1
|
Kelly JA, Aida-Ficken V, McMullan LK, Chatterjee P, Shrivastava-Ranjan P, Marot S, Jenks MH, Lo MK, Montgomery JM, Spiropoulou CF, Flint M. Mechanisms of action of repurposed Ebola virus antivirals - the roles of phospholipidosis and cholesterol homeostasis. Antiviral Res 2025; 238:106167. [PMID: 40245950 DOI: 10.1016/j.antiviral.2025.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cell-based drug repurposing screens have been a common approach to identifying compounds with antiviral properties. For Ebola virus (EBOV), such screens yield unexpectedly high hit rates. We investigated two mechanisms underlying the anti-EBOV activities of repurposed compounds. Phospholipidosis (PLD) is excessive accumulation of cellular lipids that confounds screens for SARS-CoV-2. We performed a meta-analysis of published screens and supplemented these with our own using infectious EBOV at biosafety level-4. A list of nearly 400 hit compounds from seven anti-EBOV screens was compiled. Most (63 %) of these hits were predicted to induce PLD, and their anti-EBOV activities broadly correlated with PLD induction. PLD-inducing compounds did not inhibit infection by several other highly pathogenic viruses, suggesting that PLD was not a confounding factor for screens against Lassa, Crimean-Congo hemorrhagic fever, and Rift Valley fever viruses. Of four cells lines tested, HeLa cells were the least susceptible to PLD induction. In addition to PLD, many of the hit compounds identified disrupt cholesterol homeostasis. Previous research found inhibition of cholesterol synthesis by statins blocked EBOV infection. To understand if compounds inhibiting this mechanism could contribute to high hit rates, we further examined this pathway. We identified multiple additional inhibitors of cholesterol biosynthesis, that also blocked EBOV infection, albeit with varying potency and cytotoxicity across cell lines. EBOV inhibitors that acted through this mechanism were suppressed by the addition of exogenous cholesterol. Our findings help define the effects that contribute to anti-EBOV activities and hence facilitate the selection of lead molecules suitable for subsequent development.
Collapse
Affiliation(s)
- Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA; Auburn University College of Veterinary Medicine, Department of Pathobiology, Auburn, AL, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Stéphane Marot
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
2
|
Abe A, Hinkovska-Galcheva V, Verma R, Shayman JA. Isomerization of bis(monoacylglycero)phosphate by acyl migration. J Lipid Res 2025; 66:100789. [PMID: 40164336 PMCID: PMC12056791 DOI: 10.1016/j.jlr.2025.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Bis(monoacylglycero)phosphates (BMPs) are biologically functional acidic lipids present in late endosomes and lysosomes. We recently reported that lysosomal phospholipase A2 (LPLA2, PLA2G15), the lysosomal enzyme mediating BMP catabolism, degrades BMP isomers with distinct substrate specificity. Specifically, sn-(3-oleoyl-2-hydroxy)-glycerol-1-phospho-sn-1'-(3'-oleoyl-2'-hydroxy)-glycerol (S,S-(3,3'-diC18:1)-BMP) is a significantly better substrate for LPLA2 than S,S-(2,2'-diC18:1)-BMP. S,S-(2,2'-diC18:1)-BMP is generally considered the only biologically relevant BMP isomer. We investigated the isomerization of S,S-(2,2'-diC18:1)-BMP to (S,S-(3,3'-diC18:1)-BMP) in vitro and in cells. Thin-layer chromatography was used to distinguish S,S-(3,3'-diC18:1)-BMP from S,S-(2,2'-diC18:1)-BMP. S,S-(2,2'-diC18:1)-BMP/1,2-di-O-(9Z-octadecenyl)-sn-glycero-3-phosphocholine liposomes were incubated at varying pH in the presence or absence of test substances. First, we studied bovine serum albumin, which is known to promote isomerization of 1-acyl-2-lysophosphatidylcholine. The formation of S,S-(3,3'-diC18:1)-BMP in the presence of albumin increased in a time-dependent and albumin concentration-dependent manner under neutral conditions and was dependent on pH and the molar ratio of S,S-(2,2'-diC18:1)-BMP in liposomes. Treatment of isomeric products generated during isomerization reaction with sn-1,3-specific lipase produced both oleic acid but also lyso-phosphatidylglycerol, indicating that the conversion of S,S-(2,2'-diC18:1)-BMP to S,S-(3,3'-diC18:1)-BMP is preceded via S,S-(2,3'-diC18:1)-BMP. S,S-(3,3'-diC18:1)-BMP formed was preferentially degraded by LPLA2 over the S,S-(2,2'-diC18:1)-BMP. Proteins such as HSP70 and human serum albumin and metal ions such as Fe3+ and Zn2+ acted as cofactors promoting the isomerization of S,S-(2,2'-diC18:1)-BMP under neutral conditions. At baseline, RAW 264.7 cells showed nonnegligible amounts of sn-1,3-specific lipase-sensitive BMPs. However, lipase-sensitive BMPs were increased by exposure to chloroquine or NH4Cl, suggesting that cells undergo S,S-(2,2'-diacyl)-BMP isomerization upon alkalinization of intracellular acidic compartments.
