1
|
Gillette R, Turnbull IC, Nair VD, Gaitas A. Preliminary Insights into the Acute Molecular Responses in C2C12 Myotubes to Hyperthermia and Insulin Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.644592. [PMID: 40196696 PMCID: PMC11974855 DOI: 10.1101/2025.03.26.644592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This study investigates the differential gene expression in an immortalized cell line of mouse skeletal myoblasts (C2C12)-derived myotube cells subjected to hyperthermia (40°C) with and without insulin treatment to elucidate the impact of thermal stress on skeletal muscle physiology. Hyperthermia, which occurs during intense physical activity or environmental heat exposure, is known to challenge muscle homeostasis and influence metabolic function. mRNA sequencing revealed that hyperthermia robustly altered gene expression-upregulating key genes involved in glycolysis, oxidative phosphorylation, heat shock response, and apoptosis. These changes are suggestive of an elevated metabolic state and enhanced cellular stress; however, these results remain preliminary without complementary protein or metabolic assays. Notably, insulin treatment moderated many of the hyperthermia-induced transcriptional alterations, particularly affecting genes linked to glucose uptake and metabolism. Together, these findings provide hypothesis-generating insights into the interplay between thermal stress and insulin signaling in C2C12 myotubes, and they underscore potential targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ross Gillette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Heitman K, Bollenbecker S, Bradley J, Czaya B, Fajol A, Thomas SM, Li Q, Komarova S, Krick S, Rowe GC, Alexander MS, Faul C. Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:9308. [PMID: 39273260 PMCID: PMC11395169 DOI: 10.3390/ijms25179308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Jordan Bradley
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Brian Czaya
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Abul Fajol
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Sarah Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Qing Li
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Svetlana Komarova
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Neurology, Department of Pediatrics, Children’s of Alabama, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| |
Collapse
|
4
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Zhang Y, Lu Y, Yu M, Wang J, Du X, Zhao D, Pian H, He Z, Wu G, Li S, Wang S, Yu D. Transcriptome Profiling Identifies Differentially Expressed Genes in Skeletal Muscle Development in Native Chinese Ducks. Genes (Basel) 2023; 15:52. [PMID: 38254942 PMCID: PMC10815232 DOI: 10.3390/genes15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
China boasts a rich diversity of indigenous duck species, some of which exhibit desirable economic traits. Here, we generated transcriptome sequencing datasets of breast muscle tissue samples from 1D of four groups: Pekin duck pure breeding group (P), Jinling White duck breeding group (J), P ♂ × J ♀ orthogonal group (PJ) and J ♂ × P ♀ reciprocal-cross group (JP) (n = 3), chosen based on the distinctive characteristics of duck muscle development during the embryonic period. We identified 5053 differentially expressed genes (DEGs) among the four groups. Network prediction analysis showed that ribosome and oxidative phosphorylation-related genes were the most enriched, and muscular protein-related genes were found in the 14-day-old embryonic group. We found that previously characterized functional genes, such as FN1, AGRN, ADNAMST3, APOB and FGF9, were potentially involved in muscle development in 14-day-old embryos. Functional enrichment analysis suggested that genes that participated in molecular function and cell component and key signaling pathways (e.g., hippo, ribosome, oxidative phosphorylation) were significantly enriched in the development of skeletal muscle at 14 days of embryonic age. These results indicate a possible role of muscle metabolism and myoglobin synthesis in skeletal muscle development in both duck parents and hybrids.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Jin Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Xubin Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Dong Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
- School of Animal Medical, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Zongliang He
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing 210095, China
| | - Guansuo Wu
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing 210095, China
| | - Shiwei Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Sike Wang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| |
Collapse
|
6
|
