1
|
Verma M, Kapoor N, Senapati S, Singh O, Bhadoria AS, Khetarpal P, Kumar S, Bansal K, Ranjan R, Kakkar R, Kalra S. Comprehending the Epidemiology and Aetiology of Childhood Obesity: Integrating Life Course Approaches for Prevention and Intervention. Diabetes Ther 2025:10.1007/s13300-025-01734-7. [PMID: 40299281 DOI: 10.1007/s13300-025-01734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
INTRODUCTION Childhood obesity is defined as a medical condition characterised by abnormally high amounts of body fat relative to lean body mass, which increases the risk of adverse health outcomes among children and adolescents from birth to 18 years. The prevalence of childhood obesity, which has serious healthcare implications, is surging, together with its healthcare burden. In this review we explore the intricate interplay of hereditary, environmental, behavioural, cultural and metabolic factors contributing to the global increase in childhood obesity rates. We examine the influence of prenatal factors, genetic predispositions and epigenetic mechanisms on obesity susceptibility and treatment strategies, emphasising the importance of a multilevel life course framework to understand the multifactorial causes of obesity. METHODS This narrative review examines the epidemiology, burden, aetiology and impact of childhood obesity by focusing on published literature and the efficacy of multilevel interventions. Comprehensive algorithms are provided to illustrate the causes of childhood obesity through the lens of a multilevel life course framework, taking into consideration individual, family, community and societal factors. RESULTS Genetic predispositions, including inherited tendencies towards emotional eating, metabolic variations and body fat distribution, significantly influence a child's obesity risk. Environmental factors, such as limited access to nutritious food, sedentary behaviour, insufficient opportunities for physical activity and obesogenic environments, contribute to the increasing prevalence of childhood obesity. Prenatal influences, including maternal hyperglycaemia and nutritional exposures, lead to epigenetic alterations that predispose children to obesity and metabolic disorders. The social environment, including parental influences, cultural norms and peer dynamics, shapes children's dietary habits and physical activity levels. Additionally, the review highlights the importance of early detection of metabolic alterations associated with paediatric obesity and insulin resistance and the potential for epigenetic mechanisms as therapeutic targets. Recommendations are made for tailored medical nutrition therapy, screening for syndromic obesity and multilevel interventions targeting individual and societal factors. CONCLUSIONS This review underscores the necessity of a comprehensive, multilevel approach that integrates genetic, environmental, behavioural and cultural factors along with lifestyle modifications and public health initiatives to address the complex and multifaceted issue of childhood obesity effectively. Targeted interventions across the life course, policy reforms, community engagement and technological innovations are recommended to mitigate obesity risks and promote long-term health. An infographic is available for this article. INFOGRAPHIC.
Collapse
Affiliation(s)
- Madhur Verma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India
| | - Nitin Kapoor
- Department of Endocrine, Diabetes and Metabolism, Christian Medical College, Vellore, TN, 632004, India
- Non-communicable Disease Unit, The Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Omna Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India
| | - Ajeet Singh Bhadoria
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda, 151401, India
| | - Kanika Bansal
- Department of Community Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Rakhsha Ranjan
- Department of Paediatrics, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India
| | - Rakesh Kakkar
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, 132001, India.
- University Centre for Research and Development, Chandigarh University, Mohali, India.
| |
Collapse
|
2
|
Ciantar J, Marttila S, Rajić S, Kostiniuk D, Mishra PP, Lyytikäinen LP, Mononen N, Kleber ME, März W, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Identification and functional characterisation of DNA methylation differences between East- and West-originating Finns. Epigenetics 2024; 19:2397297. [PMID: 39217505 PMCID: PMC11382697 DOI: 10.1080/15592294.2024.2397297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Eastern and Western Finns show a striking difference in coronary heart disease-related mortality; genetics is a known contributor for this discrepancy. Here, we discuss the potential role of DNA methylation in mediating the discrepancy in cardiometabolic disease-risk phenotypes between the sub-populations. We used data from the Young Finns Study (n = 969) to compare the genome-wide DNA methylation levels of East- and West-originating Finns. We identified 21 differentially methylated loci (FDR < 0.05; Δβ >2.5%) and 7 regions (smoothed FDR < 0.05; CpGs ≥ 5). Methylation at all loci and regions associates with genetic variants (p < 5 × 10-8). Independently of genetics, methylation at 11 loci and 4 regions associates with transcript expression, including genes encoding zinc finger proteins. Similarly, methylation at 5 loci and 4 regions associates with cardiometabolic disease-risk phenotypes including triglycerides, glucose, cholesterol, as well as insulin treatment. This analysis was also performed in LURIC (n = 2371), a German cardiovascular patient cohort, and results replicated for the association of methylation at cg26740318 and DMR_11p15 with diabetes-related phenotypes and methylation at DMR_22q13 with triglyceride levels. Our results indicate that DNA methylation differences between East and West Finns may have a functional role in mediating the cardiometabolic disease discrepancy between the sub-populations.
Collapse
Affiliation(s)
- Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daria Kostiniuk
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
3
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
4
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
5
|
Maes B, Fayazpour F, Catrysse L, Lornet G, Van De Velde E, De Wolf C, De Prijck S, Van Moorleghem J, Vanheerswynghels M, Deswarte K, Descamps B, Vanhove C, Van der Schueren B, Vangoitsenhoven R, Hammad H, Janssens S, Lambrecht BN. STE20 kinase TAOK3 regulates type 2 immunity and metabolism in obesity. J Exp Med 2023; 220:e20210788. [PMID: 37347461 PMCID: PMC10287548 DOI: 10.1084/jem.20210788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Leen Catrysse
- Cellular and Molecular (Patho)Physiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guillaume Lornet
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Evelien Van De Velde
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam Netherlands
| |
Collapse
|
6
|
Mukherjee S, Chakraborty M, Msengi EN, Haubner J, Zhang J, Jellinek MJ, Carlson HL, Pyles K, Ulmasov B, Lutkewitte AJ, Carpenter D, McCommis KS, Ford DA, Finck BN, Neuschwander-Tetri BA, Chakraborty A. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab 2023; 75:101767. [PMID: 37429524 PMCID: PMC10368927 DOI: 10.1016/j.molmet.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza N Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Matthew J Jellinek
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kelly Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andrew J Lutkewitte
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
7
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Fradin D, Tost J, Busato F, Mille C, Lachaux F, Deleuze JF, Apter G, Benachi A. DNA methylation dynamics during pregnancy. Front Cell Dev Biol 2023; 11:1185311. [PMID: 37287456 PMCID: PMC10242503 DOI: 10.3389/fcell.2023.1185311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.
Collapse
Affiliation(s)
- Delphine Fradin
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jorg Tost
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Florence Busato
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Clémence Mille
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Fanny Lachaux
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Gisèle Apter
- Child and Perinatal Psychiatric Department, Le Havre University Hospital, University Rouen Normandie, Le Havre, France
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology, DMU Santé des Femmes et des Nouveau-nés, Assistance Publique Hôpitaux de Paris, Antoine Beclere Hospital, Université Paris-Saclay, Paris, France
| |
Collapse
|
9
|
Lister NB, Baur LA, Felix JF, Hill AJ, Marcus C, Reinehr T, Summerbell C, Wabitsch M. Child and adolescent obesity. Nat Rev Dis Primers 2023; 9:24. [PMID: 37202378 DOI: 10.1038/s41572-023-00435-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
The prevalence of child and adolescent obesity has plateaued at high levels in most high-income countries and is increasing in many low-income and middle-income countries. Obesity arises when a mix of genetic and epigenetic factors, behavioural risk patterns and broader environmental and sociocultural influences affect the two body weight regulation systems: energy homeostasis, including leptin and gastrointestinal tract signals, operating predominantly at an unconscious level, and cognitive-emotional control that is regulated by higher brain centres, operating at a conscious level. Health-related quality of life is reduced in those with obesity. Comorbidities of obesity, including type 2 diabetes mellitus, fatty liver disease and depression, are more likely in adolescents and in those with severe obesity. Treatment incorporates a respectful, stigma-free and family-based approach involving multiple components, and addresses dietary, physical activity, sedentary and sleep behaviours. In adolescents in particular, adjunctive therapies can be valuable, such as more intensive dietary therapies, pharmacotherapy and bariatric surgery. Prevention of obesity requires a whole-system approach and joined-up policy initiatives across government departments. Development and implementation of interventions to prevent paediatric obesity in children should focus on interventions that are feasible, effective and likely to reduce gaps in health inequalities.
Collapse
Affiliation(s)
- Natalie B Lister
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia.
