1
|
Apuli RP, Adler K, Barregård L, Dixelius C, Harari F, Hofvander P, Johansson E, Kuktaite R, Lan Y, Lilja T, Novakazi F, Rahmatov M, Söderström M, Bengtsson T. Review: Strategies for limiting dietary cadmium in cereals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112535. [PMID: 40312016 DOI: 10.1016/j.plantsci.2025.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Cadmium (Cd) is a toxic metal, which in some production areas reaches levels above allowed limits in cereals. Thus, reducing its concentration in cereals is crucial for mitigating health risks and complying with food safety regulations. This review evaluates strategies to reduce Cd accumulation in cereal grains by mitigating soil Cd contamination and its bioavailability to plants. It covers methods for Cd estimation in soil and explores biological, chemical, and genetic approaches to limit Cd uptake by crops. The effectiveness of these strategies depends on genetic factors, soil properties, and crop type. Key approaches include traditional breeding, genome editing, digital and predictive soil mapping, and silicon (Si) and selenium (Se) supplementation. Traditional breeding, enhanced by modern genetic tools, enables the development of high-yielding, low-Cd cultivars but is time-consuming. Genome editing, particularly CRISPR-Cas9, offers precise gene modifications to reduce Cd uptake but faces regulatory constraints. Digital and predictive soil mapping provide high-resolution maps for targeted interventions but require extensive calibration. Silicon supplementation is a promising approach, as it competes with Cd for uptake sites, and limits Cd translocation to edible plant parts. Additionally, Si enhances plant tolerance to abiotic stresses, making it a multifunctional solution. Selenium supplementation can also reduce Cd accumulation while offering health benefits. However, the effectiveness of both Si and Se vary with dosage and crop type. An integrated approach combining these strategies is essential for effective Cd reduction in cereals. Continued research, technological advancements, and supportive policies are crucial for ensuring safe and sustainable cereal production.
Collapse
Affiliation(s)
- Rami-Petteri Apuli
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Karl Adler
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Lars Barregård
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Florencia Harari
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Yuzhou Lan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Tua Lilja
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Fluturë Novakazi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden; Chair of Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Mats Söderström
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden.
| |
Collapse
|
2
|
Cao L, Jiang N, Li B, Deng J, Duan Y, Zu Y, Li Z. Characterization of Cd and As accumulation and subcellular distribution in different varieties of perennial ryegrasses. BMC PLANT BIOLOGY 2025; 25:508. [PMID: 40259279 PMCID: PMC12013065 DOI: 10.1186/s12870-025-06530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND The distribution, accumulation, and toxicological effects of two perennial ryegrass (Lolium perenne L.) varieties under combined cadmium (Cd)-arsenic (As) stress are worth exploring. Two varieties, 'Nicaragua' (high-Cd/As-accumulating, DPB) and 'Venus' (low-Cd/As-accumulating, WNS), were selected as experimental materials for pot trials. Subcellular fractionation, ultrastructural changes, and key transporter proteins cation exchanger (CAX), heavy metal ATPase (HMA), natural resistance-associated macrophage protein (NRAMP), and phosphate transporter (PHT) were analyzed under combined Cd-As stress. RESULTS (1) The translocation factors of perennial ryegrass for Cd and As were < 1. Cd and As were mainly distributed in the cell wall and the soluble fractions. The total percentage of Cd and As in the cell wall and the soluble fractions of DPB variety was 92.53 and 91.29%, respectively. (2) Cd and As stress on the cellular ultrastructure of two perennial ryegrasses resulted in plasmodesmata separation of leaf cells, swelling of chloroplasts, large numbers of osmiophilic granules, and thickening of root cell walls. Cell wall thickening was more pronounced in the low-accumulating variety. (3) The highest increase in HMA activity, which increased by 79.08% over the non-Cd/As treatment, was observed in the roots of DPB under Cd and As stress. Cd and As stress induced HMA activity (P < 0.01) in the highly accumulating variety DPB, and positively promoted Cd translocation and storage in the soluble fraction (vacuole). CONCLUSIONS Low Cd accumulation variety mainly resisted heavy metal through bound more Cd and As to cell wall resulting in cell wall thicken. High-Cd accumulation variety DPB stored Cd and As in the soluble fraction (vacuole ), and enhanced activity of the transporter protein HMA. This study elucidates the relationship and role of key transporter proteins of high/low accumulating perennial ryegrass with cellular Cd/As detoxification modes such as cell wall barrier defence and vesicle compartmentalisation, and provides a theoretical basis for differential detoxification strategies for species with different accumulating characteristics.
Collapse
Affiliation(s)
- Li Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Na Jiang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Jiangdi Deng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Yumo Duan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China.
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, PR China.
| |
Collapse
|
3
|
Zhang H, Liu Z, Li X, Liu X, Fang L, Zeng R, Wang Q, Song Y, Chen D. Jasmonic Acid Enhances Rice Cadmium Tolerance by Suppressing Cadmium Uptake and Translocation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1068. [PMID: 40219136 PMCID: PMC11991435 DOI: 10.3390/plants14071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Worldwide, cadmium (Cd) contamination severely threatens rice production and public health. Jasmonic acid (JA) is recognized to be involved in rice Cd stress responses, but the underlying mechanism remains unclear. In this study, we show that JA positively regulates Cd tolerance in rice by repressing Cd uptake and root-to-shoot translocation. Cd exposure rapidly elevated the endogenous JA in rice roots, which was associated with increased expression of JA synthesis and JA-responsive genes. Moreover, silencing the expression of either allene oxide synthase (OsAOS; active in JA biosynthesis) or CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) resulted in aggravated Cd toxicity and increased Cd accumulation in both the roots and shoots, as well as increased translocation from the root to the shoots. A short-term uptake experiment revealed that silencing of OsAOS and OsCOI1 enhanced root Cd uptake ability. Furthermore, the elevated transcript levels of genes for Cd uptake (OsNramp5, OsNramp1, and OsIRT1) and root-to-shoot translocation (OsHMA2) were observed in OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants. Taken together, our findings suggest that JA enhances rice cadmium tolerance by suppressing Cd uptake and translocation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengkai Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shandong Branch of Sinochem Agriculture Holdings, Zibo 256304, China
| | - Xiaodong Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linzhi Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Z.L.); (X.L.); (X.L.); (L.F.); (R.Z.)
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Shree B, Kumari S, Singh S, Rani I, Dhanda A, Chauhan R. Exploring various types of biomass as adsorbents for heavy metal remediation: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:406. [PMID: 40095183 DOI: 10.1007/s10661-025-13826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
The intensifying problem of heavy metal contamination in water sources has led to the need for efficient and sustainable remediation technologies. Biomass-based adsorbents have emerged as a promising solution due to their cost-effectiveness, renewability, and environmental advantages. This review thoroughly analyzes recent advancements in biomass-based adsorbents for heavy metal remediation. It evaluates different types of biomass materials, such as agricultural residues, forestry by-products, and aquatic plants, highlighting their adsorptive capacities, modification techniques, and operational efficiencies. The review also explores the mechanisms of metal uptake, such as ion exchange, adsorption, and complexation, and discusses the performance of different biomass adsorbents. Furthermore, it highlights the key challenges and limitations associated with biomass-based adsorbents, such as regeneration issues, stability concerns, and scalability. By consolidating current research and technological developments, this review aims to offer insights into optimizing biomass-based adsorbents for practical applications and outlining future research directions in heavy metal remediation.
