1
|
Jayaraman S, Prasad M, Natarajan SR, Krishnamoorthy R, Alshuniaber MA, Gatasheh MK, Veeraraghavan VP, Rajagopal P, Palanisamy CP. Molecular mechanisms underlying the effects of beta-sitosterol on TGF-β1/Nrf2/SIRT1/p53-mediated signaling in the kidney of a high-fat diet and sucrose-induced type-2 diabetic rat. Chem Biol Interact 2025; 411:111443. [PMID: 39986364 DOI: 10.1016/j.cbi.2025.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Diabetic nephropathy, a severe problem of diabetes mellitus, is exacerbated by high-fat diets, prompting a need for interventions. Previous study from our laboratory has shown that β-sitosterol, a potent plant sterol has anti-inflammatory and glucose-lowering efficacy by involving insulin metabolic signalling pathway but its role on anti-oxidant signaling pathways, play a crucial role in mitigating oxidative stress and inflammation associated diabetic nephropathy, highlighting its importance as a potential therapeutic target for managing this debilitating complication of diabetes is unknown. This study was aimed to intricate the molecular mechanisms involved in the potential of β-sitosterol (BSIT) on TGF-β1/Nrf2/SIRT1/p53 signaling in high fat diet (HFD) and sucrose induced diabetic nephropathy (DN) in the rat kidney by employing various comprehensive bioinformatic analysis. We have used various comprehensive methods such as pathway predictions, Drug-Protein Interaction, Functional annotation analysis, and molecular docking techniques. Further, in vivo analysis of BSIT on biochemical profiles, gene and protein expression analysis of anti-oxidant and inflammatory signaling molecules was performed in the kidney of high fat diet (HFD) and sucrose-induced diabetic nephropathy. Computational studies provided insights into β-sitosterol's binding affinities and interaction modes with key proteins, suggesting its potential to regulate TGF-β1/Nrf2/SIRT1/p53 signaling pathways. Results of in vivo findings validated computational predictions, showcasing BSIT's multifaceted effects in mitigating diabetic nephropathy and associated complications including regulation of lipid metabolism, combating oxidative stress, and inflammation. The findings underscore BSIT's therapeutic potential by preserving cellular viability, regulating cell death, enhancing antioxidant defence, and stabilizing metabolic processes. Our study concludes that BSIT's ability to potentially regulate TGF-β1/Nrf2/SIRT1/p53 pathways, emphasizing its promising role in managing diabetic nephropathy and associated complications.
Collapse
MESH Headings
- Animals
- Sirtuin 1/metabolism
- NF-E2-Related Factor 2/metabolism
- Sitosterols/pharmacology
- Sitosterols/therapeutic use
- Sitosterols/metabolism
- Sitosterols/chemistry
- Diet, High-Fat/adverse effects
- Signal Transduction/drug effects
- Tumor Suppressor Protein p53/metabolism
- Rats
- Transforming Growth Factor beta1/metabolism
- Male
- Kidney/metabolism
- Kidney/drug effects
- Kidney/pathology
- Sucrose
- Molecular Docking Simulation
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, 600095, India.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Singh J, Srivastava S, Zehra A, Prajapati P, Agarwal V, Kumar A, Mishra V, Kushwaha S. Beta(β)-sitosterol attenuates Chronic Unpredictable Stress (CUS) Induced Testicular Damage in the Experimental Rat Model. Reprod Sci 2025; 32:1312-1330. [PMID: 40044991 DOI: 10.1007/s43032-025-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 04/10/2025]
Abstract
Chronic stress is a major contributor to male reproductive dysfunction leading to testicular damage and impaired spermatogenesis. This study investigates the protective effects of β-sitosterol, a phytosterol with known antioxidant properties, against CUS-induced testicular damage in rats. Male Wistar rats were divided into Control, Chronic Unpredictable Stress (CUS), and CUS + β-sitosterol. The CUS and CUS + β-sitosterol groups were exposed to random stressors for eight weeks. β-Sitosterol was administered orally at a dose of 20 mg/kg for three weeks, starting from the fifth week of CUS induction. Behavioral tests like EPMT and NSFT were conducted to confirm CUS induction, after which serum, testis, and epididymis samples were collected for analysis. β-sitosterol significantly increased testis and epididymis weight, along with sperm counts in CUS rats. Histological analysis revealed restoration of testicular cellular structure, as indicated by an improved Johnsen's index scores. Additionally, β-sitosterol restored antioxidant levels and oxidative stress parameters in testicular tissue. TEM showed germ cell integrity and restored basement membrane structure in the CUS + β-sitosterol group. In silico analysis indicated strong interactions of β-sitosterol with FNDC5, P450scc, and 3β-HSD proteins involved in steroidogenesis. Immunohistochemistry confirmed an increased expression of FNDC5 in the CUS + β-sitosterol group, β-sitosterol ameliorates CUS-induced testicular damage and improves sperm count, highlighting its potential as a dietary intervention for stress-related male infertility. Further preclinical and clinical studies are warranted to explore its therapeutic potential.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
- Department of Pharmaceutical Sciences, School of Interdisciplinary Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Areesh Zehra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Anand Kumar
- Department of Pharmacy School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, 226002, India.
| |
Collapse
|
3
|
Chen X, Memory Kunda LS, Li X, Wang N, Huang Y, Hao Y, He Q, Liao W, Chen J. A Comprehensive Review of Beneficial Effects of Phytosterols on Glycolipid Metabolism and Related Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3826-3841. [PMID: 39927454 DOI: 10.1021/acs.jafc.4c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Phytosterols are widely distributed in various plant foods, such as nuts, grains, vegetables, and so on. Phytosterols have been broadly applied in functional foods, supplements, and pharmaceutical products due to their excellent cholesterol-lowering effect. Besides the cholesterol-lowering effect, recently, phytosterols have been found to exert a beneficial effect on glycolipid metabolism, which contributes to multiple metabolic diseases, such as diabetes, cardiovascular disease, and fatty liver. Constant development of new drugs with a single target fails to effectively curb the occurrence of metabolic diseases and complications, such as multiple organ damage, and phytosterols attract special attention due to varieties of biological activities, especially the regulation of glycolipid metabolism through multiple targets. Present review gives a comprehensive review of the effects of phytosterols on glycolipid metabolism and related mechanism. We also review the promising update of phytosterol in the treatment of two major metabolic diseases, including diabetes and nonalcohol fatty liver disease. This review can help to extend the understanding of the potential of phytosterols for mixed dyslipidemia and related metabolic diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lwara Sophie Memory Kunda
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinyang Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yangjia Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou, Guangdong 510640, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou 510515, China
- TCM-Integrated Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Guo X, Wang F, Zheng M, Li L, Li L, Wang J, Miao S, Ma S, Shi X. Network pharmacology and molecular docking to study the potential molecular mechanism of Qi Fu Yin for diabetic encephalopathy. J Biomol Struct Dyn 2025; 43:917-931. [PMID: 38047625 DOI: 10.1080/07391102.2023.2289038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 12/05/2023]
Abstract
Diabetic encephalopathy is a chronic complication of diabetes that lacks an optimized treatment strategy. The present study sought to elucidate the potential molecular mechanism of Qi Fu Yin in improving diabetic encephalopathy through network pharmacology. The active components and target information of Qi Fu Yin were obtained from the TCMSP and Swiss target databases, while the target information of diabetic encephalopathy was sourced from Gene cards, OMIM, and Pharm Gkb databases. Enrichment analyses of KEGG and GO were conducted utilizing drug-disease common targets, while protein-protein interactions were predicted through the utilization of the STRING database platform. Subsequently, molecular docking was executed via Auto Dock Vina to authenticate the interaction between core components and core targets. The findings revealed that Qi Fu Yin exhibited 178 common targets with diabetic encephalopathy, and the enrichment analyses demonstrated that these targets were associated with lipid and atherosclerosis, AGE-RAGE signaling pathways, and other related pathways. The findings of the molecular docking indicated a favorable binding affinity between the active components of drug and the core targets, with EGF and quercetin exhibiting the most notable docking score. Additionally, the molecular dynamics simulation corroborated this high affinity. These results suggested that the active ingredients of Qi Fu Yin, including quercetin and kaempferol, may modulated the expression of genes such as IL10, TNF, EGF, and MMP2, thereby activating the AGE-RAGE signaling pathways and potentially serving as a therapeutic intervention for diabetic encephalopathy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodi Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
- The College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Feiyan Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Meiling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Liang Li
- Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
5
|
Brañes MC, Gillet R, Valenzuela R. Nuclear receptors behind the therapeutic effects of plant sterols on metabolism: A review. Lipids 2024; 59:169-180. [PMID: 39077818 DOI: 10.1002/lipd.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors. This review delves into the molecular aspects of therapeutic effects related with lipid and energy metabolism that have been observed and demonstrated for plant sterols, and turns the perspective to explore the involvement of nuclear receptors as part of these mechanisms.
