1
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
2
|
Fujimoto A, Kinjo M, Kitamura A. Short Repeat Ribonucleic Acid Reduces Cytotoxicity by Preventing the Aggregation of TDP-43 and Its 25 KDa Carboxy-Terminal Fragment. JACS AU 2024; 4:3896-3909. [PMID: 39483234 PMCID: PMC11522920 DOI: 10.1021/jacsau.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
TAR DNA/RNA-binding protein 43 kDa (TDP-43) proteinopathy is a hallmark of neurodegenerative disorders, such as amyotrophic lateral sclerosis, in which cytoplasmic aggregates containing TDP-43 and its C-terminal fragments, such as TDP-25, are observed in degenerative neuronal cells. However, few reports have focused on small molecules that can reduce their aggregation and cytotoxicity. Here, we show that short RNA repeats of GGGGCC and AAAAUU are aggregation suppressors of TDP-43 and TDP-25. TDP-25 interacts with these RNAs, as well as TDP-43, despite the lack of major RNA-recognition motifs using fluorescence cross-correlation spectroscopy. Expression of these RNAs significantly decreases the number of cells harboring cytoplasmic aggregates of TDP-43 and TDP-25 and ameliorates cell death by TDP-25 and mislocalized TDP-43 without altering the cellular transcriptome of molecular chaperones. Consequently, short RNA repeats of GGGGCC and AAAAUU can maintain proteostasis by preventing the aggregation of TDP-43 and TDP-25.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Graduate
School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Kinjo
- Laboratory
of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- PRIME,
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
3
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
4
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
5
|
Guzman BB, Son A, Litberg TJ, Huang Z, Dominguez D, Horowitz S. Emerging roles for G-quadruplexes in proteostasis. FEBS J 2023; 290:4614-4625. [PMID: 36017725 PMCID: PMC10071977 DOI: 10.1111/febs.16608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
How nucleic acids interact with proteins, and how they affect protein folding, aggregation, and misfolding is a still-evolving area of research. Considerable effort is now focusing on a particular structure of RNA and DNA, G-quadruplexes, and their role in protein homeostasis and disease. In this state-of-the-art review, we track recent reports on how G-quadruplexes influence protein aggregation, proteolysis, phase separation, and protein misfolding diseases, and pose currently unanswered questions in the advance of this scientific field.
Collapse
Affiliation(s)
- Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
6
|
Son A, Huizar Cabral V, Huang Z, Litberg TJ, Horowitz S. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci U S A 2023; 120:e2216308120. [PMID: 37155907 PMCID: PMC10194009 DOI: 10.1073/pnas.2216308120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Maintaining the health of the proteome is a critical cellular task. Recently, we found G-quadruplex (G4) nucleic acids are especially potent at preventing protein aggregation in vitro and could at least indirectly improve the protein folding environment of Escherichia coli. However, the roles of G4s in protein folding were not yet explored. Here, through in vitro protein folding experiments, we discover that G4s can accelerate protein folding by rescuing kinetically trapped intermediates to both native and near-native folded states. Time-course folding experiments in E. coli further demonstrate that these G4s primarily improve protein folding quality in E. coli as opposed to preventing protein aggregation. The ability of a short nucleic acid to rescue protein folding opens up the possibility of nucleic acids and ATP-independent chaperones to play considerable roles in dictating the ultimate folding fate of proteins.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Veronica Huizar Cabral
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Theodore J. Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| |
Collapse
|
7
|
TAR RNA Mediated Folding of a Single-Arginine-Mutant HIV-1 Tat Protein within HeLa Cells Experiencing Intracellular Crowding. Int J Mol Sci 2021; 22:ijms22189998. [PMID: 34576162 PMCID: PMC8468913 DOI: 10.3390/ijms22189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
The various effects of native protein folding on the stability and folding rate of intrinsically disordered proteins (IDPs) in crowded intracellular environments are important in biomedicine. Although most studies on protein folding have been conducted in vitro, providing valuable insights, studies on protein folding in crowded intracellular environments are scarce. This study aimed to explore the effects of intracellular molecular crowding on the folding of mutant transactivator HIV-1 Tat based on intracellular interactions, including TAR RNA, as proof of the previously reported chaperna-RNA concept. Considering that the Tat-TAR RNA motif binds RNA, we assessed the po tential function of TAR RNA as a chaperna for the refolding of R52Tat, a mutant in which the argi nine (R) residues at R52 have been replaced with alanine (A) by site-directed mutagenesis. We mon itored Tat-EGFP and Tat folding in HeLa cells via time-lapse fluorescence microscopy and biolayer interferometry using EGFP fusion as an indicator for folding status. These results show that the refolding of R52A Tat was stimulated well at a 0.3 μM TAR RNA concentration; wild-type Tat refolding was essentially abolished because of a reduction in the affinity for TAR RNA at that con centration. The folding and refolding of R52Tat were mainly promoted upon stimulation with TAR RNA. Our findings provide novel insights into the therapeutic potential of chaperna-mediated fold ing through the examination of as-yet-unexplored RNA-mediated protein folding as well as viral genetic variants that modulate viral evolutionary linkages for viral diseases inside a crowded intra cellular environment.
