1
|
Ng HY, Liao Y, Cheung CL, Zhang R, Chan KH, Seto WK, Leung WK, Hung IFN, Lam TTY, Cheung KS. Gut microbiota is associated with persistence of longer-term BNT162b2 vaccine immunogenicity. Front Immunol 2025; 16:1534787. [PMID: 40083550 PMCID: PMC11903479 DOI: 10.3389/fimmu.2025.1534787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction BNT162b2 immunogenicity wanes with time and we investigated association between gut microbiota and longer-term immunogenicity. Methods This cohort study prospectively recruited adult BNT162b2 two-dose recipients from three vaccination centers in Hong Kong. Blood samples were collected at baseline and day 180 after first dose, and tested for neutralizing antibodies (NAb) against receptor-binding domain (RBD) of wild type SARS-CoV-2 virus using chemiluminescence immunoassay. Shotgun DNA metagenomic sequencing was performed to characterize baseline stool microbiome. Baseline metabolites were measured by gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS). Primary outcome was persistent high NAb response (defined as top 25% of NAb level) at day 180. Putative bacterial species and metabolic pathways were identified using linear discriminant analysis [LDA] effect size analysis. Multivariable logistic regression adjusting for clinical factors was used to derive adjusted odds ratio (aOR) of outcome with bacterial species and metabolites. Results Of 242 subjects (median age: 50.2 years [IQR:42.5-55.6]; male:85 [35.1%]), 61 (25.2%) were high-responders while 33 (13.6%) were extreme-high responders (defined as NAb≥200AU/mL). None had COVID-19 at end of study. Ruminococcus bicirculans (log10LDA score=3.65), Parasutterella excrementihominis (score=2.82) and Streptococcus salivarius (score=2.31) were enriched in high-responders, while Bacteroides thetaiotaomicron was enriched in low-responders (score=-3.70). On multivariable analysis, bacterial species (R. bicirculans-aOR: 1.87, 95% CI: 1.02-3.51; P. excrementihominis-aOR: 2.2, 95% CI: 1.18-4.18; S. salivarius-aOR: 2.09, 95% CI: 1.13-3.94) but not clinical factors associated with high response. R. bicirculans positively correlated with most metabolic pathways enriched in high-responders, including superpathway of L-cysteine biosynthesis (score=2.25) and L-isoleucine biosynthesis I pathway (score=2.16) known to benefit immune system. Baseline serum butyrate (aOR:10.00, 95% CI:1.81-107.2) and isoleucine (aOR:1.17, 95% CI:1.04-1.35) significantly associated with extreme-high vaccine response. Conclusion Certain gut bacterial species, metabolic pathways and metabolites associate with longer-term COVID-19 vaccine immunogenicity.
Collapse
Affiliation(s)
- Ho Yu Ng
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yunshi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ching Lung Cheung
- Department of Pharmacology and Pharmacy, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong, Hong Kong SAR, China
| | - Ruiqi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Kwok Hung Chan
- Department of Microbiology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Wai K. Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Ivan F. N. Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Tommy T. Y. Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong, Hong Kong SAR, China
| | - Ka Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Jiang Y, Sanyal M, Hussein NA, Baghdasaryan A, Zhang M, Wang F, Ren F, Li J, Zhu G, Meng Y, Adamska JZ, Mellins E, Dai H. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. SCIENCE ADVANCES 2025; 11:eadp5539. [PMID: 39919189 PMCID: PMC11804919 DOI: 10.1126/sciadv.adp5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
The COVID-19 pandemic caused a global health crisis that resulted in millions of deaths. Effective vaccines have played central roles in curtailing the pandemic. Here, we developed a down-converting near-infrared IIb (NIR-IIb; 1500 to 1700 nanometers) luminescent, pure NaErF4@NaYF4 rare-earth nanoparticle (pEr) as vaccine carriers. The pEr nanoparticles were coated with three layers of cross-linked biocompatible polymers (pEr-P3; ~55 nanometers) and conjugated to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Upon subcutaneous injection of the pEr-P3-RBD nanovaccine in mice, in vivo NIR-IIb imaging revealed active vaccine trafficking and migration to lymph nodes through lymphatic vessels. Two doses of the adjuvant-free vaccine elicited long-lasting (>7 months) high titers of serum viral neutralization antibody and anti-RBD immunoglobulin G, along with robust RBD-specific germinal center B cells and T follicular helper cells. We devised in vivo NIR-II molecular imaging of RBD-specific cells in lymph nodes, opening noninvasive assessments of vaccine-elicited immune responses longitudinally.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noor A. Hussein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yifan Meng
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Julia Zofia Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| |
Collapse
|
3
|