Collapse
Affiliation(s)
| | | | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Bolshakova EI, Kruchinin AG, Turovskaya SN, Illarionova EE, Yurova EA, Barkovskaya IA, Galstyan AG. Effects provided by sugar substitutes upon the quality indicators of model systems of sweetened condensed milk in storage. J Dairy Sci 2024; 107:9110-9123. [PMID: 39033916 DOI: 10.3168/jds.2024-25160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Sweetened condensed milk (SCM) is a product widely used by both consumers and other food production branches. However, it contains a lot of sucrose. This study aimed to examine the effects provided by sugar substitutes-trehalose, isomaltulose, and polydextrose-upon the SCM sensory profile and valuable quality indicators, such as water activity (Aw), viscosity, acidity, crystal size, and Maillard reaction potential (browning index, color change, loss of free AA). The study was performed by making model systems of SCM (MSCM) using the method of reconstitution of powdered ingredients. All the presented carbohydrate compositions in MSCM provided Aw value typical of intermediate-moisture food, which contributes to the long-term shelf life of the product. However, only 2 MSCM showed stability of Aw within a 14-d storage period: a composition of isomaltulose and trehalose (each at 22.55%), and a composition of trehalose (28.19%), sucrose (5.64%), polydextrose (5.64%), and isomaltulose (5.64%). Trehalose and polydextrose in MSCM with monocarbohydrate added fraction demonstrated their high structure-forming ability, expressed in high values of dynamic viscosity (>30 Pa·s). The MSCM containing a predominant amount of trehalose in the carbohydrate compositions (≥50%) showed lower average crystal size (<16 μm) compared with MSCM with di- and tetra-carbohydrate added fractions with predominant amounts of isomaltulose or polydextrose. Isomaltulose and polydextrose added to MSCM led to pronounced browning, whereas trehalose and sucrose reduced this effect in MSCM with di- and tetra-carbohydrate added fractions. Polydextrose added at 22.55% to carbohydrate fraction of MSCM caused bitterness, whereas the addition at 5.64% did not affect the taste. Based on the results of all the research conducted, the optimal carbohydrate compositions to produce SCM with fewer calories, lower sucrose content, and stable, adequate values of processing and sensory properties were trehalose (22.55%) with isomaltulose (22.55%), and trehalose (28.19%) with sucrose (5.64%), polydextrose (5.64%), and isomaltulose (5.64%).
Collapse
Affiliation(s)
- E I Bolshakova
- All-Russian Dairy Research Institute, Moscow 115093, Russia.
| | - A G Kruchinin
- All-Russian Dairy Research Institute, Moscow 115093, Russia
| | - S N Turovskaya
- All-Russian Dairy Research Institute, Moscow 115093, Russia
| | | | - E A Yurova
- All-Russian Dairy Research Institute, Moscow 115093, Russia
| | | | - A G Galstyan
- All-Russian Dairy Research Institute, Moscow 115093, Russia
| |
Collapse
|
7
|
Singha S, Das Gupta B, Sarkar A, Jana S, Bharadwaj PK, Sharma N, Haldar PK, Mukherjee PK, Kar A. Chemo-profiling and exploring therapeutic potential of Momordica dioica Roxb. ex Willd. for managing metabolic related disorders: In-vitro studies, and docking based approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118351. [PMID: 38759763 DOI: 10.1016/j.jep.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.
Collapse
Affiliation(s)
- Seha Singha
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Barun Das Gupta
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sandipan Jana
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pardeep K Bharadwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pulok Kumar Mukherjee
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| |
Collapse
|
8
|
Chang J, Wang J, Li X, Zhong Y. Predicting prospective therapeutic targets of Bombyx batryticatus for managing diabetic kidney disease through network pharmacology analysis. Medicine (Baltimore) 2024; 103:e39598. [PMID: 39287308 PMCID: PMC11404872 DOI: 10.1097/md.0000000000039598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/17/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
We conducted network pharmacology and molecular docking analyses, and executed in vitro experiments to assess the mechanisms and prospective targets associated with the bioactive components of Bombyx batryticatus in the treatment of diabetic kidney disease (DKD). The bioactive components and potential targets of B batryticatus were sourced from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Using 5 disease databases, we conducted a comprehensive screening of potential disease targets specifically associated with DKD. Common targets shared between the bioactive components and disease targets were identified through the use of the R package, and subsequently, a protein-protein interaction network was established using data from the STRING database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses pertaining to the identified common targets were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking simulations involving the bioactive components and their corresponding targets were modeled through AutoDock Vina and Pymol. Finally, to corroborate and validate these findings, experimental assays at the cellular level were conducted. Six bioactive compounds and 142 associated targets were identified for B batryticatus. Among the 796 disease targets associated with DKD, 56 targets were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed the involvement of these shared targets in diverse biological processes and signaling pathways, notably the PI3K-Akt signaling pathway. Molecular docking analyses indicated a favorable binding interaction between quercetin, the principal bioactive compound in B batryticatus, and RAC-alpha serine/threonine-protein kinase. Subsequently, in vitro experiments substantiated the inhibitory effect of quercetin on the phosphorylation level of PI3K and Akt. The present study provides theoretical evidence for a comprehensive exploration of the mechanisms and molecular targets by which B batryticatus imparts protective effects against DKD.
Collapse
Affiliation(s)
- Jingsheng Chang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHDA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int J Mol Sci 2024; 25:9213. [PMID: 39273161 PMCID: PMC11394750 DOI: 10.3390/ijms25179213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Collapse
Affiliation(s)
- Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ingrid Wilza L. Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
10
|
Taher MA, Hossain MJ, Zahan MS, Hasan MM, Ferdous J, Rahman A, Khan M, Hosain MK, Rashid MA. Phyto-pharmacological and computational profiling of Bombax ceiba Linn. Leaves revealed pharmacological properties against oxidation, hyperglycemia, pain, and diarrhea. Heliyon 2024; 10:e35422. [PMID: 39170236 PMCID: PMC11336592 DOI: 10.1016/j.heliyon.2024.e35422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The present study aimed to conduct phytochemical and pharmacological profiling of methanolic crude extract of leaves of Bombax ceiba Linn. via experimental and computational approaches. Six secondary metabolites were isolated chromatographically, and the structures were elucidated by extensive analyses of high-resolution 1H and 13C NMR data. The separated compounds were characterized as β-sitosterol (1), β-amyrin (2), β-amyrin acetate (3), β-amyrin palmitate (4), β-amyrone (5), and isoscopoletin (6). DPPH free radical scavenging assay, tail-tipping method, writhing assay, and castor oil-induced diarrheal mice methods, respectively, were used to assess the antioxidant, hypoglycemic, analgesic, and anti-diarrheal activities of the leaf extract of B. ceiba plant species. The study observed significant reductions (p < 0.05) in the level of blood glucose at 30, 60, 120, and 180 min following the administration of the crude extracts (200 mg/kg body weight (bw) and 400 mg/kg bw). These reductions occurred in a time-dependent manner. Additionally, both doses of the investigated extracts exhibited significant (p < 0.05) central and peripheral analgesic effects compared to morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw), respectively. Furthermore, the 400 mg/kg bw extract demonstrated anti-diarrheal activity, reducing 54.17 % of diarrheal episodes in mice compared to loperamide with 70.83 % inhibition. The computational investigations yielded results consistent with existing in vivo findings. The results obtained from molecular docking showed that the isolated compounds had a better or comparable binding affinity to the active binding sites of the glutathione reductase enzyme, mu-opioid receptor, cyclooxygenase 2 (COX-2), glucose transporter 3 (GLUT 3), and kappa opioid receptor. These findings may indicate that the compounds isolated from the B. ceiba plant species have antioxidant, analgesic, hypoglycemic, and anti-diarrheal, properties. Consequently, it was inferred that the plant B. ceiba might be beneficial in dealing with oxidation, diarrhea, hyperglycemia, and pain. Nonetheless, further investigations are necessary to perform thorough phytochemical profiling and elucidate the exact mechanistic ways of the crude extract and the isolated phytoconstituents.
