducive to the prognosis of chronic heart failure: a meta-analysis. Eur J Clin Pharmacol 2025:10.1007/s00228-025-03848-0. [PMID: 40346314 DOI: 10.1007/s00228-025-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND According to previous studies, the efficacy of xanthine oxidase inhibitors (XOIs) in patients with chronic heart failure (CHF) is still controversial. Therefore, the purpose of this study was to investigate the efficacy of XOIs in patients with CHF. METHODS Up to July 2024, we searched PubMed, EMBASE, Medline, Web of Science, and Cochrane Library for studies on the efficacy of XOI in patients with CHF. The main results included all-cause mortality, cardiovascular (CV) mortality, and heart failure (HF) hospitalization rates. The results were evaluated by hazard ratio (HR) and 95% confidence interval (95% CI). RESULTS A total of eight studies were included in this meta-analysis, of which five were cohort studies and three were randomized controlled trials (RCTs). The total sample size was 301,345. The experimental group was exposed to allopurinol or hydroxypurinol. The all-cause mortality (HR = 1.26, 95% CI 1.05-1.51, p = 0.013) and CV mortality (HR = 1.58, 95% CI 1.17-2.14, p = 0.03) in the experimental group were higher than those in the control group. In terms of HF hospitalization, there was no difference between both groups (HR = 1.21, p = 0.292). Subgroup analysis showed that the CV hospitalization rate of the experimental group was higher than that of the control group, regardless of frequency and dose levels. The all-cause mortality in the low-dose group was higher than that in the control group (HR = 1.39, p = 0.033). The CV mortality of the low-dose group (HR = 1.55, p = 0.006) and the prevalent group (HR = 1.50, p = 0.042) was higher than that of the control group. CONCLUSION Purine XOI exposure may be unfavorable for the prognosis of CHF patients and is affected by the frequency and dose of use.
Collapse
Affiliation(s)
- Lin Ye
- Department of Intensive Care Unit, Ningbo No. 2 Hospital, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China
| | - Anyi Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianing Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yeyuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang Wang
- Department of Intensive Care Unit, Ningbo No. 2 Hospital, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
4
|
Pang X, Xu W, Liang J, Liu Y, Li H, Chen L. Research progress and perspectives of dual-target inhibitors. Eur J Med Chem 2025; 289:117453. [PMID: 40024166 DOI: 10.1016/j.ejmech.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The occurrence and development of diseases are complex, and single-target drugs that affect only a single target or pathway often fail to achieve the expected therapeutic effect. The simultaneous effect on two key targets could not only increase patient tolerance but also accelerate disease remission. Dual-target inhibitors have already been studied the most intensively in the development of dual-target drugs. This article briefly introduces the function of drug therapy targets, and mainly summarizes the design strategies and research progress of dual-target inhibitors in neurodegenerative diseases, infectious diseases, metabolic diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
He A, Wang J, Feng Y, Liao Z, Zheng Q, Zhang W, Chen H. Terminalia chebula Retz. extract relieves gout arthritis by inhibiting xanthine oxidase, the uric acid transporter, and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119848. [PMID: 40268110 DOI: 10.1016/j.jep.2025.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout is a metabolic disorder accompanied by high serum uric acid levels and joint inflammation due to disturbances in purine metabolism in the body. The dried fruit of Terminalia chebula Retz. is recorded in the "Four Medical Tantras" for the treatment of gout and the core anti-gout component of the Tibetan clinical prescription, such as TongFengTangSan. However, the anti-gout efficacy has not been reported yet. AIM OF STUDY To evaluate the anti-gout effect and mechanisms of Terminalia chebula Retz. in gout model rats. MATERIALS AND METHODS First, the components of the Terminalia chebula Retz. extract were detected and characterized using ultra performance liquid chromatography with quadrupole time-of-flight mass spectrometry technology. A gout model was established using the continuous intragastric administration of 200 mg/kg of potassium oxonate and 300 mg/kg of hypoxanthine for 44 days, and 8 mg monosodium urate suspension was injected once in the joint cavity on the 42nd day. One hour after modeling, Terminalia chebula Retz. extract was administered by gavage at low, medium, and high doses. The corresponding biochemical indicators at the protein and gene levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. RESULTS A total of 149 compounds, comprising 23 phenolic acids, 104 tannins, 5 flavonoids, 14 terpenoids, and three other compounds, were identified in Terminalia chebula Retz. extract using the ultra performance liquid chromatography with quadrupole time-of-flight mass spectrometry method. The in vivo pharmacodynamics experiments showed that Terminalia chebula Retz. extract significantly reduced the serum uric acid level, the ankle swelling level, and the level of inflammatory factors in the gout rats. Terminalia chebula Retz. extract also decreased the serum xanthine oxidase, alanine aminotransferase, aspartate aminotransferase and diamine oxidase activity of the gout rats. The western blot and PCR experiments showed that treatment with Terminalia chebula Retz. extract down-regulated the mRNA and protein levels of urate transporter 1 and glucose transporter 9 in the kidney tissues. An immunofluorescence experiment revealed that Terminalia chebula Retz. extract strengthened the intestinal barrier by the up-regulation on the protein expression of occludin and zonula occludens-1 in the ileum. In addition, Terminalia chebula Retz. extract was found to alleviate inflammation by inactivating the renal NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and the synovial membranes of joints. Terminalia chebula Retz. treatment down-regulated the protein or mRNA levels of NLRP3 inflammasome family members, including toll-like receptor 4, toll-like receptor 2, NLRP3, nuclear factor kappa-B, apoptosis-associated speck-like protein containing a CARD and interleukin-1β. CONCLUSION This study demonstrated that Terminalia chebula Retz. extract alleviated gout symptoms through the dual effects of lowering UA and relieving inflammation through inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Aocheng He
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Jialiang Wang
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Yulin Feng
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Wugang Zhang
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China.
| | - Haifang Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
6
|
Tang X, Qin L, Xia Y, Ju D, Hu H. Enhancing catalytic efficiency of two microbial uricases making by directed evolution. Int J Biol Macromol 2025; 301:140485. [PMID: 39892538 DOI: 10.1016/j.ijbiomac.2025.140485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Uricase is a key enzyme in purine metabolism that catalyzes the oxidation of uric acid to allantoin, widely used in the treatment of hyperuricemia and gout. In this study, error-prone PCR and one high-throughput screening method were employed to generate uricase mutants with enhanced enzymatic activity from Aspergillus flavus and Candida utilis. After several rounds of mutation and selection, an A. flavus uricase mutant, af-UAM, with activity of 46.21 U/mg, and a C. utilis uricase mutant, cu-UAM, with activity of 31.43 U/mg, were obtained-representing the highest uricase activities reported up to date. Site-directed mutagenesis revealed that the Thr231Ala substitution in A. flavus uricase and the Val234Met substitution in C. utilis uricase were key factors driving their enhanced activities. Furthermore, in vivo experiments demonstrated significant clinical potential of these mutants. These findings offer new insights into the structure-function relationship of uricase and present promising candidates for therapeutic applications in hyperuricemia treatment.
Collapse
Affiliation(s)
- Xiaoyuan Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Liling Qin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Yuze Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China.
| | - Haifeng Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Dong L, Dong F, Guo P, Li T, Fang Y, Dong Y, Xu X, Cai T, Liang S, Song X, Li L, Sun W, Zheng Y. Gut microbiota as a new target for hyperuricemia: A perspective from natural plant products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156402. [PMID: 39874797 DOI: 10.1016/j.phymed.2025.156402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Hyperuricemia, a prevalent chronic metabolic disorder caused by purine metabolism disturbances, is characterized by elevated serum uric acid (UA) levels. Prolonged hyperuricemia can cause severe complications such as gout or kidney damage. However, the toxic side effects of and adverse reactions to UA-lowering drugs are becoming increasingly prominent. Therefore, new targets and drugs for hyperuricemia are needed. PURPOSE This review aims to summarize recent research progress on the prevention and treatment mechanisms for gut microbiota-hyperuricemia from the perspective of plant-derived natural products. METHODS Data from PubMed, Web of Science, ScienceDirect, and the CNKI databases spanning from January 2020 to December 2024 were reviewed. The aim of this study is to categorize and summarize the relevant mechanisms through which natural products improve hyperuricemia via the gut microbiota. The retrieved data followed PRISMA criteria (Preferred Reporting Items for Systematic reviews and Meta-Analyses). RESULTS Regulating gut microbiota as a treatment for hyperuricemia. Targeting the gut microbiota could reduce host UA levels by promoting purine degradation, reducing UA production, and increasing UA excretion. Moreover, the gut microbiota also exerts anti-inflammatory and antioxidant effects that alleviate complications such as renal damage caused by hyperuricemia. Due to their diverse sources, multicomponent synergy, multitarget effects, and minimal side effects, plant-derived natural products have been extensively utilized in the management of hyperuricemia. Especially, utilizing natural products from plants to regulate the gut microbiota has become a new strategy for reducing UA levels. CONCLUSION This review comprehensively summarizes recent advances in understanding the preventive and therapeutic mechanisms of plant-derived natural products in ameliorating hyperuricemia and its comorbidities through gut microbiota modulation. This review contributes a novel perspective for the development of safer and more efficacious UA-lowering products.