Collapse
Affiliation(s)
- Akira Abe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Rakesh Verma
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Zan N, Li J, Yao J, Wu S, Li J, Chen F, Song B, Song R. Rational design of phytovirucide inhibiting nucleocapsid protein aggregation in tomato spotted wilt virus. Nat Commun 2025; 16:2034. [PMID: 40016246 PMCID: PMC11868578 DOI: 10.1038/s41467-025-57281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Ineffectiveness of managing plant viruses by chemicals has posed serious challenges in crop production. Recently, phase separation has shown to play a key role in viral lifecycle. Using inhibitors that can disturb biomolecular condensates formed by phase separation for virus control has been reported in medical field. However, the applicability of this promising antiviral tactic for plant protection has not been explored. Here, we report an inhibitor, Z9, that targets the tomato spotted wilt virus (TSWV) N protein. Z9 is capable of interacting with the amino acids in the nucleic acid binding region of TSWV N, disrupting the assembly of N and RNA into phase-separated condensates, the reduction of which is detrimental to the stability of the N protein. This study provides a strategy for phase separation-based plant virus control.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiahui Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Shang Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Feifei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| |
Collapse
|
4
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
5
|
Sfogliarini C, Tran LH, Cesta CM, Allegretti M, Locati M, Vegeto E. AEBS inhibition in macrophages: Augmenting reality for SERMs repurposing against infections. Biochem Pharmacol 2024; 229:116544. [PMID: 39293500 DOI: 10.1016/j.bcp.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Beyond their clinical use as selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen have attracted recent attention for their favorable activity against a broad range of dangerous human pathogens. While consistently demonstrated to occur independently on classic estrogen receptors, the mechanisms underlying SERMs antimicrobial efficacy remain still poorly elucidated, but fundamental to benefit from repurposing strategies of these drugs. Macrophages are innate immune cells that protect from infections by rapidly reprogramming their metabolic state, particularly cholesterol disposal, which is at the center of an appropriate macrophage immune response as well as of the anabolic requirements of both the pathogen and the host cells. The microsomal antiestrogen binding site (AEBS) comprises enzymes involved in the last stages of cholesterol biosynthesis and is a high affinity off-target site for SERMs. We review here recent findings from our laboratory and other research groups in support of the hypothesis that AEBS multiprotein complex represents the candidate pre-genomic target of SERMs immunomodulatory activity. The cholesterol restriction resulting from SERMs-mediated AEBS inhibition may be responsible for boosting inflammatory and antimicrobial pathways that include inflammasome activation, modulation of Toll-like receptors (TLRs) responses, induction of interferon regulatory factor (IRF3) and nuclear factor erythroid 2-related factor 2 (NRF2)-mediated transcriptional programs and, noteworthy, the mitigation of excessive inflammatory and proliferative responses, leading to the overall potentiation of the macrophage response to infections.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lien Hong Tran
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Kench U, Sologova S, Smolyarchuk E, Prassolov V, Spirin P. Pharmaceutical Agents for Targeting Autophagy and Their Applications in Clinics. Pharmaceuticals (Basel) 2024; 17:1355. [PMID: 39458996 PMCID: PMC11510022 DOI: 10.3390/ph17101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Autophagy is the process by which damaged regions of the cytoplasm and intracellular pathogens are degraded. This mechanism often serves an adaptive role in cells, enhancing their survival. It plays a direct or indirect role in the development of various pathological conditions within the body. This phenomenon is common in various malignant diseases, where autophagy is associated with the resistance of transformed cells to chemotherapy. Conversely, abnormal activation of autophagy can trigger cell death, a process often seen in neurodegenerative conditions. Given that dysregulation of autophagy is associated with the progression of numerous pathological conditions, this is of significant interest to the developers of drugs that can effectively modulate autophagy for both basic research and clinical applications. Here, we provide a brief description of the mechanism of macroautophagy, the most prevalent form of autophagy identified in humans. We also discuss the clinical potential of drugs that can modulate autophagy, highlighting their use in combating diseases associated with direct or indirect dysregulation of this essential process.
Collapse
Affiliation(s)
- Ulash Kench
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
7
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
8
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
9
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
10
|
Yokota Y, Takaki K, Baba K, Sasaki S, Hirano H, Osada H, Kataoka T. Amiodarone inhibits the Toll-like receptor 3-mediated nuclear factor κB signaling pathway by blocking organelle acidification. Biochem Biophys Res Commun 2024; 708:149801. [PMID: 38531219 DOI: 10.1016/j.bbrc.2024.149801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 μM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 μM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.
Collapse
Affiliation(s)
- Yuka Yokota
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
11
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
12
|
Bogacheva MS, Kuivanen S, Potdar S, Hassinen A, Huuskonen S, Pöhner I, Luck TJ, Turunen L, Feodoroff M, Szirovicza L, Savijoki K, Saarela J, Tammela P, Paavolainen L, Poso A, Varjosalo M, Kallioniemi O, Pietiäinen V, Vapalahti O. Drug repurposing platform for deciphering the druggable SARS-CoV-2 interactome. Antiviral Res 2024; 223:105813. [PMID: 38272320 DOI: 10.1016/j.antiviral.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.
Collapse
Affiliation(s)
- Mariia S Bogacheva
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Suvi Kuivanen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sini Huuskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tamara J Luck
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Leonora Szirovicza
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Antti Poso
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Department of Internal Medicine VIII, University Hospital Tubingen, Tubingen, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland; Science for Life Laboratory (SciLifeLab), Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
da Rocha JM, Campos DMDO, Esmaile SC, Menezes GDL, Bezerra KS, da Silva RA, Junior EDDS, Tayyeb JZ, Akash S, Fulco UL, Alqahtani T, Oliveira JIN. Quantum biochemical analysis of the binding interactions between a potential inhibitory drug and the Ebola viral glycoprotein. J Biomol Struct Dyn 2024:1-17. [PMID: 38258414 DOI: 10.1080/07391102.2024.2305314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaerdyson M da Rocha
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel M de O Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Stephany C Esmaile
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriela de L Menezes
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Katyanna S Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Roosevelt A da Silva
- Core Collaboratives of BioSistemas, Special Unit of Exact Sciences, Federal University of Jataí, Jataí, GO, Brazil
| | - Edilson D da S Junior
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, Bangladesh
| | - Umberto L Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Jonas I N Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
14
|
Monteil V, Kwon H, John L, Salata C, Jonsson G, Vorrink SU, Appelberg S, Youhanna S, Dyczynski M, Leopoldi A, Leeb N, Volz J, Hagelkruys A, Kellner MJ, Devignot S, Michlits G, Foong-Sobis M, Weber F, Lauschke VM, Horn M, Feldmann H, Elling U, Penninger JM, Mirazimi A. Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections. Nat Commun 2023; 14:6785. [PMID: 37880247 PMCID: PMC10600203 DOI: 10.1038/s41467-023-42526-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.