Naz H, Timotheous R, Sarwar MF, Nadeem T, Awan MF, Ali S, Awais S, Ahmed I. Utilizing the subtractive proteomics approach to design ensemble vaccine against Candida lusitaniae for immune response stimulation; a bioinformatics study. PLoS One 2025; 20:e0316264. [PMID: 39913455 PMCID: PMC11801629 DOI: 10.1371/journal.pone.0316264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Vaccines have always been one of the promising therapeutic sources against many pathogens including infectious fungi. Candida lusitaniae is also one of those fungi which is responsible for different infections in human beings including vaginitis, endocarditis, endophthalmitis and blood stream infections. There is thus, a need to adopt effective therapeutic strategies to tackle such infections. Vaccine is one of those efficient therapeutic agents which stimulates immune response and prevents a certain infection to get hazardous. Keeping in view this very important concept, we have designed in-silico vaccine against C. lusitaniae by following the subtractive proteomics approach. Initially, the screening of therapeutic targets was performed to identify potent vaccine candidates from the whole proteome of C. lusitaniae. Several significant factors were taken into account in this context, such as stability index, IFN status, allergenicity, and antigenicity. As a result, four distinct proteins that were both antigenic and non-allergenic, were selected from the whole proteome. Furthermore, physiochemical investigation revealed that these vaccine candidates were stable and that their IFN status was positive. Notably, each of these proteins was non-homologous to human beings. This particular attribute of the selected proteins i.e., to be non-homologous, was made in order to possess the ability to trigger an immunological response in host (humans). Furthermore, the whole proteome (WP) vaccine was constructed accordingly. The structural modelling of all the selected vaccine candidates was then performed to proceed them further for docking with the human toll-like receptor 2 (TLR2). Afterwards, the codon optimization was executed, followed by in-silico cloning of the final vaccine construct. The pet28A plasmid was incorporated for this purpose while, the SnapGene tool was utilized for this particular analysis. Ultimately, the immune simulations were executed to assess the immune response of the designed vaccine (WP). Upon final results, it was found that highest count of IgG and IgM was achieved i.e., up to 700000 between the days 8 to 13 and then slowly neutralized till the day 30. These results signified that the designed vaccine possessed the potential to stimulate the required immune response.
Collapse
Affiliation(s)
- Habiba Naz
- Department of Biotechnology, Knowledge Unit of Science (KUSC), University of Management and Technology Sialkot, Sialkot, Pakistan
| | - Rimsha Timotheous
- Department of Biotechnology, Knowledge Unit of Science (KUSC), University of Management and Technology Sialkot, Sialkot, Pakistan
| | - Muhammad Farhan Sarwar
- Department of Biotechnology, Knowledge Unit of Science (KUSC), University of Management and Technology Sialkot, Sialkot, Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mudassar Fareed Awan
- Department of Biotechnology, Knowledge Unit of Science (KUSC), University of Management and Technology Sialkot, Sialkot, Pakistan
| | - Sajed Ali
- Department of Biotechnology, Knowledge Unit of Science (KUSC), University of Management and Technology Sialkot, Sialkot, Pakistan
| | - Sophia Awais
- Faculty of Pharmacy, IBADAT International University Islamabad, Sihala, Islamabad
| | - Irfan Ahmed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
de Freitas SB, Neto ACPS, Panagio LA, Collares TV, Seixas FK, Sousa FSS, Hartwig DD. Biogenic silver nanoparticle as an adjuvant in an S1 subunit recombinant vaccine. Braz J Microbiol 2025:10.1007/s42770-025-01613-0. [PMID: 39878824 DOI: 10.1007/s42770-025-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel® as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum. The immunogenicity of the rS1 protein was assessed in vivo by its ability to induce antibody production in mice. Furthermore, we sought to establish the types of humoral and cellular immune responses generated through intramuscular immunization in BALB/c mice with the rS1 + bio-AgNP vaccine. The recombinant S1 (rS1) protein was successfully cloned, expressed in Escherichia coli, and confirmed to have strong antigenic potential, being recognized by human antibodies up to a 1:51,200 serum dilution. In vivo assays showed that vaccines using rS1 with either bio-AgNP or Alhydrogel® as adjuvants induced high and consistent antibody titers (1:51,200) and a range of antibody isotypes in mice. Cellular immune response analysis revealed significant IL-10 expression with rS1 + bio-AgNP and both IL-10 and TNFα expression with rS1 + Alhydrogel®. These results support rS1 + bio-AgNP as a promising vaccine candidate for future development, highlighting its potential not only as a viable alternative to traditional adjuvants but also as an innovative contribution to advancing more effective and accessible immunological strategies.
Collapse
Affiliation(s)
- Stella Buchhorn de Freitas
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | | | - Tiago Veiras Collares
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Severo Sabedra Sousa
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Daiane Drawanz Hartwig
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil.