Collapse
Affiliation(s)
- Bhagya Shree
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Sachin Kumari
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Sushila Singh
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Indu Rani
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Ankush Dhanda
- Department of Soil Sciences, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Reena Chauhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
5
|
Shahzad M, Bibi A, Khan A, Shahzad A, Xu Z, Maruza TM, Zhang G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:707. [PMID: 40094627 PMCID: PMC11901666 DOI: 10.3390/plants14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The presence of cadmium (Cd) in agricultural soils poses a serious risk to crop growth and food safety. Cadmium uptake and transport in plants occur through the various transporters of nutrient ions that have similar physical and chemical properties to Cd, indicating that the genetic manipulation of these transporters and agronomic improvement in the Cd-antagonistic nutrients could be a good approach for reducing Cd uptake and accumulation in crops. In this review, we discuss the interactions between Cd and some micronutrients, including zinc (Zn) and manganese (Mn), focusing on their influence on the expression of genes encoding Cd-related transporters, including ZIP7, NRAMP3, and NRAMP4. Genetic improvements in enhancing the specificity and efficiency of transporters and agronomic improvements in optimizing micronutrient nutrition can inhibit the Cd uptake and transport by these transporters. This comprehensive review provides a deep insight into genetic and agronomic improvement for fighting against Cd contamination and enhancing sustainable agricultural production.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ayesha Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ali Shahzad
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhengyuan Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Tagarika Munyaradzi Maruza
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 PMCID: PMC11814136 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
7
|
Cai X, Yue Y, Wang Y, Zhang L, Jiang M, Yu X, Sun L, Huang Z, Guo B, Zhang D, Li X. Mowing facilitated Pb accumulation in bermudagrass by mediating root radial transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109443. [PMID: 39731980 DOI: 10.1016/j.plaphy.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Moderate mowing of the shoot is an effective strategy for improving Pb-contaminated soil remediation using bermudagrass. However, the mechanisms by which mowing facilitates Pb uptake and accumulation remain insufficiently understood. Root radial transport is critical in efficient heavy metal uptake and translocation in plants and is influenced by root physiological-biochemical characteristics. Herein, radial transport in roots and its effect on root-shoot Pb transport in bermudagrass under mowing were explored. Results revealed that mowing decreased Pb in apoplasts and increased Pb in symplasts, altering Pb radial transport pathways in roots. In the apoplastic pathway, mowing pretreatment intensified the inhibitory effects of a transpiration inhibitor on Pb uptake, resulting in a reduced contribution of the apoplastic pathway. Mowing induced lateral root endodermis thickening, early suberin lamellar development and increased suberin deposition, effectively preventing Pb from entering the stele through the apoplastic pathway. Conversely, in the symplastic pathway, mowing pretreatment alleviated the inhibitory effects of a metabolic inhibitor and ion channel inhibitor on Pb uptake and significantly increased net Pb2+influx in lateral root tips, thereby promoting the symplastic pathway. Furthermore, mowing upregulated the relative expression of CdNramp5 and CdHMA2 in roots, increasing Pb translocation to the shoot via the symplastic pathway. Overall, our study provided novel evidence mowing primarily improved Pb uptake and root-to-shoot transport by increasing the efficiency of the symplastic pathway. These findings provide a theoretical foundation for the use of mowing to improve the efficacy of bermudagrass in the remediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yongjun Yue
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Yike Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liyin Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Donglin Zhang
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Wei T, Li H, Wang Y, Chi M, Guo J, Jia H, Zhang C. Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: Performance and mechanisms. J Biotechnol 2025; 398:133-145. [PMID: 39724943 DOI: 10.1016/j.jbiotec.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15 % and 36.39 %, which paralleled with less Cd2 + influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuyao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ming Chi
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300192, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
9
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
10
|
Chen X, Zhang Y, Cheng Y, Yu W, Yang L, Shu P, Zhou J, Fayyaz P, Luo Z, Deng S, Shi W. PcWRKY1 Represses Transcription of Yellow Stripe-Like 3 (PcYSL3) to Negatively Regulate Radial Cadmium Transport in Poplar Stems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405492. [PMID: 39527694 PMCID: PMC11714223 DOI: 10.1002/advs.202405492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
A considerable amount of cadmium (Cd) can accumulate in the bark of poplar stems, but the Cd transport pathway and its underlying molecular mechanisms remain unknown. Here, a Cd radial transport pathway in poplar stems and a previously unrecognized PcWRKY1-Yellow Stripe-Like 3 (PcYSL3) module that regulates Cd transport are identified in Populus × canescens (Aiton) Sm. Cadmiun-nicotianamine (Cd-NA) in xylem vessels in poplar stem-wood is unloaded to adjacent ray parenchyma cells and further radially transported to bark-phloem. PcYSL3 is putatively identified as involved in Cd radial transport in poplar stems. PcYSL3 is highly expressed in ray parenchyma cells adjacent to xylem vessels and the encoded protein localizes on the plasma membrane. Cd accumulation is greater in the wood and bark of PcYSL3-overexpressing poplars than the wild type, whereas the opposite is observed in PcYSL3-knockdown plants. PcWRKY1 can bind to the PcYSL3 promoter sequence and represses its expression. PcWRKY1 inhibits Cd accumulation in the wood and bark of plants. Thus, PcWRKY1 suppresses PcYSL3 transcription to negatively regulate Cd-NA unloading from xylem vessels to adjacent ray parenchyma cells and its radial transport in poplar stem. The findings have provided new insights into breeding of poplars for more effective remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Lingyu Yang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Peiqi Shu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Payam Fayyaz
- Forest, Range and Watershed Management DepartmentAgriculture and Natural Resources FacultyYasouj UniversityYasuj75919 63179Iran
| | - Zhi‐Bin Luo
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijing100091P. R. China
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River DeltaDongyingShandong257000P. R. China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| |
Collapse
|
11
|
Wang X, Qiu G, Yang J. Improving Ni 2+ Tolerance of Arabidopsis by Overexpressing Bacterial rcnA Gene Encoding a Membrane-Bound Exporter of Ni 2. Int J Mol Sci 2024; 26:227. [PMID: 39796083 PMCID: PMC11719643 DOI: 10.3390/ijms26010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, rcnA from Escherichia coli encoding an exporter of Ni and cobalt was overexpressed constitutively in Arabidopsis thaliana, and the performance of transgenic plants was assayed under Ni stress. The subcellular localization of rcnA in plant cells was found to be the plasma membrane. Constitutive overexpression of rcnA in Arabidopsis rendered better growth of either seedlings on agar medium containing 85, 100, and 120 μM NiCl2 or adult plants in a nutrient solution with 5 mM NiCl2 added. Compared to the wildtype, rcnA-OE transgenic plants under Ni stress accumulated lower levels of reactive oxygen species (i.e., superoxide and hydrogen peroxide) in leaves and exhibited less oxidative damage in shoots, as demonstrated by less electrolyte leakage and the lower malondialdehyde content. Notably, rcnA-OE transgenic plants retained a higher content of Ni in roots and had a lower content of Ni in shoots. Therefore, our findings indicated that the bacterial rcnA gene may be utilized to improve plant Ni tolerance through genetic transformation.
Collapse
Affiliation(s)
| | | | - Jiading Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (X.W.); (G.Q.)
| |
Collapse
|
12
|
Liao W, Huang Y, Zhong S, Zhang L, Yu K, Yu S, Su P, Jin C, Yang L, Li F. Cadmium uptake and transport in vegetables near a zinc-lead mine: Novel insights from Cd isotope fractionation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136451. [PMID: 39531822 DOI: 10.1016/j.jhazmat.2024.136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this study, Cd isotope analysis was conducted on drought-tolerant (cowpea and sesame) and less drought-tolerant vegetables (water spinach, green pepper, and mung bean) to elucidate the mechanisms underlying Cd uptake and transport. Cd isotopes in plants were identical to or lighter than those in the available pool and exhibited negative fractionation from roots to straws (Δ114/110Cd = -0.22 ‰ to -0.17 ‰) in drought-tolerant vegetables, whereas contrasting results were obtained for less drought-tolerant vegetables (Δ114/110Cd = -0.050 ‰ to 0.39 ‰). Positive Cd isotope fractionation from straws to fruits in drought-tolerant vegetables (Δ114/110Cd = 0.33 ‰ ± 0.03 ‰ and 0.10 ‰ ± 0.03 ‰, respectively) was observed, whereas negligible or negative fractionation was found in less drought-tolerant vegetables (Δ114/110Cd = 0.01 ‰ ± 0.04 ‰ and -0.34 ‰ ± 0.02 ‰, respectively). The vast secretion of organic acids might have led to positive available pool-to-roots and negative roots-to-straws isotope fractionation in drought-tolerant vegetables. In contrast, preferential xylem transport resulted in negative straws-to-fruits isotope fractionation in less drought-tolerant vegetables. This study demonstrated that Cd isotope fractionation in the soil-plant system is associated with plant drought tolerance, and drought-tolerant and less-tolerant plants developed a distinct Cd detoxification mechanism, corresponding to a reversed fractionation of Cd isotopes.
