1
|
Odoom JK, Dzotse EK, Nii-Trebi NI, Opare D, Akyereko E, Attiku K, Duker EO, Eshun M, Boahene BB, Gberbi E, Houphouet EE, Diamenu S, Adjabeng M, Asamoah-Frimpong J, Ameme D, Opare JKL, Obodai E. Outbreak Response to Circulating Vaccine-Derived Poliovirus in Three Northern Regions of Ghana, 2019. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5515777. [PMID: 39399343 PMCID: PMC11469924 DOI: 10.1155/2024/5515777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Background: Circulating Vaccine-Derived Poliovirus Type 2 (cVDPV2) was isolated in sewage and later in stool samples from children with acute flaccid paralysis (AFP) in northern Ghana. Method: A multidisciplinary and multisectoral team investigated this outbreak and reported on epidemiological and laboratory investigations. Sewage/wastewater samples were collected from the environment, while stool samples were collected from AFP/contact children under 5 years of age. The samples were processed for virus isolation, and positive isolates were sequenced. We also conducted a descriptive investigation involving a review of records, active case search, and Monovalent Oral Polio Vaccine 2 campaigns. Additionally, we interviewed caregivers about the vaccination status of their children, as well as their knowledge on polio prevention. Water quality, sanitation, hygiene practices, and health-seeking behaviours were also assessed. Results: A total of 18 cVDPV2 were confirmed in the three regions of Ghana during the outbreak in 2019-2020. All strains were genetically linked to a Nigerian cVDPV2 strain NIE-KWS-KSB-18-006HC29 that circulated in 2018. Evaluation of the surveillance system shows that officers have good knowledge of AFP and know how to collect samples, package them, and ship them to the laboratory. Few communities had access to potable water. Open defecation was common, and the water supply, sanitation, and hygiene practices of the communities were poor. Conclusion: The cVDPV2 outbreak represents the first time cVDPV2 has circulated in the country since Ghana embarked on the polio eradication program in 1996. However, with quality mOPV2 mop-up campaigns, a nationwide IPV catch-up campaign coupled with enhanced surveillance measures, transmission was interrupted.
Collapse
Affiliation(s)
- John Kofi Odoom
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Kofi Dzotse
- Disease Surveillance Department, Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Nicholas Israel Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - David Opare
- National Public Health and Reference Laboratory, Ghana Health Service, Ministry of Health, Korle-Bu, Accra, Ghana
| | - Ernest Akyereko
- Disease Surveillance Department, Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Keren Attiku
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ewurabena Oduma Duker
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Miriam Eshun
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bismarck Banahene Boahene
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Gberbi
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | | | | | | | - Donne Ameme
- Ghana Field Epidemiology and Laboratory Training Program, Accra, Ghana
| | | | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Sun G, Wang G, Zhong H. Observational analysis of the immunogenicity and safety of various types of spinal muscular atrophy vaccines. Inflammopharmacology 2024; 32:1025-1038. [PMID: 38308795 DOI: 10.1007/s10787-023-01395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND This study aimed to evaluate the immunogenicity and safety of different types of poliovirus vaccines. METHODS A randomized, blinded, single-center, parallel-controlled design was employed, and 360 infants aged ≥ 2 months were selected as study subjects. They were randomly assigned to bOPV group (oral Sabin vaccine) and sIPV group (Sabin strain inactivated polio vaccine), with 180 infants in each group. Adverse reaction events in the vaccinated subjects were recorded. The micro-neutralization test using cell culture was conducted to determine the geometric mean titer (GMT) of neutralizing antibodies against poliovirus types I, II, and III in different groups, and the seroconversion rates were calculated. RESULTS Both groups exhibited a 100% seropositivity rate after booster immunization. The titers of neutralizing antibodies for the three types were predominantly distributed within the range of 1:128 to 1:512. The fold increase of type I antibodies differed markedly between the two groups (P < 0.05). Moreover, the fold increase of type II and type III antibodies for poliovirus differed slightly between the two groups (P > 0.05). The fourfold increase rate in sIPV group was drastically superior to that in bOPV group (P < 0.05). When comparing the post-immunization GMT levels of type I antibodies in individuals who completed the full course of spinal muscular atrophy vaccination, bOPV group showed greatly inferior levels to sIPV group (P < 0.05). For type II and type III antibodies, individuals in bOPV group demonstrated drastically superior post-immunization GMT levels to those in sIPV group (P < 0.05). The incidence of adverse reactions between the bOPV and sIPV groups differed slightly (P > 0.05). CONCLUSION These findings indicated that both the oral vaccine and inactivated vaccine had good safety and immunogenicity in infants aged ≥ 2 months. The sIPV group generated higher levels of neutralizing antibodies in serum, particularly evident in the post-immunization GMT levels for types II and III.
Collapse
Affiliation(s)
- Guojuan Sun
- Immunization Program Department, Daqing Center for Disease Control and Prevention, Daqing, 163000, Heilongjiang, China
| | - Guangzhi Wang
- Pathology Department, Daqing People's Hospital, Daqing, 163000, Heilongjiang, China
| | - Heng Zhong
- Endocrinology Department, Heilongjiang Provincial Hospital, Harbin, 150036, Heilongjiang, China.
| |
Collapse
|
3
|
Thompson KM, Kalkowska DA, Kidd SE, Burns CC, Badizadegan K. Trade-offs of different poliovirus vaccine options for outbreak response in the United States and other countries that only use inactivated poliovirus vaccine (IPV) in routine immunization. Vaccine 2024; 42:819-827. [PMID: 38218668 PMCID: PMC10947589 DOI: 10.1016/j.vaccine.2023.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Delays in achieving polio eradication have led to ongoing risks of poliovirus importations that may cause outbreaks in polio-free countries. Because of the low, but non-zero risk of paralysis with oral poliovirus vaccines (OPVs), countries that achieve and maintain high national routine immunization coverage have increasingly shifted to exclusive use of inactivated poliovirus vaccine (IPV) for all preventive immunizations. However, immunization coverage within countries varies, with under-vaccinated subpopulations potentially able to sustain transmission of imported polioviruses and experience local outbreaks. Due to its cost, ease-of-use, and ability to induce mucosal immunity, using OPV as an outbreak control measure offers a more cost-effective option in countries in which OPV remains in use. However, recent polio outbreaks in IPV-only countries raise questions about whether and when IPV use for outbreak response may fail to stop poliovirus transmission and what consequences may follow from using OPV for outbreak response in these countries. We systematically reviewed the literature to identify modeling studies that explored the use of IPV for outbreak response in IPV-only countries. In addition, applying a model of the 2022 type 2 poliovirus outbreak in New York, we characterized the implications of using different OPV formulations for outbreak response instead of IPV. We also explored the hypothetical scenario of the same outbreak except for type 1 poliovirus instead of type 2. We find that using IPV for outbreak response will likely only stop outbreaks for polioviruses of relatively low transmission potential in countries with very high overall immunization coverage, seasonal transmission dynamics, and only if IPV immunization interventions reach some unvaccinated individuals. Using OPV for outbreak response in IPV-only countries poses substantial risks and challenges that require careful consideration, but may represent an option to consider for some outbreaks in some populations depending on the properties of the available vaccines and coverage attainable.