Collapse
Affiliation(s)
- Vanessa Monteil
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | - Lijo John
- National Veterinary Institute, Uppsala, Sweden
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gustav Jonsson
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Alexandra Leopoldi
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Nicole Leeb
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Jennifer Volz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stéphanie Devignot
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Georg Michlits
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Michelle Foong-Sobis
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
| |
Collapse
|
15
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Duineveld MD, Kers J, Vleming LJ. Case report of progressive renal dysfunction as a consequence of amiodarone-induced phospholipidosis. Eur Heart J Case Rep 2023; 7:ytad457. [PMID: 37743903 PMCID: PMC10516635 DOI: 10.1093/ehjcr/ytad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Background Amiodarone is associated with a range of unwanted effects on pulmonary, thyroid, and liver function. However, the nephrotoxic side effect caused by renal phospholipidosis has hardly received any attention up to now. Case summary This is a case of an 86-year-old Caucasian male with an acute on chronic kidney disease 4 months after the initiation of amiodarone. A renal biopsy demonstrated the intracellular accumulation of phospholipids that have previously been demonstrated in association with organ dysfunction because of amiodarone use. Serum creatinine levels subsequently improved from 388 to 314 µmol/L after stopping amiodarone over the course of 2 months. Discussion In this case, a diagnosis of partially reversible acute on chronic kidney disease caused by lysosomal phospholipidosis due to amiodarone use was deemed highly likely. Lysosomal dysfunction leads to the accumulation of intra-lysosomal phospholipids (phospholipidosis). This accumulation is accompanied by progressive organ damage and dysfunction, including renal dysfunction, in rare instances. Guidelines advise regular surveillance for liver, lung, and thyroid toxicity during amiodarone treatment but do not mention the potential for renal toxicity. This case suggests that it might be prudent to include screening for renal toxicity in this surveillance.
Collapse
Affiliation(s)
- Mirjam D Duineveld
- Division of Cardiology, Department of Medicine, Haga Teaching Hospital, Els Borst-Eilersplein 275, The Hague 2545 AA, The Netherlands
| | - Jesper Kers
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louis-Jean Vleming
- Division of Nephrology, Department of Medicine, Haga Teaching Hospital, The Hague, The Netherlands
| |
Collapse
|
17
|
Ulander L, Simonen P, Tolppanen H, Hartman O, Rissanen TT, Eklund KK, Kalaoja M, Kurkela M, Neuvonen M, Niemi M, Backman JT, Gylling H, Sinisalo J. The effect of hydroxychloroquine on cholesterol metabolism in statin treated patients after myocardial infarction. ATHEROSCLEROSIS PLUS 2023; 53:26-32. [PMID: 37448694 PMCID: PMC10336266 DOI: 10.1016/j.athplu.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Background and aims To evaluate the effect of hydroxychloroquine (HCQ) on serum and lipoprotein lipids and serum biomarkers of cholesterol synthesis and absorption in myocardial infarction patients with a high-dose statin. Methods Myocardial infarction patients (n = 59) with a constant statin dose were randomized to receive hydroxychloroquine 300 mg (n = 31) or placebo (n = 28) daily for six months and followed up for one year. Results Statin reduced total-c (-26 ± 22% in hydroxychloroquine and -28 ± 19% in placebo group, P = 0.931), LDL-c (-38 ± 26% vs. -44 ± 23%, respectively, P = 0.299), and cholesterol synthesis biomarkers zymostenol, desmosterol, and lathosterol ratios from baseline to one year (e.g., serum lathosterol ratio -17 ± 45% vs. -15 ± 41%, respectively, P < 0.001 for both, P = 0.623 between groups). Compensatorily, cholesterol absorption increased during the intervention (e.g., serum campesterol ratio 125 ± 90% vs. 113 ± 72%, respectively, P < 0.001 for both, P = 0.488 between groups). Hydroxychloroquine did not affect cholesterol concentrations or cholesterol absorption. It prevented the statin-induced increase in cholesterol precursor, desmosterol ratio, from six months to one year in the hydroxychloroquine group (P = 0.007 at one year compared to placebo). Conclusions Combined with a high-dose statin, hydroxychloroquine had no additional effect on serum cholesterol concentration or cholesterol absorption. However, the findings suggest that hydroxychloroquine interferes with lanosterol synthesis, and thereafter, it temporarily interferes with the cholesterol synthesis pathway, best seen in halting the increase of the desmosterol ratio.Trial Registration ClinicalTrials.gov Identifier: NCT02648464.