- Biology Institute, Federal University of Pelotas, University Campus, University Campus, mailbox 354, Pelotas, CEP 96010-900, mailbox 354, RS, Brazil.
| |
Collapse
|
5
|
Mendoza-Ramírez NJ, García-Cordero J, Hernández-Galicia G, Moreno-Licona NJ, Hernandez J, Cabello-Gutierrez C, Zúñiga-Ramos JA, Morales-Rios E, Pérez-Tapia SM, Ortiz-Navarrete V, Espinosa-Cantellano M, Fernández-Benavides DA, Cedillo-Barrón L. Vaccination with Plasmids Encoding the Fusion Proteins D-S1, D-S1N and O-SN from SARS-CoV-2 Induces an Effective Humoral and Cellular Immune Response in Mice. Vaccines (Basel) 2025; 13:134. [PMID: 40006682 PMCID: PMC11860763 DOI: 10.3390/vaccines13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Next-generation vaccines against coronavirus disease 2019 (COVID-19) focus on inducing a long-lasting immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its emerging variants. To achieve this, antigens other than spike proteins have been proposed, and different platforms have been evaluated. Nucleic acid-based vaccines are fundamental for this process. Preclinical data have shown that the SARS-CoV-2 nucleocapsid protein induces a protective cellular immune response, and when combined with the spike protein, the resulting humoral and cellular immune responses are effective against some SARS-CoV-2 variants. METHODS We designed a DNA vaccine against the spike and nucleocapsid proteins of SARS-CoV-2 to generate fusion proteins based on the Delta and Omicron B.5 strains. The most immunogenic regions of the spike and nucleocapsid proteins of the Delta and Omicron B strains were selected using bioinformatics. The nucleotide sequences were cloned into pcDNA3.1, and named pcDNA3.1/D-S1, pcDNA3.1/D-S1N, and pcDNA3.1/O-SN. The immunogenicity of the generated fusion proteins was evaluated by analyzing the humoral and cellular responses elicited after the immunization of BALB/c mice. RESULTS DNA immunization induced antibody production, neutralization activity, and IFN-γ production. The inclusion of the nucleocapsid regions in the plasmid greatly enhanced the immune response. Moreover, cross-reactions with the variants of interest were confirmed. CONCLUSIONS Plasmids-encoding fusion proteins combining the most immunogenic regions of the spike and nucleocapsid proteins present a promising strategy for designing new and effective vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Noe Juvenal Mendoza-Ramírez
- Departamento de Biomedicina Molecular CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-R.); (J.G.-C.); (G.H.-G.)
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-R.); (J.G.-C.); (G.H.-G.)
| | - Gabriela Hernández-Galicia
- Departamento de Biomedicina Molecular CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-R.); (J.G.-C.); (G.H.-G.)
| | - Nicole Justine Moreno-Licona
- Departamento de Bioquímica Cinvestav, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-L.); (E.M.-R.)
| | - Jesus Hernandez
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A. C (CIAD) Carretera a la Victoria km 0.6, Hermosillo Sonora 83304, Mexico
| | - Carlos Cabello-Gutierrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Calzada de Tlalpan 4502, Belisario Domínguez, Tlalpan 14080, Mexico; (C.C.-G.); (J.A.Z.-R.)
| | - Joaquín Alejandro Zúñiga-Ramos
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Calzada de Tlalpan 4502, Belisario Domínguez, Tlalpan 14080, Mexico; (C.C.-G.); (J.A.Z.-R.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico
| | - Edgar Morales-Rios
- Departamento de Bioquímica Cinvestav, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-L.); (E.M.-R.)
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico;
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-R.); (J.G.-C.); (G.H.-G.)
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico;
| | - David Andrés Fernández-Benavides
- Centro de Ingeniería y Desarrollo Industrial (CIDESI), Av. Playa Pie de la Cuesta No. 702, Desarrollo San Pablo, Querétaro 76125, Mexico;
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular CINVESTAV, Av. IPN # 2508 Col, San Pedro Zacatenco 07360, Mexico; (N.J.M.-R.); (J.G.-C.); (G.H.-G.)