Collapse
Affiliation(s)
| | | | - Sarah E Kidd
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
4
|
Kalkowska DA, Wiesen E, Wassilak SGF, Burns CC, Pallansch MA, Badizadegan K, Thompson KM. Worst-case scenarios: Modeling uncontrolled type 2 polio transmission. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:379-389. [PMID: 37344376 PMCID: PMC10733542 DOI: 10.1111/risa.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
In May 2016, the Global Polio Eradication Initiative (GPEI) coordinated the cessation of all use of type 2 oral poliovirus vaccine (OPV2), except for emergency outbreak response. Since then, paralytic polio cases caused by type 2 vaccine-derived polioviruses now exceed 3,000 cases reported by 39 countries. In 2022 (as of April 25, 2023), 20 countries reported detection of cases and nine other countries reported environmental surveillance detection, but no reported cases. Recent development of a genetically modified novel type 2 OPV (nOPV2) may help curb the generation of neurovirulent vaccine-derived strains; its use since 2021 under Emergency Use Listing is limited to outbreak response activities. Prior modeling studies showed that the expected trajectory for global type 2 viruses does not appear headed toward eradication, even with the best possible properties of nOPV2 assuming current outbreak response performance. Continued persistence of type 2 poliovirus transmission exposes the world to the risks of potentially high-consequence events such as the importation of virus into high-transmission areas of India or Bangladesh. Building on prior polio endgame modeling and assuming current national and GPEI outbreak response performance, we show no probability of successfully eradicating type 2 polioviruses in the near term regardless of vaccine choice. We also demonstrate the possible worst-case scenarios could result in rapid expansion of paralytic cases and preclude the goal of permanently ending all cases of poliomyelitis in the foreseeable future. Avoiding such catastrophic scenarios will depend on the development of strategies that raise population immunity to type 2 polioviruses.
Collapse
Affiliation(s)
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
5
|
Kalkowska DA, Wassilak SGF, Wiesen E, Burns CC, Pallansch MA, Badizadegan K, Thompson KM. Coordinated global cessation of oral poliovirus vaccine use: Options and potential consequences. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:366-378. [PMID: 37344934 PMCID: PMC10733544 DOI: 10.1111/risa.14158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Due to the very low, but nonzero, paralysis risks associated with the use of oral poliovirus vaccine (OPV), eradicating poliomyelitis requires ending all OPV use globally. The Global Polio Eradication Initiative (GPEI) coordinated cessation of Sabin type 2 OPV (OPV2 cessation) in 2016, except for emergency outbreak response. However, as of early 2023, plans for cessation of bivalent OPV (bOPV, containing types 1 and 3 OPV) remain undefined, and OPV2 use for outbreak response continues due to ongoing transmission of type 2 polioviruses and reported type 2 cases. Recent development and use of a genetically stabilized novel type 2 OPV (nOPV2) leads to additional potential vaccine options and increasing complexity in strategies for the polio endgame. Prior applications of integrated global risk, economic, and poliovirus transmission modeling consistent with GPEI strategic plans that preceded OPV2 cessation explored OPV cessation dynamics and the evaluation of options to support globally coordinated risk management efforts. The 2022-2026 GPEI strategic plan highlighted the need for early bOPV cessation planning. We review the published modeling and explore bOPV cessation immunization options as of 2022, assuming that the GPEI partners will not support restart of the use of any OPV type in routine immunization after a globally coordinated cessation of such use. We model the potential consequences of globally coordinating bOPV cessation in 2027, as anticipated in the 2022-2026 GPEI strategic plan. We do not find any options for bOPV cessation likely to succeed without a strategy of bOPV intensification to increase population immunity prior to cessation.
Collapse
Affiliation(s)
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
6
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Kanai Y, Onishi M, Yoshida Y, Kotaki T, Minami S, Nouda R, Yamasaki M, Enoki Y, Kobayashi T. Genetic engineering strategy for generating a stable dsRNA virus vector using a virus-like codon-modified transgene. J Virol 2023; 97:e0049223. [PMID: 37732784 PMCID: PMC10617491 DOI: 10.1128/jvi.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The stabilities of transgenes in RNA virus vectors differ between the genes of interest, but the molecular mechanisms determining genetic stability remain unknown. This study demonstrated that the stability of a transgene was affected by the nucleotide composition, and altering the codon usage of transgenes to resemble that of the viral genome significantly increased transgene stability in double-stranded RNA virus vectors. The virus-like codon modification strategy enabled generation of stable rotavirus and mammalian orthoreovirus vectors, which could be developed as machinery for gene delivery to the intestines and/or respiratory organs. This technology has further potential to be expanded to other RNA viruses.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Misa Onishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukino Yoshida
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasutaka Enoki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Kalkowska DA, Wassilak SGF, Wiesen E, F Estivariz C, Burns CC, Badizadegan K, Thompson KM. Complexity of options related to restarting oral poliovirus vaccine (OPV) in national immunization programs after OPV cessation. Gates Open Res 2023; 7:55. [PMID: 37547300 PMCID: PMC10403636 DOI: 10.12688/gatesopenres.14511.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 08/08/2023] Open
Abstract
Background: The polio eradication endgame continues to increase in complexity. With polio cases caused by wild poliovirus type 1 and circulating vaccine-derived polioviruses of all three types (1, 2 and 3) reported in 2022, the number, formulation, and use of poliovirus vaccines poses challenges for national immunization programs and vaccine suppliers. Prior poliovirus transmission modeling of globally-coordinated type-specific cessation of oral poliovirus vaccine (OPV) assumed creation of Sabin monovalent OPV (mOPV) stockpiles for emergencies and explored the potential need to restart OPV if the world reached a specified cumulative threshold number of cases after OPV cessation. Methods: We document the actual experience of type 2 OPV (OPV2) cessation and reconsider prior modeling assumptions related to OPV restart. We develop updated decision trees of national immunization options for poliovirus vaccines considering different possibilities for OPV restart. Results: While OPV restart represented a hypothetical situation for risk management and contingency planning to support the 2013-2018 Global Polio Eradication Initiative (GPEI) Strategic Plan, the actual epidemiological experience since OPV2 cessation raises questions about what, if any, trigger(s) could lead to restarting the use of OPV2 in routine immunization and/or plans for potential future restart of type 1 and 3 OPV after their respective cessation. The emergency use listing of a genetically stabilized novel type 2 OPV (nOPV2) and continued evaluation of nOPV for types 1 and/or 3 add further complexity by increasing the combinations of possible OPV formulations for OPV restart. Conclusions: Expanding on a 2019 discussion of the logistical challenges and implications of restarting OPV, we find a complex structure of the many options and many issues related to OPV restart decisions and policies as of early 2023. We anticipate many challenges for forecasting prospective vaccine supply needs during the polio endgame due to increasing potential combinations of poliovirus vaccine choices.