Collapse
Affiliation(s)
- Lotta Ulander
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Piia Simonen
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Tolppanen
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Otto Hartman
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Kari K. Eklund
- Department of Rheumatology, Helsinki University Hospital and Helsinki University, Finland
| | | | - Mika Kurkela
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T. Backman
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Helena Gylling
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
18
|
Hoffman E, Urbano L, Martin A, Mahendran R, Patel A, Murnane D, Page C, Dailey LA, Forbes B, Hutter V. Profiling alveolar macrophage responses to inhaled compounds using in vitro high content image analysis. Toxicol Appl Pharmacol 2023; 474:116608. [PMID: 37385476 DOI: 10.1016/j.taap.2023.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
One of the main hurdles in the development of new inhaled medicines is the frequent observation of foamy macrophage (FM) responses in non-clinical studies in experimental animals, which raises safety concerns and hinders progress into clinical trials. We have investigated the potential of a novel multi-parameter high content image analysis (HCIA) assay as an in vitro safety screening tool to predict drug induced FM. Rat (NR8383) and human U937-derived alveolar macrophages were exposed in vitro to a panel of model compounds with different biological activity, including inhaled bronchodilators, inhaled corticosteroids (ICS), phospholipidosis inducers and proapoptotic agents. An HCIA was utilized to produce drug-induced cell response profiles based on individual cell health, morphology and lipid content parameters. The profiles of both rat and human macrophage cell lines differentiated between cell responses to marketed inhaled drugs and compounds known to induce phospholipidosis and apoptosis. Hierarchical clustering of the aggregated data allowed identification of distinct cell profiles in response to exposure to phospholipidosis and apoptosis inducers. Additionally, in NR8383 cell responses formed two distinct clusters, associated with increased vacuolation with or without lipid accumulation. U937 cells presented a similar trend but appeared less sensitive to drug exposure and presented a narrower range of responses. These results indicate that our multi-parameter HCIA assay is suitable to generate characteristic drug-induced macrophage response profiles, thus enabling differentiation of foamy macrophage phenotypes associated with phospholipidosis and apoptosis. This approach shows great potential as pre-clinical in vitro screening tool for safety assessment of candidate inhaled medicines.
Collapse
Affiliation(s)
- Ewelina Hoffman
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Laura Urbano
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Abigail Martin
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rhamiya Mahendran
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Aateka Patel
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Darragh Murnane
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, UZA II, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | - Victoria Hutter
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
19
|
Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, Talib Al-Naqeeb BZ, Hadi M, Yasamineh S, Gholizadeh O. Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections. Microb Pathog 2023; 179:106096. [PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
Collapse
|
20
|
Moloney A, Maple HJ. Developing, Choosing, and Using the Chemical Toolbox for Infectious Diseases Research. ACS Infect Dis 2023; 9:2-4. [PMID: 36511756 DOI: 10.1021/acsinfecdis.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scientific progress is built on "what went before". As research in a field or discipline progresses, laying strong and scientifically correct foundations for each incremental discovery ultimately accelerates progress. The importance of "research tools" (e.g., chemical probes, antibodies, assays) that underpin researchers' efforts to probe and understand biological systems and pathways should therefore not be underestimated. Appropriate validation, protocol development, and ultimately availability of research tools are critical, in parallel with education on the appropriate selection and use of these tools.
Collapse
Affiliation(s)
- Alex Moloney
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| |
Collapse
|
21
|
El-Sayed SAES, Rizk MA. COVID-19 and Thymoquinone: Clinical Benefits, Cure, and Challenges. BIOMED 2023; 3:59-76. [DOI: 10.3390/biomed3010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the outbreak of the coronavirus disease 2019 (COVID-19) has spread throughout the world, causing severe acute respiratory syndrome (SARS) and several associated complications in various organs (heart, liver, kidney, and gastrointestinal tract), as well as significant multiple organ dysfunction, shock, and even death. In order to overcome the serious complications associated with this pandemic virus and to prevent SARS-CoV-2 entry into the host cell, it is necessary to repurpose currently available drugs with a broad medicinal application as soon as they become available. There are several therapeutics under investigation for improving the overall prognosis of COVID-19 patients, but none of them has demonstrated clinical efficacy to date, which is disappointing. It is in this pattern that Nigella sativa seeds manifest their extensive therapeutic effects, which have been reported to be particularly effective in the treatment of skin diseases, jaundice, and gastrointestinal problems. One important component of these seeds is thymoquinone (TQ), which has a wide range of beneficial properties, including antioxidant and anti-inflammatory properties, as well as antibacterial and parasitic properties, in addition to anticarcinogenic, antiallergic, and antiviral properties. This comprehensive review discussed the possibility of an emerging natural drug with a wide range of medical applications; the use of TQ to overcome the complications of COVID-19 infection; and the challenges that are impeding the commercialization of this promising phytochemical compound. TQ is recommended as a highly effective weapon in the fight against the novel coronavirus because of its dual antiviral action, in addition to its capacity to lessen the possibility of SARS-CoV-2 penetration into cells. However, future clinical trials are required to confirm the role of TQ in overcoming the complications of COVID-19 infection.
Collapse
|
22
|
Phenothiazines inhibit SARS-CoV-2 cell entry via a blockade of spike protein binding to neuropilin-1. Antiviral Res 2023; 209:105481. [PMID: 36481388 PMCID: PMC9721373 DOI: 10.1016/j.antiviral.2022.105481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.