- Weight Management Services, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew J Hill
- Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK
| | - Claude Marcus
- Division of Paediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Carolyn Summerbell
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| |
Collapse
|
10
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
11
|
Huang R, Melton P, Burton M, Beilin L, Clarke-Harris R, Cook E, Godfrey K, Burdge G, Mori T, Anderson D, Rauschert S, Craig JM, Kobor M, MacIsaac J, Morin A, Oddy W, Pennell C, Holbrook J, Lillycrop K. Adiposity associated DNA methylation signatures in adolescents are related to leptin and perinatal factors. Epigenetics 2022; 17:819-836. [PMID: 33550919 PMCID: PMC9423832 DOI: 10.1080/15592294.2021.1876297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022] Open
Abstract
Epigenetics links perinatal influences with later obesity. We identifed differentially methylated CpG (dmCpG) loci measured at 17 years associated with concurrent adiposity measures and examined whether these were associated with hsCRP, adipokines, and early life environmental factors. Genome-wide DNA methylation from 1192 Raine Study participants at 17 years, identified 29 dmCpGs (Bonferroni corrected p < 1.06E-07) associated with body mass index (BMI), 10 with waist circumference (WC) and 9 with subcutaneous fat thickness. DmCpGs within Ras Association (RalGDS/AF-6), Pleckstrin Homology Domains 1 (RAPH1), Musashi RNA-Binding Protein 2 (MSI2), and solute carrier family 25 member 10 (SLC25A10) are associated with both BMI and WC. Validation by pyrosequencing confirmed these associations and showed that MSI2 , SLC25A10 , and RAPH1 methylation was positively associated with serum leptin. These were also associated with the early environment; MSI2 methylation (β = 0.81, p = 0.0004) was associated with pregnancy maternal smoking, SLC25A10 (CpG2 β = 0.12, p = 0.002) with pre- and early pregnancy BMI, and RAPH1 (β = -1.49, p = 0.036) with gestational weight gain. Adjusting for perinatal factors, methylation of the dmCpGs within MSI2, RAPH1, and SLC25A10 independently predicted BMI, accounting for 24% of variance. MSI2 methylation was additionally associated with BMI over time (17 years old β = 0.026, p = 0.0025; 20 years old β = 0.027, p = 0.0029) and between generations (mother β = 0.044, p = 7.5e-04). Overall findings suggest that DNA methylation in MSI2, RAPH1, and SLC25A10 in blood may be robust markers, mediating through early life factors.
Collapse
Affiliation(s)
- R.C. Huang
- Telethon Kids Institute, University of Western Australia, Australia
| | - P.E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - M.A. Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L.J. Beilin
- Medical School, The University of Western Australia, Australia
| | - R Clarke-Harris
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - E Cook
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K.M. Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G.C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T.A. Mori
- Medical School, The University of Western Australia, Australia
| | - D Anderson
- Telethon Kids Institute, University of Western Australia, Australia
| | - S. Rauschert
- Telethon Kids Institute, University of Western Australia, Australia
| | - J. M. Craig
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - M.S. Kobor
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - J.L. MacIsaac
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - A.M. Morin
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - W.H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - C.E. Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Australia
| | - J.D. Holbrook
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - K.A. Lillycrop
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Rathod R, Zhang H, Karmaus W, Ewart S, Mzayek F, Arshad SH, Holloway JW. Association of childhood BMI trajectory with post-adolescent and adult lung function is mediated by pre-adolescent DNA methylation. Respir Res 2022; 23:194. [PMID: 35906571 PMCID: PMC9335987 DOI: 10.1186/s12931-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Loh M, Zhang W, Ng HK, Schmid K, Lamri A, Tong L, Ahmad M, Lee JJ, Ng MCY, Petty LE, Spracklen CN, Takeuchi F, Islam MT, Jasmine F, Kasturiratne A, Kibriya M, Mohlke KL, Paré G, Prasad G, Shahriar M, Chee ML, de Silva HJ, Engert JC, Gerstein HC, Mani KR, Sabanayagam C, Vujkovic M, Wickremasinghe AR, Wong TY, Yajnik CS, Yusuf S, Ahsan H, Bharadwaj D, Anand SS, Below JE, Boehnke M, Bowden DW, Chandak GR, Cheng CY, Kato N, Mahajan A, Sim X, McCarthy MI, Morris AP, Kooner JS, Saleheen D, Chambers JC. Identification of genetic effects underlying type 2 diabetes in South Asian and European populations. Commun Biol 2022; 5:329. [PMID: 35393509 PMCID: PMC8991226 DOI: 10.1038/s42003-022-03248-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.
Collapse
Affiliation(s)
- Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Katharina Schmid
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, 85748, Garching bei München, Neuherberg, Germany
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Lin Tong
- The University of Chicago, Biological Sciences Division, Public Health Sciences, 5841 South Maryland Avenue, MC2000, Chicago, IL, 60637, USA
| | - Meraj Ahmad
- Genomic Research on Complex diseases, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Jung-Jin Lee
- Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Mayo Hospital, Lahore, Pakistan
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, 37215, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Md Tariqul Islam
- U Chicago Research Bangladesh, House#4, Road#2b, Sector#4, Uttara, Dhaka, 1230, Bangladesh
| | - Farzana Jasmine
- The University of Chicago, Biological Sciences Division, Public Health Sciences, 5841 South Maryland Avenue, MC2000, Chicago, IL, 60637, USA
| | - Anuradhani Kasturiratne
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Muhammad Kibriya
- The University of Chicago, Biological Sciences Division, Public Health Sciences, 5841 South Maryland Avenue, MC2000, Chicago, IL, 60637, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guillaume Paré
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gauri Prasad
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Shahriar
- The University of Chicago, Biological Sciences Division, Public Health Sciences, 5841 South Maryland Avenue, MC2000, Chicago, IL, 60637, USA
| | - Miao Ling Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - James C Engert
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Hertzel C Gerstein
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - K Radha Mani
- Genomic Research on Complex diseases, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Marijana Vujkovic
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Ananda R Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Salim Yusuf
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Habibul Ahsan
- The University of Chicago, Biological Sciences Division, Public Health Sciences, 5841 South Maryland Avenue, MC2000, Chicago, IL, 60637, USA
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonia S Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Donald W Bowden
- Department of Medicine, Mayo Hospital, Lahore, Pakistan
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 37215, USA
| | - Giriraj R Chandak
- Genomic Research on Complex diseases, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- JSS Academy of Health Education of Research, Mysuru, India
- Science and Engineering Research Board, Department of Science and Technology, Ministry of Science and technology, Government of India, New Delhi, India
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hosptial, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK.
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK.
- MRC-PHE Centre for Enviroment and Health, Imperial College London, London, W2 1PG, UK.
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK.
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK.
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK.
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK.