Collapse
Affiliation(s)
- Wen Liao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou 510515, Guangdong, PR China
| | - Yuanying Huang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Songxiong Zhong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China.
| | - Longlong Zhang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shan Yu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Pengji Su
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Chao Jin
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Lei Yang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| |
Collapse
|
13
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
14
|
Liu Y, Wang Z, Tang W, Wang X, Dong Q, Liu G, Guo Y, Liang Y, Ding X, Yin Y, Cai Y, Jiang G. Water-extractable metals as indicators of wheat metal accumulation: Insights from Cd, Pb, Mn, Cu, and Zn. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135745. [PMID: 39244988 DOI: 10.1016/j.jhazmat.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
There is a long-standing debate over the effectiveness of chemical extraction methods in assessing soil metal phytoavailability. This study addresses the limitations of widely-used chemical extraction methods and presents the water-extractable pool as a more reliable indicator based on wheat pot experiments using homogenized agricultural soil amended with lime materials, phosphate, and biochar. Over 120 days' pot experiments, Cd accumulation in whole wheat plants and tissues exhibited positive relationships with water-extractable Cd concentrations at heading and maturity stage (Spearman's rho: 0.521-0.851; P < 0.05), revealing that the water-extractable pool instead of other pools better indicates wheat metal accumulation. Water-extractable metal concentrations are effective in assessing phytoavailability of metals primarily in ionic forms in soil solution (e.g, Zn, Cd), but less reliable for metals strongly complexed with dissolved organic matter (DOM) or sensitive to redox conditions. It demonstrated that water-extractable metal concentrations and chemical forms are key factors, fundamentally determined by metal properties and impacted by environmental factors. This study clarifies a more direct link between chemical extraction and plant metal uptake mechanisms. Given the extensive application of chemical extraction methods over several decades, this study will help advance soil metal risk assessment and remediation practices.
Collapse
Affiliation(s)
- Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zidi Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenyao Tang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xinying Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qiang Dong
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
15
|
Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant Growth Regulators: An Overview of WOX Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:3108. [PMID: 39520025 PMCID: PMC11548557 DOI: 10.3390/plants13213108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The adaptation of plants to land requires sophisticated biological processes and signaling. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signaling pathways in plants during stress and growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are TFs that are part of the homeodomain (HD) family, which is important for the maintenance of apical meristem, stem cell niche, and other cellular processes. The WOX gene family is divided into three clades: ancient, intermediate, and modern (WUS) based on historical evolution linkage. The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. Numerous research studies have discovered that the WOX gene family play a role in the whole plant's growth and development, such as in the stem, embryo, root, flower, and leaf. This review comprehensively analyzes roles of the WOX gene family across various plant species, highlighting the evolutionary significance and potential biotechnological applications in stress resistance and crop improvement.
Collapse
Affiliation(s)
- Haroon Rasheed
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Chichi Winarsih
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Haping Road 105, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| |
Collapse
|
16
|
Nazir MM, Li G, Nawaz M, Noman M, Zulfiqar F, Ahmed T, Jalil S, Ijaz M, Kuzyakov Y, Du D. Ionic and nano calcium to reduce cadmium and arsenic toxicity in plants: Review of mechanisms and potentials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109169. [PMID: 39369650 DOI: 10.1016/j.plaphy.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Contamination of agricultural soils with heavy metal(loid)s like arsenic (As) and cadmium (Cd) is an ever increasing concern for crop production, quality, and global food security. Numerous in-situ and ex-situ remediation approaches have been developed to reduce As and Cd contamination in soils. However, field-scale applications of conventional remediation techniques are limited due to the associated environmental risks, low efficacy, and large capital investments. Recently, calcium (Ca) and Ca-based nano-formulations have emerged as promising solutions with the large potential to mitigate As and Cd toxicity in soil for plants. This review provides comprehensive insights into the phytotoxic effects of As and Cd stress/toxicity and discusses the applications of Ca-based ionic and nano-agrochemicals to alleviate As and Cd toxicity in important crops such as rice, wheat, maize, and barley. Further, various molecular and physiological mechanisms induced by ionic and nano Ca to mitigate As and Cd stress/toxicity in plants are discussed. This review also critically analyzes the efficiency of these emerging Ca-based approaches, both ionic and nano-formulations, in mitigating As and Cd toxicity in comparison to conventional remediation techniques. Additionally, future perspectives and ecological concerns of the remediation approaches encompassing ionic and nano Ca have been discussed. Overall, the review provides an updated and in-depth knowledge for developing sustainable and effective strategies to address the challenges posed by As and Cd contamination in agricultural crops.
Collapse
Affiliation(s)
- Muhammad Mudassir Nazir
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mohsin Nawaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Arts and Sciences, Gulf University for Science and Technology, Kuwait
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Sanaullah Jalil
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Wang X, Gao G, Hu R, Hu L, Zhang B, Liu Z, Zou Y, Xu K, Wu D. Influence of nitrogen speciation on Cd-induced toxicity in Landoltia punctata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2127-2136. [PMID: 39016306 DOI: 10.1080/15226514.2024.2377225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nitrogen (N) plays an important role in plant growth and developmental metabolic processes, research on nitrogen speciation regulating Cd accumulation in duckweed is still limited. In this study, the effects of three nitrogen sources (NH4Cl, Ca(NO3)2 and NH4NO3) on the growth, Cd accumulation, and photosynthetic parameters of Landoltia punctata (L. punctata) were analyzed. The results showed that Cd enrichment in L. punctata was significantly reduced (p < 0.05) with different nitrogen treatments compared to the control (CK). Ammonium nitrogen (NH4-N) is more conducive to the accumulation of Cd in L. punctata than nitrate nitrogen (NO3-N). The sum of the cell wall components and soluble components of Cd in the NH4-N treatment group was greater than that in the NO3-N treatment group. The proportion of FNaCl extracts in the NH4-N treatment group was greater than in the NO3-N treatment group. NO3-N led to a greater reduction in photosynthetic pigment content than NH4-N. Overall, applying different forms of nitrogen can alleviate Cd toxicity in L. punctata, and the detoxification effect of the NH4-N treatment is stronger than that of NO3-N treatment. This study will provide theoretical and practical support for the application of duckweed in Cd phytoremediation even in eutrophic aquatic environments.
Collapse
Affiliation(s)
- Xianglian Wang
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Guiqing Gao
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Ruikang Hu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Liang Hu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Zhanmeng Liu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Yilong Zou
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Kaiwen Xu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| |
Collapse
|
18
|
Yan Q, Lin S, Wei F, Wang D, Tu C, Deng T, Yang Y, Liang G. Different stoichiometric ratios of Ca and Cd affect the Cd tolerance of Capsicum annuum L. by regulating the subcellular distribution and chemical forms of Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117089. [PMID: 39332204 DOI: 10.1016/j.ecoenv.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The effect of calcium (Ca)-cadmium (Cd) interactions on the plant Cd bioaccumulation process may be closely related to the ecological Ca/Cd stoichiometry in the substrate. However, owing to the complexity of plant absorption, accumulation mechanisms and influencing factors, the mechanism of Ca-mediated Cd bioaccumulation and Cd tolerance in Capsicum is still unclear. In this study, the bioaccumulation, subcellular distribution and chemical forms of Cd in Capsicum were analysed via pot experiments to reveal the Ca-mediated Cd bioaccumulation process and its detoxification mechanism under different Ca/Cd stoichiometric ratios. The results revealed that an increase in the substrate Ca/Cd ratio promoted the accumulation of Cd in the roots; restricted the transport of Cd to the stems, leaves and peppers; and promoted the accumulation of Cd in the aboveground leaves but decreased its accumulation in edible parts. Cd was enriched mainly in the cell wall and cell-soluble fraction in each tissue and was enriched in only 1 %-13 % of the organelles. The accumulation of Cd in the cell wall and cell-soluble fractions of roots treated with different Ca concentrations increased by 56.57 %-236.98 % and 64.41 %-442.14 %, respectively. The carboxyl, hydroxyl and amino groups on the root cell wall play important roles in binding and fixing Cd2+. Moreover, the increase in the Ca content also increased the proportion of pectin and protein-bound Cd (F-NaCl), insoluble phosphate-bound Cd (F-C) and insoluble oxalate-bound Cd (F-HCl) in the roots, stems and leaves and reduced the proportion of highly active chemical forms such as inorganic acid salt-bound Cd (F-E) and water-soluble phosphate-bound Cd (F-W). Our study revealed that the bioaccumulation of Cd in Capsicum was influenced by the Ca/Cd ratio and that Ca could alleviate Cd stress by regulating the subcellular distribution and chemical form ratio of Cd in different tissues where the cell wall plays an important role in Cd tolerance and detoxification.