Collapse
Affiliation(s)
- Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Fengying Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Pingping Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Dong
- Monitoring and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| |
Collapse
|
8
|
Li G, Zhang Y, Cheng Y, Chao H, Yang X, Dong YM, Li X, Xue H, Wang M, Qi L, Liu J. Metabolomics Reveal the Anti-Hyperuricemia Effects and Mechanisms of Sunflower Head Extract in Hyperuricemia Mice Model. Mol Nutr Food Res 2025; 69:e202401017. [PMID: 39924811 DOI: 10.1002/mnfr.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Hyperuricemia (HUA) is a globally prevalent metabolic disease characterized by excessive production or insufficient excretion of uric acid in the serum. Although several drugs are available for the treatment of HUA, they have been associated with undesirable side effects. Therefore, this study aims to evaluate the therapeutic effects of sunflower head extract (KHE) on HUA in a mouse model and explore its potential mechanisms. All mice were randomly divided into three groups: Normal control (NC, 0.5% CMC-Na), HUA model (MD, yeast extract paste 20 g/kg), and KHE treatment group (KHE, 1 g/kg). Biochemical indicators, the oxidative stress state, and metabolomics were analyzed. KHE reduced the levels of 5-aminoimidazole ribonucleotide, xanthine, hypoxanthine, and uric acid in the serum of mice with HUA but increased the levels of adenine and taurine. KHE decreased the activities of superoxide dismutase (SOD) enzymes, the hepatic hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and the serum levels of betaine aldehyde and beta-D-glucosamine. KHE improved oxidative stress levels and mitigated potential damage to the kidneys and joints caused by urate deposition. These findings provide comprehensive evidence supporting the anti-HUA effects and underlying mechanisms of KHE in HUA mice.
Collapse
Affiliation(s)
- Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
- Qiqihar Academy of Medical Sciences, Qiqihar, Heilongjiang, China
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, Heilongjiang, China
| | - Ying Zhang
- Nutrition Department of Jianhua Hospital, Qiqihar, Heilongjiang, China
| | - Yu Cheng
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Hong Chao
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiaolei Yang
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yan-Mei Dong
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xingsan Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haifeng Xue
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Mingxia Wang
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lei Qi
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
- Qiqihar Academy of Medical Sciences, Qiqihar, Heilongjiang, China
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, Heilongjiang, China
| | - Jicheng Liu
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
- Qiqihar Academy of Medical Sciences, Qiqihar, Heilongjiang, China
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, Heilongjiang, China
| |
Collapse
|
9
|
Kaufmann D, Chaiyakunapruk N, Schlesinger N. Optimizing gout treatment: A comprehensive review of current and emerging uricosurics. Joint Bone Spine 2025; 92:105826. [PMID: 39622367 DOI: 10.1016/j.jbspin.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Gout is the most common inflammatory arthritis, affecting approximately 5.1% of adults in the United States (US) population. Gout is a metabolic and autoinflammatory disease. Elevated uric acid pools lead to the precipitation of monosodium urate (MSU) crystals in and around joints, as well as other tissues, and the subsequent autoinflammatory response. Since elevated serum urate (SU) levels (hyperuricemia) correspond with gout severity, urate-lowering therapies (ULTs) are the cornerstone of gout treatment. ULTs include xanthine oxidoreductase inhibitors, uricosurics, less commonly used in the US but widely used in Europe and Asia, including benzbromarone, dotinurad, and probenecid (the only US Food and Drug Administration (FDA) approved uricosuric in the US), and uricases, including rasburicase and pegloticase (available only in the US). Over 90% of the daily load of uric acid filtered by the kidneys is reabsorbed through renal transporters. These urate transporters include uric acid transporter 1 (URAT1), glucose transporter 9, and organic anion transporters 1, 3, and 4 (OAT1, OAT3, OAT4). They are the target of approved and in-the-pipeline uricosurics. Any drug that increases renal excretion of uric acid, independently of the mechanism through which it exerts its effect, may be considered a uricosuric drug. This review discusses drugs that increase renal excretion of uric acid, either approved or in development, as well as off-label drugs with uricosuric properties.
Collapse
Affiliation(s)
- Dan Kaufmann
- Division of Rheumatology, Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States.
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, 84132 Utah, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States; Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States
| |
Collapse
|
10
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
11
|
Bhadange R, Gaikwad AB. Repurposing the familiar: Future treatment options against chronic kidney disease. J Pharm Pharmacol 2025:rgaf002. [PMID: 39832316 DOI: 10.1093/jpp/rgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects. Therefore, identifying new therapeutic targets or improving existing treatments for CKD is crucial. Drug repurposing is a promising strategy in the drug discovery process that involves screening existing approved drugs for new therapeutic applications. KEY FINDINGS This review discusses the pharmacological mechanisms and clinical evidence that support the efficacy of these repurposed drugs. Various drugs classes such as inodilators, endothelin-1 type A (ET-1A) receptor antagonists, bisphosphonates, mineralocorticoid receptor (MR) antagonists, DNA demethylating agents, nuclear factor erythroid 2-related factor 2 (NRF2) activators, P2X7 inhibitors, autophagy modulators, hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) are discussed that could remarkably contribute against CKD. SUMMARY The review critically examines the potential for repurposing well-established drugs to slow the progression of CKD and enhance patient outcomes. This review emphasizes the importance of a multidisciplinary approach in advancing the field of drug repurposing, ultimately paving the way for innovative and effective therapies for patients suffering from CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| |
Collapse
|
12
|
Luna G, Dolzhenko AV, Mancera RL. Synthesis and Structure-Activity Relationship Analysis of 2-Substituted-1,2,4-Triazolo[1,5-a]Pyrimidin-7-Ones and their 6-Carboxylate Derivatives as Xanthine Oxidase Inhibitors. ChemMedChem 2025; 20:e202400598. [PMID: 39317659 DOI: 10.1002/cmdc.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Hyperuricemia is characterised by high blood levels of uric acid, and it can degenerate into gout when monosodium urate crystals precipitate in joints and other tissues. Uric acid is produced during the catabolism of xanthine by the enzyme xanthine oxidase (XO), which is the primary therapeutic target in gout treatment. Current XO inhibitors approved to treat gout, such as allopurinol and febuxostat, suffer from serious adverse effects, creating the need for new drug molecules. Three libraries comprising 75 purine analogues were designed using a 1,2,4-triazolo[1,5-a]pyrimidine scaffold, synthesised and tested in vitro as potential XO inhibitors. The screening identified that 23 compounds exhibited better inhibitory activity than allopurinol, with 2-(4-isopropoxyphenyl)-7-oxo-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylic acid being 23 times more potent. Enzyme kinetics studies and molecular docking simulations were performed on the most active compounds to identify the mechanism of action and intermolecular interactions between the active site of XO and the inhibitors. The most potent compounds exhibited a mix-type inhibition mechanism and were predicted to interact with the same amino acid residues as allopurinol. These novel purine analogues are promising hits for further new lead development among purine-like drug XO inhibitors with therapeutic potential in the treatment of hyperuricemia and associated diseases.