Tsitsipatis D, Martindale JL, Mazan‐Mamczarz K, Herman AB, Piao Y, Banskota N, Yang J, Cui L, Anerillas C, Chang M, Kaileh M, Munk R, Yang X, Ubaida‐Mohien C, Chia CW, Karikkineth AC, Zukley L, D'Agostino J, Abdelmohsen K, Basisty N, De S, Ferrucci L, Gorospe M. Transcriptomes of human primary skin fibroblasts of healthy individuals reveal age-associated mRNAs and long noncoding RNAs. Aging Cell 2023; 22:e13915. [PMID: 37462262 PMCID: PMC10652340 DOI: 10.1111/acel.13915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/27/2023] Open
Abstract
Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Krystyna Mazan‐Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Linna Cui
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ming‐Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jarod D'Agostino
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
7
|
Selewa A, Luo K, Wasney M, Smith L, Sun X, Tang C, Eckart H, Moskowitz IP, Basu A, He X, Pott S. Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation. Nat Commun 2023; 14:4999. [PMID: 37591828 PMCID: PMC10435551 DOI: 10.1038/s41467-023-40505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. However, in most loci the causal variants and their target genes remain unknown. We developed a combined experimental and analytical approach that integrates single cell epigenomics with GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-mapping results, our novel statistical procedure for gene discovery prioritized 46 high-confidence risk genes, highlighting transcription factors and signal transduction pathways important for heart development. In summary, our analysis provides a comprehensive map of AF risk variants and genes, and a general framework to integrate single-cell genomics with genetic studies of complex traits.
Collapse
Affiliation(s)
- Alan Selewa
- Biophysical Sciences Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Kaixuan Luo
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Michael Wasney
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Linsin Smith
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaotong Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chenwei Tang
- The College, The University of Chicago, Chicago, IL, 60637, USA
| | - Heather Eckart
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ivan P Moskowitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Anindita Basu
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Sebastian Pott
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
10
|
Li G, Zhang L, Lu Z, Yang B, Yang H, Shang P, Jiang JX, Wang D, Xu H. Connexin 43 Channels in Osteocytes Are Necessary for Bone Mass and Skeletal Muscle Function in Aged Male Mice. Int J Mol Sci 2022; 23:13506. [PMID: 36362291 PMCID: PMC9654692 DOI: 10.3390/ijms232113506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteoporosis and sarcopenia (termed "Osteosarcopenia"), the twin-aging diseases, are major contributors to reduced bone mass and muscle weakness in the elderly population. Connexin 43 (Cx43) in osteocytes has been previously reported to play vital roles in bone homeostasis and muscle function in mature mice. The Cx43-formed gap junctions (GJs) and hemichannels (HCs) in osteocytes are important portals for the exchange of small molecules in cell-to-cell and cell-to-extracellular matrix, respectively. However, the roles of Cx43-based GJs and HCs in both bone and muscle aging are still unclear. Here, we used two transgenic mouse models with overexpression of the dominant negative Cx43 mutants primarily in osteocytes driven by the 10-kb Dmp1 promoter, R76W mice (inhibited gap junctions but enhanced hemichannels) and Δ130-136 mice (both gap junction and hemichannels are inhibited), to determine the actions of Cx43-based hemichannels (HCs) and gap junctions (GJs) in the regulation of bone and skeletal muscle from aged mice (18 months) as compared with those from adult mice (10 months). We demonstrated that enhancement of Cx43 HCs reduces bone mass due to increased osteoclast surfaces while the impairment of Cx43 HCs increases osteocyte apoptosis in aged mice caused by reduced PGE2 levels. Furthermore, altered mitochondrial homeostasis with reduced expression of Sirt-1, OPA-1, and Drp-1 resulted in excessive ROS level in muscle soleus (SL) of aged transgenic mice. In vitro, the impairment of Cx43 HCs in osteocytes from aged mice also promoted muscle collagen synthesis through activation of TGFβ/smad2/3 signaling because of reduced PGE2 levels in the PO CM. These findings indicate that the enhancement of Cx43 HCs while GJs are inhibited reduces bone mass, and the impairment of Cx43 HCs inhibits PGE2 level in osteocytes and this reduction promotes muscle collagen synthesis in skeletal muscle through activation of TGFβ/smad2/3 signaling, which together with increased ROS level contributes to reduced muscle force in aged mice.
