1
|
Valentim-Coelho C, Saraiva J, Osório H, Antunes M, Vaz F, Neves S, Pinto P, Bárbara C, Penque D. Red blood cell proteomic profiling in mild and severe obstructive sleep apnea patients before and after positive airway pressure treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167767. [PMID: 40043591 DOI: 10.1016/j.bbadis.2025.167767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/05/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Obstructive Sleep Apnea (OSA) is characterized by recurrent-episodes of apneas/hypopneas during sleep, leading to recurrent intermittent-hypoxia and sleep fragmentation. Non-treated OSA can result in cardiometabolic diseases. In this study, we applied a shotgun-proteomics strategy to deeper investigate the red blood cell-(RBC) homeostasis regulation in the context of OSA-severity and their response to six months of positive airway pressure (PAP)-treatment. RBC-samples from patients with Mild/Severe-OSA before/after-PAP treatment and patients as simple-snoring controls were selected. The mass-spectrometry raw-data was analysed by MaxQuant for protein identification/quantification followed by statistical Linear Models-(LM) and Linear Mixed Models-(LMM) to investigate OSA-severity effect and interaction with PAP, respectively. The functional/biological network analysis were performed by DAVID-platform. The results indicated that key-enzymes of the Embden-Meyerhof-Parnas (EMP)-glycolysis and pentose phosphate pathway-(PPP) were differentially changed in Severe-OSA, suggesting that the O2-dependent metabolic flux through EMP and PPP maybe compromised in these cells due to severe intermittent hypoxia/reoxygenation-induced oxidative-stress events in these patients. The Rapoport-Luebering-glycolytic shunt showed a significant downregulation across OSA-severity maybe to increase hemoglobin-O2 affinity to adapt to O2 low availability in the lung, although EMP-glycolysis showed decreased only in Severe-OSA. Proteins of the immunoproteasome were upregulated in Severe-OSA maybe to respond to severe oxidative-stress. In Mild-OSA, proteins related to the ubiquitination/neddylation-(Ub/Ned)-dependent proteasome system were upregulated. After PAP, proteins of Glycolysis and Ub/Ned-dependent proteasome system showed reactivated in Severe-OSA. In Mild-OSA, PAP induced upregulation of immunoproteasome proteins, suggesting that this treatment may increase oxidative-stress in these patients. Once validated these proteins maybe candidate biomarkers for OSA or OSA-therapy response.
Collapse
Affiliation(s)
- Cristina Valentim-Coelho
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| | - Joana Saraiva
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto - Ipatimup, 4200-135 Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações da Universidade de Lisboa e Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Fátima Vaz
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Neves
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Pinto
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Deborah Penque
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| |
Collapse
|
2
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Ozawa S, Isbister JP, Farmer SL, Hofmann A, Ozawa-Morriello J, Gross I, Shander A. Blood Health: The Ultimate Aim of Patient Blood Management. Anesth Analg 2025:00000539-990000000-01253. [PMID: 40208816 DOI: 10.1213/ane.0000000000007528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Sherri Ozawa
- From the Discipline of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - James P Isbister
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shannon L Farmer
- From the Discipline of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Haematology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Axel Hofmann
- From the Discipline of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua Ozawa-Morriello
- Department of Cardiac Surgery Services, Hackensack University Medical Center, Hackensack, New Jersey
| | - Irwin Gross
- From the Discipline of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Aryeh Shander
- Department of Anesthesiology and Critical Care, Englewood Health, Englewood, New Jersey
| |
Collapse
|
4
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Bordoni B, Escher AR. Fascial Manual Medicine: The Concept of Fascial Continuum. Cureus 2025; 17:e82136. [PMID: 40226146 PMCID: PMC11992952 DOI: 10.7759/cureus.82136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2025] [Indexed: 04/15/2025] Open
Abstract
Fascial tissue ubiquitously pervades the body system, becoming the target of many disciplines that use manual techniques for patient treatment. It is a much-debated topic as there is currently no univocal definition among different authors. Due to the non-discontinuity of the fascia, we can speak of a fascial continuum; this principle is the basis of the osteopathic perspective. This vision, which seems banal, is not always applied in manual fascial medicine, where, often, it is conditioned by a reductionist (layers) and mechanistic (compartments) approach, forgetting that the body is not a machine but an organism. This continuity teaches that manual treatment does not only reverberate in the area where the operator's hands rest but creates a series of local and systemic adaptations. This narrative review revises the concept of the fascial continuum by highlighting that fascia is a tissue system (different tissues working in harmony), multi-organ (capable of behaving like an organ), whose macroscopic functional expression (movement) and microscopic (with cellular adaptations) derives from a nanoscopic coherence (electromagnetic behaviors). This means that the body acts as a unit, and makes the manual approach never local but always systemic. The aim of the article is to highlight the fact that the fascial continuum is a single biological entity (solid and fluid), and that manual fascial medicine does not approach a single segment, but the entire person.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, USA
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
6
|
Keele GR, Dzieciatkowska M, Hay AM, Vincent M, O'Connor C, Stephenson D, Reisz JA, Nemkov T, Hansen KC, Page GP, Zimring JC, Churchill GA, D'Alessandro A. Genetic architecture of the red blood cell proteome in genetically diverse mice reveals central role of hemoglobin beta cysteine redox status in maintaining circulating glutathione pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640676. [PMID: 40093052 PMCID: PMC11908137 DOI: 10.1101/2025.02.27.640676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Red blood cells (RBCs) transport oxygen but accumulate oxidative damage over time, reducing function in vivo and during storage-critical for transfusions. To explore genetic influences on RBC resilience, we profiled proteins, metabolites, and lipids from fresh and stored RBCs obtained from 350 genetically diverse mice. Our analysis identified over 6,000 quantitative trait loci (QTL). Compared to other tissues, prevalence of trans genetic effects over cis reflects the absence of de novo protein synthesis in anucleated RBCs. QTL hotspots at Hbb, Hba, Mon1a, and storage-specific Steap3 linked ferroptosis to hemolysis. Proteasome components clustered at multiple loci, underscoring the importance of degrading oxidized proteins. Post-translational modifications (PTMs) mapped predominantly to hemoglobins, particularly cysteine residues. Loss of reactive C93 in humanized mice (HBB C93A) disrupted redox balance, affecting glutathione pools, protein glutathionylation, and redox PTMs. These findings highlight genetic regulation of RBC oxidation, with implications for transfusion biology and oxidative stress-dependent hemolytic disorders.
Collapse
|
7
|
Haiman ZB, Key A, D'Alessandro A, Palsson BO. RBC-GEM: A genome-scale metabolic model for systems biology of the human red blood cell. PLoS Comput Biol 2025; 21:e1012109. [PMID: 40072998 PMCID: PMC11925312 DOI: 10.1371/journal.pcbi.1012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, one of the most comprehensive, curated genome-scale metabolic reconstructions of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 29 studies published over the past two decades resulting in an RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome to form a genome-scale metabolic model (GEM) of the RBC. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. RBC-GEM represents a metabolic network is a consisting of 820 genes encoding proteins acting on 1,685 unique metabolites through 2,723 biochemical reactions: a 740% size expansion over its predecessor. We demonstrated the utility of RBC-GEM by creating context-specific proteome-constrained models derived from proteomic data of stored RBCs for 616 blood donors, and classified reactions based on their simulated abundance dependence. This reconstruction as an up-to-date curated GEM can be used for contextualization of data and for the construction of a computational whole-cell models of the human RBC.
