1
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. eLife 2025; 13:RP102166. [PMID: 40244653 PMCID: PMC12005720 DOI: 10.7554/elife.102166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting 'microbiome clock' predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's 'microbiome age' does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
- California Academy of SciencesSan FranciscoUnited States
| | - Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Canadian Institute for Advanced ResearchTorontoCanada
- Faculty of Life Sciences, Institute of Biology, Leipzig UniversityLeipzigGermany
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics and Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Planck Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
2
|
Kusters CDJ, Horvath S. Quantification of Epigenetic Aging in Public Health. Annu Rev Public Health 2025; 46:91-110. [PMID: 39681336 DOI: 10.1146/annurev-publhealth-060222-015657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Estimators of biological age hold promise for use in preventive medicine, for early detection of chronic conditions, and for monitoring the effectiveness of interventions aimed at improving population health. Among the promising biomarkers in this field are DNA methylation-based biomarkers, commonly referred to as epigenetic clocks. This review provides a survey of these clocks, with an emphasis on second-generation clocks that predict human morbidity and mortality. It explores the validity of epigenetic clocks when considering factors such as race, sex differences, lifestyle, and environmental influences. Furthermore, the review addresses the current challenges and limitations in this research area.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA;
| | - Steve Horvath
- Altos Labs, Cambridge, United Kingdom;
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Daredia S, Khodasevich D, Gladish N, Shen H, Nwanaji-Enwerem JC, Bozack AK, Needham BL, Rehkopf DH, Deardorff J, Cardenas A. Timing of menarche and menopause and epigenetic aging among U.S. adults: results from the National Health and Nutrition Examination Survey 1999-2002. Clin Epigenetics 2025; 17:31. [PMID: 39984995 PMCID: PMC11844159 DOI: 10.1186/s13148-025-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Reproductive aging, including timing of menarche and menopause, influences long-term morbidity and mortality in women, yet underlying biological mechanisms remain poorly understood. Using DNA methylation-based biomarkers, we assessed associations of age at menarche (N = 1,033) and menopause (N = 658) with epigenetic aging in a nationally representative sample of women ≥ 50 years. Later age at menopause was associated with lower GrimAge epigenetic age deviation ( B = - 0.10 years, 95% CI: - 0.19, - 0.02). No associations were observed for menarche timing. This suggests a connection between earlier menopause and biological aging, with potential clinical implications for identifying those at high risk for age-related disease.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology, School of Public Health, University of California, Berkeley, USA
| | - Dennis Khodasevich
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nicole Gladish
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hanyang Shen
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jamaji C Nwanaji-Enwerem
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Belinda L Needham
- Department of Epidemiology, Center for Social Epidemiology and Population Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - David H Rehkopf
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, USA
| | - Julianna Deardorff
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, USA.
| |
Collapse
|
4
|
Wu X, Lu C, Deng Z, Xiao W, Ni H, Zhao C. Glucocorticoid exposure-induced alterations in epigenetic age from human preterm infants and human lung fibroblasts and hippocampal neuronal cells. Clin Epigenetics 2025; 17:29. [PMID: 39980002 PMCID: PMC11841319 DOI: 10.1186/s13148-025-01837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Maternal antenatal corticosteroid treatment is standard care to accelerate fetal maturation. However, there are growing concerns that antenatal corticosteroid administration may harm fetal neurodevelopment. Quantitative assessments of the effects of antenatal corticosteroid on the neonates have not been performed and poorly understood about their complex biology. RESULTS We collected Methylation BeadChips-generated DNA methylation data from the Gene Expression Omnibus (GEO) database and then employed "multi-tissue predictor" to quantify the DNAm age of saliva from 36 preterm neonates, which were stratified by the absence (n = 12) or presence (n = 24) of antenatal corticosteroid exposure, as well as 36 full-term neonates. Next, the DNAm age of human lung fibroblast IMR90 cells and human fetal multipotent hippocampal progenitor HPC cells, with or without glucocorticoid treatment, was also determined. We observed that the DNAm age of full-term neonates was significantly higher than that of the preterm neonates, and antenatal corticosteroid exposure accelerated the DNAm age of preterm neonates, while glucocorticoid exposure accelerated the DNAm age of IMR90 cells. Conversely, dexamethasone exposure delayed the DNAm age of HPC cells during the proliferation phase. It is noteworthy that 65% of the differentially methylated probes (DMPs) linked to the multi-tissue predictor marked CpGs and corticosteroid exposure in IMR90 cells exhibited comparable methylation patterns with the DMPs associated with the antenatal corticosteroid exposure in preterm neonates. Conversely, the majority of these DMPs exhibited inverse methylation alterations in dexamethasone-induced HPC cells. Furthermore, the epigenome-wide association study (EWAS) trait enrichment analyses of the DMPs linked to the antenatal corticosteroid exposure in preterm neonates revealed significant associations with prenatal adverse environmental exposure, growth and development, and neuropsychiatric disorders. CONCLUSIONS Our results identified the cellular and molecular evidences of epigenetic clock changes in neonatal growth and developmental trajectories with the interference of antenatal corticosteroid treatment and provided potential clinical guidance for the future development of noninvasive fetal assessments to identify pregnant women who could benefit from antenatal corticosteroid in a wider gestational age.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Chenglin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiying Deng
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenbo Xiao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongyu Ni
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cunyou Zhao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Engineering and Technology Research Center for Genetic Testing, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Habtewold TD, Wijesiriwardhana P, Biedrzycki RJ, Zhang C, Grantz KL, Grewal J, Tekola-Ayele F. Longitudinal maternal glycemia during pregnancy and placental epigenetic age acceleration. Clin Epigenetics 2025; 17:19. [PMID: 39915864 PMCID: PMC11803985 DOI: 10.1186/s13148-025-01825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Dysregulation of maternal glucose homeostasis has been related to an increased risk of morbidity and mortality in mothers and fetuses, yet the mechanism remains unclear. This study investigated the association between maternal glycemic levels and placental epigenetic age acceleration (PAA) in a multiethnic cohort. METHODS In a sample of 301 pregnant women (102 Hispanic, 77 White, 72 Black, and 50 Asian/Pacific Islander), the association of glycemic markers cumulative exposure with PAA was tested using linear regression adjusting for fetal sex, maternal age, educational status, and health insurance status. Models were applied in the full cohort and stratified by race/ethnicity. Further, sensitivity analyses were performed after excluding women with GDM or preeclampsia. RESULTS Among Black women, high glucose, HbA1c, and insulin cumulative exposure levels were associated with lower PAA compared to low cumulative exposure levels (β = - 0.75 weeks, 95% CI = - 1.41 to - 0.08); β = - 0.86, 95% CI = - 1.51 to - 0.21; and β = - 0.76, 95% CI = - 1.49 to - 0.03, respectively). Among Asian/Pacific Islander women, medium insulin cumulative exposure level was associated with lower PAA (β = - 0.94 weeks, 95% CI = - 1.74 to - 0.14). No significant association was observed among White and Hispanic women as well as in the full cohort. CONCLUSIONS Elevated glucose, HbA1c, and insulin cumulative levels throughout pregnancy were associated with lower PAA in Black and Asian/Pacific Islander women. Placental epigenetic aging may be altered by maternal elevated glycemia and may in part underlie early programming of health outcomes in pregnancy and childhood health outcomes.