Collapse
|
8
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118984. [PMID: 33549703 PMCID: PMC7965345 DOI: 10.1016/j.bbamcr.2021.118984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases. However, the mechanism that induces pathogenic aggregation is not well understood. Recently, it has emerged that several of the pathological proteins found in an aggregated or mislocalized state in neurodegenerative diseases are also able to undergo liquid-liquid phase separation (LLPS) under physiological conditions. Although these phase transitions are likely important for various physiological functions, neurodegenerative disease-related mutations and conditions can alter the LLPS behavior of these proteins, which can elicit toxicity. Therefore, therapeutics that antagonize aberrant LLPS may be able to mitigate toxicity and aggregation that is ubiquitous in neurodegenerative disease. Here, we discuss the mechanisms by which aberrant protein phase transitions may contribute to neurodegenerative disease. We also outline potential therapeutic strategies to counter deleterious phases. State without borders: Membrane-less organelles and liquid-liquid phase transitions edited by Vladimir N Uversky.
Collapse
Affiliation(s)
- April L Darling
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Hastings RL, Boeynaems S. Designer Condensates: A Toolkit for the Biomolecular Architect. J Mol Biol 2021; 433:166837. [PMID: 33539874 DOI: 10.1016/j.jmb.2021.166837] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.
Collapse
Affiliation(s)
- Renee L Hastings
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Hwang BJ, Jang Y, Kwon SB, Yu JE, Lim J, Roh YH, Seong BL. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials 2021; 269:120650. [PMID: 33465537 DOI: 10.1016/j.biomaterials.2021.120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yohan Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Abstract
As a mental framework for the transition of self-replicating biological forms, the RNA world concept stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world into the present protein theatre.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Baik L Seong
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University , Seoul, Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, Korea
| |
Collapse
|
13
|
Ferdosh S, Banerjee S, Pathak BK, Sengupta J, Barat C. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation. FEBS J 2020; 288:1305-1324. [PMID: 32649051 DOI: 10.1111/febs.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023]
Abstract
Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases. Considering that the increase in cellular stress is accompanied by accumulation of unfolded proteins, such resistance of hibernating ribosomes towards dissociation might contribute to their maintenance during the stationary phase. Analysis of existing structures provided clues on the mechanism of inhibition of the unfolded protein-mediated disassembly in case of hibernating factor-bound ribosome. Further, the factor-bound 70S and 100S ribosomes can suppress protein aggregation and assist in protein folding. The chaperoning activity of these ribosomes is the first evidence of a potential biological activity of the hibernating ribosome that might be crucial for cell survival under stress conditions.