Collapse
Affiliation(s)
- Qiuxiao Yan
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Shaoxia Lin
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Fuxiao Wei
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Daoping Wang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China.
| | - Chenglong Tu
- Toxicity Testing Center of Guizhou Medical University, Guiyang, China.
| | - Tingfei Deng
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yin Yang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Guangyan Liang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
19
|
Oliveira TJM, Nascimento VR, Figueiredo ELP, Monteiro LRM, Barros LTC, Nogueira GAS, Freitas JMN, Barbosa AVC, Nascimento ME, Oliveira Neto CF. Phytoremediation potential of Brazilian mahogany (Swietenia macrophylla King) on exposure to nickel: anatomical, biochemical and antioxidant responses. BRAZ J BIOL 2024; 84:e281527. [PMID: 39417436 DOI: 10.1590/1519-6984.281527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/18/2024] [Indexed: 10/19/2024] Open
Abstract
The advancement and intensification of industrial and mining activities has generated a series of impacts on natural ecosystems, combined with the inappropriate use of agrochemicals and the erroneous disposal of electronic products, contributing to soil contamination with a diversity of chemical elements, including heavy metals. Due to this, this work aimed to evaluate the effect of increasing dosages of nickel on the anatomy, biochemistry and oxidative system of Brazilian mahogany (Swietenia macrophylla), a forest species from the Amazon, seeking to indicate the potential use of this species in phytoremediation programs. of soils contaminated with heavy metals. The seeds were grown under a constant temperature of 28°C, relative humidity (RH) of 90% with a 12-hour photoperiod for 43 days. The experimental design used was randomized blocks (DBC), with five treatments (0, 2, 4, 6 and 8 mg.L-1 of Nickel), with six replications. Data were subjected to analysis of variance (ANOVA) and means were tested for significant differences using the Tukey test at 5% significance. Changes in the anatomy of the different organs were observed, with differences in the cells in the central region of the leaf, the stem and the root. The concentration of total carbohydrates had no statistical differences with the application of nickel, however changes were observed in photosynthetic pigments, reducing sugars and sucrose as an adaptive form to nickel. The increase in nickel dosages was accompanied by the synthesis of ammonium, amino acids and proline in the root, while the synthesis of glycine was reduced. In the leaf, there was an increase in amino acids with an increase in metal, accompanied by a decrease in glycine. The plant antioxidant defense system was efficient in attenuating the toxic effects of ROS, with significant actions of CAT and SOD enzymes in the root, while the leaf had the main action of APX and CAT. The cultivation of mahogany plants can be advocated to mitigate Ni pollution in these areas, as this forest species has a particular characteristic of resistance to stressful conditions in contact with the heavy metal.
Collapse
Affiliation(s)
- T J M Oliveira
- Universidade de São Paulo - USP, Escola Superior de Agricultura Luiz de Queiroz - ESALQ, Departamento de Produção Vegetal, Laboratório de Genética e Pós-Colheita, Piracicaba, SP, Brasil
| | - V R Nascimento
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - E L P Figueiredo
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - L R M Monteiro
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - L T C Barros
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - G A S Nogueira
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - J M N Freitas
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - A V C Barbosa
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - M E Nascimento
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - C F Oliveira Neto
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| |
Collapse
|
20
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
21
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
22
|
Zhao Y, Yang J, Jiang F, Zhao G. Hydrogen Peroxide Is Involved in Methane-Alleviated Cadmium Toxicity in Alfalfa ( Medicago sativa L.) Seedlings by Enhancing Cadmium Chelation onto Root Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:2639. [PMID: 39339613 PMCID: PMC11435170 DOI: 10.3390/plants13182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Although previous studies have demonstrated that methane (CH4) can mitigate the toxicity of cadmium (Cd) in alfalfa seedlings, the CH4-rich water used in these studies may create hypoxic conditions, potentially influencing the experimental outcomes. Therefore, this study aimed to investigate whether CH4 can reduce Cd toxicity in alfalfa seedlings without the interference of hypoxia and to analyze its underlying mechanisms. Here, it was observed that supplementing oxygen with saturated CH4-rich water can significantly alleviate the inhibition of 75 μM CdCl2 on the growth of alfalfa (Medicago sativa L.) seedlings. Less Cd accumulation was also observed in both root and shoot parts, which could be explained by the CH4-altered cell wall components in alfalfa seedling roots, including covalent and ionic soluble pectin, and the degree of demethylation in pectin, thus enabling a higher proportion of Cd binding to the cell walls and reducing the entry of Cd into the cells. The above actions of CH4 were accompanied by an increase in hydrogen peroxide (H2O2) content and NADPH oxidase activity, which could be blocked by the addition of the NADPH oxidase inhibitor diphenylene iodonium (DPI). Taken together, these results implied that exogenously applied CH4 could alleviate Cd toxicity in alfalfa seedlings by enhancing Cd chelation onto the root cell walls, which might be closely associated with NADPH oxidase-dependent H2O2 signals. These findings could provide insight into the mechanism through which CH4 alleviates Cd toxicity in alfalfa plants.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Jie Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Feiyan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Gan Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| |
Collapse
|
23
|
Huang Z, Gao J, Zhao G, He J, Mao Y, Kang H, Song Z. Uptake and transport mechanisms for cadmium by Myriophyllum aquaticum in a constructed wetland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116846. [PMID: 39116693 DOI: 10.1016/j.ecoenv.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Myriophyllum aquaticum (M. aquaticum), as a Cd-highly enriched and tolerant species, has greater application in phytoremediation of Cd-polluted waters. Mechanisms of Cd uptake and transport of M. aquaticum were comprehensively investigated in this work. Transport direction of Cd was observed both from the roots to the aboveground and vice versa. The aboveground can be harvested during vigorous growth and flowering periods, further improving the efficient phytoremediation of Cd-polluted wastewater. Moreover, analysis of transpiration inhibition, low-temperature treatment and metabolic inhibition indicated that the uptake and transport of Cd by M. aquaticum can be achieved via the coexistence of the free diffusion-dominated apoplast pathway dominated by transpiration and the "cellular pathway" dominated by active absorption, with the active energy-demanding cellular pathway playing a dominant role. The obtained results have important implications in the in-depth exploration of uptake, transport and distribution mechanisms of heavy metals during phytoremediation of aquatic plants.
Collapse
Affiliation(s)
- Zhenzhen Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Geran Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jie He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yanli Mao
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Haiyan Kang
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
24
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Hassan H, Elaksher SH, Shabala S, Ouyang B. Cadmium uptake and detoxification in tomato plants: Revealing promising targets for genetic improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108968. [PMID: 39074436 DOI: 10.1016/j.plaphy.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.