Collapse
Affiliation(s)
| | - Steven GF Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Concepcion F Estivariz
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA, Atlanta, GA, USA
| | | | | |
Collapse
|
9
|
Kalkowska DA, Pallansch MA, Wassilak SGF, Cochi SL, Thompson KM. Serotype 2 oral poliovirus vaccine (OPV2) choices and the consequences of delaying outbreak response. Vaccine 2023; 41 Suppl 1:A136-A141. [PMID: 33994237 PMCID: PMC11027208 DOI: 10.1016/j.vaccine.2021.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2.
Collapse
Affiliation(s)
| | - Mark A Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
10
|
Harutyunyan V, Quddus A, Pallansch M, Zipursky S, Woods D, Ottosen A, Vertefeuille J, Lewis I. Global oral poliovirus vaccine stockpile management as an essential preparedness and response mechanism for type 2 poliovirus outbreaks following global oral poliovirus vaccine type 2 withdrawal. Vaccine 2023; 41 Suppl 1:A70-A78. [PMID: 35282924 PMCID: PMC10427718 DOI: 10.1016/j.vaccine.2022.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Following the global declaration of indigenous wild poliovirus type 2 eradication in 2015, the world switched to oral polio vaccine (OPV) that removed the type 2 component. This 'switch' included the widespread introduction of inactivated poliovirus vaccine and the creation of a stockpile of monovalent type 2 OPV (mOPV2) to respond to potential polio virus Type 2 (PV2) outbreaks and events. With subsequent detection of outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2), it was necessary to use this stockpile for outbreak response. Not only were more outbreaks detected than anticipated in the first few years after the switch, but the number of supplemental immunization activities (SIAs) used to stop transmission was often high, and in many cases did not stop wider transmission. Use of mOPV type 2 led in some locations to the emergence of new outbreaks that required further use of the vaccine from the stockpile. In the following years, stockpile management became a critical element of the cVDPV2 outbreak response strategy and continued to evolve to include trivalent OPV and genetically stabilized 'novel OPV type 2' vaccines in the stockpile. An overview of this process and its evolution is presented to highlight several of these management challenges. The unpredictable vaccine demand, fixed production and procurement timelines, resource requirements, and multiple vaccine types contributes to the complexity of assuring appropriate vaccine availability for this critical programmatic need to stop outbreaks.
Collapse
Affiliation(s)
| | | | - Mark Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - David Woods
- World Health Organization, Geneva, Switzerland
| | | | - John Vertefeuille
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian Lewis
- UNICEF Supply Division, Copenhagen, Denmark
| |
Collapse
|
11
|
Kalkowska DA, Wassilak SGF, Pallansch MA, Burns CC, Wiesen E, Durry E, Badizadegan K, Thompson KM. Outbreak response strategies with type 2-containing oral poliovirus vaccines. Vaccine 2023; 41 Suppl 1:A142-A152. [PMID: 36402659 PMCID: PMC10284582 DOI: 10.1016/j.vaccine.2022.10.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Despite exhaustive and fully-financed plans to manage the risks of globally coordinated cessation of oral poliovirus vaccine (OPV) containing type 2 (OPV2) prior to 2016, as of 2022, extensive, continued transmission of circulating vaccine-derived polioviruses (cVDPVs) type 2 (cVDPV2) remains. Notably, cumulative cases caused by cVDPV2 since 2016 now exceed 2,500. Earlier analyses explored the implications of using different vaccine formulations to respond to cVDPV2 outbreaks and demonstrated how different properties of novel OPV2 (nOPV2) might affect its performance compared to Sabin monovalent OPV2 (mOPV2). These prior analyses used fixed assumptions for how outbreak response would occur, but outbreak response implementation can change. We update an existing global poliovirus transmission model to explore different options for responding with different vaccines and assumptions about scope, delays, immunization intensity, target age groups, and number of rounds. Our findings suggest that in order to successfully stop all cVDPV2 transmission globally, countries and the Global Polio Eradication Initiative need to address the deficiencies in emergency outbreak response policy and implementation. The polio program must urgently act to substantially reduce response time, target larger populations - particularly in high transmission areas - and achieve high coverage with improved access to under-vaccinated subpopulations. Given the limited supplies of nOPV2 at the present, using mOPV2 intensively immediately, followed by nOPV2 intensively if needed and when sufficient quantities become available, substantially increases the probability of ending cVDPV2 transmission globally.
Collapse
Affiliation(s)
| | - Steven G F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elias Durry
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
12
|
Thompson KM, Kalkowska DA, Badizadegan K. Oral polio vaccine stockpile modeling: insights from recent experience. Expert Rev Vaccines 2023; 22:813-825. [PMID: 37747090 DOI: 10.1080/14760584.2023.2263096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Achieving polio eradication requires ensuring the delivery of sufficient supplies of the right vaccines to the right places at the right times. Despite large global markets, decades of use, and large quantity purchases of polio vaccines by national immunization programs and the Global Polio Eradication Initiative (GPEI), forecasting demand for the oral poliovirus vaccine (OPV) stockpile remains challenging. RESEARCH DESIGN AND METHODS We review OPV stockpile experience compared to pre-2016 expectations, actual demand, and changes in GPEI policies related to the procurement and use of type 2 OPV vaccines. We use available population and immunization schedule data to explore polio vaccine market segmentation, and its role in polio vaccine demand forecasting. RESULTS We find that substantial challenges remain in forecasting polio vaccine needs, mainly due to (1) deviations in implementation of plans that formed the basis for earlier forecasts, (2) lack of alignment of tactics/objectives among GPEI partners and other key stakeholders, (3) financing, and (4) uncertainty about development and licensure timelines for new polio vaccines and their field performance characteristics. CONCLUSIONS Mismatches between supply and demand over time have led to negative consequences associated with both oversupply and undersupply, as well as excess costs and potentially preventable cases.