Collapse
Affiliation(s)
- Zachary B Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, California, United States of America
| |
Collapse
|
8
|
D’Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian N, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood 2025; 145:765-783. [PMID: 39541586 PMCID: PMC11863713 DOI: 10.1182/blood.2024026109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. On the basis of the breeding of 8 founder strains with extreme genetic diversity, the Jackson Laboratory diversity outbred population can capture the impact of genetic heterogeneity in like manner to population-based studies. RBCs from 350 outbred mice, either fresh or stored for 7 days, were tested for posttransfusion recovery, as well as metabolomics and lipidomics analyses. Metabolite and lipid quantitative trait loci (QTL) mapped >400 gene-metabolite associations, which we collated into an online interactive portal. Relevant to RBC storage, we identified a QTL hotspot on chromosome 1, mapping on the region coding for the ferrireductase 6-transmembrane epithelial antigen of the prostate 3 (Steap3), a transcriptional target to p53. Steap3 regulated posttransfusion recovery, contributing to a ferroptosis-like process of lipid peroxidation, as validated via genetic manipulation in mice. Translational validation of murine findings in humans, STEAP3 polymorphisms were associated with RBC iron content, lipid peroxidation, and in vitro hemolysis in 13 091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. QTL analyses in humans identified a network of gene products (fatty acid desaturases 1 and 2, epoxide hydrolase 2, lysophosphatidylcholine acetyl-transferase 3, solute carrier family 22 member 16, glucose 6-phosphate dehydrogenase, very long chain fatty acid elongase, and phospholipase A2 group VI) associated with altered levels of oxylipins. These polymorphisms were prevalent in donors of African descent and were linked to allele frequency of hemolysis-linked polymorphisms for Steap3 or p53. These genetic variants were also associated with lower hemoglobin increments in thousands of single-unit transfusion recipients from the vein-to-vein database.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, ME
- RTI International, Research Triangle Park, NC
| | - Ariel Hay
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | | | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Steven Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, BC, Canada
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Brent R. Stockwell
- Department of Biological Sciences, Department of Chemistry, and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | | | - James C. Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
9
|
Yu F, Chen C, Liu W, Zhao Z, Fan Y, Li Z, Huang W, Xie T, Luo C, Yao Z, Guo Q, Yang Z, Liu J, Zhang Y, Kellems RE, Xia J, Li J, Xia Y. Longevity Humans Have Youthful Erythrocyte Function and Metabolic Signatures. Aging Cell 2025:e14482. [PMID: 39924931 DOI: 10.1111/acel.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Longevity individuals have lower susceptibility to chronic hypoxia, inflammation, oxidative stress, and aging-related diseases. It has long been speculated that "rejuvenation molecules" exist in their blood to promote extended lifespan. We unexpectedly discovered that longevity individuals exhibit erythrocyte oxygen release function similar to young individuals, whereas most elderly show reduced oxygen release capacity. Untargeted erythrocyte metabolomics profiling revealed that longevity individuals are characterized by youth-like metabolic reprogramming and these metabolites effectively differentiate the longevity from the elderly. Quantification analyses led us to identify multiple novel longevity-related metabolites within erythrocytes including adenosine, sphingosine-1-phosphate (S1P), and glutathione (GSH) related amino acids. Mechanistically, we revealed that increased bisphosphoglycerate mutase (BPGM) and reduced MFSD2B protein levels in the erythrocytes of longevity individuals collaboratively work together to induce elevation of intracellular S1P, promote the release of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from membrane to the cytosol, and thereby orchestrate glucose metabolic reprogramming toward Rapoport-Luebering Shunt to induce the 2,3-BPG production and trigger oxygen delivery. Furthermore, increased glutamine and glutamate transporter expression coupled with the enhanced intracellular metabolism underlie the elevated GSH production and the higher anti-oxidative stress capacity in the erythrocytes of longevity individuals. As such, longevity individuals displayed less systemic hypoxia-related metabolites and more antioxidative and anti-inflammatory metabolites in the plasma, thereby healthier clinical outcomes including lower inflammation parameters as well as better glucose-lipid metabolism, and liver and kidney function. Overall, we identified that youthful erythrocyte function and metabolism enable longevity individuals to better counteract peripheral tissue hypoxia, inflammation, and oxidative stress, thus maintaining healthspan.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, Central South University, Changsha, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Changhan Chen
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Wuping Liu
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhixiang Zhao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Central South University, Changsha, China
- Department of Dermatology, Central South University, Changsha, China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, China
| | - Zhenjiang Li
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, China
| | - Weilun Huang
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, China
| | - Tingting Xie
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Luo
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, China
| | - Qi Guo
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, China
| | - Zhiyu Yang
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Juan Liu
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yujin Zhang
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Jian Xia
- Department of Neurology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Ji Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Central South University, Changsha, China
- Department of Dermatology, Central South University, Changsha, China
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
10
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2025; 24:e14388. [PMID: 39478346 PMCID: PMC11822668 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Alicia Key
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven L. Spitalnik
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Eldad A. Hod
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Steven Kleinman
- University of British ColumbiaVictoriaBritish ColumbiaCanada
| | - Nareg H. Roubinian
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Kaiser Permanente Northern California Division of ResearchPleasantonCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark T. Gladwin
- Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreMarylandUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Philip J. Norris
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Busch
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James C. Zimring
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| |
Collapse
|
11
|
Cendali FI, Lisk C, Dzieciatkowska M, LaCroix IS, Reisz JA, Harral J, Stephenson D, Hay AM, Wartchow EP, Darehshouri A, Dziewulska-Cronk KH, Buehler PW, Norris PJ, Deng X, Busch MP, Earley EJ, Page GP, Hansen KC, Zimring JC, Irwin DC, Nemkov T, D’Alessandro A. Increased exercise tolerance in humanized G6PD-deficient mice. Blood Adv 2025; 9:321-334. [PMID: 39514761 PMCID: PMC11786683 DOI: 10.1182/bloodadvances.2024013968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Glucose-6-phosphate dehydrogenase (G6PD) deficiency affects 500 million people globally, affecting red blood cell (RBC) antioxidant pathways and increasing susceptibility to hemolysis under oxidative stress. Despite the systemic generation of reactive oxygen species during exercise, the effects of exercise on individuals with G6PD deficiency remain poorly understood This study used humanized mouse models expressing the G6PD Mediterranean variant (S188F, with 10% enzymatic activity) to investigate exercise performance and molecular outcomes. Surprisingly, despite decreased enzyme activity, G6PD-deficient mice have faster critical speed than mice expressing human canonical G6PD. After exercise, deficient mice did not exhibit differences in RBC morphology or hemolysis, but had improved cardiac function, including cardiac output, stroke volume, sarcomere length, and mitochondrial content. Proteomics analyses of cardiac and skeletal muscles (gastrocnemius, soleus) from G6PD-deficient compared with sufficient mice revealed improvements in mitochondrial function and increased protein turnover via ubiquitination, especially for mitochondrial and structural myofibrillar proteins. Mass spectrometry-based metabolomics revealed alterations in energy metabolism and fatty acid oxidation. These findings challenge the traditional assumptions regarding hemolytic risk during exercise in G6PD deficiency, suggesting a potential metabolic advantage in exercise performance for individuals carrying noncanonical G6PD variants.