Collapse
Affiliation(s)
- Heba Hassan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China; Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Salma Hassan Elaksher
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Qalyubia, Egypt.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
27
|
Umair Hassan M, Huang G, Haider FU, Khan TA, Noor MA, Luo F, Zhou Q, Yang B, Ul Haq MI, Iqbal MM. Application of Zinc Oxide Nanoparticles to Mitigate Cadmium Toxicity: Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:1706. [PMID: 38931138 PMCID: PMC11207998 DOI: 10.3390/plants13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical fertilizers. Nanoparticles (NPs) have emerged as a novel strategy to alleviate Cd toxicity. Zinc oxide nanoparticles (ZnO-NPs) have become the most important NPs used to mitigate the toxicity of abiotic stresses and improve crop productivity. The plants quickly absorb Cd, which subsequently disrupts plant physiological and biochemical processes and increases the production of reactive oxygen species (ROS), which causes the oxidation of cellular structures and significant growth losses. Besides this, Cd toxicity also disrupts leaf osmotic pressure, nutrient uptake, membrane stability, chlorophyll synthesis, and enzyme activities, leading to a serious reduction in growth and biomass productivity. Though plants possess an excellent defense mechanism to counteract Cd toxicity, this is not enough to counter higher concentrations of Cd toxicity. Applying Zn-NPs has proven to have significant potential in mitigating the toxic effects of Cd. ZnO-NPs improve chlorophyll synthesis, photosynthetic efficiency, membrane stability, nutrient uptake, and gene expression, which can help to counter toxic effects of Cd stress. Additionally, ZnO-NPs also help to reduce Cd absorption and accumulation in plants, and the complex relationship between ZnO-NPs, osmolytes, hormones, and secondary metabolites plays an important role in Cd tolerance. Thus, this review concentrates on exploring the diverse mechanisms by which ZnO nanoparticles can alleviate Cd toxicity in plants. In the end, this review has identified various research gaps that need addressing to ensure the promising future of ZnO-NPs in mitigating Cd toxicity. The findings of this review contribute to gaining a deeper understanding of the role of ZnO-NPs in combating Cd toxicity to promote safer and sustainable crop production by remediating Cd-polluted soils. This also allows for the development of eco-friendly approaches to remediate Cd-polluted soils to improve soil fertility and environmental quality.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Tahir Abbas Khan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Mehmood Ali Noor
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Fang Luo
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Muhammad Mahmood Iqbal
- Agronomy (Forage Production) Section, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| |
Collapse
|
28
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
29
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
30
|
Lu L, Chen X, Chen J, Zhang Z, Zhang Z, Sun Y, Wang Y, Xie S, Ma Y, Song Y, Zeng R. MicroRNA-encoded regulatory peptides modulate cadmium tolerance and accumulation in rice. PLANT, CELL & ENVIRONMENT 2024; 47:1452-1470. [PMID: 38233741 DOI: 10.1111/pce.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaming Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siwen Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinuo Ma
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Shi B, Yang R, Tian W, Lu M, Wang X. Factors influencing cadmium accumulation in plants after inoculation with rhizobacteria: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170277. [PMID: 38266722 DOI: 10.1016/j.scitotenv.2024.170277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Rhizobacteria have the potential to enhance phytoremediation by generating substances that stimulate plant development and influence the effectiveness of cadmium (Cd) remediation by adjusting Cd availability via metal solubilization. Furthermore, rhizobacterial inoculation affects plants' metal tolerance and uptake by controlling the expression of several metal transporters, channels, and metal chelator genes. A meta-analysis was conducted to quantitatively assess the effects of rhizobacteria on Cd accumulation in plants using 207 individual observations from 47 articles. This meta-analysis showed an average Cd concentration increase of 8.09 % in plant cells under rhizobacteria treatment. The effects of different plant-microbial interactions on the bioaccumulation of Cd in plants varied. Selecting the proper rhizobacteria-plant association is essential to affect Cd buildup in plant roots and shoots. A more extended planting period (>30 days) and a suitable soil pH (<6, 7-8) would aid in the phytoextraction of Cd from the soil. This study comprehensively and quantitatively investigated the effects of plants, rhizobacteria, soil pH, planting period, experimental sites, and plant organs on plant Cd accumulation. According to the analysis of explanatory factors, plant species, planting period, soil pH, and rhizobacteria species have a more decisive influence on Cd accumulation than other factors. The results provide information for future research on the successful remediation of soils contaminated with Cd. More investigations are required to elucidate the intricate interactions between plant roots and microorganisms.
Collapse
Affiliation(s)
- Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China.
| | - Ruixian Yang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Wenjie Tian
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Mingmei Lu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xiaoqing Wang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| |
Collapse
|
32
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
33
|
Saleem MH, Parveen A, Perveen S, Akhtar N, Abasi F, Ehsan M, Ali H, Okla MK, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Fahad S. Alleviation of cadmium toxicity in pea (Pisum sativum L.) through Zn-Lys supplementation and its effects on growth and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10594-10608. [PMID: 38198090 DOI: 10.1007/s11356-024-31874-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 μM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Abida Parveen
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shagufta Perveen
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Naheed Akhtar
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Yasmeen A Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
34
|
Liao Q, Fu H, Shen C, Huang Y, Huang B, Hu C, Xiong X, Huang Y, Xin J. Physiological and biochemical characteristics of high and low Cd accumulating Brassica napus genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11873-11885. [PMID: 38224442 DOI: 10.1007/s11356-024-31942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Phytoremediation is a widely used and cost-effective technique for in situ remediation of heavy metals. Brassica napus L. genotype with high Cd accumulation and strong Cd tolerance is an ideal candidate for phytoremediation. In this study, a hydroponic experiment was conducted to select a Brassica napus genotype with either high or low Cd accumulation from a panel of 55 genotypes. The physiological mechanisms governing Cd accumulation and Cd tolerance were then explored. BN400 and BN147 were identified as the high and low Cd accumulating genotypes, respectively. Additionally, BN400 exhibited greater tolerance to Cd stress compared to BN147. Root morphology analysis revealed that BN400 exhibited longer root length, smaller root surface area and root volume, and less root tips but bigger root diameter than BN147. Subcellular Cd distribution showed that the Cd concentrations in the cell wall and vacuole in shoot were significantly higher in BN400 than in BN147, whereas the opposite trend was observed in the roots.. Pectate/protein-integrated Cd was found to be the predominant form of Cd in both shoots and roots, with significantly higher levels in BN400 compared to BN147 in the shoot, but the opposite trend was observed in the roots. These results suggest that the long fine roots play a role in Cd accumulation. The high Cd accumulating genotype was able to retain Cd in leaf cell walls and vacuoles, and Cd was mainly present in the form of pectate/protein-integrated Cd, which contributes to its strong Cd tolerance. These findings have important implications for the screening and breeding of Brassica napus genotypes with high Cd accumulation for phytoremediation purposes.
Collapse
Affiliation(s)
- Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Huilin Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Chongyang Hu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Xiaokang Xiong
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Yuxi Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China.