Collapse
|
13
|
Thompson KM, Kalkowska DA, Badizadegan K. Looking back at prospective modeling of outbreak response strategies for managing global type 2 oral poliovirus vaccine (OPV2) cessation. Front Public Health 2023; 11:1098419. [PMID: 37033033 PMCID: PMC10080024 DOI: 10.3389/fpubh.2023.1098419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Detection of poliovirus transmission and ongoing oral poliovirus vaccine (OPV) use continue to delay poliomyelitis eradication. In 2016, the Global Polio Eradication Initiative (GPEI) coordinated global cessation of type 2 OPV (OPV2) for preventive immunization and limited its use to emergency outbreak response. In 2019, GPEI partners requested restart of some Sabin OPV2 production and also accelerated the development of a genetically modified novel OPV2 vaccine (nOPV2) that promised greater genetic stability than monovalent Sabin OPV2 (mOPV2). Methods We reviewed integrated risk, economic, and global poliovirus transmission modeling performed before OPV2 cessation, which recommended multiple risk management strategies to increase the chances of successfully ending all transmission of type 2 live polioviruses. Following OPV2 cessation, strategies implemented by countries and the GPEI deviated from model recommended risk management strategies. Complementing other modeling that explores prospective outbreak response options for improving outcomes for the current polio endgame trajectory, in this study we roll back the clock to 2017 and explore counterfactual trajectories that the polio endgame could have followed if GPEI had: (1) managed risks differently after OPV2 cessation and/or (2) developed nOPV2 before and used it exclusively for outbreak response after OPV2 cessation. Results The implementation of the 2016 model-based recommended outbreak response strategies could have ended (and could still substantially improve the probability of ending) type 2 poliovirus transmission. Outbreak response performance observed since 2016 would not have been expected to achieve OPV2 cessation with high confidence, even with the availability of nOPV2 prior to the 2016 OPV2 cessation. Discussion As implemented, the 2016 OPV2 cessation failed to stop type 2 transmission. While nOPV2 offers benefits of lower risk of seeding additional outbreaks, its reduced secondary spread relative to mOPV2 may imply relatively higher coverage needed for nOPV2 than mOPV2 to stop outbreaks.
Collapse
|
14
|
Thompson KM, Kalkowska DA, Badizadegan K. Health economic analysis of vaccine options for the polio eradication endgame: 2022-2036. Expert Rev Vaccines 2022; 21:1667-1674. [PMID: 36154436 PMCID: PMC10116513 DOI: 10.1080/14760584.2022.2128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND : Multiple vaccine options are available for polio prevention and risk management. Integrated global risk, economic, and poliovirus transmission modeling provides a tool to explore the dynamics of ending all use of one or more poliovirus vaccines to simplify the polio eradication endgame. RESEARCH DESIGN AND METHODS : With global reported cases of poliomyelitis trending higher since 2016, we apply an integrated global model to simulate prospective vaccine policies and strategies for OPV-using countries starting with initial conditions that correspond to the epidemiological poliovirus transmission situation at the beginning of 2022. RESULTS : Abruptly ending all OPV use in 2023 and relying only on IPV to prevent paralysis with current routine immunization coverage would lead to expected reestablished endemic transmission of poliovirus types 1 and 2, and approximately 150,000 expected cases of poliomyelitis per year. Alternatively, if OPV-using countries restart trivalent OPV (tOPV) use for all immunization activities and end IPV use, the model shows the lowest anticipated annual polio cases and lowest costs. CONCLUSIONS : Poor global risk management and coordination of OPV cessation remain a critical failure mode for the polio endgame, and national and global decision makers face difficult choices due to multiple available polio vaccine options and immunization strategies.
Collapse
|
15
|
Lorenzetti L, Haydarov R, Namey E, Lawton A, Nam H, Ridwan Hasan M, Monj C, Abeyesekera S, Amina Kabwau M, McIntosh R. Exploring public perceptions of vaccine-derived poliovirus and a novel oral polio vaccine in the Democratic Republic of the Congo, Kenya, and Nigeria. Vaccine 2022; 41 Suppl 1:A128-A135. [PMID: 35871107 DOI: 10.1016/j.vaccine.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The Global Polio Eradication Initiative introduced novel oral polio vaccine Type 2 (nOPV2) to address circulating vaccine-derived poliovirus Type 2 (cVDPV2). Although nOPV2 is a more genetically stable vaccine, it may not have the immediate trust of communities and health workers due to its novelty, potential side effects, and introduction under an Emergency Use Listing (EUL). We explored how nOPV2 introduction might be perceived by stakeholders and identified communications barriers related to nOPV2 hesitancy. METHODS This work was conducted in the Democratic Republic of the Congo, Kenya, and Nigeria between January and March 2020. We used a rapid qualitative approach to conduct focus group discussions and in-depth interviews with four stakeholder groups: caregivers of children under 5, polio frontline workers, healthcare practitioners, and social/health influencers. Data are presented according to awareness, attitudes/beliefs, and concerns about cVDPV2 and nOPV2. RESULTS Stakeholders were largely unaware of cVDPV2. The causes of recent polio outbreaks were characterized as poor sanitation, under-immunization/in-migration, or poor vaccine management procedures. Caregivers were aware of and concerned by repeated vaccination campaigns. All stakeholder groups anticipated initial hesitancy, fear, and suspicion from caregivers due to nOPV2 introduction, with primary concerns linked to vaccine testing, safety, effectiveness, side effects, and support from authorities. Stakeholders thought the term "genetic modification" could be controversial but that introduction under an EUL would be acceptable given the emergency nature of cVDPV2 outbreaks. Stakeholders called for adequate and timely information to counter concerns. CONCLUSIONS Despite initial concerns, stakeholders felt nOPV2 would ultimately be accepted by caregivers. However, public health officials have a small window for "getting things right" when introducing nOPV2. Strategic communication interventions addressing key concerns and targeted communications with stakeholder groups, especially frontline workers, could improve community acceptance of nOPV2.
Collapse
Affiliation(s)
- Lara Lorenzetti
- Behavioral, Epidemiological & Clinical Sciences Division, FHI 360, Durham, NC, United States.