Collapse
Grants
- HHSN275200800013C NICHD NIH HHS
- HHSN275200800002I NICHD NIH HHS
- HHSN27500006 Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH); American Recovery and Reinvestment Act
- HHSN275200800003IC Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH); American Recovery and Reinvestment Act
- HHSN275200800014C NICHD NIH HHS
- HHSN275200800012C NICHD NIH HHS
- HHSN275200800028C NICHD NIH HHS
- HHSN275201000009C NICHD NIH HHS
- HHSN27500008 Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH); American Recovery and Reinvestment Act
- NIH Office of the Director, the National Institute on Minority Health and Health Disparities and the National Institute of Diabetes and Digestive and Kidney Diseases
- National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Tesfa Dejenie Habtewold
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20892-7004, USA
| | - Prabhavi Wijesiriwardhana
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20892-7004, USA
| | - Richard J Biedrzycki
- Glotech, Inc., Contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20892-7004, USA
| | - Jagteshwar Grewal
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD, 20892-7004, USA.
| |
Collapse
|
6
|
Howland MA, Reid BM, Donzella B, Gunnar MR. Earlier pubertal timing, not tempo, links time-limited early adversity with psychopathology. Neurotoxicol Teratol 2025; 107:107420. [PMID: 39672392 DOI: 10.1016/j.ntt.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Evolutionary-developmental theories propose that early adverse experiences adaptively shift the timing (i.e., onset) and tempo (i.e., rate) of pubertal maturation. Empirical evidence of links between early life adversity and pubertal maturation is mixed, potentially in part because isolating the unique impacts of early environments is challenging. The current accelerated longitudinal study used a quasi-experimental design to examine pubertal maturation among 132 previously-institutionalized (PI), internationally adopted children who experienced a time-limited form of severe early life adversity, compared to 169 non-adopted (NA) children. Based on prior literature, we also assessed whether pubertal timing and/or tempo are pathways by which early adversity relates to later symptoms of psychopathology. At each of three annual sessions, Tanner pubertal staging was determined by nurse exam, and symptoms of psychopathology were captured in a composite of child self-reported internalizing and parent-reported externalizing symptoms. Findings revealed that, only among children at Tanner pubertal stages 3 or below, PI children were more likely to have reached stage 3 compared to NA children, reflective of earlier pubertal timing. No group differences were found for pubertal tempo. In the subsample of children at Tanner stage 3 or lower, earlier pubertal timing was an indirect pathway by which early adversity related to both higher levels and greater longitudinal declines in internalizing and externalizing symptoms of psychopathology, accounting for a small proportion of the total effect of early adversity on psychopathology. Results from this quasi-experimental study add to existing research on associations between early adversity, early pubertal timing, and psychopathology, further suggesting that links may be specific to timing but not tempo. While findings broadly align with recent calls to consider early pubertal maturation as a transdiagnostic risk marker with utility for identifying children who could benefit from early mental health intervention, they also suggest that pubertal timing is unlikely to be a robust target for reducing psychopathology risk in these children.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota- Twin Cities, Minneapolis, MN, USA.
| | - Brie M Reid
- Department of Psychology and Department of Health Sciences, Northeastern University, Boston, MA, USA
| | - Bonny Donzella
- Institute of Child Development, University of Minnesota- Twin Cities, Minneapolis, MN, USA
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota- Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
7
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605707. [PMID: 39131274 PMCID: PMC11312535 DOI: 10.1101/2024.08.02.605707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting "microbiome clock" predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's "microbiome age" does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- California Academy of Sciences, San Francisco, CA, USA
| | - Kimberly E. Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Jack A. Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, USA
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig Germany
- Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
8
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith ADAC, Walton E, Dunn EC, Simpkin AJ. Maximizing insights from longitudinal epigenetic age data: simulations, applications, and practical guidance. Clin Epigenetics 2024; 16:187. [PMID: 39707425 DOI: 10.1186/s13148-024-01784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional, using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (1) their choice of model; (2) the primary outcome (EA vs. EAA); and (3) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. RESULTS Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered advanced GrimAge in individuals assigned male at birth that decelerates over time. CONCLUSION Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, IN, USA
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| |
Collapse
|
9
|
Daredia S, Khodasevich D, Gladish N, Shen H, Nwanaji-Enwerem JC, Bozack AK, Needham BL, Rehkopf DH, Deardorff J, Cardenas A. Timing of Menarche and Menopause and Epigenetic Aging among U.S. Adults: Results from the National Health and Nutrition Examination Survey 1999-2002. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.19.24319271. [PMID: 39763532 PMCID: PMC11702739 DOI: 10.1101/2024.12.19.24319271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Reproductive aging, including timing of menarche and menopause, influences long-term morbidity and mortality in women, yet underlying biological mechanisms remain poorly understood. Using DNA methylation-based biomarkers, we assessed associations of age at menarche (N=1,033) and menopause (N=658) with epigenetic aging in a nationally representative sample of women ≥50 years. Later age at menopause was associated with lower GrimAge epigenetic age deviation (B = -0.10 years, 95% CI: -0.19, -0.02). No associations were observed for menarche timing. This suggests a connection between earlier menopause and biological aging, with potential clinical implications for identifying those at high risk for age-related disease.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology, School of Public Health, University of California, Berkeley
| | - Dennis Khodasevich
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Nicole Gladish
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Hanyang Shen
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Jamaji C. Nwanaji-Enwerem
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Belinda L. Needham
- Department of Epidemiology, Center for Social Epidemiology and Population Health, School of Public Health, University of Michigan
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
- Department of Pediatrics, School of Medicine, Stanford University
| | - Julianna Deardorff
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
- Department of Pediatrics, School of Medicine, Stanford University
| |
Collapse
|
10
|