Collapse
Affiliation(s)
- Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Christina Lisk
- Department of Medicine, Cardiovascular and Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ian S. LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Julie Harral
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ariel M. Hay
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Eric P. Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, CO
| | - Anza Darehshouri
- Electron Microscopy Core Facility, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Paul W. Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport, University of Maryland School of Medicine, Baltimore, MD
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
| | | | | | - Grier P. Page
- Research Triangle Institute International, Atlanta, GA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - David C. Irwin
- Department of Medicine, Cardiovascular and Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
12
|
Wei B, Zheng J, Chai J, Huang J, Duan H, Han S, Yang X, Zhang W, Hu F, Qu Y, Liu X, Liu T, Wu Y, Chi Y. Metabolomic and proteomic profiling of a burn-hemorrhagic shock swine model reveals a metabolomic signature associated with fatal outcomes. Eur J Med Res 2025; 30:10. [PMID: 39773520 PMCID: PMC11706163 DOI: 10.1186/s40001-024-02245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis. METHODS Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements. The metabolomic and proteomic data were processed through partial least squares-discriminant analysis (PLS-DA) and the KEGG enrichment etc. Furthermore, the integrate analysis of the metabolomic and proteomic data was generalized by canonical correlation discriminant analysis, and the correlation between metabolites and mortality of the swine model was predicted using a multiple linear regression model by Pearson analysis. RESULTS PLS-DA revealed a global shift in each of the metabolomic and proteomic profiles following injury. The levels of 87 signature metabolites including various types of amino acids, fatty acids and acyl-carnitines of different lengths, and many metabolites in the gluconeogenesis, glycolysis, and tricarboxylic acid (TCA) cycle are generally increased (P < 0.05) after injury and can be used as biomarkers. Pathways related to amino acids metabolism and TCA cycle were significantly enriched (P < 0.01). In proteome analysis, we found dramatically altered (P < 0.05) levels of matrix and red blood cell-related proteins, such as type I collagen and hemoglobin. Most importantly, we found that the markedly elevated (P < 0.01) succinic acid, glutaric acid, and malic acid are closely associated (r = 0.863, 0.861, and 0.821, respectively) with injury severity by Pearson analysis, and can predict mortality using a multiple linear regression model. CONCLUSIONS The study provides compelling observations that burn-shock swine model undergoes dramatic changes in the acute phase and present a valuable panel for clinical use of prognosis.
Collapse
Affiliation(s)
- Bin Wei
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
- The First Department of Surgery, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100027, China
| | - Jinguang Zheng
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Jiake Chai
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Jianxiang Huang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Hongjie Duan
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Shaofang Han
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiaolin Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Fangchao Hu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yirui Qu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Xiangyu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Tian Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yushou Wu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yunfei Chi
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| |
Collapse
|
13
|
Liu GL, Qiao ML, Zhang HC, Xie CH, Cao XY, Zhou J, Yu J, Nie RH, Meng ZX, Song RQ, Wang Y, Ren JL, Zhao YJ, Sun JQ, Fan RW, Shang GJ, Niu S, Tian WX. Avian pathogenic Escherichia coli alters complement gene expression in chicken erythrocytes. Br Poult Sci 2025:1-8. [PMID: 39757946 DOI: 10.1080/00071668.2024.2435618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
1. Avian Escherichia coli (E. coli) causes significant losses in livestock by inducing morbidity and mortality. Erythrocytes, the most abundant in blood, possess dual functions of oxygen transportation and immune regulation. In recent years, the interaction between erythrocytes and the complement system has gradually become a focal point of study. However, the transcription dynamics of the complement system in chicken erythrocytes post-E. coli invasion remains unclear.2. In this study, chicken erythrocytes and E. coli were co-cultured for 0.25-2 h to assess adhesion, analysed by indirect immunofluorescence (IIF) and scanning electron microscopy (SEM). Quantitative real-time PCR (qRT-PCR) examined differential expression of complement genes (CD93, C1q, C1s, C2, C3, C3AR1, C4, C4A, C5, C5AR1, C6, C7, C8G, CFI, MBL) in vitro using erythrocytes at 0.25-2 h and in vivo using chicks at 1, 3 and 7 d post-E. coli infection.3. E. coli adheres to chicken erythrocytes, as observed using IF and SEM. Gene expression analysis revealed early downregulation of C4, C4A, MBL and late upregulation of CD93, C1q, C1s, C3, C3AR1, C5AR1, C6, with C5, C7, C8G downregulated at 7 dpi. C2 expression varied at each time point.4. This study first showed E. coli adhering to erythrocytes, which activated complement genes rapidly. In vivo recovery from chickens with colibacillosis favours classical pathway activation, while lectin pathway may be inhibited, suggesting early immune down-regulation.
Collapse
Affiliation(s)
- G L Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - H C Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - C H Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R H Nie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Z X Meng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R Q Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Q Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R W Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
14
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Popović ME, Stevanović M, Pantović Pavlović M. Biothermodynamics of Hemoglobin and Red Blood Cells: Analysis of Structure and Evolution of Hemoglobin and Red Blood Cells, Based on Molecular and Empirical Formulas, Biosynthesis Reactions, and Thermodynamic Properties of Formation and Biosynthesis. J Mol Evol 2024; 92:776-798. [PMID: 39516253 DOI: 10.1007/s00239-024-10205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024]
Abstract
Hemoglobin and red blood cells (erythrocytes) have been studied extensively from the perspective of life and biomedical sciences. However, no analysis of hemoglobin and red blood cells from the perspective of chemical thermodynamics has been reported in the literature. Such an analysis would provide an insight into their structure and turnover from the aspect of biothermodynamics and bioenergetics. In this paper, a biothermodynamic analysis was made of hemoglobin and red blood cells. Molecular formulas, empirical formulas, biosynthesis reactions, and thermodynamic properties of formation and biosynthesis were determined for the alpha chain, beta chain, heme B, hemoglobin and red blood cells. Empirical formulas and thermodynamic properties of hemoglobin were compared to those of other biological macromolecules, which include proteins and nucleic acids. Moreover, the energetic requirements of biosynthesis of hemoglobin and red blood cells were analyzed. Based on this, a discussion was made of the specific structure of red blood cells (i.e. no nuclei nor organelles) and its role as an evolutionary adaptation for more energetically efficient biosynthesis needed for the turnover of red blood cells.