Collapse
Affiliation(s)
- Giuseppe Luna
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA, 6845, Australia
| | - Anton V Dolzhenko
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA, 6845, Australia
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Ricardo L Mancera
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA, 6845, Australia
| |
Collapse
|
13
|
Xu M, Xiao H, Zou X, Pan L, Song Q, Hou L, Zeng Y, Han Y, Zhou Z. Mechanisms of levan in ameliorating hyperuricemia: Insight into levan on serum metabolites, gut microbiota, and function in hyperuricemia rats. Carbohydr Polym 2025; 347:122665. [PMID: 39486924 DOI: 10.1016/j.carbpol.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
This study aims to investigate the effects of levan on the progression of hyperuricemia (HUA) rats and elucidate its underlying mechanisms. After levan intervention, both low and high-dose groups exhibited a significant decrease in serum uric acid (UA) levels, reaching 71.0 % and 77.5 %, respectively, compared to the model group. Furthermore, levan could alleviate renal pathological damage caused by glomerular cell vacuolation, inflammatory infiltration and collagen deposition. The results of enzyme activity assay and real-time fluorescence quantitative PCR showed that levan decreased UA production by inhibiting adenosine deaminase (ADA) activity and gene expression in liver; it upregulated ATP-binding cassette subfamily G member 2 protein (ABCG2) and organic anion transporter 1 (OAT1) transporter gene expression in the kidney, promoting UA excretion. Gut microbiome analysis indicated that levan regulated gut flora dysbiosis induced by HUA, resulting in up-regulated the abundance of beneficial bacteria (Muribaculaceae, Faecalibaculum, Bifidobacterium, and Lactobacillus) and decreased conditioned pathogenic bacteria (Escherichia_Shigella and Proteus). Non-targeted metabolomics showed changes in various serum metabolites associated with glycerophospholipid metabolism, lipid metabolism, and inflammation following oral administration of levan. Therefore, levan may be a promising functional dietary supplement for regulating the gut flora and remodeling of metabolic disorders in individuals with HUA.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huazhi Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Pan
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Luying Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yihong Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
14
|
Zhong T, Huang K, Han L, Pang W, Xia Y, Qu S, Yu G, Chen Y, Fan H. Characterizing Pharmacokinetic Variability of Topiroxostat in Chinese Population: Insights from a Phase I Randomized Clinical Trial. Curr Drug Metab 2025; 25:622-635. [PMID: 39686641 DOI: 10.2174/0113892002348045241210071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE This Phase I clinical trial aimed to address the knowledge gap regarding topiroxostat's use outside Japan by characterizing its pharmacokinetic profile, safety, and efficacy in healthy Chinese subjects. METHODS The trial followed a randomized, open-label, three-dose group design, enrolling 12 healthy participants and administering topiroxostat at three different dose levels. The study utilized NONMEM software for pharmacokinetic analysis, evaluating the impact of demographic and biochemical covariates on drug disposition. RESULTS Pharmacokinetic analysis shows the peak drug concentration (Cmax) under a single oral administration of 20, 40, and 80 mg of Topiroxostat, which was found in healthy subjects to be 215.46 ± 94.04 ng/mL, 473.74 ± 319.83 ng/mL and 1009.63 ± 585.98 ng/mL, respectively. The time to peak drug concentration (Tmax) was longer in females (0.79-0.98 h) than in males (0.53-0.93 h). Activated partial thromboplastin time (APTT) and triglycerides (TG) were included as covariates for the typical value of the absorption rate constant (TVKA) in our pharmacokinetic model. The dose (DOSE) was considered a covariate for the typical value of bioavailability (TVF1), and sex (SEX) was considered a covariate for the typical value of clearance (TVCL). The typical population values for topiroxostat included Q/F at 4.91 L/h, KA at 0.657 h-¹, Vc/F at 32.5 L, Vp/F at 30 L, and CL/F at 124 L/h. CONCLUSION The trial successfully established the pharmacokinetic parameters of topiroxostat in a Chinese population, confirming its safety and efficacy. The results support the need for individualized dosing strategies and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Tianqi Zhong
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Kaizong Huang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing Jiangsu, China
| | - LuYao Han
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenbo Pang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Xia
- Jiangsu Leeway Biological Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Shengjun Qu
- CP Pharmaceutical Qingdao Co., Ltd, Qingdao, Shandong, China
| | - Guo Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yangsheng Chen
- CP Pharmaceutical Qingdao Co., Ltd, Qingdao, Shandong, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Huang KM, Chen HB, Lin JR. Potential of traditional Chinese medicine lyophilized powder of Poecilobdella manillensis in the treatment of hyperuricemia. World J Clin Cases 2024; 12:6939-6943. [PMID: 39726925 PMCID: PMC11531976 DOI: 10.12998/wjcc.v12.i36.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/31/2024] Open
Abstract
Traditional Chinese medicine has a long and illustrious history, and with the development of modern science and technology, the research and application of traditional Chinese medicines have continued to progress significantly. Many traditional Chinese medicinal herbs have undergone scientific validation, reinvigorating with new life and vitality, and contributing unique strengths to the advancement of human health. Recently, the discovery that leech total protein extracted from Poecilobdella manillensis lyophilized powder reduces blood uric acid (UA) levels by inhibiting the activity of xanthine oxidase to decrease UA synthesis and promotes UA excretion by regulating different UA transporters in the kidney and intestine has undoubtedly injected new vitality and hope into this field of research. The purpose of this editorial is to comment on this study, explore its strengths and weaknesses, and there is a hope to treat a range of metabolic-related syndromes, including hyperuricemia, by targeting the gut microbiota.
Collapse
Affiliation(s)
- Kang-Ming Huang
- Department of Gastroenterology, Sanming First Affiliated Hospital of Fujian Medical University, Sanming 365000, Fujian Province, China
| | - Hong-Bin Chen
- Department of Gastroenterology, Sanming First Affiliated Hospital of Fujian Medical University, Sanming 365000, Fujian Province, China
| | - Jin-Rong Lin
- Department of Ultrasound imaging, The First Affiliated Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
| |
Collapse
|
16
|
He J, Tian W, Meng Y, Yan A, Lai X, Wang F, Che B. Protective effect of xylosma congesta extract on renal injury in hyperuricemic rats. Heliyon 2024; 10:e40674. [PMID: 39660202 PMCID: PMC11629226 DOI: 10.1016/j.heliyon.2024.e40674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Background The purpose of this study was to investigate the protective effect of xylosma congesta extract on kidney injury in hyperuricemic rats. Methods The rats were fed yeast extract and intraperitoneal injections of potassium oxonate for 3 weeks to establish the hyperuricemia model. And then the rats were treated with allopurinol and different doses of oak extract. The contents of uric acid in urine and serum, creatinine, and urea nitrogen in serum were detected by biochemical methods. TUNEL was used to detect cell apoptosis in renal tissue. The protein expression of TLR4 and NF- kappa B (NF-κB) p65 and the proportion of CD68 and CD206 positive cells in renal tissue were detected by pathological method. Results The xylosma congesta group showed decreased renal tubular dilatation, decreased renal interstitial inflammatory cell infiltration, decreased serum creatinine content, and decreased apoptotic cell count as compared to the model group. And positive expression of TLR4 and NF-κB decreased with each dose. Additionally, the xylosma congesta groups showed a significant rise in CD206 and a considerable decrease in CD68. Conclusion The extract from xylosma congesta has the ability to lower serum uric acid and creatinine levels while also providing protection against kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Jinjun He
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Weiyi Tian
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Yonghui Meng
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - An Yan
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Xin Lai
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Fei Wang
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Bangwei Che
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| |
Collapse
|
17
|
Yu W, Wang J, Xiong Y, Liu J, Baranenko D, Cifuentes A, Ibañez E, Zhang Y, Lu W. Impact of Imperata Cylindrica polysaccharide on liver lipid metabolism disorders caused by hyperuricemia. Int J Biol Macromol 2024; 283:137592. [PMID: 39557274 DOI: 10.1016/j.ijbiomac.2024.137592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Elevated uric acid levels are associated with lipid metabolism disorders. The effects of Imperata cylindrica polysaccharide (ICPC-a) were explored using a hyperuricemia mouse model and a uric acid-induced HepG2 hepatocyte model. ICPC-a significantly improved total cholesterol, triglycerides, low-density lipoprotein levels, and hepatic lipid deposition in hyperuricemia mice. The liver/body weight ratio decreased, and markers of liver damage, inflammation, and dyslipidemia improved. Metabolomics analysis suggested that ICPC-a modulates lipid metabolism by influencing the glycerophospholipid pathway and the enzyme LPCAT3. Stable HepG2 cell lines with knocked-down LPCAT3 were constructed, and western blot and RT-PCR were used to assess the impact of its knockdown on lipid metabolism under uric acid stimulation. In cells with reduced LPCAT3 expression, ICPC-a was still able to alleviate uric acid-induced lipid accumulation, though the effect was less pronounced compared to cells with normal LPCAT3 levels. However, the effectiveness was diminished compared to cells where LPCAT3 was not knocked down. These findings indicated that LPCAT3 was an important target through which ICPC-a regulated lipid metabolism disorders induced by hyperuricemia. These discoveries emphasized that ICPC-a, as a prebiotic, could modulate hepatic lipid accumulation and inflammation, contributing to the maintenance of hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Junwen Wang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Jiaren Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Denis Baranenko
- School of Life Sciences, International research centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Yingchun Zhang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| |
Collapse
|