- MRC-PHE Centre for Enviroment and Health, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
14
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
16
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Do WL, Nguyen S, Yao J, Guo X, Whitsel EA, Demerath E, Rotter JI, Rich SS, Lange L, Ding J, Van Den Berg D, Liu Y, Justice AE, Guan W, Horvath S, Assimes TL, Bhatti P, Jordahl K, Shadyab A, Valencia CI, Stein AD, Smith A, Staimez LR, Conneely K, Narayan KMV. Associations between DNA methylation and BMI vary by metabolic health status: a potential link to disparate cardiovascular outcomes. Clin Epigenetics 2021; 13:230. [PMID: 34937574 PMCID: PMC8697469 DOI: 10.1186/s13148-021-01194-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Body mass index (BMI), a well-known risk factor for poor cardiovascular outcomes, is associated with differential DNA methylation (DNAm). Similarly, metabolic health has also been associated with changes in DNAm. It is unclear how overall metabolic health outside of BMI may modify the relationship between BMI and methylation profiles, and what consequences this may have on downstream cardiovascular disease. The purpose of this study was to identify cytosine-phosphate-guanine (CpG) sites at which the association between BMI and DNAm could be modified by overall metabolic health. Results The discovery study population was derived from three Women’s Health Initiative (WHI) ancillary studies (n = 3977) and two Atherosclerosis Risk in Communities (ARIC) ancillary studies (n = 3520). Findings were validated in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 1200). Generalized linear models regressed methylation β values on the interaction between BMI and metabolic health Z score (BMI × MHZ) adjusted for BMI, MHZ, cell composition, chip number and location, study characteristics, top three ancestry principal components, smoking, age, ethnicity (WHI), and sex (ARIC). Among the 429,566 sites examined, differential associations between BMI × MHZ and DNAm were identified at 22 CpG sites (FDR q < 0.05), with one site replicated in MESA (cg18989722, in the TRAPPC9 gene). Three of the 22 sites were associated with incident coronary heart disease (CHD) in WHI. For each 0.01 unit increase in DNAm β value, the risk of incident CHD increased by 9% in one site and decreased by 6–10% in two sites over 25 years. Conclusions Differential associations between DNAm and BMI by MHZ were identified at 22 sites, one of which was validated (cg18989722) and three of which were predictive of incident CHD. These sites are located in several genes related to NF-kappa-B signaling, suggesting a potential role for inflammation between DNA methylation and BMI-associated metabolic health. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01194-3.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Steve Nguyen
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Leslie Lange
- Division of Biomedical Informatics & Personalized Medicine, School of Medicine, Colorado University Anschutz Medical Campus, Aurora, CO, USA
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, School of Medicine, Wake Forest, Winston-Salem, NC, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Anne E Justice
- Center for Biomedical and Translational Informatics, Geisinger, Wilkes-Barre, PA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Kristina Jordahl
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Aladdin Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Celina I Valencia
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa R Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Miura R, Ikeda-Araki A, Ishihara T, Miyake K, Miyashita C, Nakajima T, Kobayashi S, Ishizuka M, Kubota T, Kishi R. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children's Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147035. [PMID: 33872906 DOI: 10.1016/j.scitotenv.2021.147035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/16/2023]
Abstract
Prenatal exposure to phthalates negatively affects the offspring's health. In particular, epigenetic alterations, such as DNA methylation, may connect phthalate exposure with health outcomes. Here, we evaluated the association of di-2-ethylhexyl phthalate (DEHP) exposure in utero with cord blood epigenome-wide DNA methylation in 203 mother-child pairs enrolled in the Hokkaido Study on Environment and Children's Health, using the Illumina HumanMethylation450 BeadChip. Epigenome-wide association analysis demonstrated the predominant positive associations between the levels of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), in maternal blood and DNA methylation levels in cord blood. The genes annotated to the CpGs positively associated with MEHP levels were enriched for pathways related to metabolism, the endocrine system, and signal transduction. Among them, methylation levels of CpGs involved in metabolism were inversely associated with the offspring's ponderal index (PI). Further, clustering and mediation analyses suggested that multiple increased methylation changes may jointly mediate the association of DEHP exposure in utero with the offspring's PI at birth. Although further studies are required to assess the impact of these changes, this study suggests that differential DNA methylation may link phthalate exposure in utero to fetal growth and further imply that DNA methylation has predictive value for the offspring's obesity.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Hokkaido University Faculty of Health Sciences Japan
| | - Toru Ishihara
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
19
|
Adipose Tissue Hypoxia Correlates with Adipokine Hypomethylation and Vascular Dysfunction. Biomedicines 2021; 9:biomedicines9081034. [PMID: 34440238 PMCID: PMC8394952 DOI: 10.3390/biomedicines9081034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity is characterized by the accumulation of dysfunctional adipose tissues, which predisposes to cardiometabolic diseases. Our previous in vitro studies demonstrated a role of hypoxia in inducing adipokine hypomethylation in adipocytes. We sought to examine this mechanism in visceral adipose tissues (VATs) from obese individuals and its correlation with cardiometabolic risk factors. We propose an involvement of the hypoxia-inducible factor, HIF1α, and the DNA hydroxymethylase, TET1. Blood samples and VAT biopsies were obtained from obese and non-obese subjects (n = 60 each) having bariatric and elective surgeries, respectively. The analyses of VAT showed lower vascularity, and higher levels of HIF1α and TET1 proteins in the obese subjects than controls. Global hypomethylation and hydroxymethylation were observed in VAT from obese subjects along with promoter hypomethylation of several pro-inflammatory adipokines. TET1 protein was enriched near the promotor of the hypomethylated adipokines. The average levels of adipokine methylation correlated positively with vascularity and arteriolar vasoreactivity and negatively with protein levels of HIF1α and TET1 in corresponding VAT samples, serum and tissue inflammatory markers, and other cardiometabolic risk factors. These findings suggest a role for adipose tissue hypoxia in causing epigenetic alterations, which could explain the increased production of adipocytokines and ultimately, vascular dysfunction in obesity.
Collapse
|
20
|
Nordman H, Jääskeläinen J, Voutilainen R. Birth Size as a Determinant of Cardiometabolic Risk Factors in Children. Horm Res Paediatr 2021; 93:144-153. [PMID: 32846418 DOI: 10.1159/000509932] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
The association between birth size and cardiometabolic disease risk may be U-shaped. Being born small for gestational age (SGA) has a definitive association with later cardiovascular risk, but the impact of being born large for gestational age (LGA) on cardiometabolic health is more controversial. In addition to birth size, early postnatal growth pattern and later weight gain affect cardiometabolic risk in adulthood. Most SGA-born children have catch-up and LGA-born children have catch-down growth during the first years of life. The extent of this early compensatory growth may contribute to the adverse health outcomes. Both SGA- and LGA-born children are at an increased risk for overweight and obesity. This may have a long-term impact on cardiometabolic health as overweight tends to track to adulthood. Other cardiometabolic risk factors, including alterations in glucose metabolism, dyslipidemia, hypertension, and low-grade inflammation are associated with birth weight. Many of these risk factors are related to overweight or adverse fat distribution. Since later cardiometabolic risk is often mediated by early growth pattern and later overweight in SGA and LGA children, it is important to focus on staying normal weight throughout life. Hence, effective interventions to reduce cardiometabolic risk in LGA and SGA children should be developed.
Collapse
Affiliation(s)
- Henrikki Nordman
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland,
| | - Jarmo Jääskeläinen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Raimo Voutilainen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
21
|
Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22094693. [PMID: 33946662 PMCID: PMC8124363 DOI: 10.3390/ijms22094693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) remains a significant clinical and public health issue due to its increasing prevalence and the possibility for numerous short- and long-term complications. The growing incidence of GDM seems to coincide with the widespread use of endocrine disrupting chemicals (EDCs). The extensive production and common use of these substances in everyday life has resulted in constant exposure to harmful substances from the environment. That may result in epigenetic changes, which may manifest themselves also after many years and be passed on to future generations. It is important to consider the possible link between environmental exposure to endocrine disrupting chemicals (EDCs) during pregnancy, epigenetic mechanisms and an increased risk for developing gestational diabetes mellitus (GDM). This manuscript attempts to summarize data on epigenetic changes in pregnant women suffering from gestational diabetes in association with EDCs. There is a chance that epigenetic marks may serve as a tool for diagnostic, prognostic, and therapeutic measures.
Collapse
|
22
|
Du SZ, Chen C, Qin L, Tang XL. Bioinformatics analysis of immune infiltration in glioblastoma multiforme based on data using a methylation chip in the GEO database. Transl Cancer Res 2021; 10:1484-1491. [PMID: 35116473 PMCID: PMC8798202 DOI: 10.21037/tcr-21-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most aggressive and malignant tumor of the central nervous system. The study was to obtain the data of immune cell infiltration based on the data of a methylation chip in the GEO, and to clarify its prognostic significance for GBM. Methods The methylation data of glioblastoma was obtained by using the Illumina human methylation 450k BeadChip. The corrected expression was obtained by using edge R. Limma was used to correct the expression amount of the samples, and EpiDISH was used to translate the methylation expression data, so that the expression amount was transformed into the expression matrix of immune cells. The immune cells were then co-expressed, and the proportion and correlation of related immune cells was determined. The results of the cells in each of two groups were analyzed by enrichment and PCA mapping to establish the relevant differences. Results The data of GBM patients were obtained from the methylation chip of the GEO database. Patients were divided into a long-term (SNU-LTS) (21 cases), and short-term survival group (SNU-STS) (12 cases). There were 73 genes with significant individual differences between the two groups (P<0.05). EpiDISH was used to translate the methylation expression data into the expression matrix of immune cells, which showed that the highest proportion of cells in groups were mono cells, while Gran cells and CD8T appeared in a very small number of samples. The positive correlation between mono and B cells was the strongest, while the negative correlation between mono and Gran cells was the strongest. A violin chart shows that there was no significant difference in the infiltration degree of six kinds of immune cells between the two groups. Principal component analysis (PCA) showed that there was individual difference between the two groups, but the overall consistency was high. Conclusions Data on tumor immune cell infiltration can be obtained by using a methylation chip in the GEO database. This not only extends the application abilities of methylation chips but provides obvious individual differences. The study of tumor immune infiltrating cells may pave the way for targeted therapy in the treatment of GBM.