Collapse
Affiliation(s)
- Mohammad Abdullah Taher
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- Bangladesh Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka 1205, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, South Purbachal, Dhaka 1461, Bangladesh
| | - Miss Sharmin Zahan
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, South Purbachal, Dhaka 1461, Bangladesh
| | | | - Jannatul Ferdous
- Department of Statistics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Asheka Rahman
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mala Khan
- Bangladesh Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka 1205, Bangladesh
| | - Md. Khalid Hosain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
11
|
Ismail TR, Yap CG, Naidu R, Shri L, Pamidi N. Environmental enrichment and the combined interventions of EE and metformin enhance hippocampal neuron survival and hippocampal-dependent memory in type 2 diabetic rats under stress through the BDNF-TrkB signaling pathways. Biomed Pharmacother 2024; 175:116729. [PMID: 38776676 DOI: 10.1016/j.biopha.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Teh Rasyidah Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor Darul Ehsan 43000, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Lugganya Shri
- Asian Institute of Medicine, Science and Technology, Faculty of Applied Sciences, Batu 3 1/2, Jalan, Bukit Air Nasi, Bedong, Kedah 08100, Malaysia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
12
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Taher MA, Laboni AA, Islam MA, Hasnat H, Hasan MM, Ferdous J, Shompa SA, Khan M. Isolation, characterization and pharmacological potentials of methanol extract of Cassia fistula leaves: Evidenced from mice model along with molecular docking analysis. Heliyon 2024; 10:e28460. [PMID: 38590868 PMCID: PMC10999937 DOI: 10.1016/j.heliyon.2024.e28460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
The purpose of the current investigation was to conduct a detailed analysis of the chemical components and medicinal properties of the methanolic crude extract derived from the leaves of Cassia fistula. This analysis was carried out using both experimental (in vivo) and computational (in silico) methods. Eleven chemicals were chromatographically isolated using GC-MS/MS, which utilizes a library of NIST and Wiley 2020 versions. FTIR analysis of the extract was performed to identify the functional group of the compounds. The glucose-lowering capacity, analgesic, and anti-diarrheal activities of methanolic crude extract were analyzed utilizing a well-known oral glucose tolerance test, tail immersion method, writhing assay, and castor oil-induced diarrheal mice methods, respectively. After 60 min, 120 min, and 180 min of loading the drugs, a significant reduction of blood glucose levels was examined (p < 0.05) in all the extracts of this plant (200 mg/kg, 400 mg/kg and 600 mg/kg) utilized in this research at a time-dependent manner. Similarly, all the crude extracts showed significant (p < 0.05) effects against pain centrally and peripherally compared to the standard drug morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw). Moreover, the methanol extract (400 mg/kg bw) manifested anti-diarrheal efficacy by inhibiting 72.0 % of the diarrheal episode in mice compared to the standard drug loperamide (inhibition = 80.0%). The results of the computational investigations corroborated existing in-vivo findings. Greater or close to equivalent binding affinity to the active binding sites of kappa opioid receptor, glucose transporter 3 (GLUT 3), and cyclooxygenase 2 was indicative of the potential anti-diarrheal, hypoglycemic, and analgesic characteristics of the isolated compounds (COX-2). Moreover, anticancer and antimicrobial potentiality was also found impressive through evaluation of binding affinity with epidermal growth factor receptor (EGFR) and dihydrofolate reductase (DHFR) receptors. Results from this study indicated that C. fistula might be a beneficial natural resource for treating diarrhea, hyperglycemia, and pain. However, additional research is required to conduct a comprehensive phytochemical screening and establish precise action mechanisms of the crude extract or the plant-derived compounds.
Collapse
Affiliation(s)
- Mohammad Abdullah Taher
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Bangladesh
| | - Aysha Akter Laboni
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| | - Md Ashraful Islam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Hasin Hasnat
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | | | | | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| |
Collapse
|
14
|
Iqbal R, Azhar I, Akhtar MF, Mahmood ZA, Hamid I, Saleem A, Basheer E, El-Saber Batiha G, El-Gazzar AM, Mahmoud MH. Combination therapy with Hordeum vulgare, Elettaria cardamomum, and Cicer arietinum exhibited anti-diabetic potential through modulation of oxidative stress and proinflammatory cytokines. Heliyon 2024; 10:e26126. [PMID: 38384558 PMCID: PMC10879019 DOI: 10.1016/j.heliyon.2024.e26126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Poly-herbal therapies for chronic diseases like diabetes mellitus (DM) have been practiced in south Asia for centuries. One of such therapies comprises of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum that have shown encouraging therapeutic potential in the treatment of diabetes and obesity. Therefore, poly-herbal granules (PHGs) of this formula were developed and investigated for their anti-diabetic and anti-obesity potential in obese-diabetic rats. The developed PHGs were chemical characterized and the virtual molecular docking was performed by Discovery studio visualizer (DSV) software. For in-vivo experiment, obesity in rats was induced with high-fat high-sugar diet. After that, diabetes was induced by alloxan monohydrate 150 mg/kg i.p. injection. The diseased rats were treated with PHGs at 250, 500 and 750 mg/kg/day for four weeks. GC-MS analysis of PHGs demonstrated the presence of 1,3-Benzenedicarboxylic acid bis(2-ethylhexyl) ester and 1,2-Benzenedicarboxylic acid di-isooctyl ester and phenol, 2,4-bis(1,1-dimethylethyl). Molecular docking of these compounds demonstrated higher binding energies with receptor than metformin against α-amylase and α-glucosidase. PHGs exhibited a decline in body weight, HbA1c, hyperlipidemia, hyperglycemia, and insulin resistance in diseased rats. The histopathological examination revealed that PHGs improved the alloxan-induced damage to the pancreas. Furthermore, PHGs increased the SOD, CAT and GSH while and the decreased the level of MDA in the liver, kidney and pancreas of diseased rats. Additionally, the PHGs had significantly downregulated the TNF-α and NF-κB while upregulated the expression of NrF-2. The current study demonstrated that the PHGs exhibited anti-diabetic and anti-obesity potential through amelioration of oxidative stress, NF-κB, TNF-α, and NrF-2 due to the presence of different phytochemicals.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Iqbal Azhar
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, University of the Punjab, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmed M. El-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, college of science, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Xu D, Yuan L, Che M, Liu W, Li X, Yang Y, Wang K, Nan Y. The molecular mechanism of "Dahuang-Shengjiang-Banxia decoction" in the treatment of diabetic kidney disease was verified based on network pharmacology and molecular docking. Heliyon 2024; 10:e24776. [PMID: 38312712 PMCID: PMC10835317 DOI: 10.1016/j.heliyon.2024.e24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024] Open
Abstract
Background Explore the molecular mechanism of Dahuang-Shengjiang-Banxia Decoction (DSBD) in the treatment of diabetic kidney disease (DKD), using network pharmacology and molecular docking technology. Method The effective ingredients and targets of the DSBD were taken from the TCMSP database, while the disease targets were obtained via GeneCards, OMIM, DrugBank, TTD, and DisGeNET. Cytoscape 3.9.1 was used to create a drug-ingredient-target network diagram. STRING databases are also used to analyze the Protein-Protein Interaction (PPI) network of intersecting targets. The core targets was obtained by the intersection of the differential genes screened from the intersection target and GEO, and the core targets was enriched by Gene ontology (GO), Kyoto gene and genome (KEGG), and Gene Set Enrichment Analysis (GSEA). CIBERSORTx was used for immunoinfiltration analysis, and then the core targets was analyzed by Nephroseq V5 and KIT for clinical correlation analysis and single-cell sequencing. Lastly, AutoDock Vina was used for molecular docking of both the core targets and the top active elements. Results A total of 177 DSBD and 2906 DKD targets were screened. Six core targets were identified by screening, which were IL1B, MMP9, EGF, VEGFA, HIF1A, and PTGS2. The top 6 active ingredients are 6-gingerol, baicalin, oleic acid, β-sitosterol, linolenic acid, and aloe emodin. The core targets has good docking activity with the active ingredient. Conclusion DSBD may exert its therapeutic effect on DKD through multicomponent, multipath, and multi-target analyses. It is possible that VEGFA is a key target in therapy, and that the VEGF/PI3K/AKT signaling pathway plays a key role in therapy.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yifan Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
16
|
Roney M, Dubey A, Issahaku AR, Uddin MN, Tufail A, Wilhelm A, Zamri NB, Aluwi MFFM. Insights from in silico exploration of major curcumin analogs targeting human dipeptidyl peptidase IV. J Biomol Struct Dyn 2024:1-14. [PMID: 38260948 DOI: 10.1080/07391102.2024.2306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | | | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
17
|
Prasad M, Jayaraman S, Natarajan SR, Veeraraghavan VP, Krishnamoorthy R, Gatasheh MK, Palanisamy CP, Elrobh M. Piperine modulates IR/Akt/GLUT4 pathways to mitigate insulin resistance: Evidence from animal and computational studies. Int J Biol Macromol 2023; 253:127242. [PMID: 37797864 DOI: 10.1016/j.ijbiomac.2023.127242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The global prevalence of diabetes mellitus is rising, especially in India. Medicinal herbs, whether used alone or in combination with conventional medicines, have shown promise in managing diabetes and improving overall well-being. Piperine (PIP), a major bioactive compound found in pepper, is gaining attention for its beneficial properties. This study aimed to assess whether PIP could alleviate diabetes by targeting insulin pathway-related molecules in the adipose tissue of rats on a high-fat diet (HFD). After 60 days on the HFD, rats received PIP at a dose of 40 mg/kg body weight for one month. The results showed that PIP significantly improved metabolic indicators, antioxidant enzymes, and carbohydrate metabolic enzymes. It also regulated the mRNA and protein expression of insulin signaling, which had been disrupted by the diet and sucrose intake. Molecular docking analysis also revealed strong binding of PIP to key diabetes-related regulatory proteins, including Akt (-6.2 kcal/mol), IR (-7.02 kcal/mol), IRS-1 (-6.86 kcal/mol), GLUT4 (-6.24 kcal/mol), AS160 (-6.28 kcal/mol), and β-arrestin (-6.01 kcal/mol). Hence, PIP may influence the regulation of glucose metabolism through effective interactions with these proteins, thereby controlling blood sugar levels due to its potent antilipidemic and antioxidant properties. In conclusion, our study provides in vivo experimental evidence against the HFD-induced T2DM model for the first time, making PIP a potential natural remedy to enhance the quality of life for diabetic patients and aid in their management.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Paper Making, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250316, China.