Collapse
Affiliation(s)
- Marko E Popović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Maja Stevanović
- Inovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Marijana Pantović Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
- Centre of Excellence in Chemistry and Environmental Engineering - ICTM, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Cata JP, Guerra-Londono JJ, Ramirez MF, Chen LL, Warner MA, Guzman LFC, Lobo F, Uribe-Marquez S, Huang J, Ruscic KJ, Chew STH, Lanigan M. The Association Between Perioperative Red Blood Cell Transfusions and 1-Year Mortality After Major Cancer Surgery: An International Multicenter Observational Study. Anesth Analg 2024:00000539-990000000-01031. [PMID: 39504267 DOI: 10.1213/ane.0000000000007236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND Packed red blood cell (pRBC) transfusions in patients undergoing surgery for cancer are given to treat anemia or acute hemorrhage. Evidence indicates that pRBC transfusions are associated with poor perioperative and oncological outcomes. The ARCA-1 (Perioperative Care in the Cancer Patient-1) study was designed to test the association between perioperative pRBC transfusions and postoperative morbidity and mortality in patients undergoing cancer surgery. The primary hypothesis of our study was that perioperative pRBC transfusions have a negative impact on postoperative morbidity and 1-year mortality. METHODS ARCA-1 was an international multicenter prospective observational cohort study. Participating centers enrolled a minimum of 30 consecutive adult patients with cancer who underwent surgery with curative intent. The primary end point was all-cause mortality 1 year after major cancer surgery. Secondary end points were rates of perioperative blood product use, 1-year cancer-specific mortality, overall survival, and 30-day morbidity and mortality. We performed a propensity score matching analysis to adjust for selection bias. A multivariable logistic regression model was fitted to estimate the effects of significant covariates on 1-year mortality, cancer-related mortality, and overall survival. RESULTS A total of 1079 patients were included in the study. The rate of perioperative pRBC transfusions was 21.1%. Preoperative comorbidities, including anemia, American Society of Anesthesiologists (ASA) score of III to IV, a history of coronavirus disease 2019 (COVID-19), myocardial infarction, stroke, need for dialysis, history of blood transfusions, and metastatic disease were statistically significantly more frequent in transfused patients compared to nontransfused patients. The 1-year mortality rate was higher in transfused patients before (19.7% vs 6.5%; P < .0001) and after (17.4% vs 13.2%; P = .29) propensity score matching. 1-year mortality was 1.97 times higher in transfused than in no-transfused patients (odd ratio [OR], 1.97; 95% confidence interval [CI], 1.13-3.41). The odds of 1-year cancer mortality for patients who had perioperative pRBCs was 1.82 times higher (OR, 1.82; 95% CI, 0.97-3.43) compared to those who did not receive perioperative pRBC transfusion. The effect of perioperative pRBC transfusion on overall survival was also significant (hazard ratio [HR], 1.85; 95% CI, 1.15-2.99). Transfused patients also had a higher rate of 30-day postoperative mortality before (3.5% vs 0.7%; P = .0009) and after propensity score matching (4.2% vs 1.8%; P = .34). CONCLUSIONS This international, multicenter observational study showed that perioperative pRBC transfusion was associated with an increased mortality risk.
Collapse
Affiliation(s)
- Juan P Cata
- From the Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Anesthesiology and Surgical Oncology Research Group, Houston, Texas
| | - Juan Jose Guerra-Londono
- From the Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Anesthesiology and Surgical Oncology Research Group, Houston, Texas
| | - Maria F Ramirez
- From the Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee-Lynn Chen
- Department of Anesthesia and Perioperative Care, University of California-San Francisco, San Francisco, California
| | - Matthew A Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Luis Felipe Cuellar Guzman
- Department of Anesthesiology and Critical Care, Instituto Nacional de Cancerología de México, Mexico City, Mexico
| | - Francisco Lobo
- Department of Anesthesiology, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Jeffrey Huang
- Department of Anesthesiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Katarina J Ruscic
- Department of Anesthesia, Critical Care and Pain Medicine, The Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sophia Tsong Huey Chew
- Department of Anesthesiology and Perioperative Sciences, Singapore General Hospital-Duke-NUS Medical School, Singapore, Singapore
| | - Megan Lanigan
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Anastasiadi AT, D'Alessandro A. E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells. Antioxidants (Basel) 2024; 13:1151. [PMID: 39334810 PMCID: PMC11429236 DOI: 10.3390/antiox13091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Blood cells play a fundamental role in maintaining systemic homeostasis, by responding dynamically to various physiological and environmental stimuli [...].
Collapse
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman ZB, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and genetic determinants of glycolysis: Phosphofructokinase isoforms boost energy status of stored red blood cells and transfusion outcomes. Cell Metab 2024; 36:1979-1997.e13. [PMID: 38964323 PMCID: PMC11374506 DOI: 10.1016/j.cmet.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary B Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krystalyn E Hudson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA.
| |
Collapse
|
19
|
Alilova GA, Tikhonova LA, Kosenko EA. NMDA Receptors and Indices of Energy Metabolism in Erythrocytes: Missing Link to the Assessment of Efficiency of Oxygen Transport in Hepatic Encephalopathy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1490-1508. [PMID: 39245457 DOI: 10.1134/s000629792408008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 09/10/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that develops in patients with severe liver dysfunction and/or portocaval shunting. Despite more than a century of research into the relationship between liver damage and development of encephalopathy, pathogenetic mechanisms of hepatic encephalopathy have not yet been fully elucidated. It is generally recognized, however, that the main trigger of neurologic complications in hepatic encephalopathy is the neurotoxin ammonia/ammonium, concentration of which in the blood increases to toxic levels (hyperammonemia), when detoxification function of the liver is impaired. Freely penetrating into brain cells and affecting NMDA-receptor-mediated signaling, ammonia triggers a pathological cascade leading to the sharp inhibition of aerobic glucose metabolism, oxidative stress, brain hypoperfusion, nerve cell damage, and formation of neurological deficits. Brain hypoperfusion, in turn, could be due to the impaired oxygen transport function of erythrocytes, because of the disturbed energy metabolism that occurs in the membranes and inside erythrocytes and controls affinity of hemoglobin for oxygen, which determines the degree of oxygenation of blood and tissues. In our recent study, this causal relationship was confirmed and novel ammonium-induced pro-oxidant effect mediated by excessive activation of NMDA receptors leading to impaired oxygen transport function of erythrocytes was revealed. For a more complete evaluation of "erythrocytic" factors that diminish brain oxygenation and lead to encephalopathy, in this study, activity of the enzymes and concentration of metabolites of glycolysis and Rapoport-Lubering shunt, as well as morphological characteristics of erythrocytes from the rats with acute hyperammoniemia were determined. To elucidate the role of NMDA receptors in the above processes, MK-801, a non-competitive receptor antagonist, was used. Based on the obtained results it can be concluded that it is necessary to consider ammonium-induced morphofunctional disorders of erythrocytes and hemoglobinemia which can occur as a result of alterations in highly integrated networks of metabolic pathways may act as an additional systemic "erythrocytic" pathogenetic factor to prevent the onset and progression of cerebral hypoperfusion in hepatic encephalopathy accompanied by hyperammonemia.
Collapse
Affiliation(s)
- Gubidat A Alilova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila A Tikhonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
20
|
D’Alessandro A. Heavy metals in red blood cells: From "Iron Maiden" to "Lead" Zeppelin. Transfusion 2024; 64:1181-1183. [PMID: 38847096 PMCID: PMC11251841 DOI: 10.1111/trf.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Angelo D’Alessandro
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO, USA
| |
Collapse
|
21
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman Z, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and Genetic Determinants of Glycolysis: Phosphofructokinase Isoforms Boost Energy Status of Stored Red Blood Cells and Transfusion Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557250. [PMID: 38260479 PMCID: PMC10802247 DOI: 10.1101/2023.09.11.557250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. eTOC and Highlights Highlights Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.
Collapse
|
22
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
23
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
24
|
Scheim DE, Parry PI, Rabbolini DJ, Aldous C, Yagisawa M, Clancy R, Borody TJ, Hoy WE. Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses. Viruses 2024; 16:647. [PMID: 38675987 PMCID: PMC11054389 DOI: 10.3390/v16040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.