| | - Rustam Haydarov
- Polio Team, Programme Division, UNICEF HQ, New York, NY, United States
| | - Emily Namey
- Behavioral, Epidemiological & Clinical Sciences Division, FHI 360, Durham, NC, United States
| | - Anna Lawton
- Behavioral, Epidemiological & Clinical Sciences Division, FHI 360, Durham, NC, United States
| | - Hayon Nam
- Communication for Development (C4D) Team, UNICEF Nigeria Country Office, Abuja, Nigeria
| | - Muhamad Ridwan Hasan
- Communication for Development (C4D) Team, UNICEF Nigeria Country Office, Abuja, Nigeria
| | - Claude Monj
- Communication for Development (C4D) Team, UNICEF Western and Central Africa Regional Office, Dakar, Senegal
| | - Surangani Abeyesekera
- Communication for Development (C4D) Team, UNICEF Kenya Country Office, Nairobi, Kenya
| | | | - Ross McIntosh
- Polio Team, Programme Division, UNICEF HQ, New York, NY, United States
| |
Collapse
|
16
|
Odoom JK, Obodai E, Boateng G, Diamenu S, Attiku K, Avevor P, Duker E, Boahene B, Eshun M, Gberbie E, Opare JKL. Detection of vaccine-derived poliovirus circulation by environmental surveillance in the absence of clinical cases. Hum Vaccin Immunother 2021; 17:2117-2124. [PMID: 33517832 PMCID: PMC8189041 DOI: 10.1080/21645515.2020.1852009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND On August 25, 2019, the Noguchi Memorial Institute for Medical Research notified the confirmation of a circulating-vaccine-derived poliovirus type-2 (cVDPV2) from the Agbogbloshie environmental surveillance (AES) site, in the Greater Accra Region. A field investigation of the outbreak was conducted to describe the results of epidemiological and laboratory investigations, and control efforts. METHODS We conducted a descriptive investigation, records review, and active-case-search. Caregivers were interviewed on the vaccination status of their children; knowledge, attitude, and practices on polio prevention; water, sanitation and hygiene practices, and health-seeking behaviors. Stool from healthy children <5 y and sewage samples were taken for laboratory diagnosis. RESULTS cVDPV2 genetically similar to the cVDPV2 diagnosed recently in the Northern Region of Ghana and Nigeria was identified. 2019 half-year coverage of OPV and IPV was 22%. Fully immunized children were 49% (29/59). Most health workers (70%) had a fair knowledge of polio and acute flaccid paralysis (AFP). Forty-six percent of care-givers admitted to using the large drain linked to the site where the cVDPV2 was isolated as their place of convenience and disposing of the fecal matter of their children. No AFP case was identified. Stool samples from 40 healthy children yielded non-polio enteroviruses while 75% (3/4) of the additional sewage samples yielded cVDPV2. CONCLUSION cVDPV2 was isolated from the AES site. No AFP or poliovirus was identified from healthy children. There is a need to improve health workers' knowledge on AFP and to address the dire sanitation conditions in the Agbogbloshie market and its environs.
Collapse
Affiliation(s)
- John Kofi Odoom
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Evangeline Obodai
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Gifty Boateng
- Public Health and Reference Laboratory, Ghana Health Service, Accra, Ghana
| | | | - Keren Attiku
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Patrick Avevor
- Ghana Health Service, Private Mail Bag, Ministries, Accra, Ghana
| | - Ewurabena Duker
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Bismarck Boahene
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Miriam Eshun
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | - Emmanuel Gberbie
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| | | |
Collapse
|
17
|
Valdano E, Okano JT, Colizza V, Mitonga HK, Blower S. Using mobile phone data to reveal risk flow networks underlying the HIV epidemic in Namibia. Nat Commun 2021; 12:2837. [PMID: 33990578 PMCID: PMC8121904 DOI: 10.1038/s41467-021-23051-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Twenty-six million people are living with HIV in sub-Saharan Africa; epidemics are widely dispersed, due to high levels of mobility. However, global elimination strategies do not consider mobility. We use Call Detail Records from 9 billion calls/texts to model mobility in Namibia; we quantify the epidemic-level impact by using a mathematical framework based on spatial networks. We find complex networks of risk flows dispersed risk countrywide: increasing the risk of acquiring HIV in some areas, decreasing it in others. Overall, 40% of risk was mobility-driven. Networks contained multiple risk hubs. All constituencies (administrative units) imported and exported risk, to varying degrees. A few exported very high levels of risk: their residents infected many residents of other constituencies. Notably, prevalence in the constituency exporting the most risk was below average. Large-scale networks of mobility-driven risk flows underlie generalized HIV epidemics in sub-Saharan Africa. In order to eliminate HIV, it is likely to become increasingly important to implement innovative control strategies that focus on disrupting risk flows.
Collapse
Affiliation(s)
- Eugenio Valdano
- Center for Biomedical Modeling, The Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Justin T Okano
- Center for Biomedical Modeling, The Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, Paris, France
| | - Honore K Mitonga
- Department of Epidemiology and Biostatistics, School of Public Health, University of Namibia, Windhoek, Namibia
| | - Sally Blower
- Center for Biomedical Modeling, The Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Thompson KM, Kalkowska DA, Badizadegan K. Hypothetical emergence of poliovirus in 2020: part 2. exploration of the potential role of vaccines in control and eradication. Expert Rev Vaccines 2021; 20:449-460. [PMID: 33599178 DOI: 10.1080/14760584.2021.1891889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The emergence of human pathogens with pandemic potential motivates rapid vaccine development. We explore the role of vaccines in control and eradication of a novel emerging pathogen. METHODS We hypothetically simulate emergence of a novel wild poliovirus (nWPV) in 2020 assuming an immunologically naïve population. Assuming different nonpharmaceutical interventions (NPIs), we explore the impacts of vaccines resembling serotype-specific oral poliovirus vaccine (OPV), novel OPV (nOPV), or inactivated poliovirus vaccine (IPV). RESULTS Vaccines most effectively change the trajectory of an emerging disease when disseminated early, rapidly, and widely in the background of ongoing strict NPIs, unless the NPIs successfully eradicate the emerging pathogen before it establishes endemic transmission. Without strict NPIs, vaccines primarily reduce the burden of disease in the remaining susceptible individuals and in new birth cohorts. Live virus vaccines that effectively compete with the nWPVs can reduce disease burdens more than other vaccines. When relaxation of existing NPIs occurs at the time of vaccine introduction, nWPV transmission can counterintuitively increase in the short term. CONCLUSIONS Vaccines can increase the probability of disease eradication in the context of strict NPIs. However, successful eradication will depend on specific immunization strategies used and a global commitment to eradication.
Collapse
|
19
|
The impact of disruptions caused by the COVID-19 pandemic on global polio eradication. Vaccine 2021; 41 Suppl 1:A12-A18. [PMID: 33962838 PMCID: PMC10045205 DOI: 10.1016/j.vaccine.2021.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
In early 2020, the COVID-19 pandemic led to substantial disruptions in global activities. The disruptions also included intentional and unintentional reductions in health services, including immunization campaigns against the transmission of wild poliovirus (WPV) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2). Building on a recently updated global poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model, we explored the implications of immunization disruption and restrictions of human interactions (i.e., population mixing) on the expected incidence of polio and on the resulting challenges faced by the Global Polio Eradication Initiative (GPEI). We demonstrate that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, the GPEI could largely mitigate the impact of COVID-19 to the delays incurred. The relative importance of reduced mixing (leading to potentially decreased incidence) and reduced immunization (leading to potentially increased expected incidence) depends on the timing of the effects. Following resumption of immunization activities, the GPEI will likely face similar barriers to eradication of WPV and elimination of cVDPV2 as before COVID-19. The disruptions from the COVID-19 pandemic may further delay polio eradication due to indirect effects on vaccine and financial resources.