Jung SY, Yu H, Deng Y, Pellegrini M. DNA-methylation age and accelerated epigenetic aging in blood as a tumor marker for predicting breast cancer susceptibility. Aging (Albany NY) 2024; 16:13534-13562. [PMID: 39642870 PMCID: PMC11723651 DOI: 10.18632/aging.206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND DNA methylation (DNAm)-based marker of aging, referred to as 'epigenetic age' or 'DNAm age' is a highly accurate multi-tissue biomarker for aging, associated with age-related disease risk, including cancer. Breast cancer (BC), an age-associated disease, is associated with older DNAm age and epigenetic age acceleration (age accel) at tissue levels. But this raises a question on the predictability of DNAm age/age accel in BC development, emphasizing the importance of studying DNAm age in pre-diagnostic peripheral blood (PB) in BC etiology and prevention. METHODS We included postmenopausal women from the largest study cohort and prospectively investigated BC development with their pre-diagnostic DNAm in PB leukocytes (PBLs). We estimated Horvath's pan-tissue DNAm age and investigated whether DNAm age/age accel highly correlates with risk for developing subtype-specific BC and to what degree the risk is modified by hormones and lifestyle factors. RESULTS DNAm age in PBLs was tightly correlated with age in this age range, and older DNAm age and epigenetic age accel were significantly associated with risk for developing overall BC and luminal subtypes. Of note, in women with bilateral oophorectomy before natural menopause experiencing shorter lifetime estrogen exposure than those with natural menopause, epigenetic age accel substantially influenced BC development, independent of obesity status and exogeneous estrogen use. CONCLUSIONS Our findings contribute to better understanding of biologic aging processes that mediate BC carcinogenesis, detecting a non-invasive epigenetic aging marker that better reflects BC development, and ultimately identifying the elderly with high risk who can benefit from epigenetically targeted preventive interventions.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California, Los Angeles, CA 90095, USA
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, Bioinformatics Core, John A. Burns School of Medicine, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Arzu JL, Kelsey KT, Papandonatos GD, Cecil KM, Chen A, Langevin SM, Lanphear BP, Yolton K, Buckley JP, Braun JM. Associations of epigenetic age acceleration at birth and age 12 years with adolescent cardiometabolic risk: the HOME study. Clin Epigenetics 2024; 16:163. [PMID: 39563442 DOI: 10.1186/s13148-024-01779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Cardiometabolic risk factors among youth are rising. Epigenetic age acceleration, a biomarker for aging and disease-risk, has been associated with adiposity in children, but its association with other cardiometabolic risk markers remains understudied. We employed data from the Health Outcomes and Measures of the Environment (HOME) study, a prospective pregnancy and birth cohort in the greater Cincinnati metropolitan area, to examine whether accelerated epigenetic age at birth as well as accelerated epigenetic age and faster pace of biological aging at age 12 years were associated with higher cardiometabolic risk in adolescents. RESULTS After adjusting for potential confounders, including estimated cell type proportions, epigenetic gestational age acceleration at birth, derived from the Bohlin, Knight, and Haftorn clocks using cord blood DNA methylation data, was not associated with cardiometabolic risk z-scores or individual cardiometabolic risk score components (visceral fat, leptin to adiponectin ratio, HOMA-IR, triglycerides to HDL-C ratio, HbA1c, or systolic blood pressure) at age 12 years. We also did not observe any associations of epigenetic age acceleration, calculated with Horvath's skin and blood, Hannum's, and Wu's epigenetic clocks using peripheral blood at age 12 years, with these same cardiometabolic risk markers. In contrast, faster pace of biological aging was associated with higher cardiometabolic risk [βs (95% CIs)] cardiometabolic risk score 0.25 (0.07, 0.42); visceral fat 0.21 (0.05, 0.38); and hemoglobin A1c 0.23 (0.05, 0.41) per standard deviation increase in pace of biological aging. Faster pace of biological aging was also positively associated with systolic blood pressure, triglycerides to HDL-C ratio, HOMA-IR, and leptin to adiponectin ratio, although these associations were not statistically significant. CONCLUSIONS Our findings provide evidence that faster pace of biological aging was associated with higher cardiometabolic risk score, visceral fat, and HbA1c at age 12 years. Further research is needed to determine whether these associations persist from adolescence through adulthood.
Collapse
Affiliation(s)
- Jennifer L Arzu
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA.
| | - Karl T Kelsey
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - George D Papandonatos
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA
| |
Collapse
|
12
|
Bronk G, Lardenoije R, Koolman L, Klengel C, Dan S, Howell BR, Morin EL, Meyer JS, Wilson ME, Ethun KF, Alvarado MC, Raper J, Bravo-Rivera H, Kenwood MM, Roseboom PH, Quirk GJ, Kalin NH, Binder EB, Sanchez MM, Klengel T. A novel epigenetic clock for rhesus macaques unveils an association between early life adversity and epigenetic age acceleration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617208. [PMID: 39416061 PMCID: PMC11482811 DOI: 10.1101/2024.10.08.617208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Because DNA methylation changes reliably with age, machine learning models called epigenetic clocks can estimate an individual's age based on their DNA methylation profile. This epigenetic measure of age can deviate from one's true age, and the difference between the epigenetic age and true age, known as epigenetic age acceleration (EAA), has been found to directly correlate with morbidity and mortality in adults. Emerging evidence suggests that EAA is also associated with aberrant health outcomes in children, making epigenetic clocks useful tools for studying aging and development. We developed two highly accurate epigenetic clocks for the rhesus macaque, utilizing 1,008 blood samples from 690 macaques between 2 days and 23.4 years of age with diverse genetic backgrounds and exposure to environmental conditions. The first clock, which is trained on all samples, achieves a Pearson correlation between true age and predicted age of 0.983 and median absolute error of 0.210 years. To study phenotypes during development, the second clock is optimized for macaques younger than 6 years and achieves a Pearson correlation of 0.974 and a median absolute error of 0.148 years. Using the latter clock, we investigated whether epigenetic aging is affected by early life adversity in the form of infant maltreatment. Our data suggests that maltreatment and increased hair cortisol levels are associated with epigenetic age acceleration right after the period of maltreatment.
Collapse
|
13
|
Meier M, Kantelhardt S, Gurri L, Stadler C, Schmid M, Clemens V, O’Donovan A, Boonmann C, Bürgin D, Unternaehrer E. Childhood trauma is linked to epigenetic age deceleration in young adults with previous youth residential care placements. Eur J Psychotraumatol 2024; 15:2379144. [PMID: 39051592 PMCID: PMC11275517 DOI: 10.1080/20008066.2024.2379144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Early adversity increases the risk for mental and physical disorders as well as premature death. Epigenetic processes, and altered epigenetic aging in particular, might mediate these effects. While the literature that examined links between early adversity and epigenetic aging is growing, results have been heterogeneous.Objective: In the current work, we explored the link between early adversity and epigenetic aging in a sample of formerly out-of-home placed young adults.Method: A total of N = 117 young adults (32% women, age mean = 26.3 years, SD = 3.6 years) with previous youth residential care placements completed the Childhood Trauma Questionnaire (CTQ) and the Life Events Checklist (LEC-R) and provided blood samples for the analysis of DNA methylation using the Illumina Infinium MethylationEPIC BeadChip Microarray. Epigenetic age was estimated using Hovarth's and Hannum's epigenetic clocks. Furthermore, Hovarth's and Hannum's epigenetic age residuals were calculated as a proxy of epigenetic aging by regressing epigenetic age on chronological age. The statistical analysis plan was preregistered (https://osf.io/b9ev8).Results: Childhood trauma (CTQ) was negatively associated with Hannum's epigenetic age residuals, β = -.23, p = .004 when controlling for sex, BMI, smoking status and proportional white blood cell type estimates. This association was driven by experiences of physical neglect, β = -.25, p = .001. Lifetime trauma exposure (LEC-R) was not a significant predictor of epigenetic age residuals.Conclusion: Childhood trauma, and physical neglect in particular, was associated with decelerated epigenetic aging in our sample. More studies focusing on formerly institutionalized at-risk populations are needed to better understand which factors affect stress-related adaptations following traumatic experiences.
