1
|
Yang F, Li S, Yuan R, Xiang Y. A bivalent aptamer and terminus-free siRNA junction nanostructure for targeted gene silencing in cancer cells. J Mater Chem B 2022; 10:8315-8321. [PMID: 36165395 DOI: 10.1039/d2tb01414a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small interfering RNA (siRNA) has increasingly evolved as a potent therapeutic solution for several pathological conditions including cancers via post-transcriptional oncogene suppression in cellular pathways. And, the key for siRNA-based therapy highly relies on the successful siRNAs delivery into the target cells, which is significantly challenged by their instability, poor cellular uptake and targeting capability. To overcome these issues, herein, a new type of RNA nanostructure, the bivalent aptamer and terminus-free siRNA junction, is synthesized and employed for effective gene silencing in cancer cells. Such a siRNA junction can be readily prepared by the self-assembly of three RNA sequences and subsequent ligation of the nicks. The as-synthesized siRNA junction shows highly improved enzymatic stability and targeting capability and can be efficiently delivered into the target cells to induce cell apoptosis. With these integrated advantages, the siRNA junction can therefore offer new potentials for the design of different siRNA therapeutics for various diseases.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
2
|
Goyal R, Chopra H, singh I, Dua K, Gautam RK. Insights on prospects of nano-siRNA based approaches in treatment of Cancer. Front Pharmacol 2022; 13:985670. [PMID: 36091772 PMCID: PMC9452808 DOI: 10.3389/fphar.2022.985670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
siRNA interference, commonly referred to as gene silence, is a biological mechanism that inhibits gene expression in disorders such as cancer. It may enhance the precision, efficacy, and stability of medicines, especially genetic therapies to some extent. However, obstacles such as the delivery of oligonucleotide drugs to inaccessible areas of the body and the prevalence of severe side effects must be overcome. To maximize their potential, it is thus essential to optimize their distribution to target locations and limit their toxicity to healthy cells. The action of siRNA may be harnessed to delete a similar segment of mRNA that encodes a protein that causes sickness. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation, delivers it to cancer cells and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on combinations of siRNA with chemotherapeutic drug delivery systems for the treatment of cancer and gives an overview of several nanocarrier formulations in both research and clinical applications.
Collapse
Affiliation(s)
- Rajat Goyal
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- MM College of Pharmacy, MM (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Inderbir singh
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM) University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| |
Collapse
|
3
|
Tsubaki K, Hammill ML, Varley AJ, Kitamura M, Okauchi T, Desaulniers JP. Synthesis and Evaluation of Neutral Phosphate Triester Backbone-Modified siRNAs. ACS Med Chem Lett 2020; 11:1457-1462. [PMID: 32676154 DOI: 10.1021/acsmedchemlett.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022] Open
Abstract
Two unsymmetrical dinucleotide phosphate triesters were synthesized via transesterification from tris(2,2,2-trifluoroethyl) phosphate. The protected triesters were phosphytilated to generate phosphoramidites for solid-phase oligonucleotide synthesis. Neutral phenylethyl phosphate-modified short-interfering RNAs (siRNAs) were synthesized and evaluated for their gene-silencing ability, siRNA strand selection, and resistance to nucleases. These backbone-modified phosphate triester siRNAs offer many improvements compared to natural unmodified siRNAs.
Collapse
Affiliation(s)
- Kouta Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Matthew L. Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Andrew J. Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
4
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W, Kurimoto A, Tsuchida H, Maeda H. Design of 2'- O-methyl RNA and DNA double-stranded oligonucleotides: naturally-occurring nucleotide components with strong RNA interference gene expression inhibitory activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:292-309. [PMID: 31509065 DOI: 10.1080/15257770.2019.1663384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Double-stranded RNAs consisting of 21-nucleotide passenger and guide strands, known as small interfering RNAs (siRNAs), can be used for the identification of gene functions and the regulation of genes involved in disease for therapeutics. The difficulty with unmodified siRNAs lies in the chemical synthesis of RNA, its degradation by RNase, the immune response derived from natural RNA, and the off-target effects mediated by the passenger strand. In this study, asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined DNAs and 2'-O-methyl RNAs, denoted as MED-siRNA, were evaluated. These modified oligonucleotides showed high RNase resistance, a reduced immune response, a highly efficient cleavage of target mRNA with binding to Argonaute 2 (Ago2) via RNA interference, and the subsequent reduction of target protein expression. These findings suggest the possibility of alternatives to unmodified siRNAs with potential use in therapeutics.