Collapse
Affiliation(s)
- Song-Zhou Du
- Department of Neurosurgery, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College, Yangtze University, Jingzhou, China
| | - Cheng Chen
- Department of Nuclear Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Lu Qin
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xue-Lian Tang
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
24
|
Gong P, Jing Y, Liu Y, Wang L, Wu C, Du Z, Li H. Whole-genome bisulfite sequencing of abdominal adipose reveals DNA methylation pattern variations in broiler lines divergently selected for fatness. J Anim Sci 2021; 99:skaa408. [PMID: 33373456 PMCID: PMC8611762 DOI: 10.1093/jas/skaa408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 11/14/2022] Open
Abstract
The methylation status of pivotal genes involved in fat deposition in chickens has been extensively studied. However, the whole-genome DNA methylation profiles of broiler abdominal adipose tissue remain poorly understood. Using whole-genome bisulfite sequencing, we generated DNA methylation profiles of chicken abdominal adipose tissue from Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We aimed to explore whether DNA methylation was associated with abdominal fat deposition in broilers. The whole-genome DNA methylation profiles of fat- and lean-line broilers abdominal adipose tissue were constructed. The DNA methylation levels of functional genomic regions in the fat broiler were higher than those in the lean broiler, especially in the 3' untranslated regions (UTRs) and exons in the non-CG contexts. Additionally, we identified 29,631 differentially methylated regions and, subsequently, annotated 6,484 and 2,016 differentially methylated genes (DMGs) in the gene body and promoter regions between the two lines, respectively. Functional annotation showed that the DMGs in promoter regions were significantly enriched mainly in the triglyceride catabolic process, lipid metabolism-related pathways, and extracellular matrix signal pathways. When the DMG in promoter regions and differentially expressed genes were integrated, we identified 30 genes with DNA methylation levels that negatively correlated with their messenger RNA (mRNA) expression, of which CMSS1 reached significant levels (false discovery rate < 0.05). These 30 genes were mainly involved in fatty acid metabolism, peroxisome-proliferator-activated receptor signaling, Wnt signaling pathways, transmembrane transport, RNA degradation, and glycosaminoglycan degradation. Comparing the DNA methylation profiles between fat- and lean-line broilers demonstrated that DNA methylation is involved in regulating broiler abdominal fat deposition. Our study offers a basis for further exploring the underlying mechanisms of abdominal adipose deposition in broilers.
Collapse
Affiliation(s)
- Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Chunyan Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Zhiqiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| |
Collapse
|
25
|
Zhang G, Meng Q, Blencowe M, Agrawal R, Gomez-Pinilla F, Yang X. Multi-Tissue Multi-Omics Nutrigenomics Indicates Context-Specific Effects of Docosahexaenoic Acid on Rat Brain. Mol Nutr Food Res 2020; 64:e2000788. [PMID: 33063454 PMCID: PMC8046846 DOI: 10.1002/mnfr.202000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Indexed: 11/09/2022]
Abstract
SCOPE The influence of docosahexaenoic acid (DHA) on cardiometabolic and cognitive phenotypes, and multi-omic alterations in the brain under two metabolic conditions is explored to understand context-specific nutritional effects. METHODS AND RESULTS Rats are randomly assigned to a DHA-rich or a control chow diet while drinking water or high fructose solution, followed by profiling of metabolic and cognitive phenotypes and the transcriptome and DNA methylome of the hypothalamus and hippocampus. DHA reduces serum triglyceride and improves insulin resistance and memory exclusively in the fructose-consuming rats. In hippocampus, DHA affects genes related to synapse functions in the chow group but immune functions in the fructose group; in hypothalamus, DHA alters immune pathways in the chow group but metabolic pathways in the fructose group. Network modeling reveals context-specific regulators of DHA effects, including Klf4 and Dusp1 for chow condition and Lum, Fn1, and Col1a1 for fructose condition in hippocampus, as well as Cyr61, JunB, Ier2, and Pitx2 under chow condition and Hcar1, Cdh1, and Osr1 under fructose condition in hypothalamus. CONCLUSION DHA exhibits differential influence on epigenetic loci, genes, pathways, and metabolic and cognitive phenotypes under different dietary contexts, supporting population stratification in DHA studies to achieve precision nutrition.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Vehmeijer FOL, Küpers LK, Sharp GC, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med 2020; 12:105. [PMID: 33239103 PMCID: PMC7687793 DOI: 10.1186/s13073-020-00810-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.
Collapse
Affiliation(s)
- Florianne O L Vehmeijer
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lucas A Salas
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Gwen Tindula
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sarah Reese
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Christian Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, UK
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip E Melton
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Austalia, Australia
| | - Ellen Nohr
- Centre for Women's, Family and Child Health, University of South-Eastern Norway, Kongsberg, Norway
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Geòrgia Escaramís
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuli T Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason P Ross
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn Marit Aasvang
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Natalia Ferre
- Pediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Dariusz Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | | | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Peter L Molloy
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheryl Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Milan, Italy
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
- Department of Gastroenterology, Hepatology and Endocrinology, CiiM, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health, Section of Epidemiology, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, Nestor CE, Löf M. DNA methylation in infants with low and high body fatness. BMC Genomics 2020; 21:769. [PMID: 33167873 PMCID: PMC7654595 DOI: 10.1186/s12864-020-07169-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Birth weight is determined by the interplay between infant genetics and the intrauterine environment and is associated with several health outcomes in later life. Many studies have reported an association between birth weight and DNA methylation in infants and suggest that altered epigenetics may underlie birthweight-associated health outcomes. However, birth weight is a relatively nonspecific measure of fetal growth and consists of fat mass and fat-free mass which may have different effects on health outcomes which motivates studies of infant body composition and DNA methylation. Here, we combined genome-wide DNA methylation profiling of buccal cells from 47 full-term one-week old infants with accurate measurements of infant fat mass and fat-free mass using air-displacement plethysmography. RESULTS No significant association was found between DNA methylation in infant buccal cells and infant body composition. Moreover, no association between infant DNA methylation and parental body composition or indicators of maternal glucose metabolism were found. CONCLUSIONS Despite accurate measures of body composition, we did not identify any associations between infant body fatness and DNA methylation. These results are consistent with recent studies that generally have identified only weak associations between DNA methylation and birthweight. Although our results should be confirmed by additional larger studies, our findings may suggest that differences in DNA methylation between individuals with low and high body fatness may be established later in childhood.
Collapse
Affiliation(s)
- Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Brodin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Forsum
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
28
|
Fang CY, Lai TC, Hsiao M, Chang YC. The Diverse Roles of TAO Kinases in Health and Diseases. Int J Mol Sci 2020; 21:E7463. [PMID: 33050415 PMCID: PMC7589832 DOI: 10.3390/ijms21207463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer's diseases. This review collates current knowledge concerning the roles of TAOKs in protein-protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs' effects in pathological situations.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
29
|
Choi YJ, Lee YA, Hong YC, Cho J, Lee KS, Shin CH, Kim BN, Kim JI, Park SJ, Bisgaard H, Bønnelykke K, Lim YH. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. ENVIRONMENT INTERNATIONAL 2020; 143:105929. [PMID: 32645488 DOI: 10.1016/j.envint.2020.105929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Epigenetic mechanisms have been suggested to play a role in the link between in utero exposure to bisphenol A (BPA) and pediatric obesity; however, there is little evidence regarding this mechanism in humans. We obtained data on obesity-associated CpG sites from a previous epigenome-wide association study, and then examined whether methylation at those CpG sites was influenced by prenatal BPA exposure. We then evaluated the relationship between CpG methylation status and body mass index (BMI) in a prospective children's cohort at ages 2, 4, 6, and 8 years. METHODS Methylation profiles of 59 children were longitudinally analyzed at ages 2 and 6 years using the Infinium Human Methylation BeadChip. A total of 594 CpG sites known to be BMI or obesity-associated sites were tested for an association with prenatal BPA levels, categorized into low and high exposure groups based on the 80th percentile of maternal BPA levels (2.68 μg/g creatinine), followed by an analysis of the association between DNA methylation and BMI from ages 2-8. RESULTS There was a significant increase in the methylation levels of cg19196862 (IGF2R) in the high BPA group at age 2 years (p = 0.00030, false discovery rate corrected p < 0.10) but not at age 6. With one standard deviation increase of methylation at cg19196862 (IGF2R) at age 2 years, the linear mixed model analysis revealed that BMI during ages 2-8 years significantly increased by 0.49 (95% confidence interval; 0.08, 0.90) in girls, but not in boys. The indirect effect of prenatal BPA exposure on early childhood BMI through methylation at cg19196862 (IGF2R) at age 2 years was marginally significant. CONCLUSIONS Prenatal exposure to BPA may influence differential methylation of IGF2R at age 2. This result indicates that a possible sensitive period of DNA methylation occurs earlier during development, which may affect BMI until later childhood in a sex-specific manner.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Jinwoo Cho
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo 15865, Republic of Korea
| | - Hans Bisgaard
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, 2820, Gentofte, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, 2820, Gentofte, Copenhagen, Denmark
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen 1014, Denmark.