| |
Collapse
|
35
|
Ali S, Bai Y, Zhang J, Zada S, Khan N, Hu Z, Tang Y. Discovering Nature's shield: Metabolomic insights into green zinc oxide nanoparticles Safeguarding Brassica parachinensis L. from cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108126. [PMID: 38147709 DOI: 10.1016/j.plaphy.2023.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/06/2023] [Accepted: 10/19/2023] [Indexed: 12/28/2023]
Abstract
Heavy metal cadmium (Cd) hinders plants' growth and productivity by causing different morphological and physiological changes. Nanoparticles (NPs) are promising for raising plant yield and reducing Cd toxicity. Nonetheless, the fundamental mechanism of nanoparticle-interfered Cd toxicity in Brassica parachineses L. remains unknown. A novel ZnO nanoparticle (ZnO-NPs) was synthesized using a microalgae strain (Chlorella pyrenoidosa) through a green process and characterized by different standard parameters through TEM, EDX, and XRD. This study examines the effect of different concentrations of ZnO-NPs (50 and 100 mgL-1) in B. parachineses L. under Cd stress through ultra-high-performance liquid chromatography/high-resolution mass spectrometry-based untargeted metabolomics profiling. In the presence of Cd toxicity, foliar spraying with ZnO-NPs raised Cu, Fe, Zn, and Mg levels in the roots and/or leaves, improved seedling development, as demonstrated by increased plant height, root length, and shoot and root fresh weight. Furthermore, the ZnO-NPs significantly enhanced the photosynthetic pigments and changed the antioxidant activities of the Cd-treated plants. Based on a metabolomics analysis, 481 untargeted metabolites were accumulated in leaves under normal and Cd-stressed conditions. These metabolites were highly enriched in producing organic acids, amino acids, glycosides, flavonoids, nucleic acids, and vitamin biosynthesis. Surprisingly, ZnO-NPs restored approximately 60% of Cd stress metabolites to normal leaf levels. Our findings suggest that green synthesized ZnO-NPs can balance ions' absorption, modulate the antioxidant activities, and restore more metabolites associated with plant growth to their normal levels under Cd stress. It can be applied as a plant growth regulator to alleviate heavy metal toxicity and improve crop yield in heavy metal-contaminated regions.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Junliang Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Shah Zada
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL32611, USA
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
36
|
Cai M, Yang T, Fang S, Ye L, Gu L, Wang H, Du X, Zhu B, Zeng T, Peng T. Integrative Physiological and Transcriptome Analysis Reveals the Mechanism of Cd Tolerance in Sinapis alba. Genes (Basel) 2023; 14:2224. [PMID: 38137046 PMCID: PMC10742500 DOI: 10.3390/genes14122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, pollution caused by the heavy metal Cd has seriously affected the environment and agricultural crops. While Sinapis alba is known for its edible and medicinal value, its tolerance to Cd and molecular response mechanism remain unknown. This study aimed to analyze the tolerance of S. alba to Cd and investigate its molecular response mechanism through transcriptomic and physiological indicators. To achieve this, S. alba seedlings were treated with different concentrations of CdCl2 (0.25 mmol/L, 0.5 mmol/L, and 1.0 mmol/L) for three days. Based on seedling performance, S. alba exhibited some tolerance to a low concentration of Cd stress (0.25 mmol/L CdCl2) and a strong Cd accumulation ability in its roots. The activities and contents of several antioxidant enzymes generally exhibited an increase under the treatment of 0.25 mmol/L CdCl2 but decreased under the treatment of higher CdCl2 concentrations. In particular, the proline (Pro) content was extremely elevated under the 0.25 and 0.5 mmol/L CdCl2 treatments but sharply declined under the 1.0 mmol/L CdCl2 treatment, suggesting that Pro is involved in the tolerance of S. alba to low concentration of Cd stress. In addition, RNA sequencing was utilized to analyze the gene expression profiles of S. alba exposed to Cd (under the treatment of 0.25 mmol/L CdCl2). The results indicate that roots were more susceptible to disturbance from Cd stress, as evidenced by the detection of 542 differentially expressed genes (DEGs) in roots compared to only 37 DEGs in leaves. GO and KEGG analyses found that the DEGs induced by Cd stress were primarily enriched in metabolic pathways, plant hormone signal transduction, and the biosynthesis of secondary metabolites. The key pathway hub genes were mainly associated with intracellular ion transport and cell wall synthesis. These findings suggest that S. alba is tolerant to a degree of Cd stress, but is also susceptible to the toxic effects of Cd. Furthermore, these results provide a theoretical basis for understanding Cd tolerance in S. alba.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Peng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.C.); (T.Y.); (S.F.); (L.Y.); (L.G.); (H.W.); (X.D.); (B.Z.); (T.Z.)
| |
Collapse
|
37
|
Ali S, Huang S, Zhou J, Bai Y, Liu Y, Shi L, Liu S, Hu Z, Tang Y. miR397-LACs mediated cadmium stress tolerance in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 113:415-430. [PMID: 37566350 DOI: 10.1007/s11103-023-01369-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal, assimilated in plant tissue with other nutrients, disturbing the ions' homeostasis in plants. The plant develops different mechanisms to tolerate the hazardous environmental effects of Cd. Recently studies found different miRNAs that are involved in Cd stress. In the current study, miR397 mutant lines were constructed to explore the molecular mechanisms of miR397 underlying Cd tolerance. Compared with the genetically modified line of overexpressed miR397 (artificial miR397, amiR397), the lines of downregulated miR397 (Short Tandem Target Mimic miR397, STTM miR397) showed more substantial Cd tolerance with higher chlorophyll a & b, carotenoid and lignin content. ICP-OES revealed higher cell wall Cd and low total Cd levels in STTM miR397 than in the wild-type and amiR397 plants.Further, the STTM plants produced fewer reactive oxygen species (ROS) and lower activity of antioxidants enzymes (e.g., catalase [CAT], malondialdehyde [MDA]) compared with amiR397 and wild-type plants after stress, indicating that silencing the expression of miR397 can reduce oxidative damage. In addition, the different family transporters' gene expression was much higher in the amiR397 plants than in the wild type and STTM miRNA397. Our results suggest that miR397 plays a role in Cd tolerance in Arabidopsis thaliana. Overexpression of miR397 could decrease Cd tolerance in plants by regulating the expression of LAC 2/4/17, changing the lignin content, which may play an important role in inducing different stress-tolerant mechanisms and protecting the cell from a hazardous condition. This study provides a basis to elucidate the functions of miR397 and the Cd stress tolerance mechanism in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yang Liu
- Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong Province, China
| | - Liyu Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, Shaanxi, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China.
| |
Collapse
|
38
|
Kandhol N, Rai P, Pandey S, Singh S, Sharma S, Corpas FJ, Singh VP, Tripathi DK. Zinc induced regulation of PCR1 gene for cadmium stress resistance in rice roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111783. [PMID: 37421983 DOI: 10.1016/j.plantsci.2023.111783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
In this study, the interaction between zinc (Zn) and cadmium (Cd) was investigated in rice roots to evaluate how Zn can protect the plants from Cd stress. Rice seedlings were treated with Cd (100 μM) and Zn (100 μM) in different combinations (Cd alone, Zn alone, Zn+ Cd, Zn+ Cd+ L-NAME, Zn+ Cd+ L-NAME+ SNP). Rice roots treated with only Zn also displayed similar toxic effects, however when combined with Cd exhibited improved growth. Treating the plant with Zn along with Cd distinctly reduced Cd concentration in roots while increasing its own accumulation due to modulation in expression of Zinc-Regulated Transporter (ZRT)-/IRT-Like Protein (OsZIP1) and Plant Cadmium Resistance1 (OsPCR1). Cd reduced plant biomass, cell viability, pigments, photosynthesis and causing oxidative stress due to inhibition in ascorbate-glutathione cycle. L-NAME (NG-nitro L-arginine methyl ester), prominently suppressed the beneficial impacts of Zn against Cd stress, whereas the presence of a NO donor, sodium nitroprusside (SNP), significantly reversed this effect of L-NAME. Collectively, results point that NO signalling is essential for Zn- mediated cross-tolerance against Cd stress via by modulating uptake of Cd and Zn and expression of OsZIP1 and OsPCR1, and ROS homeostasis due to fine tuning of ascorbate-glutathione cycle which finally lessened oxidative stress in rice roots. The results of this study can be utilized to develop new varieties of rice through genetic modifications which will be of great significance for maintaining crop productivity in Cd-contaminated areas throughout the world.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Laboratory, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de InvestigacionesCientíficas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh.
| |
Collapse
|
39
|
Xu Y, Li Y, Li Y, Zhai C, Zhang K. Transcriptome Analysis Reveals the Stress Tolerance Mechanisms of Cadmium in Zoysia japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:3833. [PMID: 38005730 PMCID: PMC10674853 DOI: 10.3390/plants12223833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a severe heavy metal pollutant globally. Zoysia japonica is an important perennial warm-season turf grass that potentially plays a role in phytoremediation in Cd-polluted soil areas; however, the molecular mechanisms underlying its Cd stress response are unknown. To further investigate the early gene response pattern in Z. japonica under Cd stress, plant leaves were harvested 0, 6, 12, and 24 h after Cd stress (400 μM CdCl2) treatment and used for a time-course RNA-sequencing analysis. Twelve cDNA libraries were constructed and sequenced, and high-quality data were obtained, whose mapped rates were all higher than 94%, and more than 601 million bp of sequence were generated. A total of 5321, 6526, and 4016 differentially expressed genes were identified 6, 12, and 24 h after Cd stress treatment, respectively. A total of 1660 genes were differentially expressed at the three time points, and their gene expression profiles over time were elucidated. Based on the analysis of these genes, the important mechanisms for the Cd stress response in Z. japonica were identified. Specific genes participating in glutathione metabolism, plant hormone signal and transduction, members of protein processing in the endoplasmic reticulum, transporter proteins, transcription factors, and carbohydrate metabolism pathways were further analyzed in detail. These genes may contribute to the improvement of Cd tolerance in Z. japonica. In addition, some candidate genes were highlighted for future studies on Cd stress resistance in Z. japonica and other plants. Our results illustrate the early gene expression response of Z. japonica leaves to Cd and provide some new understanding of the molecular mechanisms of Cd stress in Zosia and Gramineae species.