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Akiko Kurimoto
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroshi Tsuchida
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroaki Maeda
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|
5
|
Senapati D, Patra BC, Kar A, Chini DS, Ghosh S, Patra S, Bhattacharya M. Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene 2019; 719:144071. [PMID: 31454539 DOI: 10.1016/j.gene.2019.144071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) has extensive potential to revolutionize every aspect of clinical application in biomedical research. One of the promising tools is the Small interfering RNA (siRNA) molecules within a cellular component. Principally, siRNA mediated innovative advances are increasing rapidly in support of cancer diagnosis and therapeutic purposes. Conversely, it has some delivery challenges to the site of action within the cells of a target organ, due to the progress of nucleic acids engineering and advance material science research contributing to the exceptional organ-specific targeted therapy. This siRNA based therapeutic technique definitely favors a unique and effective prospect to cancer patients. Herein, the significant drive also takes to review and summarize the major organ specific targets of diverse siRNAs based gene silencing mechanism. This machinery promisingly served as the inhibitor components for cancer development in the human model. Furthermore, the focus is also given to current applications on siRNA based quantifiable therapy leading to the silencing of cancer related gene expression in a sequence dependent and selective manner for cancer treatment. That might be a potent tool against the traditional chemotherapy techniques. Therefore, the siRNA mediated cancer gene therapy definitely require sharp attention like future weapons in opposition to cancer by the method of non-invasive siRNA delivery and effective gene silencing approaches.
Collapse
Affiliation(s)
- Debabrata Senapati
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Avijit Kar
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Deep Sankar Chini
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Soumendu Ghosh
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shinjan Patra
- Department of General Medicine, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Manojit Bhattacharya
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
6
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
7
|
Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 2018; 10:69-86. [PMID: 29327101 PMCID: PMC5803180 DOI: 10.1007/s12551-017-0392-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Gene silencing via RNA interference (RNAi) is rapidly evolving as a personalized approach to cancer treatment. The effector molecules-small interfering RNAs (siRNAs) and microRNAs (miRNAs)-can be used to silence or "switch off" specific cancer genes. Currently, the main barrier to implementing siRNA- and miRNA-based therapies in clinical practice is the lack of an effective delivery system that can protect the RNA molecules from nuclease degradation, deliver to them to tumor tissue, and release them into the cytoplasm of the target cancer cells, all without inducing adverse effects. Here, we review the fundamentals of RNAi, cell membrane transport pathways, and factors that affect intracellular delivery. We discuss the advantages and disadvantages of the various types of nanoparticle delivery systems, with a focus on those that have been investigated in breast cancer in vivo.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Sydney, Australia.
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Asbestos Diseases Research Institute (ADRI), Sydney, Australia
| | | |
Collapse
|
8
|
Jedrzejczyk D, Gendaszewska-Darmach E, Pawlowska R, Chworos A. Designing synthetic RNA for delivery by nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:123001. [PMID: 28004640 DOI: 10.1088/1361-648x/aa5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid's nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | |
Collapse
|
9
|
Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev 2016; 104:16-28. [PMID: 26549145 DOI: 10.1016/j.addr.2015.10.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
Abstract
Small interfering RNA (siRNA), a 21-23nt double-stranded RNA responsible for post-transcriptional gene silencing, has attracted great interests as promising genomic drugs, due to its strong ability to silence target genes in a sequence-specific manner. Despite high silencing efficiency and on-target specificity, the clinical translation of siRNA has been hindered by its inherent features: poor intracellular delivery, limited blood stability, unpredictable immune responses and unwanted off-targeting effects. To overcome these hindrances, researchers have made various advances to modify siRNA itself and to improve its delivery. In this review paper, first we briefly discuss the innate properties and delivery barriers of siRNA. Then, we describe recent progress in (1) chemically and structurally modified siRNAs to solve their intrinsic problems and (2) siRNA delivery formulations including siRNA conjugates, polymerized siRNA, and nucleic acid-based nanoparticles to improve in vivo delivery.