| |
Collapse
|
30
|
Gagné-Ouellet V, Breton E, Thibeault K, Fortin CA, Desgagné V, Girard Tremblay É, Cardenas A, Guérin R, Perron P, Hivert MF, Bouchard L. Placental Epigenome-Wide Association Study Identified Loci Associated with Childhood Adiposity at 3 Years of Age. Int J Mol Sci 2020; 21:ijms21197201. [PMID: 33003475 PMCID: PMC7582906 DOI: 10.3390/ijms21197201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to identify placental DNA methylation (DNAm) variations associated with adiposity at 3 years of age. We quantified placental DNAm using the Infinium MethylationEPIC BeadChips. We assessed associations between DNAm at single-CpGs and skinfold thickness using robust linear regression models adjusted for gestational age, child's sex, age at follow-up and cellular heterogeneity. We sought replication of DNAm association with child adiposity in an independent cohort. We quantified placental mRNA levels for annotated gene using qRT-PCR and tested for correlation with DNAm. Lower DNAm at cg22593959 and cg22436429 was associated with higher adiposity (β = -1.18, q = 0.002 and β = -0.82, q = 0.04). The cg22593959 is located in an intergenic region (chr7q31.3), whereas cg22436429 is within the TFAP2E gene (1p34.3). DNAm at cg22593959 and cg22436429 was correlated with mRNA levels at FAM3C (rs = -0.279, p = 0.005) and TFAP2E (rs = 0.216, p = 0.03). In an independent cohort, the association between placental DNAm at cg22593959 and childhood adiposity was of similar strength and direction (β = -3.8 ± 4.1, p = 0.36), yet non-significant. Four genomic regions were also associated with skinfold thickness within FMN1, MAGI2, SKAP2 and BMPR1B genes. We identified placental epigenetic variations associated with adiposity at 3 years of age suggesting that childhood fat accretion patterns might be established during fetal life.
Collapse
Affiliation(s)
- Valérie Gagné-Ouellet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Edith Breton
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Carol-Ann Fortin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Élise Girard Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA;
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (P.P.); (M.-F.H.)
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (P.P.); (M.-F.H.)
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
31
|
Shrestha D, Ouidir M, Workalemahu T, Zeng X, Tekola-Ayele F. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes (Lond) 2020; 44:1406-1416. [PMID: 32071425 PMCID: PMC7261634 DOI: 10.1038/s41366-020-0546-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal obesity prior to or during pregnancy influences fetal growth, predisposing the offspring to increased risk for obesity across the life course. Placental epigenetic mechanisms may underlie these associations. We conducted an epigenome-wide association study to identify placental DNA methylation changes associated with maternal prepregnancy body mass index (BMI) and rate of gestational weight gain at first (GWG1), second (GWG2), and third trimester (GWG3). METHOD Participants of the NICHD Fetal Growth Studies with genome-wide placental DNA methylation (n = 301) and gene expression (n = 75) data were included. Multivariable-adjusted regression models were used to test the associations of 1 kg/m2 increase in prepregnancy BMI or 1 kg/week increase in GWG with DNA methylation levels. Genes harboring top differentially methylated CpGs (FDR P < 0.05) were evaluated for placental gene expression. We assessed whether DNA methylation sites known to be associated with BMI in child or adult tissues, were also associated with maternal prepregnancy BMI in placenta. RESULTS Prepregnancy BMI was associated with DNA methylation at cg14568196[EGFL7], cg15339142[VETZ], and cg02301019[AC092377.1] (FDR P < 0.05, P ranging from 1.4 × 10-10 to 1.7 × 10-9). GWG1 or GWG2 was associated with DNA methylation at cg17918270[MYT1L], cg20735365[DLX5], and cg17451688[SLC35F3] (FDR P < 0.05, P ranging from 6.4 × 10-10 to 1.2 × 10-8). Both prepregnancy BMI and DNA methylation at cg1456819 [EGFL7] were negatively correlated with EGFL7 expression in placenta (P < 0.05). Several CpGs previously implicated in obesity traits in children and adults were associated with prepregnancy BMI in placenta. Functional annotations revealed that EGFL7 is highly expressed in placenta and the differentially methylated CpG sites near EGFL7 and VEZT were cis-meQTL targets in blood. CONCLUSIONS We identified placental DNA methylation changes at novel loci associated with prepregnancy BMI and GWG. The overlap between CpGs associated with obesity traits in placenta and other tissues in children and adults suggests that epigenetic mechanisms in placenta may give insights to early origins of obesity.
Collapse
Affiliation(s)
- Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Abstract
Obesity is a worldwide epidemic and contributes to global morbidity and mortality mediated via the development of nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), cardiovascular (CVD) and other diseases. It is a consequence of an elevated caloric intake, a sedentary lifestyle and a genetic as well as an epigenetic predisposition. This review summarizes changes in DNA methylation and microRNAs identified in blood cells and different tissues in obese human and rodent models. It includes information on epigenetic alterations which occur in response to fat-enriched diets, exercise and metabolic surgery and discusses the potential of interventions to reverse epigenetic modifications.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
33
|
Lima RS, Assis Silva Gomes J, Moreira PR. An overview about DNA methylation in childhood obesity: Characteristics of the studies and main findings. J Cell Biochem 2020; 121:3042-3057. [DOI: 10.1002/jcb.29544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Silva Lima
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Juliana Assis Silva Gomes
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Paula Rocha Moreira
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| |
Collapse
|
34
|
Nicoletti CF, Cortes-Oliveira C, Noronha NY, Pinhel MAS, Dantas WS, Jácome A, Marchini JS, Gualano B, Crujeiras AB, Nonino CB. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur J Clin Nutr 2020; 74:1345-1353. [PMID: 32404903 DOI: 10.1038/s41430-020-0660-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES We aimed to investigate the effects of short-term hypocaloric diet-induced weight loss on DNA methylation profile in leukocytes from women with severe obesity. METHODS Eleven women with morbid obesity (age: 36.9 ± 10.3 years; BMI: 58.5 ± 10.5 kg/m2) were assessed before and after 6 weeks of a hypocaloric dietary intervention. The participants were compared with women of average weight and the same age (age: 36.9 ± 11.8 years; BMI: 22.5 ± 1.6 kg/m2). Genome-wide DNA methylation analysis was performed in DNA extracted from peripheral blood leukocytes using the Infinium Human Methylation 450 BeadChip assay. Changes (Δβ) in the methylation level of each CpGs were calculated. A threshold with a minimum value of 10%, p < 0.001, for the significant CpG sites based on Δβ and a false discovery rate of <0.05 was set. RESULTS Dietary intervention changed the methylation levels at 16,064 CpG sites. These CpGs sites were related to cancer, cell cycle-related, MAPK, Rap1, and Ras signaling pathways. However, regardless of hypocaloric intervention, a group of 878 CpGs (related to 649 genes) remained significantly altered in obese women when compared with normal-weight women. Pathway enrichment analysis identified genes related to the cadherin and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose deprivation. CONCLUSION A short-term hypocaloric intervention in patients with severe obesity partially restored the obesity-related DNA methylation pattern. Thus, the full change of obesity-related DNA methylation patterns could be proportional to the weight-loss rate in these patients after dietary interventions.
Collapse
Affiliation(s)
- C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Cortes-Oliveira
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - M A S Pinhel
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, Sao Paulo, Brazil
| | - W S Dantas
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A Jácome
- Department of Mathematics, MODES group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - J S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - B Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC), Santiago de Compostela, Spain. .,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain.
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Reed ZE, Suderman MJ, Relton CL, Davis OSP, Hemani G. The association of DNA methylation with body mass index: distinguishing between predictors and biomarkers. Clin Epigenetics 2020; 12:50. [PMID: 32228717 PMCID: PMC7106582 DOI: 10.1186/s13148-020-00841-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/17/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND DNA methylation is associated with body mass index (BMI), but it is not clear if methylation scores are biomarkers for extant BMI or predictive of future BMI. Here, we explore the causal nature and predictive utility of DNA methylation measured in peripheral blood with BMI and cardiometabolic traits. METHODS Analyses were conducted across the life course using the ARIES cohort of mothers (n = 792) and children (n = 906), for whom DNA methylation and genetic profiles and BMI at multiple time points (3 in children at birth, in childhood and in adolescence; 2 in mothers during pregnancy and in middle age) were available. Genetic and DNA methylation scores for BMI were derived using published associations between BMI and DNA methylation and genotype. Causal relationships between methylation and BMI were assessed using Mendelian randomisation and cross-lagged models. RESULTS The DNA methylation scores in adult women explained 10% of extant BMI variance. However, less extant variance was explained by scores generated in the same women during pregnancy (2% BMI variance) and in older children (15-17 years; 3% BMI variance). Similarly, little extant variance was explained in younger children (at birth and at 7 years; 1% and 2%, respectively). These associations remained following adjustment for smoking exposure and education levels. The DNA methylation score was found to be a poor predictor of future BMI using linear and cross-lagged models, suggesting that DNA methylation variation does not cause later variation in BMI. However, there was some evidence to suggest that BMI is predictive of later DNA methylation. Mendelian randomisation analyses also support this direction of effect, although evidence is weak. Finally, we find that DNA methylation scores for BMI are associated with extant cardiometabolic traits independently of BMI and genetic score. CONCLUSION The age-specific nature of DNA methylation associations with BMI, lack of causal relationship and limited predictive ability of future BMI indicate that DNA methylation is likely influenced by BMI and might more accurately be considered a biomarker of BMI and related outcomes rather than a predictor. Future epigenome-wide association studies may benefit from further examining associations between early DNA methylation and later health outcomes.