Collapse
Affiliation(s)
- Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhe Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Dong’en Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
11
|
Zeng SQ, Liu CL, Huang CN, Si WJ, Liu CB, Ren LX, Zhang WY, He YM, Yuan Y, Zhang HY, Han YG, Na RS, E GX, Huang YF. Identification of the Differential Expression Profile of miRNAs in Longissimus dorsi Muscle of Dazu Black Goat. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542211014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
13
|
Jiang Y, Li X, Liu J, Zhang W, Zhou M, Wang J, Liu L, Su S, Zhao F, Chen H, Wang C. Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data. BMC Genomics 2022; 23:373. [PMID: 35581549 PMCID: PMC9115978 DOI: 10.1186/s12864-022-08583-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Runs of homozygosity (ROH) are continuous homozygous regions typically located in the DNA sequence of diploid organisms. Identifications of ROH that lead to reduced performance can provide valuable insight into the genetic architecture of complex traits. Here, we systematically investigated the population genetic structure of five Anhui indigenous pig breeds (AHIPs), and compared them to those of five Western commercial pig breeds (WECPs). Furthermore, we examined the occurrence and distribution of ROHs in the five AHIPs and estimated the inbreeding coefficients based on the ROHs (FROH) and homozygosity (FHOM). Finally, we identified genomic regions with high frequencies of ROHs and annotated candidate genes contained therein. Results The WECPs and AHIPs were clearly differentiated into two separate clades consistent with their geographical origins, as revealed by the population structure and principal component analysis. We identified 13,530 ROHs across all individuals, of which 4,555 and 8,975 ROHs were unique to AHIPs and WECPs, respectively. Most ROHs identified in our study were short (< 10 Mb) or medium (10–20 Mb) in length. WECPs had significantly higher numbers of short ROHs, and AHIPs generally had longer ROHs. FROH values were significantly lower in AHIPs than in WECPs, indicating that breed improvement and conservation programmes were successful in AHIPs. On average, FROH and FHOM values were highly correlated (0.952–0.991) in AHIPs and WECPs. A total of 27 regions had a high frequency of ROHs and contained 17 key candidate genes associated with economically important traits in pigs. Among these, nine candidate genes (CCNT2, EGR2, MYL3, CDH13, PROX1, FLVCR1, SETD2, FGF18, and FGF20) found in WECPs were related to muscular and skeletal development, whereas eight candidate genes (CSN1S1, SULT1E1, TJP1, ZNF366, LIPC, MCEE, STAP1, and DUSP) found in AHIPs were associated with health, reproduction, and fatness traits. Conclusion Our findings provide a useful reference for the selection and assortative mating of pig breeds, laying the groundwork for future research on the population genetic structures of AHIPs, ultimately helping protect these local varieties. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08583-9.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongquan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
14
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
15
|
Riddle RC. Cellular and tissue crosstalk in musculoskeletal development. Semin Cell Dev Biol 2021; 123:1-3. [PMID: 34764024 DOI: 10.1016/j.semcdb.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
16
|
Huang K, Wang Y, Zhu J, Xiong Y, Lin Y. Regulation of fibroblast growth factor 9 on the differentiation of goat intramuscular adipocytes. Anim Sci J 2021; 92:e13627. [PMID: 34477270 DOI: 10.1111/asj.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
It has been found that fibroblast growth factor receptor (FGF-FGFR) signaling can regulate the expression of adipocyte differentiation genes. FGF9 is one of the members of FGFs that mainly binds receptors FGFR2 and FGFR3. FGF9 is highly expressed in the adipose tissue of humans and mice, but there are few reports on the role of FGF9 in goat intramuscular adipocyte differentiation. Therefore, this study explored the effect of FGF9 on adipocyte differentiation through cell culture, interference, and overexpression. The expression of receptors FGFR1-FGFR4 in adipocyte differentiation and their effects on differentiation were detected to screen receptor gene of FGF9. Finally, the interaction between FGF9 and the receptor was tested by cotransfection. Our results showed that FGF9 interacts with FGFR2 to inhibit goat intramuscular adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma (PPARγ) and preadipocyte factor 1 (Pref1), which is a data support for subsequent pathway research.