Collapse
|
10
|
Liu Y, Wang J. Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:429-58. [PMID: 27376745 DOI: 10.1007/978-981-10-1498-7_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge of multiple actions of short noncoding RNAs (ncRNAs) has truly allowed for viewing DNA, RNA, and protein in novel ways. The ncRNAs are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of ncRNAs in cancer therapy, many challenges remain, including rapid degradation and clearance, poor cellular uptake, off-target effects, and immunogenicity. Rational design, chemical modifications, and delivery carriers offer significant opportunities to overcome these challenges. In this chapter, the development of ncRNAs as cancer therapeutics from early stages to clinical trials and strategies for ncRNA-targeted delivery to cancer cells will be introduced.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|
11
|
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87:108-19. [PMID: 25666164 DOI: 10.1016/j.addr.2015.01.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment.
Collapse
|
12
|
Li T, Wu M, Zhu YY, Chen J, Chen L. Development of RNA Interference–Based Therapeutics and Application of Multi-Target Small Interfering RNAs. Nucleic Acid Ther 2014; 24:302-12. [DOI: 10.1089/nat.2014.0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tiejun Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Meihua Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Jianxin Chen
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|
13
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|
14
|
Kim JS, Lee YK, Jeong HY, Kang SJ, Kim MW, Ryu SH, Kim HS, Kim KS, Kim DE, Park YS. Sendai F/HN viroplexes for efficient transfection of leukemic T cells. Yonsei Med J 2013; 54:1149-57. [PMID: 23918564 PMCID: PMC3743179 DOI: 10.3349/ymj.2013.54.5.1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Most chemical transfection reagents are ineffective for the transfection of cells in suspension, such as leukemic cell and stem cell lineages. We developed two different types of viroplexes, cationic Sendai F/HN viroplexes (CSVs) and protamine sulfate-condensed cationic Sendai F/HN viroplexes (PCSVs) for the efficient transfection of T-leukemic cells. MATERIALS AND METHODS The viroplex systems were prepared by reconstitution of fusogenic Sendai F/HN proteins in DMKE (O,O'-dimyristyl-N-lysyl glutamate) cationic liposomes. The viroplexes were further optimized for plasmid DNA and siRNA delivery to suspension cells. The particle size and surface charge of the viroplexes were analyzed with a ζ-sizer. Transfection of plasmid DNA (pDNA) and small interfering RNA (siRNA) by CSVs or PCSV was evaluated by measurement of transgene expression, confocal microscopy, FACS, and RT-PCR. RESULTS The optimized CSVs and PCSVs exhibited enhanced gene and siRNA delivery in the tested suspension cell lines (Jurkat cells and CEM cells), compared with conventional cationic liposomes. In the case of pDNA transfection, the CSVs and PCSVs show at least 10-fold and 100-fold higher transgene expression compared with DMKE lipoplexes (or lipofectamine 2000), respectively. The CSVs showed more effective siRNA delivery to the suspension cells than cationic liposomes, as assessed by confocal microscopy, FACS, and RT-PCR. The effective transfection by the CSVs and PCSVs is presumably due to fusogenic activity of F/HN proteins resulting in facilitated internalization of pDNA and siRNA. CONCLUSION This study suggests that Sendai F/HN viroplexes can be widely applicable for the transfection of pDNA and siRNA to suspension cell lines.
Collapse
Affiliation(s)
- Jung Seok Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Yeon Kyung Lee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Hwa Yeon Jeong
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Seong Jae Kang
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Min Woo Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Seung Hyun Ryu
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | - Keun Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| |
Collapse
|
15
|
|
16
|
Xu L, Yeudall WA, Yang H. Dendrimer-Based RNA Interference Delivery for Cancer Therapy. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1135.ch012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Leyuan Xu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - W. Andrew Yeudall
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
17
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|
18
|
Dimou A, Syrigos KN, Saif MW. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Ther Adv Med Oncol 2012; 4:271-9. [PMID: 22942909 PMCID: PMC3424495 DOI: 10.1177/1758834012446008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has historically proven resistant to anticancer agents. On the one hand, drugs might be more efficient if higher levels could be achieved at the tumor site rather than the normal tissues. On the other hand, the thick stroma and the relative absence of abundant vessels may account at least partially for the failure of successive clinical trials to demonstrate effective treatments in this type of malignancy. In this context, the development and testing in clinical trials of treatment strategies that aim to optimize drug delivery is an important target in improving the prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Anastasios Dimou
- Department of Medicine, Albert Einstein Medical Center, Philadelphia, PA, USA
| | | | | |
Collapse
|
19
|
Bramsen JB, Kjems J. Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering. Front Genet 2012; 3:154. [PMID: 22934103 PMCID: PMC3422727 DOI: 10.3389/fgene.2012.00154] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 12/25/2022] Open
Abstract
Recent successes in clinical trials have provided important proof of concept that small interfering RNAs (siRNAs) indeed constitute a new promising class of therapeutics. Although great efforts are still needed to ensure efficient means of delivery in vivo, the siRNA molecule itself has been successfully engineered by chemical modification to meet initial challenges regarding specificity, stability, and immunogenicity. To date, a great wealth of siRNA architectures and types of chemical modification are available for promoting safe siRNA-mediated gene silencing in vivo and, consequently, the choice of design and modification types can be challenging to individual experimenters. Here we review the literature and devise how to improve siRNA performance by structural design and specific chemical modification to ensure potent and specific gene silencing without unwarranted side-effects and hereby complement the ongoing efforts to improve cell targeting and delivery by other carrier molecules.