18
|
Girigoswami K, Arunkumar R, Girigoswami A. Management of hypertension addressing hyperuricaemia: introduction of nano-based approaches. Ann Med 2024; 56:2352022. [PMID: 38753584 PMCID: PMC11100442 DOI: 10.1080/07853890.2024.2352022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Uric acid (UA) levels in blood serum have been associated with hypertension, indicating a potential causal relationship between high serum UA levels and the progression of hypertension. Therefore, the reduction of serum UA level is considered a potential strategy for lowering and mitigating blood pressure. If an individual is at risk of developing or already manifesting elevated blood pressure, this intervention could be an integral part of a comprehensive treatment plan. By addressing hyperuricaemia, practitioners may subsidize the optimization of blood pressure regulation, which illustrates the importance of addressing UA levels as a valuable strategy within the broader context of hypertension management. In this analysis, we outlined the operational principles of effective xanthine oxidase inhibitors for the treatment of hyperuricaemia and hypertension, along with an exploration of the contribution of nanotechnology to this field.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Radhakrishnan Arunkumar
- Department of Pharmacology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
19
|
Sun Z, Zhang X, Zhao Z, Li X, Pang J, Chen J. Recent Progress and Future Perspectives on Anti-Hyperuricemic Agents. J Med Chem 2024; 67:19966-19987. [PMID: 39513478 DOI: 10.1021/acs.jmedchem.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Increased biosynthesis or underexcretion of uric acid (UA or urate) in the body ultimately leads to the development of hyperuricemia. Epidemiological studies indicate that hyperuricemia is closely associated with the occurrence of various diseases such as gout and cardiovascular diseases. Currently, the first-line therapeutic medications used to reduce UA levels primarily include xanthine oxidase (XO) inhibitors, which limit UA production, and urate transporter 1 (URAT1) inhibitors, which decrease urate reabsorption and enhance urate excretion. Despite significant progress in urate-lowering therapies, long-term use of these drugs can cause hepatorenal toxicity as well as cardiovascular complications. Therefore, there is an urgent need for novel anti-hyperuricemic agents with better efficacy and lower toxicity. This perspective mainly focuses on the current research progress and design strategy of anti-hyperuricemic agents, particularly those targeting XO and URAT1. It is our hope that this perspective will provide insights into the challenges and opportunities for anti-hyperuricemic drug discovery.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Zhao Z, Chen X, Luo J, Chen M, Luo J, Chen J, Li Z, Wan S, Wu T, Zhang J, Pang J, Tian Y. Design, synthesis and bioactivity evaluation of isobavachin derivatives as hURAT1 inhibitors for hyperuricemia agents. Eur J Med Chem 2024; 277:116753. [PMID: 39142150 DOI: 10.1016/j.ejmech.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Previously, we reported a novel natural scaffold compound, isobavachin (4',7-dihydroxy-8-prenylflavanone), as a highly potent hURAT1 inhibitor with anti-hyperuricemia effect. However, the structure-activity relationship remains unknown and the poor pharmacokinetic (PK) parameters may limit further clinical use. Herein, a series of isobavachin derivatives were rationally designed and synthesized to explore the structure-activity relationship of isobavachin target hURAT1, and to improve their PK properties. Among them, compounds 15d, 15f, 15g, 27b and 27d showed promising hURAT1 inhibitory activities, which could comparable to that of isobavachin (IC50 = 0.24 μM). In addition, 27b also inhibited another urate reabsorption transporter GLUT9 with an IC50 of 4.47 μM. Compound 27b displayed greater urate-lowering activity in a hyperuricemia mouse model at a dose of 10 mg/kg compared to isobavachin and lesinurad. Overall, our results suggest that compound 27b represents a novel, safe hURAT1 and GLUT9 dual-target inhibitor with excellent drug availability and is worthy of further investigation as an anti-hyperuricemia agent.
Collapse
Affiliation(s)
- Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Mengyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Zhao F, Tie N, Kwok LY, Ma T, Wang J, Man D, Yuan X, Li H, Pang L, Shi H, Ren S, Yu Z, Shen X, Li H, Zhang H. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol Res 2024; 209:107445. [PMID: 39396767 DOI: 10.1016/j.phrs.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Gout is characterized by dysregulation of uric acid (UA) metabolism, and the gut microbiota may serve as a regulatory target. This two-month randomized, double-blind, placebo-controlled trial aimed to investigate the additional benefits of coadministering Probio-X alongside febuxostat. A total of 160 patients with gout were randomly assigned to either the probiotic group (n = 120; Probio-X [3 × 1010 CFU/day] with febuxostat) or the placebo group (n = 40; placebo material with febuxostat). Coadministration of Probio-X significantly decreased serum UA levels and the rate of acute gout attacks (P < 0.05). Based on achieving a target sUA level (360 μmol/L) after the intervention, the probiotic group was further subdivided into probiotic-responsive (ProA; n = 54) and probiotic-unresponsive (ProB; n = 66) subgroups. Post-intervention clinical indicators, metagenomic, and metabolomic changes in the ProB and placebo groups were similar, but differed from those in the ProA group, which exhibited significantly lower levels of acute gout attack, gout impact score, serum indicators (UA, XOD, hypoxanthine, and IL-1β), and fecal gene abundances of UA-producing pathways (KEGG orthologs of K13479 and K01487; gut metabolic modules for formate conversion and lactose and galactose degradation). Additionally, the ProA group showed significantly higher levels (P < 0.05) of gut SCFAs-producing bacteria and UA-related metabolites (xanthine, hypoxanthine, bile acids) after the intervention. Finally, we established a gout metagenomic classifier to predict probiotic responsiveness based on subjects' baseline gut microbiota composition. Our results indicate that probiotic-driven therapeutic responses are highly individual, with the probiotic-responsive cohort benefitting significantly from probiotic coadministration.
Collapse
Affiliation(s)
- Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Dafu Man
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Xiangzheng Yuan
- Physical examination center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiyun Li
- Department of Rheumatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Lixia Pang
- Department of Rheumatology and Immunology, Hulunbuir People's Hospital, Hohhot, Inner Mongolia, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| | - Shuiming Ren
- Department of Rheumatology and Immunology, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
22
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
23
|
Li KW, Raza F, Jiang LD, Su J, Qiu MF. Clerodendranthus Spicatus: A review of its active compounds, mechanisms of action, and clinical studies in urinary diseases. Fitoterapia 2024; 177:106082. [PMID: 38901804 DOI: 10.1016/j.fitote.2024.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Clerodendranthus spicatus (Thunb.) C.Y.Wu (CS) is a widely studied plant that shows potential in treating urinary diseases. Previous studies have focused on its chemical composition, pharmacological effects, and clinical applications. This review aims to provide a comprehensive summary and evaluation of the existing literature on CS. It also suggests future research directions to increase our understanding of its medicinal value. 129 pieces of literature were selected from several databases, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Wan-fang Database, and Google Scholar, and were analyzed. Forty-five active compounds of CS have pharmacological effects such as lowering uric acid, anti-inflammation, anti-oxidation, and kidney protection. The potential mechanisms of these effects may be related to inhibiting transforming growth factor β1 (TGF-β1) activation, reducing inflammatory factors such as IL-8, IL-1β, TNF-α, PGE2, IFN-γ, and IL-6 levels, suppressing the activation of NF-κB, JAK/STAT pathway, enhancing the clearance of ROS, MDA DPPH·, and O2 ̇ -, and regulating the expression of apoptosis-related pathways and proteins. This paper also discusses the quality control of CS and its efficacy and safety in treating urinary diseases. The study concludes that CS has a high potential for treating urinary diseases. Future studies should focus on observing the metabolic changes of CS active compounds in vivo and investigating the effects of CS on key signaling pathways. Additionally, more standardized and reasonable clinical studies and safety evaluation experiments should be conducted to obtain more clinical data.
Collapse
Affiliation(s)
- Kun-Wei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang-di Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Feng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Du L, Zong Y, Li H, Wang Q, Xie L, Yang B, Pang Y, Zhang C, Zhong Z, Gao J. Hyperuricemia and its related diseases: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:212. [PMID: 39191722 DOI: 10.1038/s41392-024-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperuricemia, characterized by elevated levels of serum uric acid (SUA), is linked to a spectrum of commodities such as gout, cardiovascular diseases, renal disorders, metabolic syndrome, and diabetes, etc. Significantly impairing the quality of life for those affected, the prevalence of hyperuricemia is an upward trend globally, especially in most developed countries. UA possesses a multifaceted role, such as antioxidant, pro-oxidative, pro-inflammatory, nitric oxide modulating, anti-aging, and immune effects, which are significant in both physiological and pathological contexts. The equilibrium of circulating urate levels hinges on the interplay between production and excretion, a delicate balance orchestrated by urate transporter functions across various epithelial tissues and cell types. While existing research has identified hyperuricemia involvement in numerous biological processes and signaling pathways, the precise mechanisms connecting elevated UA levels to disease etiology remain to be fully elucidated. In addition, the influence of genetic susceptibilities and environmental determinants on hyperuricemia calls for a detailed and nuanced examination. This review compiles data from global epidemiological studies and clinical practices, exploring the physiological processes and the genetic foundations of urate transporters in depth. Furthermore, we uncover the complex mechanisms by which the UA induced inflammation influences metabolic processes in individuals with hyperuricemia and the association with its relative disease, offering a foundation for innovative therapeutic approaches and advanced pharmacological strategies.