Collapse
Affiliation(s)
- Maria Meier
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Sina Kantelhardt
- Department of Psychology, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Laura Gurri
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Christina Stadler
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Marc Schmid
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Vera Clemens
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
| | - Aoife O’Donovan
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Cyril Boonmann
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Department of Child and Adolescent Psychiatry (LUMC Curium), Leiden University Medical Center, Leiden, The Netherlands
| | - David Bürgin
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Eva Unternaehrer
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Yang L, Sun P, Tao L, Zhao X. An in silico study on human carcinogenicity mechanism of polybrominated biphenyls exposure. Chem Biol Interact 2024; 397:111075. [PMID: 38815667 DOI: 10.1016/j.cbi.2024.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Polybrominated biphenyls (PBBs) are associated with an increased risk of thyroid cancer; however, relevant mechanistic studies are lacking. In this study, we investigated the mechanisms underlying PBB-induced human thyroid cancer. Molecular docking and molecular dynamics methods were employed to investigate the metabolism of PBBs by the cytochrome P450 enzyme under aryl hydrocarbon receptor mediation into mono- and di-hydroxylated metabolites. This was taken as the molecular initiation event. Subsequently, considering the interactions of PBBs and their metabolites with the thyroxine-binding globulin protein as key events, an adverse outcome pathway for thyroid cancer caused by PBBs exposure was constructed. Based on 2D quantitative structure activity relationship (2D-QSAR) models, the contribution of amino acid residues and binding energy were analyzed to understand the mechanism underlying human carcinogenicity (adverse effect) of PBBs. Hydrogen bond and van der Waals interactions were identified as key factors influencing the carcinogenic adverse outcome pathway of PBBs. Analysis of non-bonding forces revealed that PBBs and their hydroxylation products were predominantly bound to the thyroxine-binding globulin protein through hydrophobic and hydrogen bond interactions. The key amino acids involved in hydrophobic interactions were alanine 330, arginine 381 and lysine 270, and the key amino acids involved in hydrogen bond interactions were arginine 381 and lysine 270. This study provides valuable insights into the mechanisms underlying human health risk associated with PBBs exposure.
Collapse
Affiliation(s)
- Luze Yang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Li Tao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Xingmin Zhao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
Daredia S, Bozack AK, Riddell CA, Gunier R, Harley KG, Bradman A, Eskenazi B, Holland N, Deardorff J, Cardenas A. Prenatal Maternal Occupation and Child Epigenetic Age Acceleration in an Agricultural Region: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421824. [PMID: 39073821 PMCID: PMC11287394 DOI: 10.1001/jamanetworkopen.2024.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Research on fetal epigenetic programming suggests that the intrauterine environment can have long-term effects on offspring disease susceptibility. Objective To examine the association between prenatal maternal occupation and child epigenetic age acceleration (EAA) among a farmworker community. Design, Setting, and Participants This cohort study included participants in the Center for the Health Assessment of Mothers and Children of Salinas, a prospective, Latino, prebirth cohort. Pregnant women were recruited from October 1, 1999, to October 1, 2000, from 6 community clinics in California's Salinas Valley agricultural region. Participants were 18 years or older, English or Spanish speaking, Medicaid eligible, and at 20 weeks' gestation or earlier at enrollment. Mother-child pairs who had blood DNA methylation measured at the ages of 7, 9, and 14 years were included. Data were analyzed from July 2021 to November 2023. Exposures Prenatal maternal occupation was ascertained through study interviews conducted during prenatal visits and shortly after delivery. Main Outcomes and Measures Child EAA at 7, 9, and 14 years of age was estimated using DNA methylation-based epigenetic age biomarkers. Three EAA measures were calculated: the Horvath EAA, skin and blood EAA, and intrinsic EAA. Linear mixed-effects models were used to estimate longitudinal associations of prenatal maternal occupation and child EAA, adjusting for confounders and prenatal organophosphate pesticide exposure. Results Analyses included 290 mother-child pairs (mean [SD] maternal age at delivery, 26.5 [5.2] years; 152 [52.4%] female infants); 254 mothers (87.6%) were born in Mexico, 33 (11.4%) in the US, and 3 (1.0%) in other countries; and 179 families (61.7%) were below the federal poverty line during pregnancy. Mothers reported engaging in several types of work during pregnancy, including agricultural fieldwork (90 [31.0%]), other agricultural work (40 [13.8%]), nonagricultural work (53 [18.3%]), or no work (107 [36.9%]). Children whose mothers worked in agricultural fields during pregnancy had a mean of 0.66 (95% CI, 0.17-1.15) years of greater Horvath EAA, 0.62 (95% CI, 0.31-0.94) years of greater skin and blood EAA, and 0.45 (95% CI, 0.07-0.83) years of greater intrinsic EAA compared with children whose mothers did not work during pregnancy. Conclusions and Relevance In this cohort study, prenatal maternal agricultural fieldwork was associated with accelerated childhood epigenetic aging independent of organophosphate pesticide exposure. Future research on which factors related to agricultural fieldwork accelerate aging in the next generation can inform targeted prevention programs and policies that protect children's health.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology, School of Public Health, University of California, Berkeley
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Corinne A. Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Division of Biostatistics, School of Public Health, University of California, Berkeley
| | - Robert Gunier
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
| | - Kim G. Harley
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley
| | - Asa Bradman
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Department of Public Health, University of California, Merced
| | - Brenda Eskenazi
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Nina Holland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Julianna Deardorff
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
16
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith AD, Walton E, Dunn EC, Simpkin AJ. Maximizing Insights from Longitudinal Epigenetic Age Data: Simulations, Applications, and Practical Guidance. RESEARCH SQUARE 2024:rs.3.rs-4482915. [PMID: 38947070 PMCID: PMC11213208 DOI: 10.21203/rs.3.rs-4482915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Epigenetic Age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional - using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (i) their choice of model; (ii) the primary outcome (EA vs. EAA); and (iii) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. Results Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered an accelerated EA rate in males and an advanced EA that decelerates over time in children with higher birthweight. Conclusion Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| |
Collapse
|
17
|
Qiao X, Straight B, Ngo D, Hilton CE, Owuor Olungah C, Naugle A, Lalancette C, Needham BL. Severe drought exposure in utero associates to children's epigenetic age acceleration in a global climate change hot spot. Nat Commun 2024; 15:4140. [PMID: 38755138 PMCID: PMC11099019 DOI: 10.1038/s41467-024-48426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The goal of this study is to examine the association between in utero drought exposure and epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA in adults using DNA methylation have been found to accurately predict chronic disease and longevity. However, fewer studies have examined EAA in children, and drought exposure in utero has not been investigated. Additionally, studies of EAA in low-income countries with diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 109 same-sex sibling controls in northern Kenya. We find a positive association between in utero drought exposure and EAA in two epigenetic clocks (Hannum's and GrimAge) and a negative association in the DNAm based telomere length (DNAmTL) clock. The combined impact of drought's multiple deleterious stressors may reduce overall life expectancy through accelerated epigenetic aging.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Bilinda Straight
- School of Environment, Geography, & Sustainability, Western Michigan University, Kalamazoo, MI, USA.