Collapse
Affiliation(s)
- Zoe E Reed
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Matthew J Suderman
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver S P Davis
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- The Alan Turing Institute, British Library, 96 Euston Road, London, UK
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
36
|
Sebastiani G, Andreu-Fernández V, Herranz Barbero A, Aldecoa-Bilbao V, Miracle X, Meler Barrabes E, Balada Ibañez A, Astals-Vizcaino M, Ferrero-Martínez S, Gómez-Roig MD, García-Algar O. Eating Disorders During Gestation: Implications for Mother's Health, Fetal Outcomes, and Epigenetic Changes. Front Pediatr 2020; 8:587. [PMID: 33042925 PMCID: PMC7527592 DOI: 10.3389/fped.2020.00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: Eating disorders (EDs) have increased globally in women of childbearing age, related to the concern for body shape promoted in industrialized countries. Pregnancy may exacerbate a previous ED or conversely may be a chance for improving eating patterns due to the mother's concern for the unborn baby. EDs may impact pregnancy evolution and increase the risk of adverse outcomes such as miscarriage, preterm delivery, poor fetal growth, or malformations, but the knowledge on this topic is limited. Methods: We performed a systematic review of studies on humans in order to clarify the mechanisms underpinning the adverse pregnancy outcomes in patients with EDs. Results: Although unfavorable fetal development could be multifactorial, maternal malnutrition, altered hormonal pathways, low pre-pregnancy body mass index, and poor gestational weight gain, combined with maternal psychopathology and stress, may impair the evolution of pregnancy. Environmental factors such as malnutrition or substance of abuse may also induce epigenetic changes in the fetal epigenome, which mark lifelong health concerns in offspring. Conclusions: The precocious detection of dysfunctional eating behaviors in the pre-pregnancy period and an early multidisciplinary approach comprised of nutritional support, psychotherapeutic techniques, and the use of psychotropics if necessary, would prevent lifelong morbidity for both mother and fetus. Further prospective studies with large sample sizes are needed in order to design a structured intervention during every stage of pregnancy and in the postpartum period.
Collapse
Affiliation(s)
- Giorgia Sebastiani
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Valencian International University (VIU), Valencia, Spain
| | - Ana Herranz Barbero
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Victoria Aldecoa-Bilbao
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Xavier Miracle
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Eva Meler Barrabes
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Arantxa Balada Ibañez
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Marta Astals-Vizcaino
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Silvia Ferrero-Martínez
- Hospital Sant Joan de Déu, Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - María Dolores Gómez-Roig
- Hospital Sant Joan de Déu, Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Oscar García-Algar
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain.,Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
37
|
Mayoral LPC, Andrade GM, Mayoral EPC, Huerta TH, Canseco SP, Rodal Canales FJ, Cabrera-Fuentes HA, Cruz MM, Pérez Santiago AD, Alpuche JJ, Zenteno E, Ruíz HM, Cruz RM, Jeronimo JH, Perez-Campos E. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res 2020; 151:11-21. [PMID: 32134010 PMCID: PMC7055173 DOI: 10.4103/ijmr.ijmr_1768_17] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a serious medical condition worldwide, which needs new approaches and recognized international consensus in treating diseases leading to morbidity. The aim of this review was to examine heterogeneous links among the various phenotypes of obesity in adults. Proteins and associated genes in each group were analysed to differentiate between biomarkers. A variety of terms for classification and characterization within this pathology are currently in use; however, there is no clear consensus in terminology. The most significant groups reviewed include metabolically healthy obese, metabolically abnormal obese, metabolically abnormal, normal weight and sarcopenic obese. These phenotypes do not define particular genotypes or epigenetic gene regulation, or proteins related to inflammation. There are many other genes linked to obesity, though the value of screening all of those for diagnosis has low predictive results, as there are no significant biomarkers. It is important to establish a consensus in the terminology used and the characteristics attributed to obesity subtypes. The identification of specific molecular biomarkers is also required for better diagnosis in subtypes of obesity.
Collapse
Affiliation(s)
- Laura Perez-Campos Mayoral
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Gabriel Mayoral Andrade
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Eduardo Perez-Campos Mayoral
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | | | - Socorro Pina Canseco
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Francisco J. Rodal Canales
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Héctor Alejandro Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
| | | | | | - Juan José Alpuche
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Edgar Zenteno
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Hector Martínez Ruíz
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Ruth Martínez Cruz
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Julia Hernandez Jeronimo
- Research Centre-Faculty of Medicine, National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca, Mexico
| | - Eduardo Perez-Campos
- National Technological Institute of Mexico, ITOaxaca, Oaxaca, Mexico
- Clinical Pathology Laboratory ‘Dr. Eduardo Pérez Ortega’ Oaxaca, Mexico
| |
Collapse
|
38
|
Barberio MD, Nadler EP, Sevilla S, Lu R, Harmon B, Hubal MJ. Comparison of visceral adipose tissue DNA methylation and gene expression profiles in female adolescents with obesity. Diabetol Metab Syndr 2019; 11:98. [PMID: 31798691 PMCID: PMC6881970 DOI: 10.1186/s13098-019-0494-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epigenetic changes in visceral adipose tissue (VAT) with obesity and their effects on gene expression are poorly understood, especially during emergent obesity in youth. The current study tested the hypothesis that methylation and gene expression profiles of key growth factor and inflammatory pathways are altered in VAT from obese compared to non-obese youth. METHODS VAT samples from adolescent females grouped as Lean (L; n = 15; age = 15 ± 3 years, BMI = 21.9 ± 3.0 kg/m2) or Obese (Ob; n = 15, age = 16 ± 2 years, BMI = 45.8 ± 9.8 kg/m2) were collected. Global methylation (n = 20) and gene expression (N = 30) patterns were profiled via microarray and interrogated for differences between groups by ANCOVA (p < 0.05), followed by biological pathway analyses. RESULTS Overlapping differences in methylation and gene expression in 317 genes were found in VAT from obese compared to lean groups. PI3K/AKT Signaling (p = 1.83 × 10-6; 11/121 molecules in dataset/pathway) was significantly overrepresented in Ob VAT according to pathway analysis. Upregulations in the PI3K/AKT signaling pathway mRNAs TFAM (p = 0.03; fold change = 1.8) and PPP2R5C (p = 0.03, FC = 2.6) were confirmed via qRT-PCR. CONCLUSION Our analyses show obesity-related differences in DNA methylation and gene expression in visceral adipose tissue of adolescent females. Specifically, we identified methylation site/gene expression pairs differentially regulated and mapped these differences to pathways including PI3K/AKT signaling, suggesting that PI3K/AKT signaling pathway dysfunction in obesity may be driven in part by changes in DNA methylation.
Collapse
Affiliation(s)
- Matthew D. Barberio
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Evan P. Nadler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
- Division of Pediatric Surgery, Children’s National Medical Center, Washington, DC USA
- Department of Integrative Systems Biology, School of Medicine, George Washington University, Washington, DC USA
| | - Samantha Sevilla
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Rosemary Lu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Monica J. Hubal
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN USA
| |
Collapse
|
39
|
Altered Genome-Wide DNA Methylation in Peripheral Blood of South African Women with Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20235828. [PMID: 31757015 PMCID: PMC6928622 DOI: 10.3390/ijms20235828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence implicate altered DNA methylation in the pathophysiology of gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes) were differentially methylated between GDM and non-GDM groups. Enriched pathways included GDM-related pathways such as insulin resistance, glucose metabolism and inflammation. DNA methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate insulin production and secretion and may offer potential as an epigenetic biomarker in our population. Further validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in different populations are required to investigate their candidacy as biomarkers of GDM.
Collapse
|
40
|
Liu J, Zhang Z, Xu J, Song X, Yuan W, Miao M, Liang H, Du J. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics 2019; 11:1399-1412. [PMID: 31596135 DOI: 10.2217/epi-2019-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate DNA methylation changes in placenta tissues associated with small for gestational age (SGA). Materials & methods: A prospective cohort study consisting of 1292 pregnant women from China (including 39 SGA with placenta tissues) was performed, microarray and pyrosequencing were conducted. Results: Total 2012 methylation variable positions stood out from all probes (p < 0.05; Δβ > 0.2). In SGA cases, a CpG site within ANKRD20B showed lower methylation level (p = 0.032) than appropriate for gestational age in validation cohort. Five sites within FAM198A (p = 0.047, 0.050, 0.039, 0.026 and 0.043, respectively) had a reduced methylation in male newborns whose mother had preconception folic acid supplementation. Conclusion: DNA methylation changes in placenta tissues may be associated with SGA, maternal preconception folic acid supplementation status and also be fetal sex-specific.