| | - Mohamed Elrobh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Bappi MH, Prottay AAS, Al-Khafaji K, Akbor MS, Hossain MK, Islam MS, Asha AI, Medeiros CR, Tahim CM, Lucetti ECP, Coutinho HDM, Kamli H, Islam MT. Antiemetic effects of sclareol, possibly through 5-HT 3 and D 2 receptor interaction pathways: In-vivo and in-silico studies. Food Chem Toxicol 2023; 181:114068. [PMID: 37863383 DOI: 10.1016/j.fct.2023.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Emesis is a complex physiological phenomenon that serves as a defense against numerous toxins, stressful situations, adverse medication responses, chemotherapy, and movement. Nevertheless, preventing emesis during chemotherapy or other situations is a significant issue for researchers. Hence, the majority view contends that successfully combining therapy is the best course of action. In-vivo analysis offers a more comprehensive grasp of how compounds behave within a complex biological environment, whereas in-silico evaluation refers to the use of computational models to forecast biological interactions. OBJECTIVES The objectives of the present study were to evaluate the effects of Sclareol (SCL) on copper sulphate-induced emetic chicks and to investigate the combined effects of these compounds using a conventional co-treatment approach and in-silico study. METHODS SCL (5, 10, and 15 mg/kg) administered orally with or without pre-treatment with anti-emetic drugs (Ondansetron (ODN): 24 mg/kg, Domperidone (DOM): 80 mg/kg, Hyoscine butylbromide (HYS): 100 mg/kg, and Promethazine hydrochloride (PRO): 100 mg/kg) to illustrate the effects and the potential involvement with 5HT3, D2, M3/AChM, H1, or NK1 receptors by SCL. Furthermore, an in-silico analysis was conducted to forecast the role of these receptors in the emetic process. RESULTS The results suggest that SCL exerted a dose-dependent anti-emetic effect on the chicks. Pretreatment with SCL-10 significantly minimized the number of retches and lengthened the emesis tendency of the experimental animals. SCL-10 significantly increased the anti-emetic effects of ODN and DOM. However, compared to the ODN-treated group, (SCL-10 + ODN) group considerably (p < 0.0001) extended the latency duration (109.40 ± 1.03 s) and significantly (p < 0.01) decreased the number of retches (20.00 ± 0.70), indicating an anti-emetic effect on the test animals. In in-silico analysis, SCL exhibited promising binding affinities with suggesting receptors. CONCLUSION SCL-10 exerted an inhibitory-like effect on emetic chicks, probably through the interaction of the 5HT3 and D2 receptors. Further studies are highly appreciated to validate this study and determine the precise mechanism(s) behind the anti-emetic effects of SCL. We expect that SCL-10 may be utilized as an antiemetic treatment in a single dosage form or that it may function as a synergist with other traditional medicines.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh University of Science, Baghdad, 10081, Iraq
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Pharmacy, University of Science & Technology Chittagong, Chittagong, 4202, Bangladesh
| | - Md Shahazul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Afia Ibnath Asha
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Cassio Rocha Medeiros
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | - Catarina Martins Tahim
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato, CE, 63105-000, Brazil.
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
19
|
Zhang D, Ge F, Ji J, Li YJ, Zhang FR, Wang SY, Zhang SJ, Zhang DM, Chen M. β-sitosterol alleviates dextran sulfate sodium-induced experimental colitis via inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Front Pharmacol 2023; 14:1218477. [PMID: 37954856 PMCID: PMC10637366 DOI: 10.3389/fphar.2023.1218477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Inflammation-related NLRP3/Caspase-1/GSDMD-mediated pyroptosis is involved in the progression of ulcerative colitis (UC). β-sitosterol (SIT) was reported to have anti-inflammatory effects on experimental colitis, while the regulation of SIT on pyroptosis is unclear. Therefore, the present study aimed to define the protective and healing effects of SIT on dextran sulfate sodium (DSS)-induced experimental UC rats and human epithelial colorectal adenocarcinoma cells (Caco-2) and explore the underlying mechanisms that are responsible for its effects on NLRP3/Caspase-1/GSDMD-mediated pyroptosis in UC. Methods: UC model rats were established by oral 4% DSS. Following colitis injury, the animals received SIT (doses of 50, 100, and 200 mg/kg) treatment for 2 weeks. For in vitro study, we exposed Caco-2-50 mg/mL DSS with or without SIT (concentrations of 8 and 16 μg/mL). Disease activity index (DAI) and histopathological injury were assessed in vivo. Activation proteins of nuclear factor kappa B (NF-κB) signaling axis, and tight junction-related proteins of zonula occludens-1 (ZO-1) and occludin were detected in colon tissues. TNF-α, IL-1β, and IL-18 in serum and cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Changes in NLRP3/Caspase-1/GSDMD-mediated pyroptosis signaling pathway activation were analyzed both in tissues and cells. Results: Our findings suggested that SIT treatment attenuated the severity of 4% DSS-induced UC by protecting rats from weight and colon length loss, and macroscopic damage. SIT also reduced proinflammatory factors production (TNF-α, IL-1β, and IL-18) in serum and cell supernatant. Mechanistically, SIT downregulated the expression levels of pyroptosis-related proteins including Caspase-1, cleaved-Caspase-1, NLRP3, GSDMD, and GSDMD-N in colon tissues and Caco-2 cells. Further analysis indicated that SIT maintained the colonic barrier integrity by enhancing the protein expression of ZO-1 and occludin. Conclusion: We confirmed that SIT exerts protective and therapeutic effects on DSS-induced colitis injury by suppressing NLRP3/Caspase-1/GSDMD-mediated pyroptosis and inflammation response. These findings demonstrated that SIT could be a potential medication for UC treatment.
Collapse
Affiliation(s)
- Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Jing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Vekic J, Stromsnes K, Mazzalai S, Zeljkovic A, Rizzo M, Gambini J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023; 11:2897. [PMID: 38001900 PMCID: PMC10669174 DOI: 10.3390/biomedicines11112897] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the consequence of an overproduction of reactive oxygen species (ROS) that exceeds the antioxidant defense mechanisms. Increased levels of ROS contribute to the development of cardiovascular disorders through oxidative damage to macromolecules, particularly by oxidation of plasma lipoproteins. One of the most prominent features of atherogenic dyslipidemia is plasma accumulation of small dense LDL (sdLDL) particles, characterized by an increased susceptibility to oxidation. Indeed, a considerable and diverse body of evidence from animal models and epidemiological studies was generated supporting oxidative modification of sdLDL particles as the earliest event in atherogenesis. Lipid peroxidation of LDL particles results in the formation of various bioactive species that contribute to the atherosclerotic process through different pathophysiological mechanisms, including foam cell formation, direct detrimental effects, and receptor-mediated activation of pro-inflammatory signaling pathways. In this paper, we will discuss recent data on the pathophysiological role of oxidative stress and atherogenic dyslipidemia and their interplay in the development of atherosclerosis. In addition, a special focus will be placed on the clinical applicability of novel, promising biomarkers of these processes.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Stefania Mazzalai
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| |
Collapse
|
21
|
Huneif MA, Fahad S, Abdulwahab A, Alqahtani SM, Mahnashi MH, Nawaz A, Hussain F, Sadiq A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. PLANTS (BASEL, SWITZERLAND) 2023; 12:3591. [PMID: 37896054 PMCID: PMC10609873 DOI: 10.3390/plants12203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Diabetes mellitus (DM) is a metabolic complication and can pose a serious challenge to human health. DM is the main cause of many life-threatening diseases. Researchers of natural products have been continuously engaged in treating vital diseases in an economical and efficient way. In this research, we extensively used phytosteroids from Notholirion thomsonianum (Royle) Stapf for the treatment of DM. The structures of phytosteroids NtSt01 and NtSt02 were confirmed with gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. Through in vitro studies including α-glucosidase, α-amylase, and DPPH assays, compound NtSt01 was found to be comparatively potent. An elevated dose of compound NtSt01 was also found to be safe in an experimental study on rats. With a dose of 1.0 mg/kg of NtSt01, the effect on blood glucose levels in rats was observed to be 519 ± 3.98, 413 ± 1.87, 325 ± 1.62, 219 ± 2.87, and 116 ± 1.33 mg/dL on the 1st, 7th, 14th, 21st, and 28th, days, respectively. The in vivo results were compared with those of glibenclamide, which reduced the blood glucose level to 107 ± 2.33 mg/dL on the 28th day. On the 28th day of NtSt01 administration, the average weights of the rats and vital organs (liver, kidney, pancreas, and heart) remained healthy, with a slight increase. The biochemical parameters of the blood, i.e., serum creatinine, blood urea, serum bilirubin, SGPT (or ALT), and serum alkaline phosphatase, of rats treated with NtSt01 remained in the normal ranges. Similarly, the serum cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels also remained within the standard ranges. It is obvious from our overall results that the phytosteroids (specifically NtSt01) had an efficient therapeutic effect on the blood glucose level, protection of vital organs, and blood biochemistry.