| | - Duy Ngo
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Charles E Hilton
- Department of Anthropology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Charles Owuor Olungah
- Department of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, MI, USA
| | | | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Ramsteijn AS, Ndiaye M, Kalashikam RR, Htet MK, Yadav Dm D, Augustine LF, Zahra NL, Djigal A, Yanti D, Angelin TC, Nurfadilah M, Gorre M, Subrahamanyam D, Vadakattu SS, Munikumar M, Horgan GW, Fahmida U, Faye B, Kulkarni B, Haggarty P. Epigenetic studies in children at risk of stunting and their parents in India, Indonesia and Senegal: a UKRI GCRF Action Against Stunting Hub protocol paper. BMJ Paediatr Open 2024; 8:e001770. [PMID: 38417921 PMCID: PMC10900567 DOI: 10.1136/bmjpo-2022-001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION In 2020, an estimated 150 million children under the age of 5 years were stunted. Stunting results from early-life adversity and it is associated with significant physical and cognitive deficit, lifelong socioeconomic disadvantage and reduced life expectancy. There is a need to understand the causes of stunting and its effects in order to develop strategies to avoid it and to mitigate the consequences once stunting has occurred. Epigenetics is an important mechanism through which early-life factors are thought to influence biological function, with long-term consequences. We describe a series of epigenetic studies designed to understand how early-life adversity results in stunting and to inform the development of practical tools such as predictive markers and therapeutic targets. This work is part of the UKRI GCRF Action Against Stunting Hub. METHODS AND ANALYSIS The project-in India, Indonesia and Senegal-comprises an observational study of mothers, fathers, and offspring (n=500) spanning the first 1000 days of life, and an intervention study in each country. Epigenetic status (DNA methylation) is determined in saliva from babies collected within 1 month of birth and again at 18 months of age, and from mothers and fathers around the time of birth. Epigenome-wide analysis is carried out using the Illumina EPIC array, augmented by high-definition sequencing approaches. Statistical analysis is carried out at the level of candidate genes/regions, higher dimensional epigenetic states and epigenome-wide association. Data analysis focuses on the determinants of stunting, the effectiveness of interventions, population comparisons and the link between epigenetics and other thematic areas, which include anthropometry, microbiome, gut health, parasitology, cognition, nutrition, food hygiene and water sanitation, food systems and the home environment. ETHICS AND DISSEMINATION This study has been approved by the relevant Ethics Committees in Indonesia, India and Senegal, and the UK. Research data will be published and posted in public repositories.
Collapse
Affiliation(s)
| | - Magatte Ndiaye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | | | - Min Kyaw Htet
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | | | | | - Nur L Zahra
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | - Aicha Djigal
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Dwi Yanti
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | - Tiffany C Angelin
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | - Mifa Nurfadilah
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | - Manjula Gorre
- ICMR-National Institute of Nutrition, Hyderabad, India
| | | | | | | | | | - Umi Fahmida
- South East Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), East Jakarta, Indonesia
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | | | - Paul Haggarty
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
19
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Halabicky OM, Téllez-Rojo MM, Goodrich JM, Dolinoy DC, Mercado-García A, Hu H, Peterson KE. Prenatal and childhood lead exposure is prospectively associated with biological markers of aging in adolescence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169757. [PMID: 38176546 PMCID: PMC10823594 DOI: 10.1016/j.scitotenv.2023.169757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Few studies have related early life lead exposure to adolescent biological aging, a period characterized by marked increases in maturational tempo. We examined associations between prenatal and childhood lead exposure and adolescent biological age (mean 14.5 years) utilizing multiple epigenetic clocks including: intrinsic (IEAA), extrinsic (EEAA), Horvath, Hannum, PhenoAge, GrimAge, Skin-Blood, Wu, PedBE, as well as DNA methylation derived telomere length (DNAmTL). Epigenetic clocks and DNAmTL were calculated via adolescent blood DNA methylation measured by Infinium MethylationEPIC BeadChips. We constructed general linear models (GLMs) with individual lead measures predicting biological age. We additionally examined sex-stratified models and lead by sex interactions, adjusting for adolescent age and lead levels, maternal smoking and education, and proportion of cell types. We also estimated effects of lead exposure on biological age using generalized estimating equations (GEE). First trimester blood lead was positively associated with a 0.14 increase in EEAA age in the GLMs though not the GEE models (95%CI 0.03, 0.25). First and 2nd trimester blood lead levels were associated with a 0.02 year increase in PedBE age in GLM and GEE models (1st trimester, 95%CI 0.004, 0.03; 2nd trimester, 95%CI 0.01, 0.03). Third trimester and 24 month blood lead levels were associated with a -0.06 and -0.05 decrease in Skin-Blood age, respectively, in GLM models. Additionally, 3rd trimester blood lead levels were associated with a 0.08 year decrease in Hannum age in GLM and GEE models (95%CI -0.15, -0.01). There were multiple significant results in sex-stratified models and significant lead by sex interactions, where males experienced accelerated biological age, compared to females who saw a decelerated biological age, with respect to IEAA, EEAA, Horvath, Hannum, and PedBE clocks. Further research is needed to understand sex-specific relationships between lead exposure and measures of biological aging in adolescence and the trajectory of biological aging into young adulthood.
Collapse
Affiliation(s)
- O M Halabicky
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - M M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - J M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - D C Dolinoy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - A Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - H Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Bertucci-Richter EM, Shealy EP, Parrott BB. Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation. Aging (Albany NY) 2024; 16:1002-1020. [PMID: 38285616 PMCID: PMC10866415 DOI: 10.18632/aging.205503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or "disorder" in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.
Collapse
Affiliation(s)
- Emily M. Bertucci-Richter
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Ethan P. Shealy
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Hamlat EJ, Neilands TB, Laraia B, Zhang J, Lu AT, Lin J, Horvath S, Epel ES. Early life adversity predicts an accelerated cellular aging phenotype through early timing of puberty. Psychol Med 2023; 53:7720-7728. [PMID: 37325994 PMCID: PMC11131158 DOI: 10.1017/s0033291723001629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current study examined if early adversity was associated with accelerated biological aging, and if effects were mediated by the timing of puberty. METHODS In early mid-life, 187 Black and 198 White (Mage = 39.4, s.d.age = 1.2) women reported on early abuse and age at first menstruation (menarche). Women provided saliva and blood to assess epigenetic aging, telomere length, and C-reactive protein. Using structural equation modeling, we created a latent variable of biological aging using epigenetic aging, telomere length, and C-reactive protein as indicators, and a latent variable of early abuse using indicators of abuse/threat events before age 13, physical abuse, and sexual abuse. We estimated the indirect effects of early abuse and of race on accelerated aging through age at menarche. Race was used as a proxy for adversity in the form of systemic racism. RESULTS There was an indirect effect of early adversity on accelerated aging through age at menarche (b = 0.19, 95% CI 0.03-0.44), in that women who experienced more adversity were younger at menarche, which was associated with greater accelerated aging. There was also an indirect effect of race on accelerated aging through age at menarche (b = 0.25, 95% CI 0.04-0.52), in that Black women were younger at menarche, which led to greater accelerated aging. CONCLUSIONS Early abuse and being Black in the USA may both induce a phenotype of accelerated aging. Early adversity may begin to accelerate aging during childhood, in the form of early pubertal timing.