Collapse
Grants
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiyue Wang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Bo Yang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Junjie Gao
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
25
|
Song K, Kong X, Yu Z, Xiao H, Ren Y. Research progress on bariatric surgery for hyperuricemia. BMC Surg 2024; 24:235. [PMID: 39169366 PMCID: PMC11337558 DOI: 10.1186/s12893-024-02525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Hyperuricemia is closely linked to obesity. As lifestyles and dietary patterns evolve, the prevalence of hyperuricemia has been on the rise. Bariatric surgery, an efficacious intervention for morbid obesity and its associated metabolic disorders, not only manages the weight of patients with severe obesity but also exerts beneficial therapeutic effects on hyperuricemia and gout. Moreover, it demonstrates substantial efficacy against other obesity-related metabolic conditions. However, the dramatic fluctuations in serum uric acid levels and acute gouty attacks in the immediate postoperative period are issues that should not be overlooked, and effective preventative strategies for some related adverse complications are still underexplored. This review discusses and reviews the advancements in the treatment of obese patients with hyperuricemia through bariatric surgery. By reviewing pertinent literature, it summarizes the short-term and long-term therapeutic outcomes of bariatric surgery for hyperuricemia, as well as common adverse reactions. Furthermore, by discussing preoperative and postoperative interventional measures and influential factors, this review aims to provide novel perspectives for the clinical management of hyperuricemia and offer insights for the prevention of related complications.
Collapse
Affiliation(s)
- Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - He Xiao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China.
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
26
|
Massoud G, Parish M, Hazimeh D, Moukarzel P, Singh B, Cayton Vaught KC, Segars J, Islam MS. Unlocking the potential of tranilast: Targeting fibrotic signaling pathways for therapeutic benefit. Int Immunopharmacol 2024; 137:112423. [PMID: 38861914 PMCID: PMC11245748 DOI: 10.1016/j.intimp.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-β, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.
Collapse
Affiliation(s)
- Gaelle Massoud
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Maclaine Parish
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Pamela Moukarzel
- American University of Beirut Medical Center, Faculty of Medicine, Riad El Solh, Beirut, Lebanon
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Kamaria C Cayton Vaught
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Liu X, Liang XQ, Lu TC, Feng Z, Zhang M, Liao NQ, Zhang FL, Wang B, Wang LS. Leech Poecilobdella manillensis protein extract ameliorated hyperuricemia by restoring gut microbiota dysregulation and affecting serum metabolites. World J Gastroenterol 2024; 30:3488-3510. [PMID: 39156502 PMCID: PMC11326090 DOI: 10.3748/wjg.v30.i29.3488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.
Collapse
Affiliation(s)
- Xia Liu
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
- Department of Traditional Chinese Medicine, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Tian-Cai Lu
- General Manager’s Office, Guangxi Fuxinyi Biological Technology Co. Ltd., Pingnan 537300, Guangxi Zhuang Autonomous Region, China
| | - Zhe Feng
- Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Min Zhang
- Department of Gerontology, Nanning Social Welfare Hospital, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Nan-Qing Liao
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Feng-Lian Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Bo Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Li-Sheng Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Lin JH, Lin CH, Kuo YW, Liao CA, Chen JF, Tsai SY, Li CM, Hsu YC, Huang YY, Hsia KC, Yeh YT, Ho HH. Probiotic Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 improved liver function and uric acid management-A pilot study. PLoS One 2024; 19:e0307181. [PMID: 39046973 PMCID: PMC11268587 DOI: 10.1371/journal.pone.0307181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Collapse
Affiliation(s)
- Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chi-Huei Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chorng-An Liao
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
| | - Jui-Fen Chen
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| |
Collapse
|
29
|
Bai H, Zhang Z, Zhu M, Sun Y, Wang Y, Li B, Wang Q, Kuang H. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine. Front Pharmacol 2024; 15:1428558. [PMID: 39101136 PMCID: PMC11294118 DOI: 10.3389/fphar.2024.1428558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.
Collapse
Affiliation(s)
- Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zidong Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Qiuhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
30
|
Song K, He M, Kong X, Xian Y, Zhang Y, Xie X, Xie S, Jia A, Ren Y. Benefits of uric acid-lowering medication after bariatric surgery in patients with gout. BMC Surg 2024; 24:186. [PMID: 38877436 PMCID: PMC11177500 DOI: 10.1186/s12893-024-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND/PURPOSE Patients with gout are at risk for increased serum uric acid (SUA) levels and gout attacks in the short term after undergoing bariatric surgery, and the purpose of this study was to evaluate the benefits of short-term treatment with uric acid-lowering medication after bariatric surgery for the control of gout attacks and SUA levels in patients with gout. METHODS 71 patients who underwent SG from January 2020 to December 2022 were prospectively included. These patients were diagnosed with hyperuricemia before surgery and had a history of gout attacks. Patients were classified into a drug-treatment group (DTG, n = 32) and a non-drug-treatment group (NDTG, n = 39) according to whether they took uric acid-lowering medication after surgery. Changes in the number of gout attacks, body mass index (BMI), and SUA levels at 1 week, 1 month, 3 months, and 6 months after bariatric surgery were measured in both groups. RESULTS In the DTG, 22 patients (68.8%) experienced an increase in SUA within 1 week, 3 patients (9.4%) had an acute attack of gout within the first month, and no patients had a gout attack thereafter. In the NDTG, 35 patients (89.7%) experienced an increase in SUA within 1 week, 7 patients (17.9%) had an acute gout attack within the first month, and 4 patients (10.3%) experienced gout attacks between month 1 and month 3 postoperatively. Both groups were free of gout attacks between the 3rd and 6th postoperative month and showed a significant decrease in SUA and BMI by the sixth month. CONCLUSION In patients with gout, continued use of uric acid-lowering medication after bariatric surgery is beneficial in reducing the number of gout attacks and the risk of rising SUA.
Collapse
Affiliation(s)
- Ke Song
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Ming He
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Xiangxin Kong
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yin Xian
- Nanchong Psychosomatic Hospital, Nanchong, 637770, P.R. China
| | - Yuan Zhang
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Xing Xie
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Sijun Xie
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Aimei Jia
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yixing Ren
- Department of General Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, P.R. China.
| |
Collapse
|
31
|
Tong M, Wang S, Luan J, Xie Q, Wang L, Shen X, Xiong S. Rationalization design, soluble expression and PEG modification of highly active recombinant human-porcine uricase mutant protein. Int J Biol Macromol 2024; 269:131989. [PMID: 38697425 DOI: 10.1016/j.ijbiomac.2024.131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Uric acid is the end product of purine metabolism in humans due to inactivation of the uricase determined by the mutated uricase gene. Uricase catalyzes the conversion of uric acid into water-soluble allantoin that is easily excreted by the kidneys. Hyperuricemia occurs when the serum concentration of uric acid exceeds its solubility (7 mg/dL). However, modifications to improve the uricase activity is under development for treating the hyperuricemia. Here we designed 7 types of human-porcine chimeric uricase by multiple sequence comparisons and targeted mutagenesis. An optimal human-porcine chimeric uricase mutant (uricase-10) with both high activity (6.33 U/mg) and high homology (91.45 %) was determined by enzyme activity measurement. The engineering uricase was further modified with PEGylation to improve the stability of recombinant protein drugs and reduce immunogenicity, uricase-10 could be more suitable for the treatment of gout and hyperuricemia theoretically.
Collapse
Affiliation(s)
- Mingjie Tong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Junxi Luan
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Qiuling Xie
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong JNU Genetic Medicine Engineering Research Center Co. Ltd, Guangzhou 510530, People's Republic of China.
| | - Luquan Wang
- 13F, Bldg. D, Runhui Sci-Tech Park, 18 Shenzhou Rd., Science City, Huangpu Dist., Vibrant Therapeutics, Guangzhou 510663, People's Republic of China.
| | - Xiaoyang Shen
- Beijing Chemgen Pharma Co.Ltd District 1, Building B, No.12 Hongda North Road, Jingkai District, Beijing 100176, People's Republic of China.
| | - Sheng Xiong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong JNU Genetic Medicine Engineering Research Center Co. Ltd, Guangzhou 510530, People's Republic of China.
| |
Collapse
|
32
|
Zheng F, Mai S, Cen X, Zhao P, Ye W, Ke J, Lin S, Hu H, Guo Z, Zhang S, Liao H, Wu T, Tian Y, Zhang Q, Pang J, Zhao Z. Discovery of digallic acid as XOD/URAT1 dual target inhibitor for the treatment of hyperuricemia. Bioorg Chem 2024; 147:107381. [PMID: 38669781 DOI: 10.1016/j.bioorg.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 μM, which is less potent than benzbromarone (2.01 ± 0.36 μM) but more potent than lesinurad (10.36 ± 1.23 μM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 μM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 μM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.