Collapse
|
23
|
Yousef M, Le TS, Zuo J, Park C, Chacra NB, Davies NM, Löbenberg R. Sub-cellular sequestration of alkaline drugs in lysosomes: new insights for pharmaceutical development of lysosomal fluid. Res Pharm Sci 2022; 18:1-15. [PMID: 36846734 PMCID: PMC9951787 DOI: 10.4103/1735-5362.363591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Lysosomal-targeted drug delivery can open a new strategy for drug therapy. However, there is currently no universally accepted simulated or artificial lysosomal fluid utilized in the pharmaceutical industry or recognized by the United States Pharmacopeia (USP). Experimental procedure We prepared a simulated lysosomal fluid (SLYF) and compared its composition to a commercial artificial counterpart. The developed fluid was used to test the dissolution of a commercial product (Robitussin®) of a lysosomotropic drug (dextromethorphan) and to investigate in-vitro lysosomal trapping of two model drugs (dextromethorphan and (+/-) chloroquine). Findings/Results The laboratory-prepared fluid or SLYF contained the essential components for the lysosomal function in concentrations reflective of the physiological values, unlike the commercial product. Robitussin® passed the acceptance criteria for the dissolution of dextromethorphan in 0.1 N HCl medium (97.7% in less than 45 min) but not in the SLYF or the phosphate buffer media (72.6% and 32.2% within 45 min, respectively). Racemic chloroquine showed higher lysosomal trapping (51.9%) in the in-vitro model than dextromethorphan (28.3%) in a behavior supporting in-vivo findings and based on the molecular descriptors and the lysosomal sequestration potential of both. Conclusion and implication A standardized lysosomal fluid was reported and developed for in-vitro investigations of lysosomotropic drugs and formulations.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Tyson S. Le
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, South Korea
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| |
Collapse
|
24
|
Bílek R, Danzig V, Grimmichová T. Antiviral activity of amiodarone in SARS-CoV-2 disease. Physiol Res 2022. [DOI: 10.33549/physiolres.934974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amiodarone seems to exhibit some antiviral activity in the disease caused by SARS-CoV-2. Here we have examined the SARS-CoV-2 disease course in the entire population of the Czech Republic and compared it with the course of the disease in patients treated with amiodarone in two major Prague’s hospitals. In the whole population of the Czech Republic SARS-CoV-2 infected 1665070 persons (15.6 %) out of 10694000 (100 %) between 1 April 2020 and 30 June 2021. In the same time period only 35 patients (3.4 %) treated with amiodarone were infected with SARS-CoV-2 virus out of 1032 patients (100 %) who received amiodarone. It appears that amiodarone can prevent SARS-CoV-2 virus infection by multiple mechanisms. In in-vitro experiments it exhibits SARS-CoV-2 virus replication inhibitions. Due to its anti-inflammatory and antioxidant properties, it may have beneficial effect on the complications caused by SARS-CoV-2 as well. Additionally, inorganic iodine released from amiodarone can be converted to hypoiodite (IO-), which has antiviral and antibacterial activity, and thus can affect the life cycle of the virus.
Collapse
Affiliation(s)
- R Bílek
- Institute of Endocrinology, Národní 8, 110 00 Prague 1, Czech Republic. ,
| | | | | |
Collapse
|
25
|
Borin A, Coimbra LD, Bispo-dos-Santos K, Naciuk FF, Fontoura M, Simeoni CL, Gomes GV, Amorim MR, Gravina HD, Shimizu JF, Passos ASC, de Oliveira IM, de Carvalho AC, Cardoso AC, Parise PL, Toledo-Teixeira DA, Sotorilli GE, Persinoti GF, Claro IM, Sabino EC, Alborghetti MR, Rocco SA, Franchini KG, de Souza WM, Oliveira PSL, Cunha TM, Granja F, Proença-Módena JL, Trivella DB, Bruder M, Cordeiro AT, Marques RE. Identification and characterization of the anti-SARS-CoV-2 activity of cationic amphiphilic steroidal compounds. Virulence 2022; 13:1031-1048. [PMID: 35734825 PMCID: PMC9235892 DOI: 10.1080/21505594.2022.2085793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022] Open
Abstract
The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Alexandre Borin
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Laís D. Coimbra
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Karina Bispo-dos-Santos
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabrício F. Naciuk
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Marina Fontoura
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
- Department of Cellular and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Camila L. Simeoni
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Giovanni V. Gomes
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Mariene R. Amorim
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Humberto D. Gravina
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Amanda S. C. Passos
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Isadora M. de Oliveira
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alisson Campos Cardoso
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Pierina L. Parise
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel A. Toledo-Teixeira
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Giuliana E. Sotorilli
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Ingra Morales Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Marcos R. Alborghetti
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Silvana A. Rocco
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Kleber G. Franchini
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - William M. de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paulo S. L. Oliveira
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Biodiversity Research Center, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela B.B. Trivella
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Artur T. Cordeiro
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, Brazil
| |
Collapse
|
26
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
27
|
BÍLEK R, DANZIG V, GRIMMICHOVÁ T. Antiviral activity of amiodarone in SARS-CoV-2 disease. Physiol Res 2022; 71:869-875. [PMID: 36426888 PMCID: PMC9814990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amiodarone seems to exhibit some antiviral activity in the disease caused by SARS-CoV-2. Here we have examined the SARS-CoV-2 disease course in the entire population of the Czech Republic and compared it with the course of the disease in patients treated with amiodarone in two major Prague's hospitals. In the whole population of the Czech Republic SARS-CoV-2 infected 1665070 persons (15.6 %) out of 10694000 (100 %) between 1 April 2020 and 30 June 2021. In the same time period only 35 patients (3.4 %) treated with amiodarone were infected with SARS-CoV-2 virus out of 1032 patients (100 %) who received amiodarone. It appears that amiodarone can prevent SARS-CoV-2 virus infection by multiple mechanisms. In in-vitro experiments it exhibits SARS-CoV-2 virus replication inhibitions. Due to its anti-inflammatory and antioxidant properties, it may have beneficial effect on the complications caused by SARS-CoV-2 as well. Additionally, inorganic iodine released from amiodarone can be converted to hypoiodite (IO-), which has antiviral and antibacterial activity, and thus can affect the life cycle of the virus.