Collapse
Affiliation(s)
- Elissa J. Hamlat
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Torsten B. Neilands
- Division of Prevention Science | Department of Medicine, University of California, San Francisco, CA, USA
| | - Barbara Laraia
- School of Public Health, University of California, Berkeley, CA, USA
| | - Joshua Zhang
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Ake T. Lu
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Elissa S. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Foster C, Mamaeva O, Shrestha S, Hidalgo B. Epigenetic age in African American adolescents with type 2 diabetes: A cross-sectional case-control study protocol. Health Sci Rep 2023; 6:e1747. [PMID: 38078300 PMCID: PMC10702396 DOI: 10.1002/hsr2.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Background and Aims Type 2 diabetes (T2D) is a disease caused by a relative insulin deficiency compared to the significant insulin requirement needed by the body to achieve glycemic control. T2D in adolescence appears to be increasing in prevalence over the past several decades, necessitating studies to understand for the onset of the disease to occur early in the lifespan. Given the high burden of disease, specifically in young African American adolescents, our study chose to focus initially on feasibility of recruitment of this population. Methods Data was collected at a single study center at Children's of Alabama. The protocol was completed as part of routine care or at a study visit. The study team was able to leverage the Electronic Medical Record to prescreen eligible patients to discuss the study. A variety of times of day were utilized to improve likely of success with reaching potential participants. Inclusion criteria for patients with T2D was focused on the adolescent population (ages 12-18 years), with no history of an obesity syndrome. DNA methylation age will be calculated using the EPIC 850K array. Statistical analysis will be done using linear regression analysis, adjusting for covariates. Conclusions This study's aim was to screen and enroll young African American adolescents for a study investigating epigenetic aging and T2D. Our study found that more direct contact (face-to-face- or phone call) improve success of recruitment. Leveraging the electronic medical record also helped improve success with pre-screening participants. Challenges included recruiting participants who might come from long distances to a tertiary care center. Consolidating appointments helped improve the success of reaching these participants. Other challenges included frequent address changes and changed phone numbers. Close attention to the barriers as well as the successes will aid in understanding effective strategies for this important population.
Collapse
Affiliation(s)
- Christy Foster
- Division of Pediatric EndocrinologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Olga Mamaeva
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sadeep Shrestha
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bertha Hidalgo
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
25
|
Musci RJ, Raghunathan RS, Johnson SB, Klein L, Ladd-Acosta C, Ansah R, Hassoun R, Voegtline KM. Using Epigenetic Clocks to Characterize Biological Aging in Studies of Children and Childhood Exposures: a Systematic Review. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:1398-1423. [PMID: 37477807 PMCID: PMC10964791 DOI: 10.1007/s11121-023-01576-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Biological age, measured via epigenetic clocks, offers a unique and useful tool for prevention scientists to explore the short- and long-term implications of age deviations for health, development, and behavior. The use of epigenetic clocks in pediatric research is rapidly increasing, and there is a need to review the landscape of this work to understand the utility of these clocks for prevention scientists. We summarize the current state of the literature on the use of specific epigenetic clocks in childhood. Using systematic review methods, we identified studies published through February 2023 that used one of three epigenetic clocks as a measure of biological aging. These epigenetic clocks could either be used as a predictor of health outcomes or as a health outcome of interest. The database search identified 982 records, 908 of which were included in a title and abstract review. After full-text screening, 68 studies were eligible for inclusion. While findings were somewhat mixed, a majority of included studies found significant associations between the epigenetic clock used and the health outcome of interest or between an exposure and the epigenetic clock used. From these results, we propose the use of epigenetic clocks as a tool to understand how exposures impact biologic aging pathways and development in early life, as well as to monitor the effectiveness of preventive interventions that aim to reduce exposure and associated adverse health outcomes.
Collapse
Affiliation(s)
- Rashelle J Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.
| | | | - Sara B Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Lauren Klein
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Rosemary Ansah
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ronda Hassoun
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Kristin M Voegtline
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
26
|
Black CJ, McEwen FS, Smeeth D, Popham CM, Karam E, Pluess M. Effects of war exposure on pubertal development in refugee children. Dev Psychol 2023; 59:1559-1572. [PMID: 37410441 PMCID: PMC10527927 DOI: 10.1037/dev0001569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Increasing research shows pubertal development accelerates following threats while it decelerates following deprivation. Yet, these environmental stressors are unlikely to occur in isolation. We investigated how war exposure and energetic stress impact pubertal development using data from the longitudinal Biological Pathways of Risk and Resilience in Syrian Refugee Children study. Our sample included 1,600 male and female Syrian refugee children and their caregivers who lived in temporary settlements in Lebanon. We hypothesized that (a) energetic stress suppresses pubertal development; (b) war exposure accelerates pubertal timing in boys and increases risk of menarche in girls, but only when energetic stress is low; and (c) when energetic stress is elevated, effects of war exposure on pubertal development will be attenuated. Among boys, we did not find support for Hypothesis 1, but Hypotheses 2 and 3 were supported. Exposure to morbidity/mortality threats accelerated pubertal timing; this effect was attenuated under conditions of elevated energetic stress. Among girls, we found support for Hypothesis 1, but not for Hypotheses 2 and 3. Elevated energetic stress decreased the risk of menarche in girls. Neither war exposure, nor any interactions with energetic stress, predicted risk of menarche. Sensitivity analyses revealed a significant interaction between bombing exposure and the amount of time since leaving Syria. Bombing decreased the risk of menarche, but only for girls who had left Syria four or more years prior to data collection. We discuss implications for translational efforts advocating for puberty screening in medical and mental health settings to identify trauma-exposed youth. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Candace J. Black
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Fiona S. McEwen
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Demelza Smeeth
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Cassandra M. Popham
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Elie Karam
- Department of Psychiatry and Clinical Psychology, Balamand University, St Georges Hospital University Medical Center, Institute for Development, Research, Advocacy and Applied Care (IDRAAC), Lebanon
| | - Michael Pluess
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Vasileva D, Greenwood CMT, Daley D. A Review of the Epigenetic Clock: Emerging Biomarkers for Asthma and Allergic Disease. Genes (Basel) 2023; 14:1724. [PMID: 37761864 PMCID: PMC10531327 DOI: 10.3390/genes14091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can be used to study interactions between genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm is the epigenetic clock-an algorithm that uses DNAm levels at select age-informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly as related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.