Collapse
Affiliation(s)
- Kai Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| |
Collapse
|
17
|
Downing K, Prisby R, Varanasi V, Zhou J, Pan Z, Brotto M. Old and new biomarkers for volumetric muscle loss. Curr Opin Pharmacol 2021; 59:61-69. [PMID: 34146835 DOI: 10.1016/j.coph.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Volumetric muscle loss (VML) impacts skeletal muscles and causes damage to associated tissues such as blood vessels and other structural tissues. Despite progress in the VML field, current preclinical approaches are often ineffective at restoring muscle volume. Additional research is paramount to develop strategies that improve muscle mass and function, while restoring supporting tissues. We highlight mechanisms that govern normal muscle function that are also key players for VML, including intracellular calcium signaling/homeostasis, mitochondria signaling (calcium, reactiove oxidative species (ROS)/oxidative stress), and angiogenesis. We propose an integration of these processes within the context of emerging biomaterials that provide structural support for muscle regeneration. We posit that new biomarkers (i.e. myokines and lipid signaling mediators) may serve as sentinels of early muscle injury and regeneration. We conclude that as new ideas, approaches, and models come together, new treatments will emerge to allow the full rebuilding of skeletal muscles and functional recovery of skeletal muscles after VML.
Collapse
Affiliation(s)
- Kerrie Downing
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Rhonda Prisby
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Venu Varanasi
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jingsong Zhou
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Zui Pan
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| | - Marco Brotto
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| |
Collapse
|
18
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Zhang X, Wang J, Li X, Shen X, Xu D, Tian Y, Huang Y. Transcriptomic investigation of embryonic pectoral muscle reveals increased myogenic processes in Shitou geese compared to Wuzong geese. Br Poult Sci 2021; 62:650-657. [PMID: 33834898 DOI: 10.1080/00071668.2021.1912292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1.Embryonic stages before birth are crucial for poultry muscle development, as this determines muscle mass in adulthood. This study characterised the distinction in embryonic pectoral muscle development between Wuzong (WZE, small) and Shitou (STE, large) geese (two indigenous goose breeds in Guangdong Province, China) at embryonic days 15 (E15), 23 (E23) and the day of hatching (P1) to gain insights into the regulatory mechanisms of muscle development.2.The results showed that STE had significantly higher myofibre density during E15-P1 and had significantly larger myofibre diameter at E15 than WZE. By RNA-sequencing analysis, 19 507 genes were detected, and 7121 differentially expressed genes (DEGs) were identified.3.Gene expression distinctions between breeds began increasing from E23, and WZE had different gene expression profiles compared to STE. A GO analysis of DEGs indicated that myo-genes involved at E15 may influence distinct pectoral muscle development characteristics between WZE and STE. The RT-qPCR results were consistent with the RNA-sequencing analysis. Four muscle structure protein coding genes (MYL2, MYL3, TNNI2 and TNNC2 and three other functional genes (CAV3, CACNA1S and NOS1) were identified in a predicted interaction network. These functional genes may interact with muscle structural protein coding genes to regulate embryonic pectoral muscle development in WZE and STE geese.4.The study revealed that STE and WZE had divergent embryonic pectoral muscle development patterns and these differences may begin before E15.