Collapse
Affiliation(s)
- Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Suiqing Mai
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Cen
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Zhao
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiale Ke
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqin Lin
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zitao Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jianxin Pang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zean Zhao
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Liu WW, Dong HJ, Zhang Z, Ma XH, Liu S, Huang W, Wang X. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice. Fitoterapia 2024; 175:105926. [PMID: 38537887 DOI: 10.1016/j.fitote.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Hong-Jing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xin-Hui Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wei Huang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
34
|
Li Y, Zheng F, Zhong S, Zhao K, Liao H, Liang J, Zheng Q, Wu H, Zhang S, Cao Y, Wu T, Pang J. Protecting against ferroptosis in hyperuricemic nephropathy: The potential of ferrostatin-1 and its inhibitory effect on URAT1. Eur J Pharmacol 2024; 971:176528. [PMID: 38556118 DOI: 10.1016/j.ejphar.2024.176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 μM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.
Collapse
Affiliation(s)
- Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shiqi Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiacheng Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qiang Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Huicong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shifan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ying Cao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
36
|
Ou G, Wu J, Wang S, Jiang Y, Chen Y, Kong J, Xu H, Deng L, Zhao H, Chen X, Xu L. Dietary Factors and Risk of Gout: A Two-Sample Mendelian Randomization Study. Foods 2024; 13:1269. [PMID: 38672942 PMCID: PMC11049247 DOI: 10.3390/foods13081269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dietary intervention is the preferred approach for the prevention and clinical management of gout. Nevertheless, the existing evidence regarding the influence of specific foods on gout is insufficient. METHODS We used two-sample Mendelian randomization for genetic prediction to analyze the relationship between the intake of more than a dozen daily food items, such as pork, beef, cheese, and poultry, and dietary macronutrient intake (fat, protein, carbohydrates, and sugar) and the risk of developing gout and elevating the serum uric acid level. Inverse-variance weighted MR analyses were used as the main evaluation method, and the reliability of the results was tested by a sensitivity analysis. RESULTS Cheese intake was associated with lower serum uric acid levels, and tea intake (OR = 0.523, [95%CI: 0.348~0.784], p = 0.002), coffee intake (OR = 0.449, [95%CI: 0.229~0.882], p = 0.020), and dried fruit intake (OR = 0.533, [95%CI: 0.286~0.992], p = 0.047) showed a preventive effect on the risk of gouty attacks. In contrast, non-oily fish intake (β = 1.08, [95%CI: 0.24~1.92], p = 0.012) and sugar intake (β = 0.34, [95%CI: 0.03~0.64], p = 0.030) were risk factors for elevated serum uric acid levels, and alcohol intake frequency (OR = 1.422, [95%CI: 1.079~1.873], p = 0.012) was a risk factors for gout predisposition. CONCLUSIONS These results will significantly contribute to the formulation and refinement of nutritional strategies tailored to patients afflicted with gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lu Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (G.O.); (J.W.); (S.W.); (Y.J.); (Y.C.); (J.K.); (H.X.); (L.D.); (H.Z.); (X.C.)
| |
Collapse
|
37
|
Xu R, Deng P, Ma Y, Li K, Ren F, Li N. Anti-Hyperuricemic Effects of Extracts from Chaenomeles speciosa (Sweet) Nakai Fruits on Hyperuricemic Rats. Metabolites 2024; 14:117. [PMID: 38393010 PMCID: PMC10890149 DOI: 10.3390/metabo14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) fruit has medicinal and food applications and exhibits beneficial pharmacological properties. This study aimed to explore the hypouricemic effect of C. speciosa fruit extracts on hyperuricemic rats and uncover potential protective mechanisms. The rats were given hypoxanthine (HX, 100 mg/kg) and potassium oxonate (PO, 300 mg/kg) for 14 days to induce hyperuricemia. Subsequently, the rats were orally administered C. speciosa fruits total extract (CSFTE, 250, 500, and 1000 mg/kg) and allopurinol (AP, 10 mg/kg) one hour after exposure to HX and PO. The results showed that CSFTE had significant xanthine oxidase (XOD) inhibitory activity in vitro (IC50 value of 334.2 μg/mL) and exhibited hypouricemic effects in vivo, reducing uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) levels in serum. CSFTE increased UA excretion through the regulation of URAT1, GLUT9, OAT1, and OAT3 protein expression in the kidneys of hyperuricemic rats. Additionally, CSFTE (500 and 1000 mg/kg) was more effective than AP in improving renal injury and protecting kidney function in hyperuricemic rats. Our study demonstrated that CSFTE effectively reduced UA levels and protected the kidneys by inhibiting XOD expression in vitro and regulating UA, CRE, BUN, URAT1, GLUT9, OAT1, and OAT3 proteins in vivo.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Peng Deng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yiren Ma
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kui Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
38
|
Pantakitcharoenkul J, Touma J, Jovanovic G, Coblyn M. Enzyme-functionalized hydrogel film for extracorporeal uric acid reduction. J Biomed Mater Res B Appl Biomater 2024; 112:e35375. [PMID: 38359171 DOI: 10.1002/jbm.b.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Enzyme replacement therapy for hyperuricemia treatment has been proven effective for critical state hyperuricemia patients. Still, direct administration of recombinant uricase can induce several fatal side effects. To circumvent this drawback, hydrogel protein carriers can be used in platforms for extracorporeal treatment such as microscale-based devices. In this work, calcium alginate and poly-(vinyl alcohol) hydrogel films were studied for their urate oxidase immobilization and uric acid reduction, which could be implemented in microscale-based extracorporeal devices. A mathematical model was developed in conjunction with uric acid reduction experiments to evaluate the influence of mass transfer and reaction parameters in the Michaelis-Menten kinetic expression. Alginate hydrogels prepared with crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-(hydroxysuccinimide) offered superior diffusivity of uric acid in the gel matrix at the maximum value ofD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 1.98 × 10-11 m2 /s compared with alginate prepared solely from ionic crosslinking withD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 5.31 × 10-12 m2 /s at the same alginate concentration. The maximum value of νmax was experimentally determined at 7.78 × 10-5 mol/(m3 s). A 3% sodium alginate hydrogel with crosslinkers yielded the highest reduction of uric acid at 92.70%. The mathematical model demonstrated an excellent prediction of uric acid conversion suggesting potential use of the model for formulation and maximizing the therapeutic performance of functionalized hydrogels.
Collapse
Affiliation(s)
- Jaturavit Pantakitcharoenkul
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jad Touma
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Goran Jovanovic
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Matthew Coblyn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| |
Collapse
|
39
|
Li X, Qi C, Shao M, Yang Y, Wang Y, Li J, Xiao Z, Ye F. A System for Discovering Novel Uricosurics Targeting Urate Transporter 1 Based on In Vitro and In Vivo Modeling. Pharmaceutics 2024; 16:172. [PMID: 38399232 PMCID: PMC10893275 DOI: 10.3390/pharmaceutics16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Hyperuricemia has become a global burden with the increasing prevalence and risk of associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds, especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells. The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA) and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models, compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 μM, and favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we have developed a novel screening system, including a cell model targeting URAT1 and two kinds of mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was investigated as a candidate URAT1 inhibitor to treat hyperuricemia.
Collapse
Affiliation(s)
- Xuechen Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chufan Qi
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengjie Shao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuying Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
40
|
Wang X, Lu H, Rong J, Sun Z, Zheng Y, Fan B, Jia Z. PEGylated porcine-human recombinant uricase: A novel fusion protein with improved efficacy and safety for the treatment of hyperuricemia and renal complications. Open Life Sci 2024; 19:20220799. [PMID: 38283118 PMCID: PMC10811527 DOI: 10.1515/biol-2022-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024] Open
Abstract
The growing prevalence of hyperuricemia necessitates the urgent development of more potent treatments. This study aimed to develop, optimize, and evaluate the safety and efficacy of porcine-human recombinant uricase (PHRU) both in vitro and in vivo. The study employed gene editing of PHRU through site-directed mutagenesis, with recombinant proteins expressed in vitro utilizing Escherichia coli. The polyethylene glycol (PEG) approach was employed to augment uricase stability and diminish immunogenicity. The pharmacokinetics and pharmacodynamics of PHRU were tested in vitro and in Sprague Dawley rats. Successful expression of the fusion protein in E. coli and the development of the PEGylated drug were achieved. In vitro experiments confirmed the efficacy of PEG-PHRU in degrading uric acid, with PEGylation not markedly affecting the biological activity of PHRU. Animal studies revealed that PEG-PHRU significantly lowered plasma uric acid levels and mitigated hyperuricemia-induced renal damage in rats. Both drug metabolism and pharmacokinetics exhibited favorable characteristics without observable adverse effects in experimental animals. This novel fusion protein shows the potential for ameliorating hyperuricemia and related renal complications, highlighting it as a promising drug candidate with substantial market applications.