Collapse
Affiliation(s)
- Denitsa Vasileva
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Celia M. T. Greenwood
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Denise Daley
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
28
|
Khodasevich D, Holland N, Hubbard A, Harley K, Deardorff J, Eskenazi B, Cardenas A. Associations between prenatal phthalate exposure and childhood epigenetic age acceleration. ENVIRONMENTAL RESEARCH 2023; 231:116067. [PMID: 37149020 PMCID: PMC10330458 DOI: 10.1016/j.envres.2023.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Quinn EB, Hsiao CJ, Maisha FM, Mulligan CJ. Low birthweight is associated with epigenetic age acceleration in the first 3 years of life. Evol Med Public Health 2023; 11:251-261. [PMID: 37485054 PMCID: PMC10360162 DOI: 10.1093/emph/eoad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background and objectives The Developmental Origins of Health and Disease hypothesis posits that early life adversity is associated with poor adult health outcomes. Epidemiological evidence has supported this framework by linking low birthweight with adult health and mortality, but the mechanisms remain unclear. Accelerated epigenetic aging may be a pathway to connect early life experiences with adult health outcomes, based on associations of accelerated epigenetic aging with increased morbidity and mortality. Methodology Sixty-seven mother-infant dyads were recruited in the eastern Democratic Republic of Congo. Birthweight data were collected at birth, and blood samples were collected at birth and follow-up visits up to age 3. DNA methylation data were generated with the Illumina MethylationEPIC array and used to estimate epigenetic age. A multilevel model was used to test for associations between birthweight and epigenetic age acceleration. Results Chronological age was highly correlated with epigenetic age from birth to age 3 (r = 0.95, p < 2.2 × 10-16). Variation in epigenetic age acceleration increased over time. Birthweight, dichotomized around 2500 g, predicted epigenetic age acceleration over the first 3 years of life (b = -0.39, p = 0.005). Conclusions and implications Our longitudinal analysis provides the first evidence for accelerated epigenetic aging that emerges between birth and age 3 and associates with low birthweight. These results suggest that early life experiences, such as low birthweight, may shape the trajectory of epigenetic aging in early childhood. Furthermore, accelerated epigenetic aging may be a pathway that links low birthweight and poor adult health outcomes.
Collapse
Affiliation(s)
- Edward B Quinn
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| | - Chu J Hsiao
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Felicien M Maisha
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- HEAL Africa Hospital, Goma, Democratic Republic of Congo
- Maisha Institute, Goma, Democratic Republic of Congo
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
30
|
Diaz-Thomas AM, Golden SH, Dabelea DM, Grimberg A, Magge SN, Safer JD, Shumer DE, Stanford FC. Endocrine Health and Health Care Disparities in the Pediatric and Sexual and Gender Minority Populations: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1533-1584. [PMID: 37191578 PMCID: PMC10653187 DOI: 10.1210/clinem/dgad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Endocrine care of pediatric and adult patients continues to be plagued by health and health care disparities that are perpetuated by the basic structures of our health systems and research modalities, as well as policies that impact access to care and social determinants of health. This scientific statement expands the Society's 2012 statement by focusing on endocrine disease disparities in the pediatric population and sexual and gender minority populations. These include pediatric and adult lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) persons. The writing group focused on highly prevalent conditions-growth disorders, puberty, metabolic bone disease, type 1 (T1D) and type 2 (T2D) diabetes mellitus, prediabetes, and obesity. Several important findings emerged. Compared with females and non-White children, non-Hispanic White males are more likely to come to medical attention for short stature. Racially and ethnically diverse populations and males are underrepresented in studies of pubertal development and attainment of peak bone mass, with current norms based on European populations. Like adults, racial and ethnic minority youth suffer a higher burden of disease from obesity, T1D and T2D, and have less access to diabetes treatment technologies and bariatric surgery. LGBTQIA youth and adults also face discrimination and multiple barriers to endocrine care due to pathologizing sexual orientation and gender identity, lack of culturally competent care providers, and policies. Multilevel interventions to address these disparities are required. Inclusion of racial, ethnic, and LGBTQIA populations in longitudinal life course studies is needed to assess growth, puberty, and attainment of peak bone mass. Growth and development charts may need to be adapted to non-European populations. In addition, extension of these studies will be required to understand the clinical and physiologic consequences of interventions to address abnormal development in these populations. Health policies should be recrafted to remove barriers in care for children with obesity and/or diabetes and for LGBTQIA children and adults to facilitate comprehensive access to care, therapeutics, and technological advances. Public health interventions encompassing collection of accurate demographic and social needs data, including the intersection of social determinants of health with health outcomes, and enactment of population health level interventions will be essential tools.
Collapse
Affiliation(s)
- Alicia M Diaz-Thomas
- Department of Pediatrics, Division of Endocrinology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sherita Hill Golden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana M Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adda Grimberg
- Department of Pediatrics, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheela N Magge
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Safer
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10001, USA
| | - Daniel E Shumer
- Department of Pediatric Endocrinology, C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Fatima Cody Stanford
- Massachusetts General Hospital, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA 02114, USA
| |
Collapse
|
31
|
Sumner JA, Gao X, Gambazza S, Dye CK, Colich NL, Baccarelli AA, Uddin M, McLaughlin KA. Stressful life events and accelerated biological aging over time in youths. Psychoneuroendocrinology 2023; 151:106058. [PMID: 36827906 PMCID: PMC10364461 DOI: 10.1016/j.psyneuen.2023.106058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Experiencing adversity in childhood and adolescence, including stressful life events (SLEs), may accelerate the pace of development, leading to adverse mental and physical health. However, most research on adverse early experiences and biological aging (BA) in youths relies on cross-sectional designs. In 171 youths followed for approximately 2 years, we examined if SLEs over follow-up predicted rate of change in two BA metrics: epigenetic age and Tanner stage. We also investigated if rate of change in BA was associated with changes in depressive symptoms over time. Youths aged 8-16 years at baseline self-reported Tanner stage and depressive symptoms at baseline and follow-up and provided saliva samples for DNA at both assessments. Horvath epigenetic age estimates were derived from DNA methylation data measured with the Illumina EPIC array. At follow-up, contextual threat interviews were administered to youths and caregivers to assess youths' experiences of past-year SLEs. Interviews were objectively coded by an independent rating team to generate a SLE impact score, reflecting the severity of all SLEs occurring over the prior year. Rate of change in BA metrics was operationalized as change in epigenetic age or Tanner stage as a function of time between assessments. Higher objective SLE impact scores over follow-up were related to a greater rate of change in epigenetic age (β = 0.21, p = .043). Additionally, among youths with lower-but not higher-Tanner stage at baseline, there was a positive association of SLE impact scores with rate of change in Tanner stage (Baseline Tanner Stage × SLE Impact Score interaction: β = - 0.21, p = .011). A greater rate of change in epigenetic age was also associated with higher depressive symptom levels at follow-up, adjusting for baseline symptoms (β = 0.15, p = .043). Associations with epigenetic age were similar, although slightly attenuated, when adjusting for epithelial (buccal) cell proportions. Whereas much research in youths has focused on severe experiences of early adversity, we demonstrate that more commonly experienced SLEs during adolescence may also contribute to accelerated BA. Further research is needed to understand the long-term consequences of changes in BA metrics for health.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Psychology Building 1285, Box 951563, Los Angeles, CA 90095, USA.