Collapse
Affiliation(s)
- Mohammad A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan;
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Seham M. Alqahtani
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi 23561, KP, Pakistan;
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| |
Collapse
|
22
|
Tian Y, Pang G, Pan L. Clinical efficacy of Huanglian Wendan decoction in treating type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35299. [PMID: 37800822 PMCID: PMC10553187 DOI: 10.1097/md.0000000000035299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Huanglian Wendan decoction (HLWDD) is a traditional Chinese prescription, which has been used to treat type 2 diabetes mellitus (T2DM) in recent years. However, no studies have evaluated its underlying clinical efficacy. Therefore, we used systematic review and meta-analysis to explore the clinical efficacy of HLWDD in treating T2DM. METHODS The randomized controlled trials of HLWDD on T2DM were retrieved from Chinese and foreign databases. The primary outcomes included fasting blood glucose (FBG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin, type A1c (HbA1c). The secondary outcomes included fasting serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c). Statistical analyses were performed using Review Manager and Stata software. Mean difference (MD) with 95% confidence intervals (CI) were used to describe results. The grades of recommendation assessment, development and evaluation approach was used to rate the quality of the evidence; and trial sequential analysis was used to evaluate the required information size and treatment benefits. RESULTS Twenty-three randomized controlled trials were included in this study. We showed that HLWDD can improve FBG (MD = -0.99, 95% CI: -1.10 to -0.88), 2hPG (MD = -1.57, 95% CI: -1.97 to -1.17), HbA1c (MD = -1.11, 95% CI: -1.42 to -0.80), HOMA-IR (MD = -0.80, 95% CI: -1.80 to -0.51), TC (MD = -0.65, 95% CI: -0.88 to -0.42), TG (MD = -0.32, 95% CI: -0.38 to -0.27), LDL-c (MD = -0.54, 95% CI: -0.66 to -0.41), and HDL-c (MD = 0.08, 95% CI: 0.02-0.15) levels in T2DM patients. Trial sequential analysis suggested that the eficacy of HLWDD in improving FBG, 2hPG, HbA1c, HOMA-IR, TC, TG, LDL-c, and HDL-c was sufficient to draw a firm conclusion. Grades of recommendation assessment showed that HLWDD only has high or moderate quality of evidence in improving FBG, and TG. CONCLUSION HLWDD can improve blood glucose and blood lipid levels in T2DM patients, and may be a potential drug to treat T2DM.
Collapse
Affiliation(s)
- Yuan Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Guowei Pang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Linlin Pan
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
23
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Jayaraman S, Krishnamoorthy K, Prasad M, Veeraraghvan VP, Krishnamoorthy R, Alshuniaber MA, Gatasheh MK, Elrobh M. Glyphosate potentiates insulin resistance in skeletal muscle through the modulation of IRS-1/PI3K/Akt mediated mechanisms: An in vivo and in silico analysis. Int J Biol Macromol 2023; 242:124917. [PMID: 37207753 DOI: 10.1016/j.ijbiomac.2023.124917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Herbicides have been linked to a higher risk of developing diabetes. Certain herbicides also operate as environmental toxins. Glyphosate is a popular and extremely effective herbicide for weed control in grain crops that inhibits the shikimate pathway. It has been shown to negatively influence endocrine function. Few studies have demonstrated that glyphosate exposure results in hyperglycemic and insulin resistance; but the molecular mechanism underlying the diabetogenic potential of glyphosate on skeletal muscle, a primary organ that includes insulin-mediated glucose disposal, is unknown. In this study, we aimed to evaluate the impact of glyphosate on the detrimental changes in the insulin metabolic signaling in the gastrocnemius muscle. In vivo results showed that glyphosate exposure caused hyperglycemia, dyslipidemia, increased glycosylated hemoglobin (HbA1c), liver function, kidney function profile, and oxidative stress markers in a dose-dependent fashion. Conversely, hemoglobin and antioxidant enzymes were significantly reduced in glyphosate-induced animals indicating its toxicity is linked to induce insulin resistance. The histopathology of the gastrocnemius muscle and RT-PCR analysis of insulin signaling molecules revealed glyphosate-induced alteration in the expression of IR, IRS-1, PI3K, Akt, β-arrestin-2, and GLUT4 mRNA. Lastly, molecular docking and dynamics simulations confirmed that glyphosate showed a high binding affinity with target molecules such as Akt, IRS-1, c-Src, β-arrestin-2, PI3K, and GLUT4. The current work provides experimental proof that glyphosate exposure has a deleterious effect on the IRS-1/PI3K/Akt signaling pathways, which in turn causes the skeletal muscle to become insulin resistant and eventually develop type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Kalaiselvi Krishnamoorthy
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Vishnu Priya Veeraraghvan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed Elrobh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
25
|
Abo-Zaid OA, Moawed FS, Ismail ES, Farrag MA. β-sitosterol attenuates high- fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflammation and ER stress pathway. BMC Pharmacol Toxicol 2023; 24:31. [PMID: 37173727 PMCID: PMC10182633 DOI: 10.1186/s40360-023-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder. The naturally occurring phytosterol; β-sitosterol has antiobesogenic and anti-diabetic properties. The purpose of this study was to explore the role of β-sitosterol in preventing hepatic steatosis induced by a high-fat diet (HFD) in rats. In the current study, to induce NAFLD in the female Wister rats, an HFD was administered to them for 8 weeks. The pathogenic severity of steatosis in rats receiving an HFD diet was dramatically decreased by oral administration of β-sitosterol. After administering β-sitosterol to HFD-induced steatosis for three weeks, several oxidative stress-related markers were then assessed. We showed that β-sitosterol reduced steatosis and the serum levels of triglycerides, transaminases (ALT and AST) and inflammatory markers (IL-1β and iNOS) compared to HFD-fed rats. Additionally, β-sitosterol reduced endoplasmic reticulum stress by preventing the overexpression of inositol-requiring enzyme-1 (IRE-1α), X-box binding protein 1(sXBP1) and C/EBP homologous protein (CHOP) genes which, showing a function in the homeostatic regulation of protein folding. Also, it was found that the expression of the lipogenic factors; peroxisome proliferator-activated receptor (PPAR-α), sterol regulatory element binding protein (SREBP-1c) and carnitine palmitoyltransferase-1(CPT-1), which are involved in the regulation of the fatty acid oxidation process, may be regulated by β-sitosterol. It can be concluded that β-sitosterol may prevent NAFLD by reducing oxidative stress, endoplasmic reticulum stress and inflammatory responses, which supports the possibility of using β-sitosterol as an alternative therapy for NAFLD. Together, β-sitosterol may be an option for NAFLD prevention.
Collapse
Affiliation(s)
- Omayma Ar Abo-Zaid
- Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Fatma Sm Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Effet Soliman Ismail
- Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Mostafa A Farrag
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
26
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
27
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 PMCID: PMC11977607 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of PharmacyQU Health, Qatar UniversityDohaQatar
| |
Collapse
|
28
|
Ismail TR, Yap CG, Naidu R, Pamidi N. Environmental Enrichment and Metformin Improve Metabolic Functions, Hippocampal Neuron Survival, and Hippocampal-Dependent Memory in High-Fat/High-Sucrose Diet-Induced Type 2 Diabetic Rats. BIOLOGY 2023; 12:biology12030480. [PMID: 36979171 PMCID: PMC10045208 DOI: 10.3390/biology12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Background: The Western-style diet-induced type 2 diabetes mellitus (T2D) may eventually trigger neurodegeneration and memory impairment. Thus, it is essential to identify effective therapeutic strategies to overcome T2D complications. This study aimed to investigate the effects of environmental enrichment (EE) and metformin interventions on metabolic dysfunctions, hippocampal neuronal death, and hippocampal-dependent memory impairments in high-fat/high-sucrose (HFS) diet-induced T2D rats. Methods: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage); D group (HFS diet + conventional cage); DE group (HFS diet + EE cage/6hr daily); and DM group (HFS diet + metformin + conventional cage). Body weight was measured every week. T-maze tasks, anthropometric, biochemical, histological, and morphometric parameters were measured. The expression changes of hippocampal genes were also analyzed. Results: The anthropometric and biochemical parameters were improved in DE and DM groups compared with the D group. DE and DM groups had significantly higher T-maze percentages than the D group. These groups also had better histological and morphometric parameters than the D group. The interventions of EE and metformin enhanced the expression of hippocampal genes related to neurogenesis and synaptic plasticity (BDNF/TrkB binding, PI3K-Akt, Ras-MAPK, PLCγ-Ca2+, and LTP). Conclusion: Environmental enrichment (EE) and metformin improved metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in HFS diet-induced T2D rats. The underlying mechanisms of these interventions involved the expression of genes that regulate neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Teh Rasyidah Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
- Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Kuala Lumpur 43000, Selangor Darul Ehsan, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Huang Y, Gong Z, Yan C, Zheng K, Zhang L, Li J, Liang E, Zhang L, Mao J. Investigation on the Mechanisms of Zanthoxylum bungeanum for Treating Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Experiment Verification. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9298728. [PMID: 36874926 PMCID: PMC9977524 DOI: 10.1155/2023/9298728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE The aim of the study was to explore the potential mechanism of Zanthoxylum bungeanum in the treatment of diabetes mellitus (DM) using network pharmacology. METHODS The DrugBank database and TCMSP platform were used to search for the main chemical components and their targets of Zanthoxylum bungeanum, and the genes related to diabetes mellitus were obtained from the genecards database. Import the data into the Venny 2.1.0 platform for intersection analysis to obtain the Zanthoxylum bungeanum-DM-gene dataset. The protein-protein interaction (PPI) analysis of Zanthoxylum bungeanum-DM gene was performed using the String data platform, and the visualization and network topology analysis were performed using Cytoscape 3.8.2. The KEGG pathway enrichment and biological process of GO enrichment analysis were carried out using the David platform. The active ingredients and key targets of Zanthoxylum bungeanum were molecularly docked to verify their biological activities by using Discovery Studio 2019 software. Zanthoxylum bungeanum was extracted and isolated by ethanol and dichloromethane. HepG2 cells were cultured, and cell viability assay was utilized to choose the suitable concentration of Zanthoxylum bungeanum extract (ZBE). The western blot assay was used for measuring the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins in HepG2 cells. RESULTS A total of 5 main compounds, 339 targets, and 16656 disease genes were obtained and retrieved, respectively. A total of 187 common genes were screened, and 20 core genes were finally obtained after further screening. The antidiabetic active ingredients of Zanthoxylum bungeanum are kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin, respectively. The main targets for its antidiabetic effect are AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. GO enrichment analysis revealed that the biological process of Zanthoxylum bungeanum and DM is related to a positive regulation of gene expression, positive regulation of transcription, positive regulation of transcription from RNA polymerase II promoter, response to drug, positive regulation of apoptotic process, and positive regulation of cell proliferation, etc. KEGG enrichment analysis revealed that common biological pathways mainly including the phospholipase D signaling pathway, MAPK signaling pathway, beta-alanine metabolism, estrogen signaling pathway, PPAR signaling pathway, and TNF signaling pathway. Molecular docking results showed that AKT1 with beta-sitosterol and quercetin, IL-6 with diosmetin and skimmianin, HSP90AA1 with diosmetin and quercetin, FOS with beta-sitosterol and quercetin, and JUN with beta-sitosterol and diosmetin have relatively strong binding activity, respectively. Experiment verification results showed that DM could be significantly improved by downregulating the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins after being treated at concentrations of 20 μmol/L and 40 μmol/L of ZBE. CONCLUSION The active components of Zanthoxylum bungeanum mainly including kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin. The therapeutic effect of Zanthoxylum bungeanum on DM may be achieved by downregulating core target genes including AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. Zanthoxylum bungeanum is an effective drug in treatment of DM related to the above targets.