Collapse
Affiliation(s)
| | - Vilém DANZIG
- 2nd Department of Medicine, Cardiology and Angiology, Charles University, General University Hospital, Prague, Czech Republic
| | - Tereza GRIMMICHOVÁ
- Institute of Endocrinology, Prague, Czech Republic,The University Hospital Kralovske Vinohrady, Dept. of Internal Medicine, Division of Diabetology and Endocrinology, Prague, Czech Republic
| |
Collapse
|
28
|
Abadi B, Aarabi Jeshvaghani AH, Fathalipour H, Dehghan L, Rahimi Sirjani K, Forootanfar H. Therapeutic Strategies in the Fight against COVID-19: From Bench to Bedside. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:517-532. [PMID: 36380976 PMCID: PMC9652495 DOI: 10.30476/ijms.2021.92662.2396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 06/16/2023]
Abstract
In December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China. This virus rapidly spread worldwide and was declared a global pandemic by the World Health Organization (WHO) in March 2020. High incidence, long incubation period, and diverse clinical signs of the disease posed a huge challenge globally. The efforts of health systems have been focused on repurposing existing drugs or developing innovative therapies to reduce the morbidity and mortality associated with SARS-CoV-2. In addition, most of the large pharmaceutical companies are intensely working on vaccine development to swiftly deliver safe and effective vaccines to prevent further spread of the virus. In this review, we will discuss the latest data on therapeutic strategies undergoing clinical trials. Additionally, we will provide a summary of vaccines currently under development.
Collapse
Affiliation(s)
- Banafshe Abadi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Brain Cancer Research Core, Universal Scientific Education and Research Network, Tehran, Iran
| | | | - Hadis Fathalipour
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Dehghan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Konrat R, Papp H, Kimpel J, Rössler A, Szijártó V, Nagy G, Madai M, Zeghbib S, Kuczmog A, Lanszki Z, Gesell T, Helyes Z, Kemenesi G, Jakab F, Nagy E. The Anti-Histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits Infection by Major Variants of SARS-CoV-2 in Cell Cultures and Reconstituted Human Nasal Tissue. Front Pharmacol 2022; 13:861295. [PMID: 35846988 PMCID: PMC9280057 DOI: 10.3389/fphar.2022.861295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022] Open
Abstract
Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern; B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2–6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.
Collapse
Affiliation(s)
- Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Calyxha Biotechnologies GmbH, Vienna, Austria
- *Correspondence: Robert Konrat, ; Eszter Nagy,
| | - Henrietta Papp
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Valéria Szijártó
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
| | - Gábor Nagy
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tanja Gesell
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Calyxha Biotechnologies GmbH, Vienna, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Eszter Nagy
- Calyxha Biotechnologies GmbH, Vienna, Austria
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
- *Correspondence: Robert Konrat, ; Eszter Nagy,
| |
Collapse
|
30
|
Sfogliarini C, Pepe G, Dolce A, Della Torre S, Cesta MC, Allegretti M, Locati M, Vegeto E. Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Front Pharmacol 2022; 13:879020. [PMID: 35431927 PMCID: PMC9006819 DOI: 10.3389/fphar.2022.879020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
32
|
Bik E, Orleanska J, Mateuszuk L, Baranska M, Majzner K, Chlopicki S. Raman and fluorescence imaging of phospholipidosis induced by cationic amphiphilic drugs in endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119186. [PMID: 34902479 DOI: 10.1016/j.bbamcr.2021.119186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Cationic amphiphilic drugs (CADs) are known from lysosomotropism, drug-induced phospholipidosis (DIPL), activation of autophagy, and decreased cell viability, but the relationship between these events is not clear and little is known about DIPL in the endothelium. In this work, the effects of fluoxetine, amiodarone, clozapine, and risperidone on human microvascular endothelial cells (HMEC-1) were studied using a combined methodology of label-free Raman imaging and fluorescence staining. Raman spectroscopy was applied to characterize biochemical changes in lipid profile and their distribution in the cellular compartments, while fluorescence staining (LysoTracker, LipidTOX, LC3B, and JC-1) was used to analyze lysosome volume expansion, activation of autophagy, lipid accumulation, and mitochondrial membrane depolarization. We demonstrated that fluoxetine, amiodarone, and clozapine, but not risperidone, at non-toxic concentrations induced lipid accumulations in the perinuclear and cytoplasmic regions of endothelial cells. Spectroscopic markers of DIPL included a robust increase in the ratio (lipid/(protein + lipid)), an increase in choline-containing lipid, fatty acids, and the presence of cholesterol esters, while starvation-induced activated autophagy revealed a spectroscopic signature associated with subtle changes in the lipid profile only. Interestingly, lysosomal volume expansion, occurrence of DIPL, and activation of autophagy induced by selected CADs all depended on drug-accumulation in acidic pH of lysosome cellular compartments whereas reduced endothelial viability did not, and was attributed to mitochondrial mechanisms as evidenced by a decreased mitochondrial transmembrane potential. In conclusion, drug-induced phospholipidosis in the endothelium did not reduce endothelial viability per se and can be efficiently assayed by Raman imaging.
Collapse
Affiliation(s)
- Ewelina Bik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Jagoda Orleanska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Jagiellonian University, Medical College, Chair of Pharmacology, 16 Grzegorzecka Str., 31-531 Krakow, Poland.
| |
Collapse
|
33
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing COVID-19, is the most challenging pandemic of the modern era. It has resulted in over 5 million deaths worldwide. To quickly explore therapeutics for COVID-19, we utilized a previously-established system, namely CEBIT. We performed a high-throughput screening of FDA-approved drugs to inhibit the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 spike protein and its obligate receptor ACE2. This interaction is essential for viral entry and therefore represents a promising therapeutic target. Based on the recruitment of interacting molecules into phase-separated condensates as a readout, we identified six positive candidates from a library of 2572 compounds, most of which have been reported to inhibit the entry of SARS-CoV-2 into host cells. Our surface plasmon resonance (SPR) and molecular docking analyses revealed the possible mechanisms via which these compounds interfere with the interaction between RBD and ACE2. Hence, our results indicate that CEBIT is highly versatile for identifying drugs against SARS-CoV-2 entry, and targeting CoV-2 entry by small molecule drugs is a viable therapeutic option to treat COVID-19 in addition to commonly used monoclonal antibodies.