| |
Collapse
|
6
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
7
|
Wang X, Li S, Zheng A, Chen Z, Chen J, Zou Z, Liu G. Structural Characterization and Immune Activation Capacity of Peptidoglycan from Corynebacterium glutamicum in RAW264.7 Cells. Int J Mol Sci 2024; 26:237. [PMID: 39796098 PMCID: PMC11719955 DOI: 10.3390/ijms26010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from Corynebacterium glutamicum, a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa. Further analysis was conducted through amino acid analysis, FTIR, and MALDI-TOF/TOF MS, and the results showed that the chemical structural monomer of PGN is NAG-(β-1,4-)-NAM-l-Ala-d-Glu-l-Lis-d-Ala. The immune activation effects of PGN were evaluated in a RAW264.7 cell model. Our results showed that PGN could increase the secretion level of NO, ROS, and immune regulatory substances, including TNF-α and IL-1β, and up-regulated the mRNA expression of TNF-α and iNOS. In addition, PGN stimulated the expression of ERK2, MyD88, RIP2, and the related receptor NOD1 in the NF-κB and MAPK pathways. Comparative RNA sequencing was conducted to analyze the gene expression profiles in RAW264.7 cells. KEGG analysis indicated that most of the genes were enriched in the NF-κB, MAPK, and TNF signaling pathways. Taken together, these findings suggest that PGN may have immune-activating potential for the development and application of immune adjuvants. Importantly, the application of PGN also provides a new way to utilize amino acid fermentation by-products.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuzhen Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Pandey B, Wang Z, Jimenez A, Bhatia E, Jain R, Beach A, Maniar D, Hosten J, O'Farrell L, Vantucci C, Hur D, Noel R, Ringquist R, Smith C, Ochoa MA, Roy K. A Dual-Adjuvanted Parenteral-Intranasal Subunit Nanovaccine generates Robust Systemic and Mucosal Immunity Against SARS-CoV-2 in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402792. [PMID: 39352717 PMCID: PMC11615772 DOI: 10.1002/advs.202402792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters can overcome the shortcomings of parenteral vaccines and enhance pre-existing systemic immunity. Here, a new protein subunit nanovaccine is developed by utilizing dual-adjuvanted (RIG-I: PUUC RNA and TLR-9: CpG DNA) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) along with SARS-CoV-2 S1 trimer protein, that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL subunit nanovaccine, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lungs and showed robust systemic humoral immunity. Interestingly, as a purely intranasal subunit vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. The data suggest that PUUC+CpG PAL subunit nanovaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Mucosal/immunology
- Immunity, Mucosal/drug effects
- SARS-CoV-2/immunology
- Administration, Intranasal/methods
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/immunology
- COVID-19/prevention & control
- Nanoparticles/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Antibodies, Viral/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Nanovaccines
Collapse
Affiliation(s)
- Bhawana Pandey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Zhengying Wang
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Eshant Bhatia
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Alexander Beach
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Laura O'Farrell
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Casey Vantucci
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - David Hur
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Richard Noel
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Rachel Ringquist
- The Parker H. Petit Institute for Bioengineering and BiosciencesSchool of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Clinton Smith
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Miguel A. Ochoa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical EngineeringThe Parker H. Petit Institute for Bioengineering and BiosciencesMarcus Center for Therapeutic Cell Characterization and ManufacturingGeorgia Institute of TechnologyAtlantaGAUSA
- Department of Biomedical EngineeringDepartment of Chemical and Biomolecular EngineeringSchool of EngineeringDepartment of Pathology, Microbiology and ImmunologySchool of MedicineVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
9
|
Oladipo EK, Ogunniran JA, Akinpelu OS, Omole TO, Adeyemo SF, Irewolede BA, Iwalokun BA, Ajani OF, Onyeaka H. Bioinformatics designing of an mRNA vaccine for Mokola virus (MOKV) using immunoinformatics as a secure strategy for successful vaccine development. BMC Immunol 2024; 25:77. [PMID: 39563241 DOI: 10.1186/s12865-024-00668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
The Mokola Virus belongs to the family Rhabdoviridae and is genotype 3 of the Lyssavirus genera. A small number of cases of animal and human encephalomyelitis, mainly scattered over sub-Saharan Africa, have been linked to the Mokola Virus (MOKV). Currently there is no vaccine to protect against MOKV infection in people or animals. It has been proven that rabies vaccination does not confer immunity against MOKV infection, even though MOKV and the rabies virus are related. Using immunoinformatics approaches, this study designed an mRNA vaccine that can protect against all the five glycoproteins of the Mokola virus. NCBI was used to obtain the viral sequences, which were then screened for antigenicity, allergenicity, toxicity, B-cell epitopes, CD8 + T lymphocytes (CTL), and CD4 + T lymphocytes (HTL). These epitopes were used in the construction of the vaccine. Some extra co-translational residues were added to the mRNA vaccine construct. Its molecular weight is 129.19083 kDa, and its estimated pI is 8.58. It interacts rather steadily and with limited deformability with TLR 3, among other human innate immune receptors. Overall, the results show that the produced candidate vaccine is non-allergen, non-toxic, and can elicit T-cell and B-cell immune responses. These findings can further be subjected to in-vivo and in-vitro techniques for validation.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria.
- Division of Genome Sciences, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria.
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, 232104, Nigeria.
- Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| | | | | | | | - Stephen Feranmi Adeyemo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Bamidele Abiodun Iwalokun
- Molecular Biology & Biotechnology Department, Nigerian Institute of Medical Research, Lagos, 101212, Nigeria
| | - Olumide Faith Ajani
- African Centre for Disease Control and Prevention (African CDC), Addis Ababa, Ethiopia
| | - Helen Onyeaka
- Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| |
Collapse
|
10
|
Zou GQ, Li K, Yan C, Li YQ, Xian MY, Hu X, Luo R, Liu Z. Aluminum hydroxide and immunostimulatory glycolipid adjuvant combination for enhanced COVID-19 subunit vaccine immunogenicity. Vaccine 2024; 42:126145. [PMID: 39034218 DOI: 10.1016/j.vaccine.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Protein-based subunit vaccines like RBD-Fc are promising tools to fight COVID-19. RBD-Fc fuses the receptor-binding domain (RBD) of the SARS-CoV-2 virus spike protein with the Fc region of human IgG1, making it more immunogenic than RBD alone. Earlier work showed that combining RBD-Fc with iNKT cell agonists as adjuvants improved neutralizing antibodies but did not sufficiently enhance T cell responses, a limitation RBD-Fc vaccines share with common adjuvants. Here we demonstrate that aluminum hydroxide combined with α-C-GC, a C-glycoside iNKT cell agonist, significantly improved the RBD-Fc vaccine's induction of RBD-specific T-cell responses. Additionally, aluminum hydroxide with α-GC-CPOEt, a phosphonate diester derivative, synergistically elicited more robust neutralizing antibodies. Remarkably, modifying αGC with phosphate (OPO3H2) or phosphonate (CPO3H2) to potentially enhance aluminum hydroxide interaction did not improve efficacy over unmodified αGC with aluminum hydroxide. These findings underscore the straightforward yet potent potential of this approach in advancing COVID-19 vaccine development and provide insights for iNKT cell-based immunotherapy.
Collapse
Affiliation(s)
- Guo-Qing Zou
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Ke Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cheng Yan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Ya-Qian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mao-Ying Xian
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xing Hu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
11
|
Uner B, Celik A, Ergin AD, Altay Benetti A, Benetti C. Enhancement of in-vivo cellular uptake of Coenzyme Q10 using saponin derivatives in rTALAP transgenic mice model. J Drug Deliv Sci Technol 2024; 96:105636. [DOI: 10.1016/j.jddst.2024.105636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
12
|
Uner B, Celik A, Ergin AD, Altay Benetti A, Benetti C. Enhancement of in-vivo cellular uptake of Coenzyme Q10 using saponin derivatives in rTALAP transgenic mice model. J Drug Deliv Sci Technol 2024; 96:105636. [DOI: 7.https:/doi.org/10.1016/j.jddst.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
13
|
Niu L, Gao M, Ren H, De X, Jiang Z, Zhou X, Liu R, Li H, Duan H, Zhang C, Wang F, Ge J. A novel bacterium-like particles platform displaying antigens by new anchoring proteins induces efficacious immune responses. Front Microbiol 2024; 15:1395837. [PMID: 38841059 PMCID: PMC11150769 DOI: 10.3389/fmicb.2024.1395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary. In this research, we created the OACD (C-terminal domain of Escherichia coli outer membrane protein A) to serve as an anchoring protein on the surface of BLP produced by the immunomodulatory bacteria Levilactobacillus brevis 23017. We used red fluorescent protein (RFP) to demonstrate the novel surface display system's effectiveness, stability, and ability to be adapted to a wide range of lactic acid bacteria. Furthermore, this study employed this surface display method to develop a novel vaccine (called COB17) by using the multi-epitope antigen of Clostridium perfringens as the model antigen. The vaccine can induce more than 50% protection rate against C. perfringens type A challenge in mice immunized with a single dose and has been tested through three routes. The vaccine yields protection rates of 75% for subcutaneous, 50% for intranasal, and 75% for oral immunization. Additionally, it elicits a strong mucosal immune response, markedly increasing levels of specific IgG, high-affinity IgG, specific IgA, and SIgA antibodies. Additionally, we used protein anchors (PA) and OACD simultaneous to show several antigens on the BLP surface. The discovery of novel BLP anchoring proteins may expand the possibilities for creating mucosal immunity subunit vaccines. Additionally, it may work in concert with PA to provide concepts for the creation of multivalent or multiple vaccines that may be used in clinical practice to treat complex illnesses.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongkun Ren
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Jiang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyao Zhou
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Runhang Liu