Collapse
Affiliation(s)
| | - Zhaomiao Gong
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Chen Yan
- An Shun City People's Hospital, Guizhou Anshun 561000, China
| | - Ke Zheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Lidan Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jing Li
- Anshun University, Guizhou Anshun 561000, China
| | - E. Liang
- Anshun University, Guizhou Anshun 561000, China
| | - Lai Zhang
- Anshun University, Guizhou Anshun 561000, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Anthony Ammal SM, Sudha S, Rajkumar D, Baskaran A, Krishnamoorthy G, Anbumozhi MK. In Silico Molecular Docking Studies of Phytocompounds From Coleus Amboinicus Against Glucokinase. Cureus 2023; 15:e34507. [PMID: 36874339 PMCID: PMC9984118 DOI: 10.7759/cureus.34507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes is one of the most prevalent metabolic illnesses that can be fatal, and it is the ninth-largest cause of mortality worldwide. Even though there are effective hypoglycemic medications available for the treatment of diabetes, researchers continue to look for a medication that is more effective and has fewer adverse effects by focusing on various metabolic components such as enzymes, transporters, receptors. The enzyme Glucokinase (GCK), which is present mainly in the liver and beta cells of the pancreas, is involved in maintaining blood glucose homeostasis. Hence, the present in silico study is designed to determine the interaction between GCK and compounds (ligands) of Coleus amboinicus. In the current docking investigation, we discovered that important residues, including ASP-205, LYS-169, GLY-181, and ILE-225, significantly influence in ligand binding affinity. Docking tests of these compounds with target proteins revealed that this is a suitable molecule that docks well with the target of diabetes treatment. In conclusion, we believe that the compounds of caryophyllene have anti-diabetic activity based on the present study.
Collapse
Affiliation(s)
- Soosai Marian Anthony Ammal
- Department of Anatomy, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Maduranthagam, IND
| | - Sai Sudha
- Department of Pathology, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Durairaj Rajkumar
- Department of Anatomy, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Maduranthagam, IND
| | - Adhithya Baskaran
- Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, IND
| | - Gunasekaran Krishnamoorthy
- Department of Medical Biochemistry, College of Medical and Health Sciences, Dambi Dollo University, Oromia Region, ETH
| | | |
Collapse
|
31
|
Abo-Zaid OA, Moawed FS, Ismail ES, Ahmed ESA. β-Sitosterol mitigates hepatocyte apoptosis by inhibiting endoplasmic reticulum stress in thioacetamide-induced hepatic injury in γ-irradiated rats. Food Chem Toxicol 2023; 172:113602. [PMID: 36610474 DOI: 10.1016/j.fct.2023.113602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of β-sitosterol (βS) on apoptosis associated with liver injury and ER stress. METHODS Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with βS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS βS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, βS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the β-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with βS, which consequently attenuated hepatic apoptosis. CONCLUSION βS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.
Collapse
Affiliation(s)
- Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Fatma Sm Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Effat Soliman Ismail
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
32
|
Zhang L, Yu H, Chen H, Huang Y, Bakunina I, de Sousa DP, Sun M, Zhang J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023; 164:105383. [PMID: 36481366 DOI: 10.1016/j.fitote.2022.105383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.
Collapse
Affiliation(s)
- Luxuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Pharmacy 2019, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
33
|
Exploring Myocardial Ischemia-Reperfusion Injury Mechanism of Cinnamon by Network Pharmacology, Molecular Docking, and Experiment Validation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:1066057. [PMID: 36873789 PMCID: PMC9981296 DOI: 10.1155/2023/1066057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common complication of acute myocardial infarction that seriously endangers human health. Cinnamon, a traditional Chinese medicine, has been used to counteract MIRI as it has been shown to possess anti-inflammatory and antioxidant properties. To investigate the mechanisms of action of cinnamon in the treatment of MIRI, a deep learning-based network pharmacology method was established to predict potential active compounds and targets. The results of the network pharmacology showed that oleic acid, palmitic acid, beta-sitosterol, eugenol, taxifolin, and cinnamaldehyde were the main active compounds, and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), interleukin (IL)-7, and hypoxia-inducible factor 1 (HIF-1) are promising signaling pathways. Further molecular docking tests revealed that these active compounds and targets exhibited good binding abilities. Finally, experimental validation using a zebrafish model demonstrated that taxifolin, the active compound of cinnamon, has a potential protective effect against MIRI.
Collapse
|
34
|
Guo R, Yi Z, Wang Y, Wang L. Network pharmacology and experimental validation to explore the potential mechanism of Sanjie Zhentong Capsule in endometriosis treatment. Front Endocrinol (Lausanne) 2023; 14:1110995. [PMID: 36817586 PMCID: PMC9935822 DOI: 10.3389/fendo.2023.1110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Sanjie Zhentong Capsule (SZC) is gradually becoming widely used in the treatment of endometriosis (EMs) and has demonstrated an excellent curative effect in the clinic. However, the active components and mechanisms of Sanjie Zhentong Capsule (SZC) in the treatment of endometriosis (EMs) remain unclear, and further research is needed to explore the effects of Sanjie Zhentong Capsule (SZC). MATERIALS AND METHODS First, a drug target database of Sanjie Zhentong capsule (SZC) was established by consulting the TCMSP database and related literature. An endometriosis (EMs) disease target database was then established by consulting the GeneCards, OMIM and Drug Bank databases. The overlapping genes of SZC and EMs were determined, and protein-protein interactions (PPIs), gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses were performed to predict the potential therapeutic mechanisms. Molecular docking was used to observe whether the key active ingredients and targets predicted by network pharmacology had good binding energy. Finally, in vitro experiments such as CCK-8, flow cytometry and RT-PCR assays were carried out to preliminarily verify the potential mechanisms. RESULTS Through the construction of a pharmacological network, we identified a total of 28 active components in SZC and 52 potential therapeutic targets. According to GO and KEGG enrichment analyses, the effects of SZC treatment may be related to oxidative stress, steroid metabolism, apoptosis and proliferation. We also experimentally confirmed that SZC can regulate the expression of steroid hormone biosynthesis-related genes, inhibit ectopic endometrial stromal cell (EESC) proliferation and oxidative stress, and promote apoptosis. CONCLUSION This study explored the potential mechanism of SZC in the treatment of EMs through network pharmacology and experiments, providing a basis for further future research on SZC in the treatment of EMs.