Collapse
Affiliation(s)
- X Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - J Wang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - X Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - X Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - D Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Y Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Y Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
20
|
Wei M, Zhang C, Tian Y, Du X, Wang Q, Zhao H. Expression and Function of WNT6: From Development to Disease. Front Cell Dev Biol 2021; 8:558155. [PMID: 33425886 PMCID: PMC7794017 DOI: 10.3389/fcell.2020.558155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
WNT family member 6 (WNT6) is a member of the highly conserved WNT protein family. It plays an essential role in the normal development process, not only in embryonic morphogenesis, but also in post-natal homeostasis. WNT6 functions in mice and humans. This review summarizes the current findings on the biological functions of WNT6, describing its involvement in regulating embryogenesis, decidualization, and organ development. Aberrant WNT6 signaling is related to various pathologies, such as promoting cancer development, lung tuberculosis, and kidney fibrosis and improving the symptoms of Rett syndrome (RTT). Thus, due to its various functions, WNT6 has great potential for in-depth research. This work not only describes the signaling mechanism and function of WNT6 under physiological and pathological conditions, but also provides a theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Ming Wei
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congmin Zhang
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yujia Tian
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- The Health Check Up Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Awad K, Ahuja N, Fiedler M, Peper S, Wang Z, Aswath P, Brotto M, Varanasi V. Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration. Int J Mol Sci 2021; 22:E497. [PMID: 33419056 PMCID: PMC7825403 DOI: 10.3390/ijms22020497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Volumetric muscle loss injuries overwhelm the endogenous regenerative capacity of skeletal muscle, and the associated oxidative damage can delay regeneration and prolong recovery. This study aimed to investigate the effect of silicon-ions on C2C12 skeletal muscle cells under normal and excessive oxidative stress conditions to gain insights into its role on myogenesis during the early stages of muscle regeneration. In vitro studies indicated that 0.1 mM Si-ions into cell culture media significantly increased cell viability, proliferation, migration, and myotube formation compared to control. Additionally, MyoG, MyoD, Neurturin, and GABA expression were significantly increased with addition of 0.1, 0.5, and 1.0 mM of Si-ion for 1 and 5 days of C2C12 myoblast differentiation. Furthermore, 0.1-2.0 mM Si-ions attenuated the toxic effects of H2O2 within 24 h resulting in increased cell viability and differentiation. Addition of 1.0 mM of Si-ions significantly aid cell recovery and protected from the toxic effect of 0.4 mM H2O2 on cell migration. These results suggest that ionic silicon may have a potential effect in unfavorable situations where reactive oxygen species is predominant affecting cell viability, proliferation, migration, and differentiation. Furthermore, this study provides a guide for designing Si-containing biomaterials with desirable Si-ion release for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamal Awad
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Matthew Fiedler
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Sara Peper
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
- Department of Bioengineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Venu Varanasi
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| |
Collapse
|
22
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
23
|
Role of the fibroblast growth factor 19 in the skeletal system. Life Sci 2020; 265:118804. [PMID: 33245964 DOI: 10.1016/j.lfs.2020.118804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor family (FGFs) is a kind of cytokine that plays an important role in growth, development, metabolism and disease. During bone development, multiple FGFs and fibroblast growth factor receptors (FGFRs) play important roles. Previous reports have elucidated the great importance of FGF1, 2, 4, 6, 7, 8, 9, 10, and 18 in bone development, and FGF21 and 23 in bone homeostasis and bone regulation. FGF19 was initially found in the human foetal brain, and its gene location is related to osteoporosis pseudoglioma syndrome. Presently, gene chip detection has repeatedly found that FGF19 shows spatiotemporal specificity of gene expression in bone development and bone-related diseases, as well as differences in the protein level, indicating that FGF19 affects the skeletal system. Considering the current insufficient understanding of FGF19 and its potential function in the skeletal system, this review aims to introduce the background of FGF19 in bone, summarise the research progress of FGF19 in the skeletal system, and discuss the role and therapeutic potential of FGF19 in bone development and bone-related diseases.
Collapse
|
24
|
Bałaban J, Wierzbicki M, Zielińska M, Szczepaniak J, Sosnowska M, Daniluk K, Cysewski D, Koczoń P, Chwalibog A, Sawosz E. Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction. Molecules 2020; 25:E1991. [PMID: 32340398 PMCID: PMC7221809 DOI: 10.3390/molecules25081991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors.
Collapse
Affiliation(s)
- Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Marlena Zielińska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Karolina Daniluk
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| | - Dominik Cysewski
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland;
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.B.); (M.W.); (M.Z.); (J.S.); (M.S.); (K.D.); (E.S.)
| |
Collapse
|