Collapse
Affiliation(s)
- David E. Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia;
- Department of Psychiatry, Flinders University, Bedford Park, SA 5042, Australia
| | - David J. Rabbolini
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Morimasa Yagisawa
- Satoshi Omura Memorial Research Institute, Kitasato University, Tokyo 108-8641, Japan
- Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan
| | - Robert Clancy
- Emeritus Professor, School of Medicine and Public Health, University of Newcastle, Newcastle, NE1 7RU, Australia
| | | | - Wendy E. Hoy
- Emeritus Professor of Medicine, University of Queensland, Herston, QLD 4029, Australia
| |
Collapse
|
25
|
Kronstein-Wiedemann R, Tausche K, Kolditz M, Teichert M, Thiel J, Koschel D, Tonn T, Künzel SR. Long-COVID is Associated with Impaired Red Blood Cell Function. Horm Metab Res 2024; 56:318-323. [PMID: 37890507 DOI: 10.1055/a-2186-8108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
COVID-19 disease, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), induces a broad spectrum of clinical symptoms ranging from asymptomatic cases to fatal outcomes. About 10-35% of all COVID-19 patients, even those with mild COVID-19 symptoms, continue to show symptoms, i. e., fatigue, shortness of breath, cough, and cognitive dysfunction, after initial recovery. Previously, we and others identified red blood cell precursors as a direct target of SARS-CoV-2 and suggested that SARS-CoV-2 induces dysregulation in hemoglobin- and iron-metabolism contributing to the severe systemic course of COVID-19. Here, we put particular emphasis on differences in parameters of clinical blood gas analysis and hematological parameters of more than 20 healthy and Long-COVID patients, respectively. Long-COVID patients showed impaired oxygen binding to hemoglobin with concomitant increase in carbon monoxide binding. Hand in hand with decreased plasma iron concentration and transferrin saturation, mean corpuscular hemoglobin was elevated in Long-COVID patients compared to healthy donors suggesting a potential compensatory mechanism. Although blood pH was within the physiological range in both groups, base excess- and bicarbonate values were significantly lower in Long-COVID patients. Furthermore, Long-COVID patients displayed reduced lymphocyte levels. The clinical relevance of these findings, e. g., as a cause of chronic immunodeficiency, remains to be investigated in future studies. In conclusion, our data suggest impaired erythrocyte functionality in Long-COVID patients, leading to diminished oxygen supply. This in turn could be an explanation for the CFS, dyspnea and anemia. Further investigations are necessary to identify the underlying pathomechanisms.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Kristin Tausche
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Kolditz
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Koschel
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Internal Medicine and Pneumology, Fachkrankenhaus Coswig, Lung Center, Coswig, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| |
Collapse
|
26
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
27
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
28
|
Udroiu I. A Simplified Method for Calculating Surface Area of Mammalian Erythrocytes. Methods Protoc 2024; 7:11. [PMID: 38392685 PMCID: PMC10891711 DOI: 10.3390/mps7010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Knowledge of the geometric quantities of the erythrocyte is useful in several physiological studies, both for zoologists and veterinarians. While the diameter and volume (MCV) are easily obtained from observations of blood smears and complete blood count, respectively, the thickness and surface area are instead much more difficult to measure. The precise description of the erythrocyte geometry is given by the equation of the oval of Cassini, but the formulas deriving from it are very complex, comprising elliptic integrals. In this article, three solids are proposed as models approximating the erythrocyte: sphere, cylinder and a spheroid with concave caps. The volumes and surface areas obtained with these models are compared to those effectively measured. The spheroid with concave caps gives the best approximation and can be used as a simple model to determine the erythrocyte surface area. With this model, a simple method that allows one to estimate the surface area by knowing only the diameter and MCV is proposed.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", 00146 Rome, Italy
| |
Collapse
|
29
|
D’Alessandro A, Earley EJ, Nemkov T, Stephenson D, Dzieciatkowska M, Hansen KC, Minetti G, Champigneulle B, Stauffer E, Pichon A, Furian M, Verges S, Kleinman S, Norris PJ, Busch MP, Page GP, Kaestner L. Genetic polymorphisms and expression of Rhesus blood group RHCE are associated with 2,3-bisphosphoglycerate in humans at high altitude. Proc Natl Acad Sci U S A 2024; 121:e2315930120. [PMID: 38147558 PMCID: PMC10769835 DOI: 10.1073/pnas.2315930120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus,Aurora, CO80045
| | - Eric J. Earley
- Research Triangle Institute International, Atlanta, GA30329-4434
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus,Aurora, CO80045
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus,Aurora, CO80045
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus,Aurora, CO80045
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus,Aurora, CO80045
| | - Giampaolo Minetti
- Department of Biology and Biotechnology, University of Pavia, Pavia27100, Italy
| | - Benoit Champigneulle
- Hypoxia Physiopathology laboratory (HP2), INSERM U1042, Grenoble Alpes University, Grenoble38400, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Claude Bernard Lyon 1, Lyon69100, France
| | - Aurélien Pichon
- Université de Poitiers, Laboratoire MOVE,Poitiers20296, France
| | - Michael Furian
- Pulmonology Department, University of Zurich, Zürich 1008091, Switzerland
| | - Samuel Verges
- Hypoxia Physiopathology laboratory (HP2), INSERM U1042, Grenoble Alpes University, Grenoble38400, France
| | - Steven Kleinman
- Department of Pathology and Laborarory Medicine, University of British Columbia, Victoria, BC V6T 1Z4, Canada
| | | | | | - Grier P. Page
- Research Triangle Institute International, Atlanta, GA30329-4434
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken66123, Germany
| |
Collapse
|
30
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
31
|
Key A, Haiman Z, Palsson BO, D’Alessandro A. Modeling Red Blood Cell Metabolism in the Omics Era. Metabolites 2023; 13:1145. [PMID: 37999241 PMCID: PMC10673375 DOI: 10.3390/metabo13111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Red blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.
Collapse
Affiliation(s)
- Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Zachary Haiman
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
32
|
D'Alessandro A, Lukens JR, Zimring JC. The role of PIMT in Alzheimer's disease pathogenesis: A novel hypothesis. Alzheimers Dement 2023; 19:5296-5302. [PMID: 37157118 DOI: 10.1002/alz.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
There are multiple theories of Alzheimer's disease pathogenesis. One major theory is that oxidation of amyloid beta (Aβ) promotes plaque deposition that directly contributes to pathology. A competing theory is that hypomethylation of DNA (due to altered one carbon metabolism) results in pathology through altered gene regulation. Herein, we propose a novel hypothesis involving L-isoaspartyl methyltransferase (PIMT) that unifies the Aβ and DNA hypomethylation hypotheses into a single model. Importantly, the proposed model allows bidirectional regulation of Aβ oxidation and DNA hypomethylation. The proposed hypothesis does not exclude simultaneous contributions by other mechanisms (e.g., neurofibrillary tangles). The new hypothesis is formulated to encompass oxidative stress, fibrillation, DNA hypomethylation, and metabolic perturbations in one carbon metabolism (i.e., methionine and folate cycles). In addition, deductive predictions of the hypothesis are presented both to guide empirical testing of the hypothesis and to provide candidate strategies for therapeutic intervention and/or nutritional modification. HIGHLIGHTS: PIMT repairs L-isoaspartyl groups on amyloid beta and decreases fibrillation. SAM is a common methyl donor for PIMT and DNA methyltransferases. Increased PIMT activity competes with DNA methylation and vice versa. The PIMT hypothesis bridges a gap between plaque and DNA methylation hypotheses.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - John R Lukens