Collapse
|
35
|
Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants (Basel) 2022; 11:antiox11122436. [PMID: 36552644 PMCID: PMC9774325 DOI: 10.3390/antiox11122436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Glyphosate, an endocrine disruptor, has an adverse impact on human health through food and also has the potential to produce reactive oxygen species (ROS), which can lead to metabolic diseases. Glyphosate consumption from food has been shown to have a substantial part in insulin resistance, making it a severe concern to those with type 2 diabetes (T2DM). However, minimal evidence exists on how glyphosate impacts insulin-mediated glucose oxidation in the liver. Hence the current study was performed to explore the potential of glyphosate toxicity on insulin signaling in the liver of experimental animals. For 16 weeks, male albino Wistar rats were given 50 mg, 100 mg and 250 mg/kg b. wt. of glyphosate orally. In the current study, glyphosate exposure group was linked to a rise in fasting sugar and insulin as well as a drop in serum testosterone. At the same time, in a dose dependent fashion, glyphosate exposure showed alternations in glucose metabolic enzymes. Glyphosate exposure resulted in a raise in H2O2 formation, LPO and a reduction in antioxidant levels those results in impact on membrane integrity and insulin receptor efficacy in the liver. It also registered a reduced levels of mRNA and protein expression of insulin receptor (IR), glucose transporter-2 (GLUT2) with concomitant increase in the production of proinflammatory factors such as JNK, IKKβ, NFkB, IL-6, IL-1β, and TNF-α as well as transcriptional factors like SREBP1c and PPAR-γ leading to pro-inflammation and cirrhosis in the liver which results in the development of insulin resistance and type 2 diabetes. Our present findings for the first time providing an evidence that exposure of glyphosate develops insulin resistance and type 2 diabetes by aggravating NFkB signaling pathway in liver.
Collapse
|
36
|
Wang D, Koh E, Lee KA, Chung HS. Chemical constituents from
Betula schmidtii
and their free radical scavenging, tyrosinase inhibitory, and neuroprotective activities. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Da‐Hye Wang
- College of Science and Technology Duksung Women's University Seoul Republic of Korea
| | - Eun‐Hie Koh
- College of Science and Technology Duksung Women's University Seoul Republic of Korea
| | - Kyung Ae Lee
- Department of Food and Nutrition Anyang University Anyang Republic of Korea
| | - Ha Sook Chung
- College of Science and Technology Duksung Women's University Seoul Republic of Korea
| |
Collapse
|
37
|
Sun J, Li N, Xu M, Li L, Chen JL, Chen Y, Xu JG, Wang TH. Mechanism of gene network in the treatment of intracerebral hemorrhage by natural plant drugs in Lutong granules. PLoS One 2022; 17:e0274639. [PMID: 36441671 PMCID: PMC9704616 DOI: 10.1371/journal.pone.0274639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To study the effects of Lu-tong Granules (LTG) in ICH etermine the underlying mechanism of molecular network. METHODS Modern bioinformatics and network pharmacology methods were used to predict molecular network mechanisms between ICH and LTG. Animal experiments were carried out to verify the effect of LTG for the treatment of ICH, combined with behavior test and morphologic detection. RESULTS Forty-three active components in LTG and involved 192 gene targets were identified successfully. Moreoner, they were intersected with 1132 genes of ICH,88 intersection targets were obtained. subsequently, Cytoscape was used to screen Hub genes, in which,6 core molecules, including AKT1, IL6, VEGFA, CASP3, JUN and MMP9 were recognized. Furthermore, we constructed Six core compounds by " disease-drug-active ingredient-target-KEGG " (D-D-A-T-K) network, showed including quercetin, luteolin, β sitosterol, stigmasterol, kaempferol and formononetin, and PPI protein network interaction showed that AKT1:OS3 and CNA2:DKN1A had the highest correlation. Whereas the enrichment of GO and KEGG indicated that LTG was most likely to play a therapeutic role in ICH through AGE-RAGE signaling pathway in diabetic complications. Integrated analysis also showed that the first 10 pathways of KEGG are integrated into 59 genes, among which 6 core genes are closely involved. Lastly, molecular docking showed that there was a good binding activity between the core components and the core genes, and animal experiments confirmed effect of LTG in the treatment of ICH, by using TTC staining and behavior test. CONCLUSION LTG are effective for the treatment of ICH, the underlying mechanism could be involved in gene network including anti-inflammatory response, nerve repair, analgesia, anti-epilepsy and other aspects.
Collapse
Affiliation(s)
- Jie Sun
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The first Hospital of Kunming, Kunming, Yunnan Province, China
| | - Na Li
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Min Xu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Li Li
- Department of acupuncture, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Ji Lin Chen
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yong Chen
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Guo Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- * E-mail: (THW); (JGX)
| | - Ting Hua Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
- * E-mail: (THW); (JGX)
| |
Collapse
|
38
|
Eze KC, Ugwu CE, Odo FS, Njoku GC. Development and formulation of antidiabetic property of Anarcadium occidantale-based solid lipid microparticles. J Microencapsul 2022; 39:626-637. [PMID: 36398605 DOI: 10.1080/02652048.2022.2149967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anacardium occidentale (AO) possesses potent anti-diabetic properties, owing to its high phytochemicals content. This study attempted to maximise the efficacy of AO by encapsulating it in a solid lipid microparticle (SLMs) formulation. Leaves of AO were extracted with water and formulated into SLMs using a lipid matrix composed of P90H and Dika fat. Characterisation of the SLMs include morphology, particle size, pH, encapsulation efficiency percentage, in vitro release and anti-diabetic properties. SLMs were spherical with sizes ranging from 16.7 ± 0.8 µm to 40.12 ± 2.34 µm and had a fairly stable pH over time. Highest drug entrapment was 87%. Batch A2 exhibited an even release of 89%, sustained over time, and a mean percentage reduction in glucose of 25.9% at 12 h after oral administration to study animals. Anacardium occidentale-loaded SLMs exhibited a good hypoglycaemic effect and can be used in the management of diabetes.
Collapse
Affiliation(s)
- Kingsley C Eze
- Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Calister E Ugwu
- Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Fimber S Odo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - George C Njoku
- Department of Biochemistry, College of Natural Sciences, Micheal Opara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
39
|
Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comput Biol Med 2022; 149:106041. [DOI: 10.1016/j.compbiomed.2022.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
|
40
|
Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact 2022; 365:110117. [PMID: 35995256 DOI: 10.1016/j.cbi.2022.110117] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/17/2022]
Abstract
Currently, available therapeutic medications are both costly as well as not entirely promising in terms of potency. So, new candidates from natural resources are of research interest to find new alternative therapeutics. A well-known combination is a β-sitosterol, a plant-derived nutrient with anticancer properties against breast, prostate, colon, lung, stomach, and leukemia. Studies have shown that β-sitosterol interferes with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis, anti-inflammatory, anticancer, hepatoprotective, antioxidant, cardioprotective, and antidiabetic effects have been discovered during pharmacological screening without significant toxicity. The pharmacokinetic profile of β-sitosterol has also been extensively investigated. However, a comprehensive review of the pharmacology, phytochemistry and analytical methods of β-sitosterol is desired. Because β-sitosterol is a significant component of most plant materials, humans use it for various reasons, and numerous β-sitosterol-containing products have been commercialized. To offset the low efficacy of β-sitosterol, designing β-sitosterol delivery for "cancer cell-specific" therapy holds great potential. Delivery of β-sitosterol via liposomes is a demonstration that has shown great promise. But further research has not progressed on the drug delivery of β-sitosterol or how it can enhance β-sitosterol mediated anti-inflammatory activity, thus making β-sitosterol an orphan nutraceutical. Therefore, extensive research on β-sitosterol as an anticancer nutraceutical is recommended.
Collapse
Affiliation(s)
- Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Jackie Barua
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA, 70503, USA
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| |
Collapse
|
41
|
Zhang L, Wang X, Zhang X. Modulation of Intestinal Flora by Dietary Polysaccharides: A Novel Approach for the Treatment and Prevention of Metabolic Disorders. Foods 2022; 11:2961. [PMID: 36230037 PMCID: PMC9562892 DOI: 10.3390/foods11192961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal flora is numerous and diverse, and play a key role in maintaining human health. Dietary polysaccharides are widely present in the daily diet and have a moderating effect on the intestinal flora. Past studies have confirmed that intestinal flora is involved in the metabolic process in the human body, and the change in intestinal flora structure is closely related to the metabolic disorders in the human body. Therefore, regulating intestinal flora through dietary polysaccharides is an effective way to treat and prevent common metabolic diseases and has great research value. However, this area has not received enough attention. In this review, we provide an overview of the modulatory effects of dietary polysaccharides on intestinal flora and the key role of intestinal flora in improving metabolic disorders in humans. In addition, we highlight the therapeutic and preventive effects of intestinal flora modulation through dietary polysaccharides on metabolic disorders, aiming to find new ways to treat metabolic disorders and facilitate future exploration in this field.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
42
|
Fang J, Wang C, Zheng J, Liu Y. Network pharmacology study of Yishen capsules in the treatment of diabetic nephropathy. PLoS One 2022; 17:e0273498. [PMID: 36094934 PMCID: PMC9467320 DOI: 10.1371/journal.pone.0273498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In this study, we used network pharmacology to explore the possible therapeutic mechanism underlying the treatment of diabetic nephropathy with Yishen capsules. METHODS The active chemical constituents of Yishen capsules were acquired using the Traditional Chinese Medicine Systems Pharmacology platform and the Encyclopedia of Traditional Chinese Medicine. Component target proteins were then searched and screened in the BATMAN database. Target proteins were cross-validated using the Comparative Toxicogenomics Database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the target proteins were performed. Then, protein-protein interaction (PPI) analysis was performed using the STRING database. Finally, a pharmacological network was constructed to show the component-target-pathway relationships. Molecular docking was used to analyse the interaction between drug components and target proteins. RESULTS In total, 285 active chemical components were found, including 85 intersection targets against DN. In the pharmacological network, 5 key herbs (A. membranaceus, A. sinensis, E. ferox, A. orientale, and R. rosea) and their corresponding 12 key components (beta-sitosterol, beta-carotene, stigmasterol, alisol B, mairin, quercetin, caffeic acid, 1-monolinolein, kaempferol, jaranol, formononetin, and calycosin) were screened. Furthermore, the 12 key components were related to 24 target protein nodes (e.g., AGT, AKT1, AKT2, BCL2, NFKB1, and SIRT1) and enriched in 24 pathway nodes (such as the NF-kappa B, AGE-RAGE, toll-like receptor, and relaxin signaling pathways). Molecular docking revealed that hydrogen bond was formed between drug components and target proteins. CONCLUSION In conclusion, the active constituents of Yishen capsules modulate targets or signaling pathways in DN pathogenesis.