Collapse
Affiliation(s)
- Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Barton SJ, Melton PE, Titcombe P, Murray R, Rauschert S, Lillycrop KA, Huang RC, Holbrook JD, Godfrey KM. In Epigenomic Studies, Including Cell-Type Adjustments in Regression Models Can Introduce Multicollinearity, Resulting in Apparent Reversal of Direction of Association. Front Genet 2019; 10:816. [PMID: 31552104 PMCID: PMC6746958 DOI: 10.3389/fgene.2019.00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Association studies of epigenome-wide DNA methylation and disease can inform biological mechanisms. DNA methylation is often measured in peripheral blood, with heterogeneous cell types with different methylation profiles. Influences such as adiposity-associated inflammation can change cell-type proportions, altering measured blood methylation levels. To determine whether associations between loci-specific methylation and outcomes result from cellular heterogeneity, many studies adjust for estimated blood cell proportions, but high correlations between methylation and cell-type proportions could violate the statistical assumption of no multicollinearity. We examined these assumptions in a population-based study. Methods: CDKN2A promoter CpG methylation was measured in peripheral blood from 812 adolescents aged 17 years (Western Australian Pregnancy Cohort Study). Loge adolescent BMI was used as the outcome in a regression analysis with DNA methylation as predictor, adjusting for age/sex. Further regression analyses additionally adjusted for estimated cell-type proportions using the reference-based Houseman method, and simulations modeled the effects of varying levels of correlation between cell proportions and methylation. Correlations between estimated cell proportions and CpG methylation from Illumina 450K were measured. Results: Lower DNA methylation was associated with higher BMI when cell-type adjustment was not included; for CpG4, β = -0.004 logeBMI/%methylation (95% CI -0.0065, -0.001; p = 0.003). The direction of association reversed when adjustment for six cell types was made; for CpG4, β = 0.004 logeBMI/%methylation (-0.0002, 0.0089; p = 0.06). Correlations between CpG methylation and cell-type proportions were high, and variance inflation factors (VIFs) were extremely high (25 to 113.7). Granulocyte count was correlated with BMI, and removing granulocytes from the regression model reduced all VIFs to <3.1, with persistence of a positive association between methylation and BMI [CpG4 β = 0.004 logeBMI/%methylation (-0.0002, 0.0088; p = 0.06)]. Simulations supported major effects of multicollinearity on regression results. Conclusions: Where cell types are highly correlated with other covariates in regression models, the statistical assumption of no multicollinearity may be violated. This can result in reversal of direction of association, particularly when examining associations with phenotypes related to inflammation, as CpG methylation may associate with changes in cell-type proportions. Removing predictors with high correlations from regression models may remove the multicollinearity. However, this might hinder biological interpretability.
Collapse
Affiliation(s)
- Sheila J Barton
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Phillip E Melton
- Curtin/UWA Centre for Genetic Origins of Heath and Disease, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Murray
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Karen A Lillycrop
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Joanna D Holbrook
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
42
|
Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab 2019; 29:1028-1044. [PMID: 30982733 PMCID: PMC6509280 DOI: 10.1016/j.cmet.2019.03.009] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms control gene activity and the development of an organism. The epigenome includes DNA methylation, histone modifications, and RNA-mediated processes, and disruption of this balance may cause several pathologies and contribute to obesity and type 2 diabetes (T2D). This Review summarizes epigenetic signatures obtained from human tissues of relevance for metabolism-i.e., adipose tissue, skeletal muscle, pancreatic islets, liver, and blood-in relation to obesity and T2D. Although this research field is still young, these comprehensive data support not only a role for epigenetics in disease development, but also epigenetic alterations as a response to disease. Genetic predisposition, as well as aging, contribute to epigenetic variability, and several environmental factors, including exercise and diet, further interact with the human epigenome. The reversible nature of epigenetic modifications holds promise for future therapeutic strategies in obesity and T2D.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
43
|
FTO and IRX3 Genes are Not Promising Markers for Obesity in Labrador Retriever Dogs. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Obesity is a serious problem in numerous dog breeds, but knowledge of its hereditary background is scarce. On the contrary, numerous DNA polymorphisms associated with human obesity have been identified, with the strongest effect being demonstrated for FTO gene. We used targeted next-generation sequencing (tNGS) to search for polymorphisms in the region harboring FTO and IRX3 in 32 Labrador dogs. Moreover, we investigated the selected regions of FTO and IRX3, orthologous to the human regions associated with obesity, in 165 Labradors. For all dogs, the following information was available: age, sex, gonadal status, body weight, and body conformation score (BCS). The use of tNGS revealed 12,217 polymorphisms, but none of these obtained significance when lean and obese dogs were compared. Study of two SNPs in the 5’-flanking region of FTO in 165 dogs – creating two upstream reading frames (uORFs) – also showed no association with body weight and BCS but suggested the need for improvement in FTO annotation. No polymorphism was found in the 5’UTR of IRX3. Additionally, no differences of CpG islands methylation status between lean and obese dogs were found. Our study suggests that FTO and IRX3 are not useful markers of obesity in Labrador dogs.
Collapse
|
44
|
Iqbal MS, Rahman S, Haque MA, Bhuyan MJ, Faruque ASG, Ahmed T. Lower intakes of protein, carbohydrate, and energy are associated with increased global DNA methylation in 2- to 3-year-old urban slum children in Bangladesh. MATERNAL AND CHILD NUTRITION 2019; 15:e12815. [PMID: 30903804 DOI: 10.1111/mcn.12815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Stunting in children is a global public health concern. We investigated how global DNA methylation relates to food intakes, dietary diversity, and development of stunting among 324 children aged 24-36 months in a slum community in Dhaka, Bangladesh. Stunted children (height-for-age z score ˂-2; n = 162) and their age- and sex-matched nonstunted counterparts (height-for-age z score ˃-1; n = 162) were selected by active community surveillance. We studied global DNA methylation, measured as 5-mC% content in whole blood. Dietary intake, anthropometric measurement, and sociodemographic information were obtained. In the multiple linear regression model, increased global DNA methylation level in children was significantly associated with consumption of lower amount of energy, coef: .034 (95% CI [.014, .053]); P = .001, protein, coef: .038 (95% CI [.019, .057]); P = .000, carbohydrate, coef: .027 (95% CI [.008, .047]); P = .006, zinc, coef: .020 (95% CI [.001, .039]); P = .043, total dietary intakes, coef: .020 (95% CI [.001, .039]); P = .043, and intake from plant sources, coef: .028 (95% CI [.009, .047]); P = .005, after adjusting for other covariates. Moreover, higher fruits and vegetables consumption was significantly associated with lower 5-mC% level, coef: -.022 (95% CI [-.041, -.002]); P = .028. Our findings suggest a significant association between low dietary intakes and increased global DNA methylation. We also found increased global DNA methylation in stunted children. To establish the relationship among the macronutrient intakes, global DNA methylation, and stunting, future prospective studies are warranted in resource-poor settings.
Collapse
Affiliation(s)
- Mohd S Iqbal
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sabuktagin Rahman
- Department of Public Health, School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Md Ahshanul Haque
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Junayed Bhuyan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu Syed Golam Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
45
|
He F, Berg A, Imamura Kawasawa Y, Bixler EO, Fernandez-Mendoza J, Whitsel EA, Liao D. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep 2019; 9:2079. [PMID: 30765773 PMCID: PMC6375997 DOI: 10.1038/s41598-019-38587-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Childhood obesity remains an epidemic in the U.S. and worldwide. However, little is understood regarding the epigenetic basis of obesity in adolescents. To investigate the cross-sectional association between DNA methylation level in obesity-related genes and body mass index (BMI) percentile, data from 263 adolescents in the population-based Penn State Child Cohort follow-up exam was analysed. Using DNA extracted from peripheral leukocytes, epigenome-wide single nucleotide resolution of DNA methylation in cytosine-phosphate-guanine (CpG) sites and surrounding regions was obtained. We used multivariable-adjusted linear regression models to assess the association between site-specific methylation level and age- and sex-specific BMI percentile. Hypergeometric and permutation tests were used to determine if obesity-related genes were significantly enriched among all intragenic sites that achieved a p < 0.05 throughout the epigenome. Among the 5,669 sites related to BMI percentile with p < 0.05, 28 were identified within obesity-related genes. Obesity-related genes were significantly enriched among 103,466 intragenic sites (Phypergeometric = 0.006; Ppermutation = 0.006). Moreover, increased methylation on one site within SIM1 was significantly related to higher BMI percentile (P = 4.2E-05). If externally validated, our data would suggest that DNA methylation in obesity-related genes may relate to obesity risk in adolescents.