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| | - James C Zimring
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Reisz JA, Dzieciatkowska M, Stephenson D, Gamboni F, Morton DH, D’Alessandro A. Red Blood Cells from Individuals with Lesch-Nyhan Syndrome: Multi-Omics Insights into a Novel S162N Mutation Causing Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency. Antioxidants (Basel) 2023; 12:1699. [PMID: 37760001 PMCID: PMC10525117 DOI: 10.3390/antiox12091699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lesch-Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol is used to alleviate gout, other symptoms are less understood, impeding treatment. Herein, we present a high-throughput multi-omics analysis of red blood cells (RBCs) from three pediatric siblings carrying a novel S162N HPRT1 mutation. RBCs from both parents-the mother, a heterozygous carrier, and the father, a clinically healthy control-were also analyzed. Global metabolite analysis of LN RBCs shows accumulation of glycolytic intermediates upstream of pyruvate kinase, unsaturated fatty acids, and long chain acylcarnitines. Similarly, highly unsaturated phosphatidylcholines are also elevated in LN RBCs, while free choline is decreased. Intracellular iron, zinc, selenium, and potassium are also decreased in LN RBCs. Global proteomics documented changes in RBC membrane proteins, hemoglobin, redox homeostasis proteins, and the enrichment of coagulation proteins. These changes were accompanied by elevation in protein glutamine deamidation and methylation in the LN children and carrier mother. Treatment with allopurinol incompletely reversed the observed phenotypes in the two older siblings currently on this treatment. This unique data set provides novel opportunities for investigations aimed at potential therapies for LN-associated sequelae.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - D. Holmes Morton
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, PA 17004, USA;
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| |
Collapse
|
34
|
Pirisinu M. The Long Journey of Extracellular Vesicles towards Global Scientific Acclamation. Adv Pharm Bull 2023; 13:489-501. [PMID: 37646064 PMCID: PMC10460810 DOI: 10.34172/apb.2023.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived vesicles that are responsible for eliciting a wide array of biological processes. After decades of intense investigation, the therapeutic potential of EVs will be finally explored in a series of upcoming clinical trials. EVs are rapidly changing the understanding of human physiology and will undoubtedly transform the field of medicine. The applicability of EVs as diagnostic biomarkers and treatment vectors has captured the attention of the scientific community and investors, facilitating the rapid progression of numerous EVs-based platforms. This mini-review provides an outline of the pioneering discoveries, and their respective significances, on progressing EVs toward clinical use. We focus the attention of the readers on several promising classes of EVs that hold major opportunities to translate in clinical practice. Market analysis and future challenges facing EVs-based therapies are also discussed.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City, University of Hong Kong, Hong Kong
- Jotbody HK Limited, New Territories, Hong Kong
| |
Collapse
|
35
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
36
|
Al Qahtani SY. Impact of hyperchloremia on inflammatory markers, serum creatinine, hemoglobin, and outcome in critically ill patients with COVID-19 infection. J Med Life 2023; 16:699-706. [PMID: 37520482 PMCID: PMC10375338 DOI: 10.25122/jml-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/05/2023] [Indexed: 08/01/2023] Open
Abstract
Hyperchloremia has negative consequences, such as increased proinflammatory mediators, renal dysfunction, and mortality in patients with septic shock. However, data on the effects of hyperchloremia on COVID-19 infections are scarce. The study aimed to investigate the effects of hyperchloremia on inflammatory markers, serum creatinine, hemoglobin levels, and outcomes in critically ill COVID-19 patients. A retrospective review of all adult patients admitted to the ICU at King Fahd University Hospital with a moderate to severe COVID-19 infection from January 2020 to August 2021 was performed. Serum chloride levels, ferritin, lactate dehydrogenase (LDH), C-reactive protein (CRP), creatinine, and hemoglobin levels were collected on the first and third days of ICU admission. Demographic data, oxygen support modality, ICU length of stay (ICU LOS), renal replacement therapy (RRT), and deaths were collected. Of 420 patients, 255 were included; 97 (38%) had hyperchloremia, while 158 (62%) did not. Hyperchloremic patients had a higher percentage of increases in ferritin (54.6%), CRP (6.2%), and LDH (15.5%) between the first and third days of admission, compared to non-hyperchloremic patients (43.7%, 6.3%, and 5.7%, respectively). The decrease in hemoglobin levels was similar in both groups (p=0.103). There was a significant association between hyperchloremia and an increase in serum creatinine (p<0.0001). Sixty-six (68%) patients required endotracheal intubation in the hyperchloremic group (p=0.003). The mortality rate was significant in the hyperchloremic cohort (p=<0.0001). Hyperchloremia was significantly associated with increased risks of kidney injury, endotracheal intubation, and death. However, hyperchloremia was not associated with increased ferritin, CRP, or hemoglobin decreases in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Shaya Yaanallah Al Qahtani
- Department of Internal Medicine and Critical Care, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
37
|
Zhou J, Qiao ML, Jahejo AR, Han XY, Wang P, Wang Y, Ren JL, Niu S, Zhao YJ, Zhang D, Bi YH, Wang QH, Si LL, Fan RW, Shang GJ, Tian WX. Effect of Avian Influenza Virus subtype H9N2 on the expression of complement-associated genes in chicken erythrocytes. Br Poult Sci 2023:1-9. [PMID: 36939295 DOI: 10.1080/00071668.2023.2191308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The H9N2 subtype avian influenza virus can infect both chickens and humans. Previous studies have reported a role for erythrocytes in immunity. However, the role of H9N2 against chicken erythrocytes and the presence of complement-related genes in erythrocytes has not been studied. This research investigated the effect of H9N2 on complement-associated gene expression in chicken erythrocytes. The expression of complement-associated genes (C1s, C1q, C2, C3, C3ar1, C4, C4a, C5, C5ar1, C7, CD93 and CFD) was detected by reverse transcription-polymerase chain reaction (RT-PCR). Quantitative Real-Time PCR (qRT-PCR) was used to analyse the differential expression of complement-associated genes in chicken erythrocytes at 0 h, 2 h, 6 h and 10 h after the interaction between H9N2 virus and chicken erythrocytes in vitro and 3, 7 and 14 d after H9N2 virus nasal infection of chicks. Expression levels of C1q, C4, C1s, C2, C3, C5, C7 and CD93 were significantly up-regulated at 2 h and significantly down-regulated at 10 h. Gene expression levels of C1q, C3ar1, C4a, CFD and C5ar1 were seen to be different at each time point. The expression levels of C1q, C4, C1s, C2, C3, C5, C7, CFD, C3ar1, C4a and C5ar1 were significantly up-regulated at 7 d and the gene expression of levels of C3, CD93 and C5ar1 were seen to be different at each time point. The results confirmed that all the complement-associated genes were expressed in chicken erythrocytes and showed the H9N2 virus interaction with chicken erythrocytes and subsequent regulation of chicken erythrocyte complement-associated genes expression. This study reported, for the first time, the relationship between H9N2 and complement system of chicken erythrocytes, which will provide a foundation for further research into the prevention and control of H9N2 infection.
Collapse
Affiliation(s)
- J Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - P Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Q H Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - L L Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - R W Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
38
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
39
|
Cendali FI, Nemkov T, Lisk C, Lacroix IS, Nouraie SM, Zhang Y, Gordeuk VR, Buehler PW, Irwin D, D’Alessandro A. Metabolic correlates to critical speed in murine models of sickle cell disease. Front Physiol 2023; 14:1151268. [PMID: 37007990 PMCID: PMC10053510 DOI: 10.3389/fphys.2023.1151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.