Collapse
|
20
|
Stool Serology: Development of a Non-Invasive Immunological Method for the Detection of Enterovirus-Specific Antibodies in Congo Gorilla Faeces. Microorganisms 2021; 9:microorganisms9040810. [PMID: 33921300 PMCID: PMC8068960 DOI: 10.3390/microorganisms9040810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The incidence of poliovirus has been significantly reduced by as much as 99.9% globally. Alongside this, however, vaccine-associated paralytic poliomyelitis has emerged. Previously, our team reported in the Lésio-Louna-Léfini Nature Reserve (Republic of Congo) the presence of a new Enterovirus C (Ibou002) in a male gorilla that was put away because of clinical symptoms of facial paralysis. This new virus, isolated was from the stool samples of this gorilla but also from the excrement of an eco-guardian, is very similar to Coxsackievirus (EV-C99) as well as poliovirus 1 and 2. We hypothesised that these symptoms might be due to poliovirus infection. To test our hypothesis, we developed and optimised a non-invasive immunoassay for the detection of Enterovirus-specific antibodies in gorilla faeces that could be useful for routine serosurveillance in such cases. Methods: In order to assess the potential role of poliovirus infection, we have developed and optimised a protocol, based on the lyophilisation and solubilisation of small volumes of stool extracts from 16 gorilla and 3 humans, to detect specific antibodies by western blot and ELISA. Results: First, total immunoglobulins were detected in the concentrated stool extracts. Specific antibodies were then detected in 4/16 gorilla samples and 2/3 human samples by western blot using both the polio vaccine antigen and the Ibou002 antigen and by ELISA using the polio vaccine antigen. Humoral responses were greater with the Ibou002 antigen. Conclusion: We therefore suggest that this recombinant virus could lead to a polio-like disease in the endangered western lowland gorilla. The development of a non-invasive approach to detect microorganism-specific immunoglobulins from faecal samples opens numerous prospects for application in zoonotic infectious diseases and could revolutionise the screening of animals for important emerging infections, such as Ebola fever, rabies and coronavirus infections.
Collapse
|
21
|
Thompson KM. Modeling and Managing Poliovirus Risks: We are Where we are…. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:223-228. [PMID: 33590520 PMCID: PMC7894995 DOI: 10.1111/risa.13668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
This introduction for the third special issue on modeling poliovirus risks provides context for the current status of global polio eradication efforts and gives an overview of the individual papers included in the issue. Although risk analysis continues to support the Global Polio Eradication Initiative (GPEI), efforts to finish the job remained off track at the beginning of 2020 and prior to the COVID-19 pandemic, as discussed in the special issue. The disruptions associated with COVID-19 occurring now will inevitably change the polio eradication trajectory, and future studies will need to characterize the impacts of these disruptions on the polio endgame.
Collapse
|
22
|
Kalkowska DA, Pallansch MA, Wilkinson A, Bandyopadhyay AS, Konopka-Anstadt JL, Burns CC, Oberste MS, Wassilak SGF, Badizadegan K, Thompson KM. Updated Characterization of Outbreak Response Strategies for 2019-2029: Impacts of Using a Novel Type 2 Oral Poliovirus Vaccine Strain. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:329-348. [PMID: 33174263 PMCID: PMC7887065 DOI: 10.1111/risa.13622] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 05/06/2023]
Abstract
Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amanda Wilkinson
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jennifer L. Konopka-Anstadt
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
23
|
Kalkowska DA, Pallansch MA, Cochi SL, Kovacs SD, Wassilak SGF, Thompson KM. Updated Characterization of Post-OPV Cessation Risks: Lessons from 2019 Serotype 2 Outbreaks and Implications for the Probability of OPV Restart. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:320-328. [PMID: 32632925 PMCID: PMC7814395 DOI: 10.1111/risa.13555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
After the globally coordinated cessation of any serotype of oral poliovirus vaccine (OPV), some risks remain from undetected, existing homotypic OPV-related transmission and/or restarting transmission due to several possible reintroduction risks. The Global Polio Eradication Initiative (GPEI) coordinated global cessation of serotype 2-containing OPV (OPV2) in 2016. Following OPV2 cessation, the GPEI and countries implemented activities to withdraw all the remaining trivalent OPV, which contains all three poliovirus serotypes (i.e., 1, 2, and 3), from the supply chain and replace it with bivalent OPV (containing only serotypes 1 and 3). However, as of early 2020, monovalent OPV2 use for outbreak response continues in many countries. In addition, outbreaks observed in 2019 demonstrated evidence of different types of risks than previously modeled. We briefly review the 2019 epidemiological experience with serotype 2 live poliovirus outbreaks and propose a new risk for unexpected OPV introduction for inclusion in global modeling of OPV cessation. Using an updated model of global poliovirus transmission and OPV evolution with and without consideration of this new risk, we explore the implications of the current global situation with respect to the likely need to restart preventive use of OPV2 in OPV-using countries. Simulation results without this new risk suggest OPV2 restart will likely need to occur (81% of 100 iterations) to manage the polio endgame based on the GPEI performance to date with existing vaccine tools, and with the new risk of unexpected OPV introduction the expected OPV2 restart probability increases to 89%. Contingency planning requires new OPV2 bulk production, including genetically stabilized OPV2 strains.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory, Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L. Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie D. Kovacs
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
24
|
Kalkowska DA, Thompson KM. Insights From Modeling Preventive Supplemental Immunization Activities as a Strategy to Eliminate Wild Poliovirus Transmission in Pakistan and Afghanistan. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:266-272. [PMID: 32144841 PMCID: PMC7821345 DOI: 10.1111/risa.13471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Many countries use supplemental immunization activities (SIAs) with oral poliovirus vaccine (OPV) to keep their population immunity to transmission high using preventive, planned SIAs (pSIAs) and outbreaks response SIAs (oSIAs). Prior studies suggested that investment in pSIAs saved substantial health and financial costs due to avoided outbreaks. However, questions remain about the benefits of SIAs, particularly with the recent introduction of inactivated poliovirus vaccine (IPV) into routine immunization in all OPV-using countries. The mounting costs of polio eradication activities and the need to respond to oSIAs threatens the use of limited financial resources for pSIAs, including in the remaining countries with endemic transmission of serotype 1 wild poliovirus (WPV1) (i.e., Pakistan and Afghanistan). A recent updated global poliovirus transmission model suggested that the Global Polio Eradication Initiative (GPEI) is not on track to stop transmission of WPV1 in Pakistan and Afghanistan. We use the updated global model to explore the role of pSIAs to achieve WPV1 eradication. We find that unless Pakistan and Afghanistan manage to increase the quality of bivalent OPV (bOPV) pSIAs, which we model as intensity (i.e., sufficiently high-coverage bOPV pSIAs that reach missed children), the model does not lead to successful eradication of WPV1. Achieving WPV1 eradication, the global objectives of the GPEI, and a successful polio endgame depend on effective and sufficient use of OPV. IPV use plays a negligible role in stopping transmission in Pakistan and Afghanistan and most other countries supported by the GPEI, and more IPV use will not help to stop transmission.