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Ganji M, Bakhshi S, Ahmadi K, Shoari A, Moeini S, Ghaemi A. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an in silico study. J Biomol Struct Dyn 2024; 42:3426-3440. [PMID: 37190978 DOI: 10.1080/07391102.2023.2213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The Zika virus (ZKV) is a single-stranded positive-sense, enveloped RNA virus. Zika infection during pregnancy can cause congenital microcephaly, Guillain-Barré syndrome, miscarriage, and other CNS abnormalities. The world needs safe and effective vaccinations to fight against ZIKV infection since vaccination is generally regarded as one of the most effective ways to prevent infectious diseases. In the present work, we used immunoinformatics and docking studies to construct a vaccine containing multi-epitopes using the structural and non-structural proteins of ZKV. The structural models of ZKV proteins (PrE, PrM, NS1, and NS2A) were constructed using Pyre2 and RaptorX servers. The epitopes of B-cell, T-cell (HTL and CTL), and IFN-γ were predicted, and each epitope's immunogenic nature and physiochemical properties were confirmed. As an adjuvant, the CPG-Oligodeoxynucleotide, an agonist of Toll-like receptor 9 (TLR9), is associated to cytotoxic T-lymphocytes (CTL) epitopes via PAPAP linker. To assess the binding affinity and the tendency of the designed vaccine to induce an immune response through TLR9, molecular docking was done. In the next step, molecular dynamics (MD) simulation to 100 nanoseconds (ns) was used to evaluate the stability of the interaction of the designed vaccine with TLR9. The designed vaccine is predicted to be highly antigenic, non-toxic, soluble, and stable with low flexibility in MD simulation. MD studies indicated that the finalized vaccine-TLR9 docked complex was stable during simulation time. The vaccine construct is able to stimulate both humoral and cellular immune responses. We suppose that our constructed model of the vaccine may have the ability to induce the host immune response against ZKV. Further studies, including in vitro and in vivo experimental analyses, are needed to prove the constructed vaccine's efficacy with multi-epitopes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Soheila Moeini
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. J Control Release 2024; 366:761-782. [PMID: 38219913 DOI: 10.1016/j.jconrel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
16
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Rcheulishvili N, Mao J, Papukashvili D, Feng S, Liu C, Wang X, He Y, Wang PG. Design, evaluation, and immune simulation of potentially universal multi-epitope mpox vaccine candidate: focus on DNA vaccine. Front Microbiol 2023; 14:1203355. [PMID: 37547674 PMCID: PMC10403236 DOI: 10.3389/fmicb.2023.1203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Monkeypox (mpox) is a zoonotic infectious disease caused by the mpox virus. Mpox symptoms are similar to smallpox with less severity and lower mortality. As yet mpox virus is not characterized by as high transmissibility as some severe acute respiratory syndrome 2 (SARS-CoV-2) variants, still, it is spreading, especially among men who have sex with men (MSM). Thus, taking preventive measures, such as vaccination, is highly recommended. While the smallpox vaccine has demonstrated considerable efficacy against the mpox virus due to the antigenic similarities, the development of a universal anti-mpox vaccine remains a necessary pursuit. Recently, nucleic acid vaccines have garnered special attention owing to their numerous advantages compared to traditional vaccines. Importantly, DNA vaccines have certain advantages over mRNA vaccines. In this study, a potentially universal DNA vaccine candidate against mpox based on conserved epitopes was designed and its efficacy was evaluated via an immunoinformatics approach. The vaccine candidate demonstrated potent humoral and cellular immune responses in silico, indicating the potential efficacy in vivo and the need for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
19
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Oh M, Um S, Jeong JH, Ko HJ, Kim SH. 3-Hydroxybutyrate-containing triterpenoid saponins from Brachyscome angustifolia and their immunogenic activity. PHYTOCHEMISTRY 2023:113724. [PMID: 37236332 DOI: 10.1016/j.phytochem.2023.113724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Three unique hydroxybutyrate-containing triterpenoid saponins, angustiside A-C (1-3), were isolated from the shoots of Brachyscome angustifolia (Asteraceae). The extensive spectroscopic study showed that their aglycone is a previously undescribed one, 16-hydroxy olean-18-en-28-oic acid, named as angustic acid (1a), and 2 and 3 contain hydroxybutyrate moiety in their side chains. The absolute configuration of 1a was determined to be (3R,5R,9R,13S,16S) by X-ray crystallography. The immunity assay revealed that 2 and 3 containing both acyl chains and branched saccharides significantly enhanced the proliferation of OT-I CD8+ T cells and secretion of interferon gamma (IFN-γ), presenting their immunogenic activity.