Collapse
Affiliation(s)
- Sehnaz Ferdosh
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Senjuti Banerjee
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Bani K Pathak
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Jayati Sengupta
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| |
Collapse
|
14
|
Kim YS, Lim J, Sung J, Cheong Y, Lee EY, Kim J, Oh H, Kim YS, Cho NH, Choi S, Kang SM, Nam JH, Chae W, Seong BL. Built-in RNA-mediated chaperone (chaperna) for antigen folding tailored to immunized hosts. Biotechnol Bioeng 2020; 117:1990-2007. [PMID: 32297972 PMCID: PMC7262357 DOI: 10.1002/bit.27355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
High‐quality antibody (Ab) production depends on the availability of immunologically relevant antigens. We present a potentially universal platform for generating soluble antigens from bacterial hosts, tailored to immunized animals for Ab production. A novel RNA‐dependent chaperone, in which the target antigen is genetically fused with an RNA‐interacting domain (RID) docking tag derived from the immunized host, promotes the solubility and robust folding of the target antigen. We selected the N‐terminal tRNA‐binding domain of lysyl‐tRNA synthetase (LysRS) as the RID for fusion with viral proteins and demonstrated the expression of the RID fusion proteins in their soluble and native conformations; immunization predominantly elicited Ab responses to the target antigen, whereas the “self” RID tag remained nonimmunogenic. Differential immunogenicity of the fusion proteins greatly enriched and simplified the screening of hybridoma clones of monoclonal antibodies (mAbs), enabling specific and sensitive serodiagnosis of MERS‐CoV infection. Moreover, mAbs against the consensus influenza hemagglutinin stalk domain enabled a novel assay for trivalent seasonal influenza vaccines. The Fc‐mediated effector function was demonstrated, which could be harnessed for the design of next‐generation “universal” influenza vaccines. The nonimmunogenic built‐in antigen folding module tailored to a repertoire of immunized animal hosts will drive immunochemical diagnostics, therapeutics, and designer vaccines.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eun-Young Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongil Choi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Park C, Jin Y, Kim YJ, Jeong H, Seong BL. RNA-binding as chaperones of DNA binding proteins from starved cells. Biochem Biophys Res Commun 2020; 524:484-489. [PMID: 32007271 DOI: 10.1016/j.bbrc.2020.01.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
DNA-binding proteins from starved cells (Dps) in Escherichia coli protects DNA from multiple stresses during the stationary phase by forming a stable Dps-DNA complex. In contrast, Dps cannot bind to DNA during the exponential phase and it has not been clear why Dps conditionally binds to DNA depending on the growth phase. In this study, we show that DNA-free Dps in the exponential phase can also bind to RNA and the preemptive binding of RNA precludes DNA from interacting with Dps. The critical role of RNA in modulating the stability and functional competence of Dps and their morphology, leads us to propose a two-state model of Dps in executing stress responses. In the exponential phase, Dps is present predominantly as ribonucleoprotein complex. Under starvation, RNAs are degraded by up-regulated RNases, activating Dps to bind with chromosomal DNAs protecting them from diverse stresses. A dual role of RNA as an inhibitor of DNA binding and chaperone to keep dynamic functional status of Dps would be crucial for operating an immediate protection of chromosomal DNAs on starvation. The holdase-type chaperoning role of RNA in Dps-mediated stress responses would shed light on the role of RNAs as chaperone (Chaperna).
Collapse
Affiliation(s)
- Chan Park
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoontae Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Jun Kim
- Life Science and Biotechnology Department, Underwood Division, Underwood International College, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik L Seong
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020. [DOI: 10.1007/s12038-020-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Bhattarai A, Emerson IA. Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020; 45:29. [PMID: 32020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible and undergo disorder to order transition upon binding. They are highly abundant in human proteomes and play critical roles in cell signaling and regulatory processes. This review mainly focuses on the dynamics of disordered proteins including their conformational heterogeneity, protein-protein interactions, and the phase transition of biomolecular condensates that are central to various biological functions. Besides, the role of RNA-mediated chaperones in protein folding and stability of IDPs were also discussed. Finally, we explored the dynamic binding interface of IDPs as novel therapeutic targets and the effect of small molecules on their interactions.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
18
|
Le VD, Phan TTP, Nguyen TM, Brunsveld L, Schumann W, Nguyen HD. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr Microbiol 2019; 76:1477-1486. [PMID: 31612259 DOI: 10.1007/s00284-019-01783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni-NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.