Collapse
Affiliation(s)
- Xiangyan Wang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Hao Lu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Jun Rong
- College of Life Science, Yangtze University, Jingzhou434000, PR China
| | - Zhongjie Sun
- Jing Zhou Chang Xin Biotechnology Co., Ltd, Jingzhou434000, PR China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Ziming Jia
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| |
Collapse
|
41
|
Xu G, Wu L, Yang H, Liu T, Tong Y, Wan J, Han B, Zhou L, Hu X. Eupatilin inhibits xanthine oxidase in vitro and attenuates hyperuricemia and renal injury in vivo. Food Chem Toxicol 2024; 183:114307. [PMID: 38052408 DOI: 10.1016/j.fct.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Uric acid (UA) is the final metabolite of purines in the liver that can cause hyperuricemia at high levels. The kidneys are the main excretory organs for UA. The excessive accumulation of UA in the kidneys causes the development of hyperuricemia that often leads to renal injury. Eupatilin (Eup) is a flavonoid natural product that possesses various pharmacological properties such as antioxidant, anti-cancer, and anti-inflammatory. We were interested in exploring the potential role of Eup in lowering UA and nephroprotective. We initially investigated the effects of Eup on xanthin oxidase (XOD) activity in vitro, followed by investigating its ability to lower UA levels, anti-inflammatory effects, nephroprotective effects, and the underlying mechanisms using hyperuricemia rats sustained at high UA level. The results showed that Eup had an inhibitory effect on XOD activity in vitro and significantly reduced serum UA, creatinine, BUN, IL-1β and IL-6 levels in hyperuricemic rats, ameliorating inflammation, renal oxidative stress and pathological injury. Furthermore, Eup inhibited ADA and XOD enzyme activities in the liver and serum and modulated GLUT9, URAT1 and ABCG2 protein expression in the kidneys and ileum. Our findings provide a scientific basis for suggesting Eup as an option for a potential treatment for hyperuricemia.
Collapse
Affiliation(s)
- Guitao Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lele Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hongxuan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Tianfeng Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ying Tong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiliang Wan
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Han
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xuguang Hu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
42
|
Rui G, Qin ZY, Chang YQ, Zheng YG, Zhang D, Yao LM, Guo L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum-Effect Relationship. Molecules 2023; 28:8116. [PMID: 38138603 PMCID: PMC10745721 DOI: 10.3390/molecules28248116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Dioscoreae hypoglaucae Rhizoma (DH) and Dioscoreae spongiosae Rhizoma (DS) are two similar Chinese herbal medicines derived from the Dioscorea family. DH and DS have been used as medicines in China and other Asian countries for a long time, but study on their phytochemicals and bioactive composition is limited. This present study aimed to compare the chemical compositions of DH and DS, and explore the anti-xanthine oxidase components based on chemometric analysis and spectrum-effect relationship. Firstly, an HPLC method was used to establish the chemical fingerprints of DH and DS samples, and nine common peaks were selected. Then, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis were employed to compare and discriminate DH and DS samples based on the fingerprints data, and four steroidal saponins compounds (protodioscin, protogracillin, dioscin, gracillin) could be chemical markers responsible for the differences between DH and DS. Meanwhile, the anti-xanthine oxidase activities of these two herbal medicines were evaluated by xanthine oxidase inhibitory assay in vitro. Pearson correlation analysis and partial least squares regression analysis were subsequently used to investigate the spectrum-effect relationship between chemical fingerprints and xanthine oxidase inhibitory activities. The results showed that four steroidal saponins, including protodioscin, protogracillin, methyl protodioscin and pseudoprogracillin could be potential anti-xanthine oxidase compounds in DH and DS. Furthermore, the xanthine oxidase inhibitory activities of the four selected inhibitors were validated by anti-xanthine oxidase inhibitory assessment and molecular docking experiments. The present work provided evidence for understanding of the chemical differences and the discovery of the anti-xanthine oxidase constituent of DH and DS, which could be useful for quality evaluation and bioactive components screening of these two herbal medicines.
Collapse
Affiliation(s)
- Guo Rui
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhang-Yi Qin
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Min Yao
- Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
43
|
Qu Y, Yu Y, Pan J, Li H, Cui C, Liu D. Systematic review and model-based analysis to identify whether renal safety risks of URAT1 inhibitors are fully determined by uric acid-lowering efficacies. Semin Arthritis Rheum 2023; 63:152279. [PMID: 37866004 DOI: 10.1016/j.semarthrit.2023.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Renal safety risk is currently an important factor that hinders the development of uric acid transporter 1 (URAT1) inhibitors. This study aimed to compare the renal safety and uric acid-lowering efficacy of different URAT1 inhibitors and clarify the association between them. METHODS A systematic review of published randomized controlled trials on URAT1 inhibitors was conducted to investigate the incidence of renal safety events. A model-based analysis was performed to predict the uric acid-lowering efficacy of representative URAT1 inhibitors. RESULTS The overall renal safety event incidences of lesinurad, verinurad, dotinurad, SHR4640, and benzbromarone in patients with hyperuricemia were 11.2 % (142/1264), 12.0 % (34/284), 0.5 % (2/421), 2.3 % (5/213), and 1.3 % (5/393), respectively. A semi-mechanistic pharmacokinetic/pharmacodynamic model was used to establish the dose-exposure-effect relationship of lesinurad, verinurad, dotinurad, and SHR4640 with or without the combination of xanthine oxidase inhibitors (XOIs). The efficacy ranking of the intermediate dose of URAT1 inhibitors with once-daily dosing was 2 mg dotinurad > 10 mg verinurad > 5 mg SHR4640 > 400 mg lesinurad. The combination of 80 mg febuxostat and 600 mg allopurinol reduced the 24-h cumulative renal uric acid excretion by 48.4 % and 48.3 %, respectively. CONCLUSION Uric acid-lowering efficacy is not an independent factor for the renal safety risk of different URAT1 inhibitors, and structural differences could be responsible for the difference. The adverse renal effects of URAT1 inhibitors are dose-dependent, and the combination with high doses of XOIs can significantly reduce the renal safety risk by reducing uric acid excretion by the kidneys.
Collapse
Affiliation(s)
- Yuchen Qu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunli Yu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Department of Cardiology, Peking University Third Hospital, Beijing, China.
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
44
|
Qi X, Guan K, Liu C, Chen H, Ma Y, Wang R. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J Dairy Sci 2023; 106:7367-7381. [PMID: 37562644 DOI: 10.3168/jds.2023-23369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/29/2023] [Indexed: 08/12/2023]
Abstract
Pro-Glu-Trp (PEW) and Leu-Leu-Trp (LLW) are peptides derived from whey protein digestive products; both peptides exhibit xanthine oxidase inhibitory activity in vitro. However, it remains unclear whether these peptides can alleviate hyperuricemia (HUA) in vivo. In this study, we investigated the roles of PEW and LLW, both individually and in combination, in alleviating HUA induced by potassium oxonate and hypoxanthine. Together, PEW and LLW exhibited synergistic effects in reducing the serum levels of uric acid (UA), creatinine, and blood urea nitrogen, as well as increasing the fractional excretion of UA. The combined treatment with PEW and LLW inhibited UA synthesis, promoted UA excretion, and restored renal oxidative stress and mitochondrial damage. Moreover, the combined treatment alleviated dysbiosis of the gut microbiota, characterized by increased helpful microbial abundance, decreased harmful bacterial abundance, and increased production of short-chain fatty acids. Taken together, these results indicate that the combination of PEW and LLW mitigate HUA and kidney injury by rebalancing UA synthesis and excretion, modulating gut microbiota composition, and improving oxidative stress.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Chunhong Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
45
|
Singh V, Mishra BK, Kumar D, Tiwari B. Construction of Highly Functionalized C4-Oxyacylated and Aminated Pyrazolines. Org Lett 2023; 25:7089-7094. [PMID: 37748130 DOI: 10.1021/acs.orglett.3c02366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pyrazolines and pyrazolones are prevalent cores in drugs and bioactive molecules. Functionalizing them with heteroatoms on the ring improves or expands their clinical efficacy. However, a general method to selectively heterofunctionalize them at C4 and C5 is still elusive. Herein, we have demonstrated an iodine(III)-mediated construction of C4-heterofunctionalized pyrazolines from α,β-unsaturated hydrazones. The oxyacylated and aminated products, bearing a tertiary as well as a secondary stereocenter, were obtained via aza-Michael, followed by a C-O/C-N bond formation. A deprotection/oxidation sequence produced pyrazolones in a quantitative yield.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