Collapse
Affiliation(s)
- Mira Oh
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea; Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, 55365, South Korea
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
21
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Villarraza J, Fuselli A, Gugliotta A, Garay E, Rodríguez MC, Fontana D, Antuña S, Gastaldi V, Battagliotti JM, Tardivo MB, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. A COVID-19 vaccine candidate based on SARS-CoV-2 spike protein and immune-stimulating complexes. Appl Microbiol Biotechnol 2023; 107:3429-3441. [PMID: 37093307 PMCID: PMC10124706 DOI: 10.1007/s00253-023-12520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.
Collapse
Affiliation(s)
- Javier Villarraza
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina.
| | - Ernesto Garay
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Diego Fontana
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Victoria Gastaldi
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
| | | | | | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Cellargen Biotech SRL, Santa Fe, Pcia., Santa Fe, Argentina
| |
Collapse
|
23
|
Shi J, Zhao Y, Peng M, Zhu S, Wu Y, Ji R, Shen C. Screening of Efficient Adjuvants for the RBD-Based Subunit Vaccine of SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11040713. [PMID: 37112625 PMCID: PMC10147067 DOI: 10.3390/vaccines11040713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more transmissible, with a reduced sensitivity to vaccines targeting the original virus strain. Therefore, developing an effective vaccine against both the original SARS-CoV-2 strain and its variants is an urgent need. It is known that the receptor-binding domain (RBD) in the S protein of SARS-CoV-2 is an important vaccine target, but subunit vaccines usually have lower immunogenicity and efficacy. Thus, selecting appropriate adjuvants to enhance the immunogenicity of protein-based subunit vaccine antigens is necessary. Here, an RBD-Fc subunit vaccine of SARS-CoV-2 has been generated, followed by vaccination in B6 mice, and four adjuvant regimens were investigated, including aluminum salts (Alum) + 3-O-desacyl-4'-monophosphoryl lipid A (MPL), AddaVax, QS21 + MPL, and Imiquimod. The adjuvant potency was evaluated by comparing the elicited polyclonal antibodies titers with measuring binding to RBD and S protein in ELISA and Western blot analysis, and also the cross-neutralizing antibodies titers using a pseudovirus infection assay of hACE2-expressing 293T cells, with pseudoviruses expressing the S protein of the SARS-CoV-2 original strain and Delta strain. The presence of QS21 + MPL adjuvant induced stronger polyclonal antibody response and neutralization potency blocking the original strain and Delta strain, as compared with the non-adjuvant RBD-Fc group and other adjuvant groups. Meanwhile, Imiquimod even had a negative effect in inducing specific antibodies and cross-neutralizing antibody production as an adjuvant.
Collapse
Affiliation(s)
- Juan Shi
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Suyue Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Ruixue Ji
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
24
|
Yoshioka Y, Kobiyama K, Hayashi T, Onishi M, Yanagida Y, Nakagawa T, Hashimoto M, Nishinaka A, Hirose J, Asaoka Y, Tajiri M, Hayata A, Ishida S, Omoto S, Nagira M, Ishii KJ. A-910823, a squalene-based emulsion adjuvant, induces T follicular helper cells and humoral immune responses via α-tocopherol component. Front Immunol 2023; 14:1116238. [PMID: 36891311 PMCID: PMC9986537 DOI: 10.3389/fimmu.2023.1116238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Background Adjuvants are chemical or biological materials that enhance the efficacy of vaccines. A-910823 is a squalene-based emulsion adjuvant used for S-268019-b, a novel vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is currently in clinical development. Published evidence has demonstrated that A-910823 can enhance the induction of neutralizing antibodies against SARS-CoV-2 in humans and animal models. However, the characteristics and mechanisms of the immune responses induced by A-910823 are not yet known. Methods and Results To characterize A-910823, we compared the adaptive immune response profile enhanced by A-910823 with that of other adjuvants (AddaVax, QS21, aluminum salt-based adjuvants, and empty lipid nanoparticle [eLNP]) in a murine model. Compared with other adjuvants, A-910823 enhanced humoral immune responses to an equal or greater extent following potent T follicular helper (Tfh) and germinal center B (GCB) cell induction, without inducing a strong systemic inflammatory cytokine response. Furthermore, S-268019-b containing A-910823 adjuvant produced similar results even when given as a booster dose following primary administration of a lipid nanoparticle-encapsulated messenger RNA (mRNA-LNP) vaccine. Preparation of modified A-910823 adjuvants to identify which components of A-910823 play a role in driving the adjuvant effect and detailed evaluation of the immunological characteristics induced by each adjuvant showed that the induction of humoral immunity and Tfh and GCB cell induction in A-910823 were dependent on α-tocopherol. Finally, we revealed that the recruitment of inflammatory cells to the draining lymph nodes and induction of serum cytokines and chemokines by A-910823 were also dependent on the α-tocopherol component. Conclusions This study demonstrates that the novel adjuvant A-910823 is capable of robust Tfh cell induction and humoral immune responses, even when given as a booster dose. The findings also emphasize that α-tocopherol drives the potent Tfh-inducing adjuvant function of A-910823. Overall, our data provide key information that may inform the future production of improved adjuvants.