Collapse
Affiliation(s)
- Yi Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yonglong Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Yan Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Chenyuan Zhai
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| |
Collapse
|
40
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Li Y, Xu R, Ma C, Yu J, Lei S, Han Q, Wang H. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122340. [PMID: 37562530 DOI: 10.1016/j.envpol.2023.122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental issue facing agriculture. Under certain conditions, the stable Cd that bound to soil particles tend to be remobilized and absorbed into plants, which is seriously toxic to plant growth and threat food safety. Engineering nanomaterials (ENMs) has attracted increasing attentions in the remediation of Cd pollution in soil-plant system due to their excellent properties with nano-scale size. Herein, this article firstly systematically summarized Cd transformation in soil, transport in soil-plant system, and the toxic effects in plants, following which the functions of ENMs in these processes to remediate Cd pollution are comprehensively reviewed, including immobilization of Cd in soil, inhibition in Cd uptake, transport, and accumulation, as well as physiological detoxication to Cd stress. Finally, some issues to be further studied were raised to promote nano-remediation technology in the environment. This review provides a significant reference for the practical application of ENMs in remediation of Cd pollution in soil, and contributes to sustainable development of agriculture.
Collapse
Affiliation(s)
- Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ronghua Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Shang Lei
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Qianying Han
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
42
|
Irshad MK, Zhu S, Javed W, Lee JC, Mahmood A, Lee SS, Jianying S, Albasher G, Ali A. Risk assessment of toxic and hazardous metals in paddy agroecosystem by biochar-for bio-membrane applications. CHEMOSPHERE 2023; 340:139719. [PMID: 37549746 DOI: 10.1016/j.chemosphere.2023.139719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Toxic and carcinogenic metal (loid)s, such arsenic (As) and cadmium (Cd), found in contaminated paddy soils pose a serious danger to environmental sustainability. Their geochemical activities are complex, making it difficult to manage their contamination. Rice grown in Cd and As-polluted soils ends up in people's bellies, where it can cause cancer, anemia, and the deadly itai sickness. Solving this issue calls for research into eco-friendly and cost-effective remediation technology to lower rice's As and Cd levels. This research delves deeply into the origins of As and Cd in paddy soils, as well as their mobility, bioavailability, and uptake mechanisms by rice plants. It also examines the current methods and reactors used to lower As and Cd contamination in rice. Iron-modified biochar (Fe-BC) is a promising technology for reducing As and Cd toxicity in rice, improving soil health, and boosting rice's nutritional value. Biochar's physiochemical characteristics are enhanced by the addition of iron, making it a potent adsorbent for As and Cd ions. In conclusion, Fe-BC's biomembrane properties make them an attractive option for remediating As- and Cd-contaminated paddy soils. More efficient mitigation measures, including the use of biomembrane technology, can be developed when sustainable agriculture practices are combined with these technologies.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan; Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wasim Javed
- Punjab Bioenergy Institute, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Shang Jianying
- Department of Soil and Water Sciences China Agricultural University, Beijing, China.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Ali
- Department of plant breeding and genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
43
|
Huang J, Fan G, Liu C, Zhou D. Predicting soil available cadmium by machine learning based on soil properties. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132327. [PMID: 37639785 DOI: 10.1016/j.jhazmat.2023.132327] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Cadmium (Cd) accumulation in edible plant tissues poses a serious threat to human health through the food chain. Assessing the availability of soil Cd is crucial for evaluating associated environmental risks. However, existing experimental methods and traditional models are time-consuming and inefficient. In this study, we developed machine learning models to predict soil available Cd based on soil properties, using a dataset comprising 585 data points covering 585 soils. Traditional machine learning models exhibited prediction values beyond the theoretical range, urging the need for alternative approaches. To address this, different models were tested, and the post-constraint eXtreme Gradient Boosting (XGBoost) model was found to possess the best predictive performance (R2 =0.81) outperform traditional linear regression model in terms of accuracy. Furthermore, we explored the relationship between soil available Cd and wheat grain Cd and rice grain Cd. Linear regression models were developed using 302 data points for wheat and 563 data points for rice. Results demonstrated a significant correlation between soil available Cd and wheat grain Cd (R2 =0.487) as well as rice grain Cd (R2 =0.43).
Collapse
Affiliation(s)
- Jiawei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Guangping Fan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
44
|
Yang H, Yu H, Wang S, Bayouli IT, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Meers E, Li T. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132276. [PMID: 37625294 DOI: 10.1016/j.jhazmat.2023.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ines Terwayet Bayouli
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Erik Meers
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
45
|
Yang L, Ma X, Guo Y, He Y, Yang Y, Wang W, Xu Z, Zuo Z, Xue Y, Yang R, Han B, Sun J. Acetylcholine (ACh) enhances Cd tolerance through transporting ACh in vesicles and modifying Cd absorption in duckweed (Lemna turionifera 5511). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122305. [PMID: 37580008 DOI: 10.1016/j.envpol.2023.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Acetylcholine (ACh), an important neurotransmitter, plays a role in resistance to abiotic stress. However, the role of ACh during cadmium (Cd) resistance in duckweed (Lemna turionifera 5511) remains uncharacterized. In this study, the changes of endogenous ACh in duckweed under Cd stress has been investigated. Also, how exogenous ACh affects duckweed's ability to withstand Cd stress was studied. The ACh sensor transgenic duckweed (ACh 3.0) showed the ACh signal response under Cd stress. And ACh was wrapped and released in vesicles. Cd stress promoted ACh content in duckweed. The gene expression analysis showed an improved fatty acid metabolism and choline transport. Moreover, exogenous ACh addition enhanced Cd tolerance and decreased Cd accumulation in duckweed. ACh supplement reduced the root abscission rate, alleviated leaf etiolation, and improved chlorophyll fluorescence parameters under Cd stress. A modified calcium (Ca2+) flux and improved Cd2+ absorption were present in conjunction with it. Thus, we speculate that ACh could improve Cd resistance by promoting the uptake and accumulation of Cd, as well as the response of the Ca2+ signaling pathway. Also, plant-derived extracellular vesicles (PDEVs) were extracted during Cd stress. Therefore, these results provide new insights into the response of ACh during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Bing Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
46
|
Chen P, Wang X, Yuan W, Wang D. Typical heavy metals accumulation, transport and allocation in a deglaciated forest chronosequence, Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132162. [PMID: 37517237 DOI: 10.1016/j.jhazmat.2023.132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Understanding heavy metals (HMs) accumulation and transportation is the foundation to assess the ecological risks caused by the pollution of HMs in terrestrial ecosystems. There are large knowledge gaps regarding impacts of vegetation succession on shaping the HMs accumulation, transportation and allocation in the remote alpine regions. Herein, we comprehensively investigated the distribution and source contribution of mercury (Hg), cadmium (Cd) and chromium (Cr) along with vegetation succession in a deglaciated forest chronosequence of Qinghai-Tibet Plateau. Results showed that Hg and Cd were highly enriched in organic soils, while Cr concentrations and pool sizes decreased significantly with the vegetation succession. Atmospheric Hg deposition contributed to the dominant Hg sources in topsoil (74 - 87%), whereas moraine weathering was the main source of Cr (73 - 76%). Both moraine (18 - 48%) and atmospheric deposition inputs (52 - 82%) affected Cd accumulation in topsoil. Over the last century, the accumulation rate of Hg and Cd showed the distinctly decreasing trends due to the vegetation leading to the elevated atmospheric depositions at the earlier deglacial sites. The negative accumulation rate of Cr along with the vegetation succession reflected the formation of organic soil diluting the geogenic inputs of Cr.