46
|
Zheng J, Gong S, Wu G, Zheng X, Li J, Nie J, Liu Y, Chen B, Liu Y, Su Z, Chen J, Li Y. Berberine attenuates uric acid-induced cell injury by inhibiting NLRP3 signaling pathway in HK-2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2405-2416. [PMID: 37193772 PMCID: PMC10497693 DOI: 10.1007/s00210-023-02451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease that can cause renal failure and even death in severe cases. Berberine (BBR) is an isoquinoline alkaloid derived from Phellodendri Cortex with strong antioxidant, anti-inflammatory, and anti-apoptotic properties. The purpose of this study was to investigate the protective effects of berberine (BBR) against uric acid (UA)-induced HK-2 cells and unravel their regulatory potential mechanisms. The CCK8 assay was carried out to detect cell viability. The expression levels of inflammatory factors interleukin-1β (IL-1β) and interleukin-18 (IL-18) and Lactate dehydrogenase (LDH) were measured using Enzyme-linked immunosorbent assays (ELISA). The expression of the apoptosis-related protein (cleaved-Caspase3, cleaved-Caspase9, BAX, BCL-2) was detected by western blot. The effects of BBR on the activities of the NOD-like receptor family pyrin domain containing 3 (NLRP3) and the expression of the downstream genes were determined by RT-PCR and western blot in HK-2 cells. From the data, BBR significantly reversed the up-regulation of inflammatory factors (IL-1β, IL-18) and LDH. Furthermore, BBR down-regulated protein expression of pro-apoptotic proteins BAX, cleaved caspase3 (cl-Caspase3), cleaved caspase9 (cl-Caspase9), and enhanced the expression of antiapoptotic protein BCL-2. Simultaneously, BBR inhibited the activated NLPR3 and reduced the mRNA levels of NLRP3, Caspase1, IL-18, and IL-1β. Also, BBR attenuated the expression of NLRP3 pathway-related proteins (NLRP3, ASC, Caspase1, cleaved-Caspase1, IL-18, IL-1β, and GSDMD). Furthermore, specific NLRP3-siRNA efficiently blocked UA-induced the level of inflammatory factors (IL-1β, IL-18) and LDH and further inhibited activated NLRP3 pathway. Collectively, our results suggested that BBR can alleviate cell injury induced by UA. The underlying unctionary mechanism may be through the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Gong Wu
- Department of TCM Orthopedics & Traumatology, Orthopedic Hospital of Longgang, Shenzhen, 518116 Guangdong China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Juan Nie
- Medical School, Hubei Minzu University, Enshi, 445000 Hubei China
| | - Yanlu Liu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526040 Guangdong China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232# Wai Huan East Road, Guangzhou, 510006 Guangdong China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808 Guangdong China
| |
Collapse
|
47
|
Zhang Y, Wang S, Dai X, Liu T, Liu Y, Shi H, Yin J, Xu T, Zhang Y, Zhao D, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Simiao San alleviates hyperuricemia and kidney inflammation by inhibiting NLRP3 inflammasome and JAK2/STAT3 signaling in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116530. [PMID: 37098372 DOI: 10.1016/j.jep.2023.116530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao San (SmS), a famous traditional Chinese formula, is clinically used to treat patients with hyperuricemia (HUA). However, its mechanism of action on lowering uric acid (UA) and inhibiting inflammation still deserves further investigation. AIM OF THE STUDY To examine the effect and its possible underlying mechanism of SmS on UA metabolism and kidney injury in HUA mouse. MATERIALS AND METHODS The HUA mouse model was constructed with the combined administration of both potassium oxalate and hypoxanthine. The effects of SmS on UA, xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN), interleukin-10 (IL-10), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by ELISA or biochemical assays. Hematoxylin and eosin (H&E) was used to observe pathological alterations in the kidneys of HUA mice. The expression levels of organic anion transporter 1 (OAT1), recombinant urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), nucleotide binding domain and leucine rich repeat pyrin domain containing 3 (NLRP3), Cleaved-Caspase 1, apoptosis-associated speck like protein (ASC), nuclear factor kappa-B (NF-κB), IL-6, janus kinase 2 (JAK2), phosphor (P)-JAK2, signal transducers and activators of transcription 3 (STAT3), P-STAT3, suppressor of cytokine signaling 3 (SOCS3) were examined by Western blot and/or immunohistochemical (IHC) staining. The major ingredients in SmS were identified by a HPLC-MS assay. RESULTS HUA mouse exhibited an elevation in serum levels of UA, BUN, CRE, XOD, and the ratio of urinary albumin to creatinine (UACR), and a decline in urine levels of UA and CRE. In addition, HUA induces pro-inflammatory microenvironment in mouse, including an increase in serum levels of IL-1β, IL-6, and TNF-α, and renal expressions of URAT1, GULT9, NLRP3, ASC, Cleaved-Caspase1, P-JAK2/JAK2, P-STAT3/STAT3, and SOCS3, and a decrease in serum IL-10 level and renal OAT1 expression as well as a disorganization of kidney pathological microstructure. In contrast, SmS intervention reversed these alterations in HUA mouse. CONCLUSION SmS could alleviate hyperuricemia and renal inflammation in HUA mouse. The action mechanisms behind these alterations may be associated with a limitation of the NLRP3 inflammasome and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
48
|
Cao X, Cai J, Zhang Y, Liu C, Song M, Xu Q, Liu Y, Yan H. Biodegradation of Uric Acid by Bacillus paramycoides-YC02. Microorganisms 2023; 11:1989. [PMID: 37630550 PMCID: PMC10460076 DOI: 10.3390/microorganisms11081989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.); (J.C.)
| |
Collapse
|
49
|
Kivitz A, DeHaan W, Azeem R, Park J, Rhodes S, Inshaw J, Leung SS, Nicolaou S, Johnston L, Kishimoto TK, Traber PG, Sands E, Choi H. Phase 2 Dose-Finding Study in Patients with Gout Using SEL-212, a Novel PEGylated Uricase (SEL-037) Combined with Tolerogenic Nanoparticles (SEL-110). Rheumatol Ther 2023; 10:825-847. [PMID: 37069364 PMCID: PMC10326180 DOI: 10.1007/s40744-023-00546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION SEL-212 is a developmental treatment for uncontrolled gout characterized by serum uric acid (sUA) levels ≥ 6 mg/dl despite treatment. It comprises a novel PEGylated uricase (SEL-037; also called pegadricase) co-administered with tolerogenic nanoparticles containing sirolimus (rapamycin) (SEL-110; also called ImmTOR®), which mitigates the formation of anti-drug antibodies (ADAs) against uricase and SEL-037 (PEGylated uricase), thereby enabling sustained sUA control (sUA < 6 mg/dl). The aim of this study was to identify appropriate dosing for SEL-037 and SEL-110 for use in phase 3 clinical trials. METHODS This open-label phase 2 study was conducted in adults with symptomatic gout and sUA ≥ 6 mg/dl. Participants received five monthly infusions of SEL-037 (0.2 or 0.4 mg/kg) alone or in combination with three or five monthly infusions of SEL-110 (0.05-0.15 mg/kg). Safety, tolerability, sUA, ADAs, and tophi were monitored for 6 months. RESULTS A total of 152 adults completed the study. SEL-037 alone resulted in rapid sUA reductions that were not sustained beyond 30 days in most participants due to ADA formation and loss of uricase activity. Levels of ADAs decreased with increasing doses of SEL-110 up to 0.1 mg/kg, with anti-uricase titers < 1080 correlating with sustained sUA control and reductions in tophi. Overall, 66% of evaluable participants achieved sUA control at week 20 following five monthly doses of SEL-037 0.2 mg/kg + SEL-110 0.1-0.15 mg/kg, whereas only 26% achieved sUA control at week 20 when SEL-110 was withdrawn after week 12. Compared to other dose combinations, SEL-037 0.2 mg/kg + SEL-110 0.15 mg/kg achieved the greatest sUA control at week 12 and was well-tolerated with no safety concerns. CONCLUSION Results provide continued support for the use of multiple monthly administrations of SEL-037 0.2 mg/kg + SEL-110 0.1-0.15 mg/kg in clinical trials for SEL-212. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02959918.
Collapse
Affiliation(s)
- Alan Kivitz
- Altoona Center for Clinical Research, Duncansville, PA, USA
| | | | - Rehan Azeem
- Selecta Biosciences, Inc., Watertown, MA, USA
| | - Justin Park
- Selecta Biosciences, Inc., Watertown, MA, USA
| | | | | | | | - Savvas Nicolaou
- University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | | | | | | | - Earl Sands
- Selecta Biosciences, Inc., Watertown, MA, USA
| | - Hyon Choi
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
50
|
Zhang Y, Li Y, Li C, Zhao Y, Xu L, Ma S, Lin F, Xie Y, An J, Wang S. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154957. [PMID: 37478683 DOI: 10.1016/j.phymed.2023.154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chang Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yani Zhao
- Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Lu Xu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shanbo Ma
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fen Lin
- Research and Development Department, Shaanxi Fengdan Zhengyuan Biotechnology Limited Company, Xi'an, Shaanxi 710076, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junming An
- Department of Acupuncture, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|