Collapse
Affiliation(s)
- Jesper B Bramsen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University Aarhus C, Denmark
| | | |
Collapse
|
20
|
Fröhlich T, Edinger D, Kläger R, Troiber C, Salcher E, Badgujar N, Martin I, Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E. Structure–activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 2012; 160:532-41. [DOI: 10.1016/j.jconrel.2012.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/12/2012] [Accepted: 03/18/2012] [Indexed: 01/24/2023]
|
21
|
Abstract
RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
Collapse
|
22
|
Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, Fu D. Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 2011; 37:633-642. [PMID: 21330062 DOI: 10.1016/j.ctrv.2011.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/15/2011] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
Despite rapid advances in cancer diagnosis and treatment, pancreatic cancer remains one of the most difficult human malignancies to be treated, with a mortality rate nearly equal to its incidence. Although gemcitabine has been established as the standard first-line treatment for advanced pancreatic cancer, gemcitabine-based combination chemotherapy showed either marginal or no improvement in survival. Developments in liposomal delivery systems have facilitated the targeting of specific agents for cancer treatment. Such systems could be developed as platforms for future multi-functional theranostic nanodevices tailor-made for the combined detection of early cancer and functional drug delivery. We systemically review liposome based drug-delivery systems, which can provide improved pharmacokinetics, reduced side effects and potentially increased tumor uptake, for pancreatic cancer therapy. Novel liposomal formulations allowing for higher tumor targeting efficiencies and used in current clinical trials to treat this challenging disease are emphasized.
Collapse
Affiliation(s)
- Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rota R, Ciarapica R, Giordano A, Miele L, Locatelli F. MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Mol Cancer 2011; 10:120. [PMID: 21943149 PMCID: PMC3212852 DOI: 10.1186/1476-4598-10-120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that interconnections among molecular pathways governing tissue differentiation are nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-coding small regulatory RNA molecules controls developmental programs by modulating gene expression through post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been recently detected in rhabdomyosarcoma. In this review, we provide an overview of current knowledge on microRNAs de-regulation in rhabdomyosarcoma. Additionally, we examine the potential of microRNAs as prognostic and diagnostic markers in this soft-tissue sarcoma, and discuss possible therapeutic applications and challenges of a "microRNA therapy".
Collapse
Affiliation(s)
- Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy.
| | | | | | | | | |
Collapse
|
24
|
Leung SJ, Kachur XM, Bobnick MC, Romanowski M. Wavelength-Selective Light-Induced Release from Plasmon Resonant Liposomes. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1113-1121. [PMID: 21796268 PMCID: PMC3142818 DOI: 10.1002/adfm.201002373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules demonstrate selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands, which correspond to 760 and 1210 nm in this study. Spectrally selective release is accomplished through the use of multiple, low intensity laser pulses delivered over a period of less than four minutes, ensuring that illumination affects only the gold-coated liposomes and avoids heating the surrounding media. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.
Collapse
|
25
|
|
26
|
Abstract
Chemically synthesized siRNAs are widely used for gene silencing. For in vitro applications, stability, delivery, and immunological issues are rarely problematic, but for in vivo applications the situation is different. Limited stability, undesirable pharmacokinetic behaviour, and unanticipated side effects from the immune system call for more careful structural siRNA design and inclusion of chemical modifications at selected positions. Also the notion that siRNA induces significant off-target silencing of many non-related genes has promted new effective measures to enhance specificity. The scope of this review is to provide a simple guide to successful chemical and structural modification of siRNAs with improved activity, stability, specificity, and low toxicity.