Collapse
Affiliation(s)
- Fan He
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Arthur Berg
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Yuka Imamura Kawasawa
- Institute for Personalized Medicine, Departments of Biochemistry and Molecular Biology and Pharmacology, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Duanping Liao
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA.
| |
Collapse
|
46
|
Kaufman J, Montalvo-Ortiz JL, Holbrook H, O’Loughlin K, Orr C, Kearney C, Yang BZ, Wang T, Zhao H, Althoff R, Garavan H, Gelernter J, Hudziak J. Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth. J Pediatr 2018; 202:150-156.e3. [PMID: 30177354 PMCID: PMC6513669 DOI: 10.1016/j.jpeds.2018.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. STUDY DESIGN Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investigation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort analyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). RESULTS After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional measures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10-7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the discovery data set replicated in the second cohort. CONCLUSIONS This study lays the groundwork for future longitudinal studies to elucidate these mechanisms further and identify novel interventions to alleviate the health burdens associated with early adversity.
Collapse
Affiliation(s)
- Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychiatry, Yale University, New Haven, CT.
| | | | - Hannah Holbrook
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Kerry O’Loughlin
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Catherine Orr
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Catherine Kearney
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT
| | - Tao Wang
- Department of Biostatistics, Yale University, New Haven, CT,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT
| | - Robert Althoff
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Hugh Garavan
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT,Veterans Administration, West Haven, CT
| | - James Hudziak
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| |
Collapse
|
47
|
Gao X, Zhang Y, Mons U, Brenner H. Leukocyte telomere length and epigenetic-based mortality risk score: associations with all-cause mortality among older adults. Epigenetics 2018; 13:846-857. [PMID: 30152726 DOI: 10.1080/15592294.2018.1514853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomere length (TL) has been established as a biomarker of aging and aging-related health outcomes, but showed only a weak or inconsistent association with all-cause mortality in previous epidemiological studies. Recently, an epigenetic 'mortality risk score' (MS) based on whole blood DNA methylation at 10 mortality-related CpG sites has been demonstrated to be strongly related to all-cause mortality at the population level. This study aimed to address the association between TL and this MS, and to assess and compare their associations with all-cause mortality. The MS was derived from the DNA methylation profiles measured by Illumina Human Methylation450K Beadchip and TL was measured by quantitative PCR at baseline among 1517 participants aged 50-75 of the German ESTHER cohort study. In cross-sectional bi- and multivariable analyses, the MS was strongly associated and showed monotonic dose-response relationships with TL (p-values <0.05). However, only the MS but not TL was associated with all-cause mortality during a median follow-up of 12.5 years. After controlling for potential covariates and TL, hazard ratios (95% CI) for all-cause mortality for low, moderate and high levels of the MS defined by 1, 2-5 and >5 CpG sites with aberrant methylation were 2.24 (1.13-4.41), 3.31 (1.76-6.22) and 6.33 (3.22-12.41) compared to a MS of 0, respectively. Our investigation shows that the epigenetic-based MS is strongly associated with TL, a broadly accepted aging biomarker, and at the same time shows much stronger associations with all-cause mortality than the latter.
Collapse
Affiliation(s)
- Xu Gao
- a Division of Clinical Epidemiology and Aging Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Yan Zhang
- a Division of Clinical Epidemiology and Aging Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ute Mons
- a Division of Clinical Epidemiology and Aging Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Hermann Brenner
- a Division of Clinical Epidemiology and Aging Research , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,b Network Aging Research , University of Heidelberg , Heidelberg , Germany.,c Division of Preventive Oncology , German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany.,d German Cancer Consortium (DKTK) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
48
|
Abstract
Obesity is a complex disease which has reached epidemic dimensions. Thus, prevention of excessive weight gain and associated metabolic and cardiovascular diseases has to start as early in life as possible. The impact of epigenetic mechanisms on the regulation of genes involved in obesity is increasingly recognized. On the other hand, it is well known that socioeconomic factors influence the risk for obesity. These factors can also have an impact on epigenetic gene regulation. There is increasing body of evidence that several factors and interventions addressing extragenetic causes of obesity may not only improve individual health, but also the health of future generations by epigenetic alterations. Our current understanding of epigenetic changes has shown that many of them are potentially reversible, i.e. by physical exercise, by pharmacological treatment, by environmental factors or nutrition, or even by influencing socioeconomic factors, which might have impact on improving health in future generations by avoiding epigenetic dysregulation. In this review we present the current state of the art with regard to the interplay between social determinants, weight status and epigenetic alterations.
Collapse
Affiliation(s)
- Susann Weihrauch-Blüher
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Germany.
| | - Matthias Richter
- Institute of Medical Sociology, Martin Luther University Halle-Wittenberg, Germany
| | - Martin S Staege
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
49
|
Ciuculete DM, Boström AE, Tuunainen AK, Sohrabi F, Kular L, Jagodic M, Voisin S, Mwinyi J, Schiöth HB. Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. J Psychiatr Res 2018; 102:44-51. [PMID: 29604450 DOI: 10.1016/j.jpsychires.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Generalized anxiety disorder (GAD) is highly prevalent among adolescents. An early detection of individuals at risk may prevent later psychiatric condition. Genome-wide studies investigating single nucleotide polymorphisms (SNPs) concluded that a focus on epigenetic mechanisms, which mediate the impact of environmental factors, could more efficiently help the understanding of GAD pathogenesis. We investigated the relationship between epigenetic shifts in blood and the risk to develop GAD, evaluated by the Development and Well-Being Assessment (DAWBA) score, in 221 otherwise healthy adolescents. Our analysis focused specifically on methylation sites showing high inter-individual variation but low tissue-specific variation, in order to infer a potential correlation between results obtained in blood and brain. Two statistical methods were applied, 1) a linear model with limma and 2) a likelihood test followed by Bonferroni correction. Methylation findings were validated in a cohort of 160 adults applying logistic models against the outcome variable "anxiety treatment obtained in the past" and studied in a third cohort with regards to associated expression changes measured in monocytes. One CpG site showed 1% increased methylation in adolescents at high risk of GAD (cg16333992, padj. = 0.028, estimate = 3.22), as confirmed in the second cohort (p = 0.031, estimate = 1.32). The identified and validated CpG site is located within the STK32B promoter region and its methylation level was positively associated with gene expression. Gene ontology analysis revealed that STK32B is involved in stress response and defense response. Our results provide evidence that shifts in DNA methylation are associated with a modulated risk profile for GAD in adolescence.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden.
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Anna-Kaisa Tuunainen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Farah Sohrabi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sarah Voisin
- Institute of Sport, Exercise and Active Living, Victoria University, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
50
|
Gonzalez-Nahm S, Mendez MA, Benjamin-Neelon SE, Murphy SK, Hogan VK, Rowley DL, Hoyo C. DNA methylation of imprinted genes at birth is associated with child weight status at birth, 1 year, and 3 years. Clin Epigenetics 2018; 10:90. [PMID: 29988473 PMCID: PMC6025828 DOI: 10.1186/s13148-018-0521-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background This study assessed the associations between nine differentially methylated regions (DMRs) of imprinted genes in DNA derived from umbilical cord blood leukocytes in males and females and (1) birth weight for gestational age z score, (2) weight-for-length (WFL) z score at 1 year, and (3) body mass index (BMI) z score at 3 years. Methods We conducted multiple linear regression in n = 567 infants at birth, n = 288 children at 1 year, and n = 294 children at 3 years from the Newborn Epigenetics Study (NEST). We stratified by sex and adjusted for race/ethnicity, maternal education, maternal pre-pregnancy BMI, prenatal smoking, maternal age, gestational age, and paternal race. We also conducted analysis restricting to infants not born small for gestational age. Results We found an association between higher methylation of the sequences regulating paternally expressed gene 10 (PEG10) and anthropometric z scores at 1 year (β = 0.84; 95% CI = 0.34, 1.33; p = 0.001) and 3 years (β = 1.03; 95% CI = 0.37, 1.69; p value = 0.003) in males only. Higher methylation of the DMR regulating mesoderm-specific transcript (MEST) was associated with lower anthropometric z scores in females at 1 year (β = - 1.03; 95% CI - 1.60, - 0.45; p value = 0.001) and 3 years (β = - 1.11; 95% CI - 1.98, - 0.24; p value = 0.01). These associations persisted when we restricted to infants not born small for gestational age. Conclusion Our data support a sex-specific association between altered methylation and weight status in early life. These methylation marks can contribute to the compendium of epigenetically regulated regions detectable at birth, influencing obesity in childhood. Larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Sarah Gonzalez-Nahm
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD 21205 USA
| | - Michelle A. Mendez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Sara E. Benjamin-Neelon
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD 21205 USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC USA
| | | | - Diane L. Rowley
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA
| |
Collapse
|