Collapse
Affiliation(s)
- Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Christina Lisk
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Seyed-Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul W. Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Center for Blood Oxygen Transport, Department of Pediatrics, Baltimore, MD, United States
| | - David Irwin
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
40
|
Liang N, Jiao Z, Zhang C, Wu Y, Wang T, Li S, Wang Y, Song T, Chen J, Liang H, Chen Q. Mature Red Blood Cells Contain Long DNA Fragments and Could Acquire DNA from Lung Cancer Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206361. [PMID: 36599687 PMCID: PMC9982546 DOI: 10.1002/advs.202206361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Red blood cells (RBC) are commonly known as cells with no nucleus or mitochondria and are assumed to be a transportation vehicle. This study confirms that RBC contain long DNA fragments inside with stain by both microscope and flow cytometry, which covers most nuclear and mitochondrial genome regions by next-generation sequencing (NGS). Such characteristics demonstrate a significant difference compared with A549 cell line or paired peripheral blood mononuclear cell as nucleated cells. To further explore the characteristics of RNA DNA, DNA from 20 RBC samples is sequenced by NGS. Interestingly, several gaps and multiple regions with copy number variation are observed significantly different between different samples, which could be used to distinguish samples with different health status accurately. Using an in vitro co-culture system, it is shown that RBC could absorb DNA-bearing tumorigenic mutations from cancer cell lines but requires cell-to-cell contact. Finally, based on a small scale clinical trial, it is confirmed that common genetic mutations of cancer tissues could be detected in RBC from patients with early-stage non-small-cell lung cancer. This study highlights a new biological phenomenon involving RBC and its translational potential as a novel liquid biopsy technology platform for early cancer screening and diagnosis of malignancy.
Collapse
Affiliation(s)
- Naixin Liang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730China
| | - Zichen Jiao
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu210093China
| | - Cong Zhang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Tao Wang
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu210093China
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730China
| | - Yadong Wang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730China
| | - Tianqiang Song
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jian‐Qun Chen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Hongwei Liang
- School of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Qihan Chen
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu210093China
- Medical School of Nanjing UniversityNanjingJiangsu210093China
| |
Collapse
|
41
|
Lindqvist HM, Winkvist A, Gjertsson I, Calder PC, Armando AM, Quehenberger O, Coras R, Guma M. Influence of Dietary n-3 Long Chain Polyunsaturated Fatty Acid Intake on Oxylipins in Erythrocytes of Women with Rheumatoid Arthritis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020717. [PMID: 36677774 PMCID: PMC9863541 DOI: 10.3390/molecules28020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Oxylipins derived from n-3 fatty acids are suggested as the link between these fatty acids and reduced inflammation. The aim of the present study was to explore the effect of a randomized controlled cross-over intervention on oxylipin patterns in erythrocytes. Twenty-three women with rheumatoid arthritis completed 2 × 11-weeks exchanging one cooked meal per day, 5 days a week, for a meal including 75 g blue mussels (source for n-3 fatty acids) or 75 g meat. Erythrocyte oxylipins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were analyzed with multivariate data analysis. Orthogonal projections to latent structures (OPLS) with effect projections and with discriminant analysis were performed to compare the two diets' effects on oxylipins. Wilcoxon signed rank test was used to test pre and post values for each dietary period as well as post blue-mussel vs. post meat. The blue-mussel diet led to significant changes in a few oxylipins from the precursor fatty acids arachidonic acid and dihomo-ɣ-linolenic acid. Despite significant changes in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and free EPA in erythrocytes in the mussel group, no concurrent changes in their oxylipins were seen. Further research is needed to study the link between n-3 fatty-acid intake, blood oxylipins, and inflammation.
Collapse
Affiliation(s)
- Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence: (H.M.L.); (P.C.C.)
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence: (H.M.L.); (P.C.C.)
| | - Aaron M. Armando
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roxana Coras
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Recktenwald SM, Simionato G, Lopes MGM, Gamboni F, Dzieciatkowska M, Meybohm P, Zacharowski K, von Knethen A, Wagner C, Kaestner L, D'Alessandro A, Quint S. Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19. eLife 2022; 11:e81316. [PMID: 36537079 PMCID: PMC9767455 DOI: 10.7554/elife.81316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Institute for Clinical and Experimental Surgery, Campus University Hospital, Saarland UniversityHomburgGermany
| | - Marcelle GM Lopes
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Cysmic GmbHSaarbrückenGermany
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital WuerzburgWuerzburgGermany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital FrankfurtFrankfurtGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Andreas von Knethen
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital FrankfurtFrankfurtGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Department of Physics and Materials Science, University of LuxembourgLuxembourg CityLuxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland UniversityHomburgGermany
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Stephan Quint
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Cysmic GmbHSaarbrückenGermany
| |
Collapse
|
43
|
Pereira-Veiga T, Bravo S, Gómez-Tato A, Yáñez-Gómez C, Abuín C, Varela V, Cueva J, Palacios P, Dávila-Ibáñez AB, Piñeiro R, Vilar A, Chantada-Vázquez MDP, López-López R, Costa C. Red Blood Cells Protein Profile Is Modified in Breast Cancer Patients. Mol Cell Proteomics 2022; 21:100435. [PMID: 36519745 PMCID: PMC9713370 DOI: 10.1016/j.mcpro.2022.100435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Metastasis is the primary cause of death for most breast cancer (BC) patients who succumb to the disease. During the hematogenous dissemination, circulating tumor cells interact with different blood components. Thus, there are microenvironmental and systemic processes contributing to cancer regulation. We have recently published that red blood cells (RBCs) that accompany circulating tumor cells have prognostic value in metastatic BC patients. RBC alterations are related to several diseases. Although the principal known role is gas transport, it has been recently assigned additional functions as regulatory cells on circulation. Hence, to explore their potential contribution to tumor progression, we characterized the proteomic composition of RBCs from 53 BC patients from stages I to III and IV, compared with 33 cancer-free controls. In this work, we observed that RBCs from BC patients showed a different proteomic profile compared to cancer-free controls and between different tumor stages. The differential proteins were mainly related to extracellular components, proteasome, and metabolism. Embryonic hemoglobins, not expected in adults' RBCs, were detected in BC patients. Besides, lysosome-associated membrane glycoprotein 2 emerge as a new RBCs marker with diagnostic and prognostic potential for metastatic BC patients. Seemingly, RBCs are acquiring modifications in their proteomic composition that probably represents the systemic cancer disease, conditioned by the tumor microenvironment.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Antonio Gómez-Tato
- CITMAga, University of Santiago de Compostela (Campus Vida), Santiago de Compostela, Spain
| | - Celso Yáñez-Gómez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Vanesa Varela
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Juan Cueva
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - María Del Pilar Chantada-Vázquez
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.
| |
Collapse
|
44
|
Moore A, Busch MP, Dziewulska K, Francis RO, Hod EA, Zimring JC, D’Alessandro A, Page GP. Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors. J Biol Chem 2022; 298:102706. [PMID: 36395887 PMCID: PMC9763692 DOI: 10.1016/j.jbc.2022.102706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs. We performed GWA analyses of 382 metabolites in 243 individuals imputed using the 1000 Genomes Project phase 3 all-ancestry reference panel. Analyses were conducted using ProbABEL and adjusted for sex, age, donation center, number of whole blood donations in the past 2 years, and first 10 principal components of ancestry. Our results identified 423 independent genetic loci associated with 132 metabolites (p < 5×10-8). Potentially novel locus-metabolite associations were identified for the region encoding heme transporter FLVCR1 and choline and for lysophosphatidylcholine acetyltransferase LPCAT3 and lysophosphatidylserine 16.0, 18.0, 18.1, and 18.2; these associations are supported by published rare disease and mouse studies. We also confirmed previous metabolite GWA results for associations, including N(6)-methyl-L-lysine and protein PYROXD2 and various carnitines and transporter SLC22A16. Association between pyruvate levels and G6PD polymorphisms was validated in an independent cohort and novel murine models of G6PD deficiency (African and Mediterranean variants). We demonstrate that it is possible to perform metabolomics-scale GWA analyses with a modest, trans-ancestry sample size.