Collapse
Affiliation(s)
- Yuya Yoshioka
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoyasu Onishi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Yosuke Yanagida
- Formulation R&D Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Takayuki Nakagawa
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Anri Nishinaka
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Jun Hirose
- Formulation R&D Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshiji Asaoka
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Minako Tajiri
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsushi Hayata
- Laboratory for Bio-Modality Research, Shionogi & Co., Osaka, Japan
| | - Satoru Ishida
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Shinya Omoto
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Morio Nagira
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Vaccine and Adjuvant Research Center (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
26
|
Bioinformatics Designing and Molecular Modelling of a Universal mRNA Vaccine for SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:vaccines10122107. [PMID: 36560516 PMCID: PMC9785986 DOI: 10.3390/vaccines10122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
At this present stage of COVID-19 re-emergence, designing an effective candidate vaccine for different variants of SARS-CoV-2 is a study worthy of consideration. This research used bioinformatics tools to design an mRNA vaccine that captures all the circulating variants and lineages of the virus in its construct. Sequences of these viruses were retrieved across the six continents and analyzed using different tools to screen for the preferable CD8+ T lymphocytes (CTL), CD4+ T lymphocytes (HTL), and B-cell epitopes. These epitopes were used to design the vaccine. In addition, several other co-translational residues were added to the construct of an mRNA vaccine whose molecular weight is 285.29686 kDa with an estimated pI of 9.2 and has no cross affinity with the human genome with an estimated over 68% to cover the world population. It is relatively stable, with minimal deformability in its interaction with the human innate immune receptor, which includes TLR 3 and TLR 9. The overall result has proven that the designed candidate vaccine is capable of modulating cell-mediated immune responses by activating the actions of CD4+ T cells, natural killer cells, and macrophages, and displayed an increased memory T cell and B cell activities, which may further be validated via in vivo and in vitro techniques.
Collapse
|
27
|
Tretyakova I, Tomai M, Vasilakos J, Pushko P. Live-Attenuated VEEV Vaccine Delivered by iDNA Using Microneedles Is Immunogenic in Rabbits. FRONTIERS IN TROPICAL DISEASES 2022; 3:813671. [PMID: 37854093 PMCID: PMC10583749 DOI: 10.3389/fitd.2022.813671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Effective and simple delivery of DNA vaccines remains a key to successful clinical applications. Previously, we developed a novel class of DNA vaccines, sometimes called iDNA, which encodes the whole live-attenuated vaccine viruses. Compared to a standard DNA vaccine, an iDNA vaccine required a low dose to launch a live-attenuated vaccine in vitro or in vivo. The goal of this pilot study was to investigate if iDNA vaccine encoding live-attenuated Venezuelan equine encephalitis virus (VEEV) can be efficiently delivered in vivo by a microneedle device using a single-dose vaccination with naked iDNA plasmid. For this purpose, we used pMG4020 plasmid encoding live-attenuated V4020 vaccine of VEE virus. The V4020 virus contains structural gene rearrangement, as well as attenuating mutations genetically engineered to prevent reversion mutations. The pMG4020 was administered to experimental rabbits by using a hollow microstructured transdermal system (hMTS) microneedle device. No adverse events to vaccination were noted. Animals that received pMG4020 plasmid have successfully seroconverted, with high plaque reduction neutralization test (PRNT) antibody titers, similar to those observed in animals that received V4020 virus in place of the pMG4020 iDNA plasmid. We conclude that naked iDNA vaccine can be successfully delivered in vivo by using a single-dose vaccination with a microneedle device.
Collapse
|
28
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Shanshin DV, Rudometov AP, Karpenko LI, Belenkaya SV, Isaeva AA, Nesmeyanova VS, Kazachinskaia EI, Volosnikova EA, Esina TI, Zaykovskaya AV, Pyankov OV, Borisevich SS, Shelemba AA, Chikaev AN, Ilyichev AA. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines (Basel) 2022; 10:vaccines10010096. [PMID: 35062757 PMCID: PMC8779843 DOI: 10.3390/vaccines10010096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
- Correspondence: ; Tel.: +7-383-363-47-00 (ext. 2007)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Center, 450078 Ufa, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| |
Collapse
|
29
|
Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin Immunol 2021; 55:101533. [PMID: 34836774 PMCID: PMC8604694 DOI: 10.1016/j.smim.2021.101533] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023]
Abstract
Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Arnaud John Kombe Kombe
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Daniel Mekonnen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Abtie Abebaw
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Melese Getachew
- Department of Clinical Pharmacy, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|