Collapse
|
34
|
Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022; 167:751-805. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Antidepressant Sertraline Is a Broad-Spectrum Inhibitor of Enteroviruses Targeting Viral Entry through Neutralization of Endolysosomal Acidification. Viruses 2022; 14:v14010109. [PMID: 35062313 PMCID: PMC8780434 DOI: 10.3390/v14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs as of yet to treat EV71 infections. In this study, we conducted antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be greatly relieved by exposing virus-infected cells to extracellular low-pH culture media. Ultimately, we have identified a use for an FDA-approved antidepressant in broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.
Collapse
|
36
|
Johnson KN, Kalveram B, Smith JK, Zhang L, Juelich T, Atkins C, Ikegami T, Freiberg AN. Tilorone-Dihydrochloride Protects against Rift Valley Fever Virus Infection and Disease in the Mouse Model. Microorganisms 2021; 10:microorganisms10010092. [PMID: 35056541 PMCID: PMC8781158 DOI: 10.3390/microorganisms10010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East that can affect humans and ruminant livestock. Currently, there are no approved vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride (Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at one day after infection when administered at 45 mg/kg/day. These findings demonstrate that Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.
Collapse
Affiliation(s)
- Kendra N. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
37
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
39
|
Lane TR, Ekins S. Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis. J Chem Inf Model 2021; 61:4125-4130. [PMID: 34516123 DOI: 10.1021/acs.jcim.1c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent publication in Science has proposed that cationic amphiphilic drugs repurposed for COVID-19 typically use phosholipidosis as their antiviral mechanism of action in cells but will have no in vivo efficacy. On the contrary, our viewpoint, supported by additional experimental data for similar cationic amphiphilic drugs, indicates that many of these molecules have both in vitro and in vivo efficacy with no reported phospholipidosis, and therefore, this class of compounds should not be avoided but further explored, as we continue the search for broad spectrum antivirals.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
40
|
Breiden B, Sandhoff K. Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. Int J Mol Sci 2021; 22:9001. [PMID: 34445706 PMCID: PMC8396676 DOI: 10.3390/ijms22169001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.
Collapse
Affiliation(s)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
41
|
Bilgin ZD, Evcil I, Yazgi D, Binay G, Okuyucu Genc C, Gulsen B, Huseynova A, Ozdemir AZ, Ozmen E, Usta Y, Ustun S, Caglar Andac S. Liquid Chromatographic Methods for COVID-19 Drugs, Hydroxychloroquine and Chloroquine. J Chromatogr Sci 2021; 59:748-757. [PMID: 33336246 PMCID: PMC7799265 DOI: 10.1093/chromsci/bmaa110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 01/25/2023]
Abstract
COVID-19 has been a threat throughout the world since December 2019. In attempts to discover an urgent treatment regime for COVID-19, hydroxychloroquine (HCQ) and chloroquine (CQ) have been on solidarity clinical trial. However, many countries have pulled HCQ and CQ from their COVID-19 treatment regimens recently, some countries still continue using them for patients who have previously started HCQ and CQ and they may complete their course under the supervision of a doctor. HCQ and CQ are 4-aminoquinoline drugs and it is safe to use them for autoimmune diseases, rheumatoid arthritis, systemic lupus erythematosus and malaria as well. Determination of CQ, HCQ and their metabolites in biologic fluids and in pharmaceuticals has great importance, especially for pharmacokinetics, pharmacodynamics and epidemiological studies. In this review, liquid chromatographic methods developed in the last 10 years were summarized focusing on sample preparation and detection methods for HCQ and CQ determination in biological fluids and pharmaceutical preparations. It is hoped that this article could be helpful to facilitate the use of these drugs in clinical trials or drug research studies as it provides comprehensive information on the reported analytical methods.
Collapse
Affiliation(s)
- Zeynep Derya Bilgin
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Isil Evcil
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Didem Yazgi
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Gokce Binay
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Ceren Okuyucu Genc
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Busra Gulsen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Aytaj Huseynova
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Ayse Zehra Ozdemir
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Emel Ozmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Yakup Usta
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Suade Ustun
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Sena Caglar Andac
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| |
Collapse
|
42
|
Golden SR, Rosenstein DL, Belhorn T, Blatt J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev Technol 2021; 19:373-385. [PMID: 34375133 DOI: 10.1089/adt.2021.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the possible role of the antipsychotic chlorpromazine and the antidepressant fluvoxamine as anti-coronavirus disease 2019 (COVID-19) agents. The objective of this narrative review is to explore what is known about the activity of psychotropic medications against viruses in addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PubMed was queried for "drug repurposing, antiviral activity," and for "antiviral activity" with "psychotropic drugs" and individual agents, through November 2020. Of more than 100 psychotropic agents, 37 drugs, including 27 with a history of pediatric use were identified, which had been studied in the preclinical setting and found to have activity against viruses which are human pathogens. Effects were evaluated by type of virus and by category of psychotropic agent. Activity was identified both against viruses known to cause epidemics such as SARS-CoV-2 and Ebola and against those that are the cause of rare disorders such as Human Papillomatosis Virus-related respiratory papillomatosis. Individual drugs and classes of psychotropics often had activity against multiple viruses, with promiscuity explained by shared viral or cellular targets. Safety profiles of psychotropics may be more tolerable in this context than when they are used long-term in the setting of psychiatric illness. Nonetheless, translation of in vitro results to the clinical arena has been slow. Psychotropic medications as a class deserve further study, including in clinical trials for repurposing as antiviral drugs for children and adults.