Collapse
|
27
|
Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011; 11:59-67. [PMID: 21160526 PMCID: PMC3199132 DOI: 10.1038/nrc2966] [Citation(s) in RCA: 631] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release.
Collapse
Affiliation(s)
- Chad V Pecot
- U.T. M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
28
|
Şalva E, Kabasakal L, Eren F, Çakalağaoğlu F, Özkan N, Akbuğa J. Chitosan/Short Hairpin RNA Complexes for Vascular Endothelial Growth Factor Suppression Invasive Breast Carcinoma. Oligonucleotides 2010; 20:183-90. [DOI: 10.1089/oli.2010.0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Emine Şalva
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
- Pathology Laboratory, Vocational Health School, Marmara University, Istanbul, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Fulya Çakalağaoğlu
- Pathology Department, Izmir Ataturk Education and Research Hospital, Istanbul, Turkey
| | - Naziye Özkan
- Pathology Laboratory, Vocational Health School, Marmara University, Istanbul, Turkey
| | - Jülide Akbuğa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
29
|
DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS JOURNAL 2009; 11:682-92. [PMID: 19842044 DOI: 10.1208/s12248-009-9147-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/21/2009] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding RNAs that function as important regulatory molecules by negatively regulating gene and protein expression via the RNA interference (RNAi) machinery. MiRNAs have been implicated to control a variety of cellular, physiological, and developmental processes. Aberrant expressions of miRNAs are connected to human diseases such as cancer. Cancer stem cells are a small subpopulation of cells identified in a variety of tumors that are capable of self-renewal and differentiation. Dysregulation of stem cell self-renewal is a likely requirement for the initiation and formation of cancer. Furthermore, cancer stem cells are a very likely cause of resistance to current cancer treatments, as well as relapse in cancer patients. Understanding the biology and pathways involved with cancer stem cells offers great promise for developing better cancer therapies, and might one day even provide a cure for cancer. Emerging evidence demonstrates that miRNAs are involved in cancer stem cell dysregulation. Recent studies also suggest that miRNAs play a critical role in carcinogenesis and oncogenesis by regulating cell proliferation and apoptosis as oncogenes or tumor suppressors, respectively. Therefore, molecularly targeted miRNA therapy could be a powerful tool to correct the cancer stem cell dysregulation.
Collapse
Affiliation(s)
- Jeffrey T DeSano
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan, 4424E Med Sci I, 1301 Catherine St., Ann Arbor, MI, 48109-5637, USA
| | | |
Collapse
|
30
|
Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med 2009; 15:491-500. [PMID: 19846342 DOI: 10.1016/j.molmed.2009.09.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/21/2009] [Accepted: 09/03/2009] [Indexed: 11/22/2022]
Abstract
Silencing specific gene expression by RNA interference (RNAi) has rapidly become a standard tool for the reverse genetic analysis of gene functions. It also has tremendous potential for managing diseases for which effective treatment is currently unavailable or suboptimal. However, the poor cellular uptake of synthetic small interfering RNAs (siRNAs) is a major impediment for their clinical use. Great progress has been made in recent years to overcome this barrier, and several methods have been described for the in vivo delivery of siRNA. Moreover, the latest advances have focused on achieving targeted siRNA delivery restricted to relevant tissues and cell types in vivo. These approaches are expected to reduce the dose requirement as well as minimize siRNA-induced toxicities, thereby advancing the field of siRNA therapy towards clinical use.
Collapse
|
31
|
Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61:850-62. [PMID: 19422869 DOI: 10.1016/j.addr.2009.04.018] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 04/28/2009] [Indexed: 02/07/2023]
Abstract
With increasing knowledge on the molecular mechanisms of endogenous RNA interference, small interfering RNAs (siRNAs) have been emerging as innovative nucleic acid medicines for treatment of incurable diseases such as cancers. Although several siRNA candidates for the treatment of ocular and respiratory diseases are undergoing clinical trials, there are challenges inherent in the further development of siRNAs for anti-cancer therapeutics, because systemic administration will be required in most cases. In addition to nonspecific off-target and immune stimulation problems, appropriate delivery remains a major hurdle. The technologies developed for delivery of nucleic acid medicines such as plasmid DNA and antisense oligonucleotides have paved the way to rapid progress for in vivo delivery of siRNAs. Here, we review various in vivo delivery strategies including chemical modification, conjugation, lipid-based techniques, polymer-based nanosystems, and physical methods. Moreover, the current progress in siRNA delivery systems for gynecologic, liver, lung, and prostate cancers is discussed.