Collapse
Affiliation(s)
- Jingai Fang
- Department of Nephrology, Shanxi Medical University NO.1 Hospital, Taiyuan, China
| | - Chendan Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Jie Zheng
- Graduate College, Shanxi Medical University, Taiyuan, China
| | - Yuxiang Liu
- Department of Nephrology, Shanxi Medical University NO.1 Hospital, Taiyuan, China
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
43
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
44
|
Pei J, Prasad M, Mohamed Helal G, El-Sherbiny M, Abdelmonem Elsherbini DM, Rajagopal P, Palanisamy CP, Veeraraghavan VP, Jayaraman S, Surapaneni KM. Beta-Sitosterol Facilitates GLUT4 Vesicle Fusion on the Plasma Membrane via the Activation of Rab/IRAP/Munc 18 Signaling Pathways in Diabetic Gastrocnemius Muscle of Adult Male Rats. Bioinorg Chem Appl 2022; 2022:7772305. [PMID: 35992048 PMCID: PMC9388314 DOI: 10.1155/2022/7772305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 12/18/2022] Open
Abstract
Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (β)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol β-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of β-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with β-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, β-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that β-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that β-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, β-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that β-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains, Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ghada Mohamed Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600078, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry,Molecular Virology,Medical Education,Research,Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| |
Collapse
|
45
|
Xie T, Liu W, Chen Y, Zhou Y. An evaluation of graded levels of beta-sitosterol supplementation on growth performance, antioxidant status, and intestinal permeability-related parameters and morphology in broiler chickens at an early age. Poult Sci 2022; 101:102108. [PMID: 36099659 PMCID: PMC9472065 DOI: 10.1016/j.psj.2022.102108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to examine the effects of different levels of beta-sitosterol (BS) supplementation on growth performance, serum biochemical indices, redox status, and intestinal permeability-related parameters and morphology of young broilers. Two hundred and forty male Arbor Acres broiler chicks were allocated into 5 groups of 6 replicates with 8 birds each, and fed a basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg BS for 21-d, respectively. The BS quadratically decreased feed conversion ratio during 1 to 14 d and 1 to 21 d, with its effect being more prominent at 25 or 50 mg/kg (P < 0.05). The BS linearly and quadratically reduced 14-d plasma diamine oxidase activity and D-lactate level, and this effect was more pronounced when its supplemental level was 25 or 50 mg/kg (P < 0.05). The BS linearly increased duodenal villus height (VH) and quadratically increased jejunal VH and ratio of VH and crypt depth (CD) at 14 d, and these effects in 25 mg/kg group were more remarkable (P < 0.05). Similarly, BS linearly or quadratically increased VH and ratio of VH and CD, but decreased CD in the jejunum and ileum at 21 d, with these effects being more pronounced at 50 mg/kg (P < 0.05). The BS supplementation especially at 50 or 75 mg/kg linearly or quadratically reduced 14-d serum and 21-d hepatic malondialdehyde concentration, and increased serum glutathione peroxidase and catalase activities at 14 and 21 d (P < 0.05). Moreover, the BS administration linearly and/or quadratically increased glutathione peroxidase, catalase, and superoxide dismutase activities and glutathione level, and reduced malondialdehyde accumulation in the intestinal mucosa at 14 and/or 21 d, and these consequences were more significant in 50 to 100 mg/kg BS-supplemented groups (P < 0.05). The results demonstrated that BS administration could improve growth performance, intestinal barrier function, and antioxidant status of broilers at an early age, with these effects being more pronounced at a level of 50 mg/kg.
Collapse
Affiliation(s)
- Ting Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
46
|
Hah YS, Lee WK, Lee S, Kim EJ, Lee JH, Lee SJ, Ji YH, Kim SG, Lee HH, Hong SY, Yoo JI. β-Sitosterol Attenuates Dexamethasone-Induced Muscle Atrophy via Regulating FoxO1-Dependent Signaling in C2C12 Cell and Mice Model. Nutrients 2022; 14:2894. [PMID: 35889851 PMCID: PMC9315776 DOI: 10.3390/nu14142894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Sarcopenia refers to a decline in muscle mass and strength with age, causing significant impairment in the ability to carry out normal daily functions and increased risk of falls and fractures, eventually leading to loss of independence. Maintaining protein homeostasis is an important factor in preventing muscle loss, and the decrease in muscle mass is caused by an imbalance between anabolism and catabolism of muscle proteins. Although β-sitosterol has various effects such as anti-inflammatory, protective effect against nonalcoholic fatty liver disease (NAFLD), antioxidant, and antidiabetic activity, the mechanism of β-sitosterol effect on the catabolic pathway was not well known. β-sitosterol was assessed in vitro and in vivo using a dexamethasone-induced muscle atrophy mice model and C2C12 myoblasts. β-sitosterol protected mice from dexamethasone-induced muscle mass loss. The thickness of gastrocnemius muscle myofibers was increased in dexamethasone with the β-sitosterol treatment group (DS). Grip strength and creatine kinase (CK) activity were also recovered when β-sitosterol was treated. The muscle loss inhibitory efficacy of β-sitosterol in dexamethasone-induced muscle atrophy in C2C12 myotube was also verified in C2C12 myoblast. β-sitosterol also recovered the width of myotubes. The protein expression of muscle atrophy F-box (MAFbx) was increased in dexamethasone-treated animal models and C2C12 myoblast, but it was reduced when β-sitosterol was treated. MuRF1 also showed similar results to MAFbx in the mRNA level of C2C12 myotubes. In addition, in the gastrocnemius and tibialis anterior muscles of mouse models, Forkhead Box O1 (FoxO1) protein was increased in the dexamethasone-treated group (Dexa) compared with the control group and reduced in the DS group. Therefore, β-sitosterol would be a potential treatment agent for aging sarcopenia.
Collapse
Affiliation(s)
- Young-Sool Hah
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Won Keong Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Sangyeob Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Eun Ji Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Jung Hyeon Lee
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
| | - Seung-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.-J.L.); (Y.H.J.)
| | - Yeong Ho Ji
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.-J.L.); (Y.H.J.)
| | - Sang Gon Kim
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong 52215, Korea; (S.G.K.); (H.-H.L.)
| | - Hyeong-Hwan Lee
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong 52215, Korea; (S.G.K.); (H.-H.L.)
- Division of Applied Life Science (BK21 PLUS), IALS, Gyeongsang National University, Jinju 52727, Korea
| | - Seo Yeon Hong
- Crop Production Technology Research Division, NICS, RDA, Miryang 50424, Korea;
| | - Jun-Il Yoo
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| |
Collapse
|
47
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|
49
|
Jannat T, Hossain MJ, El-Shehawi AM, Kuddus MR, Rashid MA, Albogami S, Jafri I, El-Shazly M, Haque MR. Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties. Molecules 2022; 27:4024. [PMID: 35807270 PMCID: PMC9268577 DOI: 10.3390/molecules27134024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.
Collapse
Affiliation(s)
- Tabassum Jannat
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Md. Jamal Hossain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Md. Ruhul Kuddus
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohammad Rashedul Haque
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| |
Collapse
|
50
|
Gono CMP, Ahmadi P, Hertiani T, Septiana E, Putra MY, Chianese G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 2022; 20:md20070406. [PMID: 35877699 PMCID: PMC9324380 DOI: 10.3390/md20070406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Marine angiosperms produce a wide variety of secondary metabolites with unique structural features that have the potential to be developed as effective and potent drugs for various diseases. Recently, research trends in secondary metabolites have led to drug discovery with an emphasis on their pharmacological activity. Among marine angiosperms, seagrasses have been utilized for a variety of remedial purposes, such as treating fevers, mental disorders, wounds, skin diseases, muscle pain, and stomach problems. Hence, it is essential to study their bioactive metabolites, medical properties, and underlying mechanisms when considering their pharmacological activity. However, there is a scarcity of studies on the compilation of existing work on their pharmacological uses, pharmacological pathways, and bioactive compounds. This review aims to compile the pharmacological activities of numerous seagrass species, their secondary metabolites, pharmacological properties, and mechanism of action. In conclusion, this review highlights the potency of seagrasses as a promising source of natural therapeutical products for preventing or inhibiting human diseases.
Collapse
Affiliation(s)
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Eris Septiana
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| |
Collapse
|