Collapse
Affiliation(s)
- Vuong Duong Le
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Laboratory of Molecular Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tri Minh Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
| | - Luc Brunsveld
- Laboratory of Chemical Biology & Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
| |
Collapse
|
19
|
Litberg TJ, Docter B, Hughes MP, Bourne J, Horowitz S. DNA Facilitates Oligomerization and Prevents Aggregation via DNA Networks. Biophys J 2019; 118:162-171. [PMID: 31839258 DOI: 10.1016/j.bpj.2019.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that nucleic acids can nucleate protein aggregation in disease-related proteins, but in other cases, they can act as molecular chaperones that prevent protein aggregation, even under extreme conditions. In this study, we describe the link between these two behaviors through a combination of electron microscopy and aggregation kinetics. We find that two different proteins become soluble under harsh conditions through oligomerization with DNA. These DNA/protein oligomers form "networks," which increase the speed of oligomerization. The cases of DNA both increasing and preventing protein aggregation are observed to stem from this enhanced oligomerization. This observation raises interesting questions about the role of nucleic acids in aggregate formation in disease states.
Collapse
Affiliation(s)
- Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Brianne Docter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Michael P Hughes
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California; Department of Energy, University of California, Los Angeles, Los Angeles, California; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California
| | - Jennifer Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado.
| |
Collapse
|
20
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
21
|
Abstract
Cells under stress must adjust their physiology, metabolism, and architecture to adapt to the new conditions. Most importantly, they must down-regulate general gene expression, but at the same time induce synthesis of stress-protective factors, such as molecular chaperones. Here, we investigate how the process of phase separation is used by cells to ensure adaptation to stress. We summarize recent findings and propose that the solubility of important translation factors is specifically affected by changes in physical-chemical parameters such temperature or pH and modulated by intrinsically disordered prion-like domains. These stress-triggered changes in protein solubility induce phase separation into condensates that regulate the activity of the translation factors and promote cellular fitness. Prion-like domains play important roles in this process as environmentally regulated stress sensors and modifier sequences that determine protein solubility and phase behavior. We propose that protein phase separation is an evolutionary conserved feature of proteins that cells harness to regulate adaptive stress responses and ensure survival in extreme environmental conditions.
Collapse
Affiliation(s)
- Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
22
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
23
|
Kwon SB, Yu JE, Kim J, Oh H, Park C, Lee J, Seong BL. Quality Screening of Incorrectly Folded Soluble Aggregates from Functional Recombinant Proteins. Int J Mol Sci 2019; 20:ijms20040907. [PMID: 30791505 PMCID: PMC6413200 DOI: 10.3390/ijms20040907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
Solubility is the prime criterion for determining the quality of recombinant proteins, yet it often fails to represent functional activity due to the involvement of non-functional, misfolded, soluble aggregates, which compromise the quality of recombinant proteins. However, guidelines for the quality assessment of soluble proteins have neither been proposed nor rigorously validated experimentally. Using the aggregation-prone enhanced green-fluorescent protein (EGFP) folding reporter system, we evaluated the folding status of recombinant proteins by employing the commonly used sonication and mild lysis of recombinant host cells. We showed that the differential screening of solubility and folding competence is crucial for improving the quality of recombinant proteins without sacrificing their yield. These results highlight the importance of screening out incorrectly folded soluble aggregates at the initial purification step to ensure the functional quality of recombinant proteins.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jihoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jinhee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
24
|
Zacco E, Graña-Montes R, Martin SR, de Groot NS, Alfano C, Tartaglia GG, Pastore A. RNA as a key factor in driving or preventing self-assembly of the TAR DNA-binding protein 43. J Mol Biol 2019; 431:1671-1688. [PMID: 30742796 PMCID: PMC6461199 DOI: 10.1016/j.jmb.2019.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are incurable motor neuron diseases associated with muscle weakness, paralysis and respiratory failure. Accumulation of TAR DNA-binding protein 43 (TDP-43) as toxic cytoplasmic inclusions is one of the hallmarks of these pathologies. TDP-43 is an RNA-binding protein responsible for regulating RNA transcription, splicing, transport and translation. Aggregated TDP-43 does not retain its physiological function. Here, we exploit the ability of TDP-43 to bind specific RNA sequences to validate our hypothesis that the native partners of a protein can be used to interfere with its ability to self-assemble into aggregates. We propose that binding of TDP-43 to specific RNA can compete with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility and could be adopted as a more general rational therapeutic strategy. We found that binding of the RRM domains of TDP-43 to specific RNA competes with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility. The concept could be adopted as a more general rationale for protein-specific drug design.