Collapse
|
32
|
Li J, Liang Z. The consideration of synthetic short interfering RNA for therapeutic use. Basic Clin Pharmacol Toxicol 2009; 106:22-9. [PMID: 19663819 DOI: 10.1111/j.1742-7843.2009.00464.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small RNA molecules can act as regulators of post-transcriptional gene silencing and can target any given protein via the RNA interference pathway. This leads to the high expectation of small interference RNA (siRNA) as a therapeutic platform. Many companies and organisations are active in this development, which consequently forces siRNA's pharmacokinetic studies because pharmacokinetics plays an important role in elucidating the pharmacodynamic and toxicological mechanism of test articles. In particular, pharmacokinetics is mandatory in investigational new drug application in many countries. Some pre-clinical and clinical pharmacokinetic results have already been published and the fate of siRNA compounds in biological matrices has been explored in depth. The elucidation of the siRNA's metabolism improves the rational design of siRNA for disease control. This review focuses on the study of synthetic siRNA pharmacokinetics, the challenges of siRNA as a therapeutic agent and the strategies involved for improving siRNA bioavailability from the view of siRNA metabolism.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, PKU, Beijing, China.
| | | |
Collapse
|
33
|
Abstract
MicroRNAs are short noncoding RNAs that function as negative regulators of gene expression. Posttranscriptional regulation by miRNAs is important for many aspects of development, homeostasis, and disease. Endothelial cells are key regulators of different aspects of vascular biology, including the formation of new blood vessels (angiogenesis). Here, we review the approaches and current experimental evidence for the involvement of miRNAs in the regulation of the angiogenic process and their potential therapeutic applications for vascular diseases associated with abnormal angiogenesis.
Collapse
Affiliation(s)
- Yajaira Suárez
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Abstract
Well over a hundred reports have been published describing use of synthetic small-interfering RNAs (siRNAs) in animals. The majority of these reports employed unmodified RNA duplexes. While unmodified RNA is the natural effector molecule of RNA interference, certain problems arise with experimental or therapeutic use of RNA duplexes in vivo, some of which can be improved or solved through use of chemical modifications. Judicious use of chemical modifications can improve the nuclease stability of an RNA duplex, decrease the likelihood of triggering an innate immune response, lower the incidence of off-target effects (OTEs), and improve pharmacodynamics. This review will examine studies that document the utility of various chemical modifications for use in siRNAs, both in vitro and in vivo, with close attention given to reports demonstrating actual performance in animal model systems.
Collapse
Affiliation(s)
- Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, Iowa 52241, USA.
| |
Collapse
|
35
|
Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther 2008; 16:217-26. [PMID: 18927599 DOI: 10.1038/cgt.2008.79] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Liposomes are a useful means of delivering molecular targeting agents such as small interfering RNA (siRNA) to downregulate specific pathways important in cancer growth and progression. The ability to non-invasively image these carriers is important to ascertain their delivery within the tumor. As cyclooxygenase-2 (COX-2) is an important therapeutic target in cancer, we investigated loading COX-2-specific siRNA into cationic liposomes containing MR contrast agents for imaging delivery in cancer cells and tumors. COX-2 and GAPDH siRNA, as well as Magnevist or Feridex, were loaded directly into the liposomes. These lipoplexes were used for cell transfection of the poorly differentiated and highly metastatic breast cancer cell line MDA-MB-231. PEGylated liposomes loaded with Feridex and fluorescently labeled COX-2 siRNA were used for in vivo delivery of lipoplexes in MDA-MB-231 breast cancer xenografts in female SCID mice. Transient transfection assays demonstrated potent and specific downregulation of the COX-2 protein in cells in culture. Tail vein injections of PEGylated COX-2 lipoplexes resulted in intratumoral delivery of siRNA. Biodistribution studies showed significant localization in the lung, liver and kidney at 24 h. These data demonstrate the feasibility of liposomal-mediated delivery of COX-2-specific siRNA to downregulate COX-2 in cancer cells, and multi-modality imaging of the delivery of specific siRNA in tumors.