Collapse
Affiliation(s)
- Shea R Golden
- Department of Neuroscience, Middlebury College, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donald L Rosenstein
- Department of Psychiatry, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tom Belhorn
- Department of Pediatric Infectious Diseases, and the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Department of Pediatric Hematology Oncology, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Speranta A, Manoliu L, Sogor C, Mernea M, Seiman CD, Seiman DD, Chifiriuc C. Structural bioinformatics used to predict the protein targets of remdesivir and flavones in SARS-CoV-2 infection. Med Chem 2021; 18:382-393. [PMID: 34365955 DOI: 10.2174/1573406417666210806154129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 03/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND During the current SARS-CoV-2 pandemic, the identification of effective antiviral drugs is crucial. Unfortunately, no specific treatment or vaccine is available to date. OBJECTIVE Here, we aimed to predict the interactions between SARS-CoV-2 proteins and protein targets from the human body for some flavone molecules (kaempferol, morin, pectolinarin, myricitrin, and herbacetin) in comparison to synthetic compounds (hydroxychloroquine, remdesivir, ribavirin, ritonavir, AMD-070, favipiravir). METHODS Using MOE software and advanced bioinformatics and cheminformatics portals, we conducted an extensive analysis based on various structural and functional features of compounds, such as their amphiphilic field, flexibility, and steric features. The structural similarity analysis of natural and synthetic compounds was performed using Tanimoto coefficients. The interactions of some compounds with SARS-CoV-2 3CLprotease or RNA-dependent RNA polymerase were described using 2D protein-ligand interaction diagrams based on known crystal structures. The potential targets of considered compounds were identified using the SwissTargetPrediction web tool. RESULTS Our results showed that remdesivir, pectolinarin, and ritonavir present a strong structural similarity which may be correlated to their similar biological activity. As common molecular targets of compounds in the human body, ritonavir, kaempferol, morin, and herbacetin can activate multidrug resistance-associated proteins, while remdesivir, ribavirin, and pectolinarin appear as ligands for adenosine receptors. CONCLUSION Our evaluation recommends remdesivir, pectolinarin, and ritonavir as promising anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Avram Speranta
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Laura Manoliu
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Catalina Sogor
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Maria Mernea
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Corina Duda Seiman
- West University of Timisoara, Faculty of Chemistry, Biology, Geography, Department of Chemistry and Biology, 16 Pestalozzi, 300115, Timisoara. Romania
| | - Daniel Duda Seiman
- Victor Babes University of Medicine and Pharmacy Timisoara, 2 Piata Eftimie Murgu, 300041, Timisoara. Romania
| | - Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Department of Botanics and Microbiology, 1-3 Aleea Portocalelor Str, 60101 Bucharest. Romania
| |
Collapse
|
44
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, White KM, Zhang Z, Alon A, Schadt H, O'Donnell HR, Lyu J, Rosales R, McGovern BL, Rathnasinghe R, Jangra S, Schotsaert M, Galarneau JR, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021; 373:541-547. [PMID: 34326236 PMCID: PMC8501941 DOI: 10.1126/science.abi4708] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023]
Abstract
Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-René Galarneau
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France.
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
45
|
Yao R, Ianevski A, Kainov D. Safe-in-Man Broad Spectrum Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:313-337. [PMID: 34258746 DOI: 10.1007/978-981-16-0267-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.
Collapse
Affiliation(s)
- Rouan Yao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Institute for Molecule Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
46
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
47
|
Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform. Viruses 2021; 13:v13071255. [PMID: 34203149 PMCID: PMC8310135 DOI: 10.3390/v13071255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses.
Collapse
|
48
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
49
|
Bakowski MA, Beutler N, Wolff KC, Kirkpatrick MG, Chen E, Nguyen TTH, Riva L, Shaabani N, Parren M, Ricketts J, Gupta AK, Pan K, Kuo P, Fuller M, Garcia E, Teijaro JR, Yang L, Sahoo D, Chi V, Huang E, Vargas N, Roberts AJ, Das S, Ghosh P, Woods AK, Joseph SB, Hull MV, Schultz PG, Burton DR, Chatterjee AK, McNamara CW, Rogers TF. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nat Commun 2021; 12:3309. [PMID: 34083527 PMCID: PMC8175350 DOI: 10.1038/s41467-021-23328-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.
Collapse
Affiliation(s)
- Malina A Bakowski
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA.
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karen C Wolff
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | | | - Emily Chen
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Tu-Trinh H Nguyen
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Riva
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anil K Gupta
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Kastin Pan
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Peiting Kuo
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Victor Chi
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Huang
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Natalia Vargas
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Soumita Das
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
- Department of Pathology, UC San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Ashley K Woods
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Sean B Joseph
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Peter G Schultz
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- UC San Diego Division of Infectious Diseases and Global Public Health, UC San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
50
|
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 2021; 53:956-972. [PMID: 34035463 PMCID: PMC8143993 DOI: 10.1038/s12276-021-00624-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tai Young Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea
| | - Sangeun Jeon
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Youngho Jang
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Lizaveta Gotina
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joungha Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yeon Ha Ju
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.412786.e0000 0004 1791 8264IBS School, University of Science and Technology, Daejeon, Republic of Korea ,grid.412786.e0000 0004 1791 8264Neuroscience Program, University of Science and Technology, Daejeon, Republic of Korea
| | - Sunpil Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Minwoo Wendy Jang
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Woojin Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Mingu Gordon Park
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Ae Nim Pae
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sunkyu Han
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seungtaek Kim
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - C. Justin Lee
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|