Collapse
|
25
|
Thompson KM, Kalkowska DA. Reflections on Modeling Poliovirus Transmission and the Polio Eradication Endgame. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:229-247. [PMID: 32339327 PMCID: PMC7983882 DOI: 10.1111/risa.13484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
The Global Polio Eradication Initiative (GPEI) partners engaged modelers during the past nearly 20 years to support strategy and policy discussions and decisions, and to provide estimates of the risks, costs, and benefits of different options for managing the polio endgame. Limited efforts to date provided insights related to the validation of the models used for GPEI strategy and policy decisions. However, modeling results only influenced decisions in some cases, with other factors carrying more weight in many key decisions. In addition, the results from multiple modeling groups do not always agree, which supports selection of some strategies and/or policies counter to the recommendations from some modelers but not others. This analysis reflects on our modeling, and summarizes our premises and recommendations, the outcomes of these recommendations, and the implications of key limitations of models with respect to polio endgame strategy. We briefly review the current state of the GPEI given epidemiological experience as of early 2020, which includes failure of the GPEI to deliver on the objectives of its 2013-2018 strategic plan despite full financial support. Looking ahead, we provide context for why the GPEI strategy of global oral poliovirus vaccine (OPV) cessation to end all cases of poliomyelitis looks infeasible given the current state of the GPEI and the failure to successfully stop all transmission of serotype 2 live polioviruses within four years of the April-May 2016 coordinated cessation of serotype 2 OPV use in routine immunization.
Collapse
|
26
|
Kalkowska DA, Franka R, Higgins J, Kovacs SD, Forbi JC, Wassilak SG, Pallansch MA, Thompson KM. Modeling Poliovirus Transmission in Borno and Yobe, Northeast Nigeria. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:289-302. [PMID: 32348621 PMCID: PMC7814397 DOI: 10.1111/risa.13485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Beginning in 2013, multiple local government areas (LGAs) in Borno and Yobe in northeast Nigeria and other parts of the Lake Chad basin experienced a violent insurgency that resulted in substantial numbers of isolated and displaced people. Northeast Nigeria represents the last known reservoir country of wild poliovirus (WPV) transmission in Africa, with detection of paralytic cases caused by serotype 1 WPV in 2016 in Borno and serotype 3 WPV in late 2012. Parts of Borno and Yobe are also problematic areas for transmission of serotype 2 circulating vaccine-derived polioviruses, and they continue to face challenges associated with conflict and inadequate health services in security-compromised areas that limit both immunization and surveillance activities. We model poliovirus transmission of all three serotypes for Borno and Yobe using a deterministic differential equation-based model that includes four subpopulations to account for limitations in access to immunization services and dynamic restrictions in population mixing. We find that accessibility issues and insufficient immunization allow for prolonged poliovirus transmission and potential undetected paralytic cases, although as of the end of 2019, including responsive program activities in the modeling suggest die out of indigenous serotypes 1 and 3 WPVs prior to 2020. Specifically, recent and current efforts to access isolated populations and provide oral poliovirus vaccine continue to reduce the risks of sustained and undetected transmission, although some uncertainty remains. Continued improvement in immunization and surveillance in the isolated subpopulations should minimize these risks. Stochastic modeling can build on this analysis to characterize the implications for undetected transmission and confidence about no circulation.
Collapse
Affiliation(s)
| | - Richard Franka
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeff Higgins
- Geospatial Research, Analysis and Services Program, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Stephanie D. Kovacs
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph C. Forbi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G.F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kimberly M. Thompson
- Kid Risk, Inc., 7512 Dr. Phillips Blvd. #50-523 Orlando, FL 32819
- Corresponding author:
| |
Collapse
|
27
|
Kalkowska DA, Pallansch MA, F. Wassilak SG, Cochi SL, Thompson KM. Global Transmission of Live Polioviruses: Updated Dynamic Modeling of the Polio Endgame. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:248-265. [PMID: 31960533 PMCID: PMC7787008 DOI: 10.1111/risa.13447] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 05/05/2023]
Abstract
Nearly 20 years after the year 2000 target for global wild poliovirus (WPV) eradication, live polioviruses continue to circulate with all three serotypes posing challenges for the polio endgame. We updated a global differential equation-based poliovirus transmission and stochastic risk model to include programmatic and epidemiological experience through January 2020. We used the model to explore the likely dynamics of poliovirus transmission for 2019-2023, which coincides with a new Global Polio Eradication Initiative Strategic Plan. The model stratifies the global population into 72 blocks, each containing 10 subpopulations of approximately 10.7 million people. Exported viruses go into subpopulations within the same block and within groups of blocks that represent large preferentially mixing geographical areas (e.g., continents). We assign representative World Bank income levels to the blocks along with polio immunization and transmission assumptions, which capture some of the heterogeneity across countries while still focusing on global poliovirus transmission dynamics. We also updated estimates of reintroduction risks using available evidence. The updated model characterizes transmission dynamics and resulting polio cases consistent with the evidence through 2019. Based on recent epidemiological experience and prospective immunization assumptions for the 2019-2023 Strategic Plan, the updated model does not show successful eradication of serotype 1 WPV by 2023 or successful cessation of oral poliovirus vaccine serotype 2-related viruses.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L. Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Thompson KM, Kalkowska DA. Potential Future Use, Costs, and Value of Poliovirus Vaccines. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:349-363. [PMID: 32645244 PMCID: PMC7984393 DOI: 10.1111/risa.13557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
Countries face different poliovirus risks, which imply different benefits associated with continued and future use of oral poliovirus vaccine (OPV) and/or inactivated poliovirus vaccine (IPV). With the Global Polio Eradication Initiative (GPEI) continuing to extend its timeline for ending the transmission of all wild polioviruses and to introduce new poliovirus vaccines, the polio vaccine supply chain continues to expand in complexity. The increased complexity leads to significant uncertainty about supply and costs. Notably, the strategy of phased OPV cessation of all three serotypes to stop all future incidence of poliomyelitis depends on successfully stopping the transmission of all wild polioviruses. Countries also face challenges associated with responding to any outbreaks that occur after OPV cessation, because stopping transmission of such outbreaks requires reintroducing the use of the stopped OPV in most countries. National immunization program leaders will likely consider differences in their risks and willingness-to-pay for risk reduction as they evaluate their investments in current and future polio vaccination. Information about the costs and benefits of future poliovirus vaccines, and discussion of the complex situation that currently exists, should prove useful to national, regional, and global decisionmakers and support health economic modeling. Delays in achieving polio eradication combined with increasing costs of poliovirus vaccines continue to increase financial risks for the GPEI.