Collapse
Affiliation(s)
- Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Wang J, Liu B, Jin Z, Li L, Shen W. Argon-stimulated nitric oxide production and its function in alfalfa cadmium tolerance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122009. [PMID: 37307859 DOI: 10.1016/j.envpol.2023.122009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Recent results showed that argon may have great potential in both medicines (especially) and agriculture. However, how argon positively influences crop physiology remains elusive. Here, we observed that the stimulation of nitric oxide (NO) production upon cadmium (Cd) stress in hydroponic alfalfa root tissues was strengthened by argon-rich water and/or a NO-releasing compound. The pharmacological results further indicated that above potential source of NO stimulation achieved by argon might be attributed to NO synthase (NOS) and nitrate reductase (NR). Under hydroponic and pot conditions, the improvement of Cd tolerance elicited by argon, confirmed by the alleviation in the plant growth inhibition, oxidative damage, and Cd accumulation, was sensitive to the scavenger of NO. These results suggested a crucial role of argon-induced NO synthesis in response to Cd stress. Subsequent evidence showed that the improved iron homeostasis and increased S-nitrosylation were also dependent on argon-stimulated NO. Above results were matched with the transcriptional profiles of representative target genes involved in heavy metal detoxification, antioxidant defence, and iron homeostasis. Taken together, our results clearly indicated that argon-stimulated NO production contributes to Cd tolerance by favoring important defense strategies against heavy metal exposure.
Collapse
Affiliation(s)
- Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bowen Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiwei Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Liu Y, Kong L, Gong C, Yang G, Xu E, Chen W, Zhang W, Chen X. Identification of plant cadmium resistance gene family in Brassica napus and functional analysis of BnPCR10.1 involved in cadmium and copper tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107989. [PMID: 37651953 DOI: 10.1016/j.plaphy.2023.107989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
The plant cadmium resistance (PCR) family proteins play important roles in maintaining metal homeostasis and detoxification. However, few functional PCR genes have been well-characterized in plants. In this study, we identified and cloned 26 BnPCR genes from the rapeseed (Brassica napus) genome. They were divided into four groups (I-IV) based on their phylogenetic relationship. Yeast functional complementation experiments showed that BnPCRs can transport copper (Cu) and cadmium (Cd) in yeast. The expression levels of the BnPCRs were variable among different organs. Moreover, most of the genes were induced by Cu2+ and Cd2+ stress. Among these genes, BnPCR10.1 was highly expressed in various organs and induced by Cu2+ and Cd2+. Therefore, we studied the function of BnPCR10.1 in more detail. BnPCR10.1 was localized to the plasma membrane (PM), and expression in yeast enhanced yeast cells to export Cu and Cd. Furthermore, overexpression of BnPCR10.1 transgenic lines pro35S::BnPCR10.1;athma5 had lower concentration of Cu in roots than athma5 mutants. In addition, transgenic plants pro35S::BnPCR10.1;atpdr8 had lower concentration of Cd in shoots and roots than atpdr8 mutants. Net Cu2+ and Cd2+ efflux assay showed that there was decreased absorption of Cu2+ and Cd2+ in the transgenic Arabidopsis elongation zone of roots than in athma5 and atpdr8 mutants, respectively. These results provide new information on BnPCRs and their roles in response to heavy metals and reveal the mechanism used by BnPCR10.1 to detoxify Cu and Cd. Our findings facilitate a theoretical basis for the genetic improvement of Cu-Cd tolerance in rapeseed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Linghui Kong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Changyi Gong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Weizhong Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
49
|
Tasleem S, Masud S, Habib SS, Naz S, Fazio F, Aslam M, Ullah M, Attaullah S. Investigation of the incidence of heavy metals contamination in commonly used fertilizers applied to vegetables, fish ponds, and human health risk assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100646-100659. [PMID: 37639089 DOI: 10.1007/s11356-023-29480-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Overuse of fertilizers on agricultural lands and fish ponds may result in serious pollution problems, such as heavy metals that can enter the food chain and pose serious health problems. Due to this, the present study investigates the incidence of heavy metals in commonly used fertilizers and its association with heavy metals in vegetables, soil, fish species, and pond water. Samples were collected from different sites (fields and ponds) in district Kohat, where the application of fertilizers was common and control groups (no fertilizers used). Heavy metal analysis was carried out through a spectrophotometer. Results showed higher Cd and Cr concentrations in triple superphosphate (TSP), Cu and Pb in nitrogen, phosphorus, and potassium (NPK), while lower concentrations were found in gypsum. In vegetables (onion, tomato, brinjal, and potato) and associated soil, most of the heavy metals concentrations were significantly higher (P < 0.05) in fertilizer-applied sites than in the control. Also, the Cd concentration in potatoes and Pb level in all vegetables obtained from sites were greater than the WHO/FAO standard limit. In the case of fish species (Hypophthalmichthys molitrix and Cyprinus carpio) muscles and their habitat (water), all the understudy heavy metals were notably higher (P < 0.05) in fertilizer-applied sites (ponds) than the control group. Collectively, in all vegetables and muscles of fish species, the bioaccumulation factor was higher in sites compared to the control. The estimated daily intake (EDI) and target hazard quotient (THQ) values were also higher in fertilizer-applied sites (fields and ponds) than control. The health index (HI) value was > 1 in vegetables (onion, tomato, and potato) and fish muscles collected from different sites compared to the control. Thus, there is the possibility of severe health risks. The use of fertilizers must be carefully monitored in order to ensure that humans and animals are safe from exposure to heavy metals.
Collapse
Affiliation(s)
- Samiyah Tasleem
- Department of Biotechnology, Hafiz Ilayas Institute of Pharmaceuticals and Herbal Sciences Karachi, Sindh, Pakistan
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Punjab, 40100, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, Via Palatuccisnc, University of Messina, 98168, Messina, Italy.
| | - Muhammad Aslam
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
50
|
Zhang Y, Xu Y, Liang X, Wang L, Sun Y, Huang Q, Qin X. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98091-98105. [PMID: 37603246 DOI: 10.1007/s11356-023-29376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Mercaptosilane-modified palygorskite (MP) can immobilize Cd in acid soil and reduce the enrichment of Cd in rice. However, the immobilization effect and its durability on alkaline field were unclear. Meanwhile, whether MP could reduce Cd in different wheat parts at different stages also needs further exploration. Here, we determined the dynamic change of Cd in soil and wheat at different periods, studied the interaction mechanism at key organs, and calculated the contribution of coexisting metals on the reduction of Cd to study the effect of MP on the transfer of Cd in soil-wheat system. Results showed MP was highly effective to immobilize Cd in alkaline farmland and could take effect during the whole growing season but not change pH values. DTPA-Cd and EXE-Cd of soil were reduced by 34.88-49.71% and 49.36-84.81%, respectively, while OX-Cd was increased by 34.61-43.60% at the whole stages. Cd in grains at maturity stage was reduced from 0.118 to 0.069 mg/kg, lower than the limit standard of the China and Codex Alimentarius Commission (0.1 mg/kg). Root and nodes were critical organs influenced by MP to reduce Cd in grains, and the reduction efficiency on wheat was relatively weak at flowering and filling stage. MP regulated the antagonism or synergy effects of coexisting elements on Cd to modulate the Cd accumulation in grains. Besides, the contributions of different elements on Cd were also evaluated by path models. This will provide an important basis for the precision remediation of Cd-polluted alkaline wheat fields.
Collapse
Affiliation(s)
- Yu Zhang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lin Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| |
Collapse
|