Collapse
Affiliation(s)
- Elsa Zacco
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom
| | - Ricardo Graña-Montes
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Institutio Catalan de Recerca I Estudis Avancats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain; Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom; Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, 56126, Italy.
| |
Collapse
|
25
|
Lee J, Son A, Kim P, Kwon SB, Yu JE, Han G, Seong BL. RNA‐dependent chaperone (chaperna) as an engineered pro‐region for the folding of recombinant microbial transglutaminase. Biotechnol Bioeng 2019; 116:490-502. [DOI: 10.1002/bit.26879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ahyun Son
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Present affiliation: Department of Chemistry and BiochemistryKnoebel Institute for Healthy AgingUniversity of DenverDenver Colorado
| | - Paul Kim
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Soon Bin Kwon
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ji Eun Yu
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Gyoonhee Han
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Baik L. Seong
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| |
Collapse
|
26
|
Kwon SB, Yu JE, Park C, Lee J, Seong BL. Nucleic Acid-Dependent Structural Transition of the Intrinsically Disordered N-Terminal Appended Domain of Human Lysyl-tRNA Synthetase. Int J Mol Sci 2018; 19:ijms19103016. [PMID: 30282926 PMCID: PMC6213541 DOI: 10.3390/ijms19103016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jiseop Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
27
|
Bevilacqua PC, Assmann SM. Technique Development for Probing RNA Structure In Vivo and Genome-Wide. Cold Spring Harb Perspect Biol 2018; 10:a032250. [PMID: 30275275 PMCID: PMC6169808 DOI: 10.1101/cshperspect.a032250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
How organisms perceive and respond to their surroundings is one of the great questions in biology. It is clear that RNA plays key roles in sensing. Cellular and environmental cues that RNA responds to include temperature, ions, metabolites, and biopolymers. Recent advances in next-generation sequencing and in vivo chemical probing have provided unprecedented insights into RNA folding in vivo and genome-wide. Patterns of chemical reactivity have implicated control of gene expression by RNA and aided prediction of RNA structure. Central to these advances has been development of molecular biological and chemical techniques. Key advances are improvements in the quality, cost, and throughput of library preparation; availability of a wider array of chemicals for probing RNA structure in vivo; and robustness and user friendliness of data analysis. Insights from probing transcriptomes and future directions are provided.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Departments of Chemistry and Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
28
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
29
|
Yang SW, Jang YH, Kwon SB, Lee YJ, Chae W, Byun YH, Kim P, Park C, Lee YJ, Kim CK, Kim YS, Choi SI, Seong BL. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J 2018; 32:2658-2675. [PMID: 29295864 PMCID: PMC5901386 DOI: 10.1096/fj.201700747rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
A novel protein-folding function of RNA has been recognized, which can outperform previously known molecular chaperone proteins. The RNA as a molecular chaperone (chaperna) activity is intrinsic to some ribozymes and is operational during viral infections. Our purpose was to test whether influenza hemagglutinin (HA) can be assembled in a soluble, trimeric, and immunologically activating conformation by means of an RNA molecular chaperone (chaperna) activity. An RNA-interacting domain (RID) from the host being immunized was selected as a docking tag for RNA binding, which served as a transducer for the chaperna function for de novo folding and trimeric assembly of RID-HA1. Mutations that affect tRNA binding greatly increased the soluble aggregation defective in trimer assembly, suggesting that RNA interaction critically controls the kinetic network in the folding/assembly pathway. Immunization of mice resulted in strong hemagglutination inhibition and high titers of a neutralizing antibody, providing sterile protection against a lethal challenge and confirming the immunologically relevant HA conformation. The results may be translated into a rapid response to a new influenza pandemic. The harnessing of the novel chaperna described herein with immunologically tailored antigen-folding functions should serve as a robust prophylactic and diagnostic tool for viral infections.-Yang, S. W., Jang, Y. H., Kwon, S. B., Lee, Y. J., Chae, W., Byun, Y. H., Kim, P., Park, C., Lee, Y. J., Kim, C. K., Kim, Y. S., Choi, S. I., Seong, B. L. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/immunology
- Molecular Chaperones/metabolism
- Mutation
- Protein Folding
- Protein Multimerization
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/immunology
- RNA, Transfer/metabolism
- Rabbits
Collapse
Affiliation(s)
- Seung Won Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Choon Kang Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|