Collapse
|
29
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
30
|
Javelle E, Raoult D. Antibiotics against poliovirus carriage: an additional tool in the polio endgame? Clin Microbiol Infect 2020; 26:542-544. [PMID: 31935566 DOI: 10.1016/j.cmi.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/27/2022]
Affiliation(s)
- E Javelle
- Laveran Military Teaching Hospital, Department of Infectious Diseases and Tropical Medicine, French Military Medical Services, France; Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, France; IHU-Méditerranée Infection, IRD, AP-HM, SSA, MEPHI, Marseille, France.
| | - D Raoult
- IHU-Méditerranée Infection, IRD, AP-HM, SSA, MEPHI, Marseille, France; Aix-Marseille Université, IRD, AP-HM, SSA, MEPHI, Marseille, France
| |
Collapse
|
31
|
Kalkowska DA, Pallansch MA, Thompson KM. Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters. Epidemiol Infect 2019; 147:e295. [PMID: 31647050 PMCID: PMC6813650 DOI: 10.1017/s095026881900181x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Conditions and evidence continue to evolve related to the prediction of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters, which affect assumptions related to forecasting risks and evaluating potential risk management options. Multiple recent reviews provided information about individual iVDPV excreters, but inconsistencies among the reviews raise some challenges. This analysis revisits the available evidence related to iVDPV excreters and provides updated model estimates that can support future risk management decisions. The results suggest that the prevalence of iVDPV excreters remains highly uncertain and variable, but generally confirms the importance of managing the risks associated with iVDPV excreters throughout the polio endgame in the context of successful cessation of all oral poliovirus vaccine use.
Collapse
Affiliation(s)
| | - M. A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Razum O, Sridhar D, Jahn A, Zaidi S, Ooms G, Müller O. Polio: from eradication to systematic, sustained control. BMJ Glob Health 2019; 4:e001633. [PMID: 31544903 PMCID: PMC6730569 DOI: 10.1136/bmjgh-2019-001633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Oliver Razum
- Department of Epidemiology and International Public Health, School of Public Health, Bielefeld University, Bielefeld, Germany
| | - Devi Sridhar
- Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Albrecht Jahn
- Institute of Global Health, Ruprecht-Karls-University, Medical School, Heidelberg, Germany
| | - Shehla Zaidi
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Gorik Ooms
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Olaf Müller
- Institute of Global Health, Ruprecht-Karls-University, Medical School, Heidelberg, Germany
| |
Collapse
|
33
|
Van Damme P, De Coster I, Bandyopadhyay AS, Revets H, Withanage K, De Smedt P, Suykens L, Oberste MS, Weldon WC, Costa-Clemens SA, Clemens R, Modlin J, Weiner AJ, Macadam AJ, Andino R, Kew OM, Konopka-Anstadt JL, Burns CC, Konz J, Wahid R, Gast C. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. Lancet 2019; 394:148-158. [PMID: 31174831 PMCID: PMC6626986 DOI: 10.1016/s0140-6736(19)31279-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. METHODS In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18-50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. FINDINGS Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15-36) after candidate 1 administration and 12 days (1-23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8-3·5] vs 1·0 [0·7-1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5'-untranslated region, the primary site of reversion in Sabin OPV. INTERPRETATION We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Kanchanamala Withanage
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe De Smedt
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Leen Suykens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - John Modlin
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Amy J Weiner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Andrew J Macadam
- National Institute for Biological Standards and Control, Ridge, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Olen M Kew
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Cara C Burns
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Konz
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Christopher Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| |
Collapse
|
34
|
|
35
|
Thompson KM, Kalkowska DA. Logistical challenges and assumptions for modeling the failure of global cessation of oral poliovirus vaccine (OPV). Expert Rev Vaccines 2019; 18:725-736. [PMID: 31248293 PMCID: PMC6816497 DOI: 10.1080/14760584.2019.1635463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Introduction: The inability to successfully stop all use of oral poliovirus vaccine (OPV) as part of the polio endgame and/or the possibilities of reintroduction of live polioviruses after successful OPV cessation may imply the need to restart OPV production and use, either temporarily or permanently. Areas covered: Complementing prior work that explored the risks of potential OPV restart, we discuss the logistical challenges and implications of restarting OPV in the future, and we develop appropriate assumptions for modeling the possibility of OPV restart. The complexity of phased cessation of the three OPV serotypes implies different potential combinations of OPV use long term. We explore the complexity of polio vaccine choices and key unresolved policy questions that may impact continuing and future use of OPV and/or inactivated poliovirus vaccine (IPV). We then characterize the assumptions required to quantitatively model OPV restart in prospective global-integrated economic policy models for the polio endgame. Expert commentary: Depending on the timing, restarting production of OPV would imply some likely delays associated with ramp-up, re-licensing, and other logistics that would impact the availability and costs of restarting the use of OPV in national immunization programs after globally coordinated cessation of one or more OPV serotypes.
Collapse
|
36
|
Duintjer Tebbens RJ, Kalkowska DA, Thompson KM. Global certification of wild poliovirus eradication: insights from modelling hard-to-reach subpopulations and confidence about the absence of transmission. BMJ Open 2019; 9:e023938. [PMID: 30647038 PMCID: PMC6340450 DOI: 10.1136/bmjopen-2018-023938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the extent to which undervaccinated subpopulations may influence the confidence about no circulation of wild poliovirus (WPV) after the last detected case. DESIGN AND PARTICIPANTS We used a hypothetical model to examine the extent to which the existence of an undervaccinated subpopulation influences the confidence about no WPV circulation after the last detected case as a function of different characteristics of the subpopulation (eg, size, extent of isolation). We also used the hypothetical population model to inform the bounds on the maximum possible time required to reach high confidence about no circulation in a completely isolated and unvaccinated subpopulation starting either at the endemic equilibrium or with a single infection in an entirely susceptible population. RESULTS It may take over 3 years to reach 95% confidence about no circulation for this hypothetical population despite high surveillance sensitivity and high vaccination coverage in the surrounding general population if: (1) ability to detect cases in the undervaccinated subpopulation remains exceedingly small, (2) the undervaccinated subpopulation remains small and highly isolated from the general population and (3) the coverage in the undervaccinated subpopulation remains very close to the minimum needed to eradicate. Fully-isolated hypothetical populations of 4000 people or less cannot sustain endemic transmission for more than 5 years, with at least 20 000 people required for a 50% chance of at least 5 years of sustained transmission in a population without seasonality that starts at the endemic equilibrium. Notably, however, the population size required for persistent transmission increases significantly for realistic populations that include some vaccination and seasonality and/or that do not begin at the endemic equilibrium. CONCLUSIONS Significant trade-offs remain inherent in global polio certification decisions, which underscore the need for making and valuing investments to maximise population immunity and surveillance quality in all remaining possible WPV reservoirs.
Collapse
|