Collapse
|
36
|
Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134:577-86. [PMID: 18691745 PMCID: PMC2943428 DOI: 10.1016/j.cell.2008.06.034] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/17/2022]
Abstract
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
Collapse
Affiliation(s)
- Priti Kumar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong-Seok Ban
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sang-Soo Kim
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Haoquan Wu
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Todd Pearson
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Dale. L. Greiner
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Amale Laouar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiahong Yao
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Viraga Haridas
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Katsuyoshi Habiro
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Ji-Hoon Jeong
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kuen-Yong Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Yong-Hee Kim
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Georg H. Fey
- University of Erlangen, D 91058, Erlangen, Germany
| | - N Manjunath
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Sang-Kyung Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Premlata Shankar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
37
|
Pirollo KF, Chang EH. Targeted Delivery of Small Interfering RNA: Approaching Effective Cancer Therapies: Figure 1. Cancer Res 2008; 68:1247-50. [DOI: 10.1158/0008-5472.can-07-5810] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Spänkuch B, Steinhauser I, Wartlick H, Kurunci-Csacsko E, Strebhardt KI, Langer K. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia 2008; 10:223-34. [PMID: 18320067 PMCID: PMC2259452 DOI: 10.1593/neo.07916] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/30/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022]
Abstract
Human serum albumin (HSA) nanoparticles represent a promising tool for targeted drug delivery to tumor cells. The coupling of the antibody trastuzumab to nanoparticles uses the capability of human epidermal growth factor receptor 2 (HER2)-positive cells to incorporate agents linked to HER2. In our present study, we developed targeted nanoparticles loaded with antisense oligonucleotides (ASOs) against polo-like kinase 1 (Plk1). We evaluated the receptor-mediated uptake into HER2-positive and -negative breast cancer and murine cell lines. We performed quantitative real-time PCR and Western blot analyses to monitor the impact on Plk1 expression in HER2-positive breast cancer cells. Antibody-conjugated nanoparticles showed a specific targeting to HER2-overexpressing cells with cellular uptake by receptor-mediated endocytosis and a release into HER2-positive BT-474 cells. We observed a significant reduction of Plk1 mRNA and protein expression and increased activation of Caspase 3/7. Thus, this is the first report about ASO-loaded HSA nanoparticles, where an impact on gene expression could be observed. The data provide the basis for the further development of carrier systems for Plk1-specific ASOs to reduce off-target effects evoked by systemically administered ASOs and to achieve a better penetration into primary and metastatic target cells. Treatment of tumors using trastuzumab-conjugated ASO-loaded HSA nanoparticles could be a promising approach to reach this goal.
Collapse
Affiliation(s)
- Birgit Spänkuch
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, D-60590 Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G, Hogrefe RI, Palchik G, Chang EH. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res 2007; 67:2938-43. [PMID: 17409398 DOI: 10.1158/0008-5472.can-06-4535] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The field of small interfering RNA (siRNA) as potent sequence-selective inhibitors of transcription is rapidly developing. However, until now, low transfection efficiency, poor tissue penetration, and nonspecific immune stimulation by in vivo administered siRNAs have delayed their therapeutic application. Their potential as anticancer therapeutics hinges on the availability of a vehicle that can be systemically administered, safely and repeatedly, and will deliver the siRNA specifically and efficiently to the tumor, both primary tumors and metastases. We have developed a nanosized immunoliposome-based delivery complex (scL) that, when systemically administered, will preferentially target and deliver molecules useful in gene medicine, including plasmid DNA and antisense oligonucleotides, to tumor cells wherever they occur in the body. This tumor-targeting nanoparticle delivery vehicle can also deliver siRNA to both primary and metastatic disease. We have also enhanced the efficiency of this complex by the inclusion of a pH-sensitive histidine-lysine peptide in the complex (scL-HoKC) and by delivery of a modified hybrid (DNA-RNA) anti-HER-2 siRNA molecule. Scanning probe microscopy confirms that this modified complex maintains its nanoscale size. More importantly, we show that this nanoimmunoliposome anti-HER-2 siRNA complex can sensitize human tumor cells to chemotherapeutics, silence the target gene and affect its downstream pathway components in vivo, and significantly inhibit tumor growth in a pancreatic cancer model. Thus, this complex has the potential to help translate the potent effects of siRNA into a clinically viable anticancer therapeutic.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76:9-21. [PMID: 17457539 PMCID: PMC7079960 DOI: 10.1007/s00253-007-0984-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/13/2023]
Abstract
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.
Collapse
Affiliation(s)
- Achim Aigner
- Department Pharmacology and Toxicology, School of Medicine, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| |
Collapse
|