Collapse
Affiliation(s)
- Amy Moore
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | | | - Karolina Dziewulska
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D’Alessandro
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| | - Grier P. Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| |
Collapse
|
45
|
D’Alessandro A. Editorial: Rising stars in red blood cell physiology: 2022. Front Physiol 2022; 13:1020144. [PMID: 36160846 PMCID: PMC9501848 DOI: 10.3389/fphys.2022.1020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
|
46
|
Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GES. Hemolytic anemia in COVID-19. Ann Hematol 2022; 101:1887-1895. [PMID: 35802164 PMCID: PMC9263052 DOI: 10.1007/s00277-022-04907-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 is a global pandemic triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 entry point involves the interaction with angiotensin-converting enzyme 2 (ACE2) receptor, CD147, and erythrocyte Band3 protein. Hemolytic anemia has been linked to COVID-19 through induction of autoimmune hemolytic anemia (AIHA) caused by the formation of autoantibodies (auto-Abs) or directly through CD147 or erythrocyte Band3 protein-mediated erythrocyte injury. Here, we aim to provide a comprehensive view of the potential mechanisms contributing to hemolytic anemia during the SARS-CoV-2 infection. Taken together, data discussed here highlight that SARS-CoV-2 infection may lead to hemolytic anemia directly through cytopathic injury or indirectly through induction of auto-Abs. Thus, as SARS-CoV-2-induced hemolytic anemia is increasingly associated with COVID-19, early detection and management of this condition may prevent the poor prognostic outcomes in COVID-19 patients. Moreover, since hemolytic exacerbations may occur upon medicines for COVID-19 treatment and anti-SARS-CoV-2 vaccination, continued monitoring for complications is also required. Given that, intelligent nanosystems offer tools for broad-spectrum testing and early diagnosis of the infection, even at point-of-care sites.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, M.B.Ch.B, FRCP, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, M.B.Ch.B, FRCP, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531 USA
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt
| |
Collapse
|
47
|
Nemkov T, Yoshida T, Nikulina M, D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022; 13:833242. [PMID: 35360223 PMCID: PMC8964052 DOI: 10.3389/fphys.2022.833242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity to make ~110 million units available for transfusion every year worldwide. However, storage in the blood bank is associated with a progressive metabolic decline, which correlates with the accumulation of morphological lesions, increased intra- and extra-vascular hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to storage, red blood cells are suspended in nutrient formulations known as additive solutions to prolong cellular viability. Despite a thorough expansion of knowledge regarding red blood cell biology over the past few decades, only a single new additive solution has been approved by the Food and Drug Administration this century, owing in part to the limited capacity for development of novel formulations. As a proof of principle, we leveraged a novel high-throughput metabolomics technology as a platform for rapid data-driven development and screening of novel additive solutions for blood storage under both normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates (containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations comparable to full size storage units) in the presence of an additive solution supplemented with six different compounds. To inform this data-driven strategy, we relied on previously identified metabolic markers of the RBC storage lesion that associates with measures of hemolysis and post-transfusion recovery, which are the FDA gold standards to predict stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading parameters. Direct quantitation of these predictors of RBC storage quality were used here-along with detailed pathway analysis of central energy and redox metabolism-as a decision-making tool to screen novel additive formulations in a multiplexed fashion. Candidate supplements are shown here that boost-specific pathways. These metabolic effects are only in part dependent on the SO2 storage conditions. Through this platform, we anticipate testing thousands of novel additives and combinations thereof in the upcoming months.
Collapse
Affiliation(s)
- Travis Nemkov
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angelo D’Alessandro
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
48
|
Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation. Blood Adv 2022; 6:3072-3089. [PMID: 35139174 PMCID: PMC9131905 DOI: 10.1182/bloodadvances.2021005975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Terminal maturation of primary murine primitive erythroid precursors is characterized by loss of organelles and anabolic components. Metabolic reprogramming includes depression of mitochondrial metabolism and upregulation of the pentose phosphate pathway and redox metabolism.
Primitive erythropoiesis is a critical component of the fetal cardiovascular network and is essential for the growth and survival of the mammalian embryo. The need to rapidly establish a functional cardiovascular system is met, in part, by the intravascular circulation of primitive erythroid precursors that mature as a single semisynchronous cohort. To better understand the processes that regulate erythroid precursor maturation, we analyzed the proteome, metabolome, and lipidome of primitive erythroblasts isolated from embryonic day (E) 10.5 and E12.5 of mouse gestation, representing their transition from basophilic erythroblast to orthochromatic erythroblast (OrthoE) stages of maturation. Previous transcriptional and biomechanical characterizations of these precursors have highlighted a transition toward the expression of protein elements characteristic of mature red blood cell structure and function. Our analysis confirmed a loss of organelle-specific protein components involved in messenger RNA processing, proteostasis, and metabolism. In parallel, we observed metabolic rewiring toward the pentose phosphate pathway, glycolysis, and the Rapoport-Luebering shunt. Activation of the pentose phosphate pathway in particular may have stemmed from increased expression of hemoglobin chains and band 3, which together control oxygen-dependent metabolic modulation. Increased expression of several antioxidant enzymes also indicated modification to redox homeostasis. In addition, accumulation of oxylipins and cholesteryl esters in primitive OrthoE cells was paralleled by increased transcript levels of the p53-regulated cholesterol transporter (ABCA1) and decreased transcript levels of cholesterol synthetic enzymes. The present study characterizes the extensive metabolic rewiring that occurs in primary embryonic erythroid precursors as they prepare to enucleate and continue circulating without internal organelles.
Collapse
|
49
|
Stephenson D, Nemkov T, Qadri SM, Sheffield WP, D’Alessandro A. Inductively-Coupled Plasma Mass Spectrometry-Novel Insights From an Old Technology Into Stressed Red Blood Cell Physiology. Front Physiol 2022; 13:828087. [PMID: 35197866 PMCID: PMC8859330 DOI: 10.3389/fphys.2022.828087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission. METHODS Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism. RESULTS All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements via ICP-MS and fluorescence-based approaches. Correlation analyses with metabolomics data showed a strong positive association between extracellular calcium and intracellular sodium or magnesium levels and intracellular glycolysis. Extracellular potassium or iron were positively correlated with free fatty acids (especially mono-, poly-, and highly-unsaturated or odd-chain fatty acid products of lipid peroxidation). Intracellular iron was instead positively correlated with saturated fatty acids (palmitate, stearate) and negatively with methionine metabolism (methionine, S-adenosylmethionine), phosphatidylserine exposure and glycolysis. CONCLUSION In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated via other omics platforms such as metabolomics.
Collapse
Affiliation(s)
- Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
50
|
McBurney MI, Tintle NL, Harris WS. Omega-3 index is directly associated with a healthy red blood cell distribution width. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102376. [PMID: 34839221 DOI: 10.1016/j.plefa.2021.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW are related with membrane fluidity and deformability. Our objective was to determine if there is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass index (BMI), age and sex were identified (n = 25,485) from a clinical laboratory dataset of > 45,000 individuals. RDW was inversely associated with O3I in both sexes before and after (both p < 0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a sex-O3I interaction with the RDW-O3I slope (p < 0.00066) being especially steep in females with O3I ≤ 5.6%. In healthy adults of both sexes, the data suggested that an O3I of > 5.6% may help maintain normal RBC structural and functional integrity.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States of America.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL 60612, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, United States of America
| |
Collapse
|