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, Peking University, Xueyuan Rd. 38, Haidian District, Beijing, China; Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Simone Gambazza
- Department of Clinical Sciences and Community Health, University of Milan, via Celoria 22, 20133 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Healthcare Professions Department, via Francesco Sforza, 35, 20122 Milan, Italy
| | - Christian K Dye
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Natalie L Colich
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Monica Uddin
- Genomics Program, University of South Florida, College of Public Health, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Katie A McLaughlin
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Bozack AK, Rifas-Shiman SL, Gold DR, Laubach ZM, Perng W, Hivert MF, Cardenas A. DNA methylation age at birth and childhood: performance of epigenetic clocks and characteristics associated with epigenetic age acceleration in the Project Viva cohort. Clin Epigenetics 2023; 15:62. [PMID: 37046280 PMCID: PMC10099681 DOI: 10.1186/s13148-023-01480-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Epigenetic age acceleration (EAA) and epigenetic gestational age acceleration (EGAA) are biomarkers of physiological development and may be affected by the perinatal environment. The aim of this study was to evaluate performance of epigenetic clocks and to identify biological and sociodemographic correlates of EGAA and EAA at birth and in childhood. In the Project Viva pre-birth cohort, DNA methylation was measured in nucleated cells in cord blood (leukocytes and nucleated red blood cells, N = 485) and leukocytes in early (N = 120, median age = 3.2 years) and mid-childhood (N = 460, median age = 7.7 years). We calculated epigenetic gestational age (EGA; Bohlin and Knight clocks) and epigenetic age (EA; Horvath and skin & blood clocks), and respective measures of EGAA and EAA. We evaluated the performance of clocks relative to chronological age using correlations and median absolute error. We tested for associations of maternal-child characteristics with EGAA and EAA using mutually adjusted linear models controlling for estimated cell type proportions. We also tested associations of Horvath EA at birth with childhood EAA. RESULTS Bohlin EGA was strongly correlated with chronological gestational age (Bohlin EGA r = 0.82, p < 0.001). Horvath and skin & blood EA were weakly correlated with gestational age, but moderately correlated with chronological age in childhood (r = 0.45-0.65). Maternal smoking during pregnancy was associated with higher skin & blood EAA at birth [B (95% CI) = 1.17 weeks (- 0.09, 2.42)] and in early childhood [0.34 years (0.03, 0.64)]. Female newborns and children had lower Bohlin EGAA [- 0.17 weeks (- 0.30, - 0.04)] and Horvath EAA at birth [B (95% CI) = - 2.88 weeks (- 4.41, - 1.35)] and in childhood [early childhood: - 0.3 years (- 0.60, 0.01); mid-childhood: - 0.48 years (- 0.77, - 0.18)] than males. When comparing self-reported Asian, Black, Hispanic, and more than one race or other racial/ethnic groups to White, we identified significant differences in EGAA and EAA at birth and in mid-childhood, but associations varied across clocks. Horvath EA at birth was positively associated with childhood Horvath and skin & blood EAA. CONCLUSIONS Maternal smoking during pregnancy and child sex were associated with EGAA and EAA at multiple timepoints. Further research may provide insight into the relationship between perinatal factors, pediatric epigenetic aging, and health and development across the lifespan.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health and Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA.
| |
Collapse
|
33
|
Kim C, Catov J, Schreiner PJ, Appiah D, Wellons MF, Siscovick D, Calderon‐Margalit R, Huddleston H, Ebong IA, Lewis CE. Women's Reproductive Milestones and Cardiovascular Disease Risk: A Review of Reports and Opportunities From the CARDIA Study. J Am Heart Assoc 2023; 12:e028132. [PMID: 36847077 PMCID: PMC10111436 DOI: 10.1161/jaha.122.028132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In 1985 to 1986, the CARDIA (Coronary Artery Risk Development in Young Adults) study enrolled 5115 Black or White participants, including 2788 women, aged 18 to 30 years. Over the following 35 years, the CARDIA study amassed extensive longitudinal data on women's reproductive milestones, spanning menarche to menopause. Although not initially conceived as a study of women's health, >75 CARDIA study publications address relationships between reproductive factors and events with cardiovascular and metabolic risk factors, subclinical and clinical cardiovascular disease, and social determinants of health. The CARDIA study was one of the earliest population-based reports to note Black-White differences in age at menarche and associations with cardiovascular risk factors. Adverse pregnancy outcomes, particularly gestational diabetes and preterm birth, have been assessed along with postpartum behaviors, such as lactation. Existing studies have examined risk factors for adverse pregnancy outcomes and lactation, as well as their relationship to future cardiovascular and metabolic risk factors, diagnoses, and subclinical atherosclerosis. Ancillary studies examining components of polycystic ovary syndrome and ovarian biomarkers, such as anti-Müllerian hormone, have facilitated examination of reproductive health in a population-based cohort of young adult women. As the cohort transitioned through menopause, examination of the importance of premenopausal cardiovascular risk factors along with menopause has improved our understanding of shared mechanisms. The cohort is now aged in the 50s to mid-60s, and women will begin to experience a greater number of cardiovascular events as well as other conditions, such as cognitive impairment. Thus, in the next decade, the CARDIA study will provide a unique resource for understanding how the women's reproductive life course epidemiology informs cardiovascular risk, as well as reproductive and chronological aging.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics and Gynecology, and EpidemiologyUniversity of MichiganAnn ArborMI
| | - Janet Catov
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of PittsburghPittsburghPA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community HealthUniversity of MinnesotaMinneapolisMN
| | - Duke Appiah
- Department of Public Health, Graduate School of Biomedical SciencesTexas Tech UniversityLubbockTX
| | | | | | | | - Heather Huddleston
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCA
| | | | - Cora E. Lewis
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
34
|
Jáni M, Zacková L, Piler P, Andrýsková L, Brázdil M, Marečková K. Birth outcomes, puberty onset, and obesity as long-term predictors of biological aging in young adulthood. Front Nutr 2023; 9:1100237. [PMID: 36704790 PMCID: PMC9873383 DOI: 10.3389/fnut.2022.1100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Background Biological aging and particularly the deviations between biological and chronological age are better predictors of health than chronological age alone. However, the predictors of accelerated biological aging are not very well understood. The aim was to determine the role of birth outcomes, time of puberty onset, body mass index (BMI), and body fat in accelerated biological aging in the third decade of life. Methods We have conducted a second follow-up of the Czech part of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC-CZ) prenatal birth cohort in young adulthood (52% male; age 28-30; n = 262) to determine the role of birth outcomes, pubertal timing, BMI, and body fat on biological aging. Birth outcomes included birth weight, length, and gestational age at birth. Pubertal timing was determined by the presence of secondary sexual characteristics at the age of 11 and the age of first menarche in women. Biological age was estimated using the Klemera-Doubal Method (KDM), which applies 9-biomarker algorithm including forced expiratory volume in one second (FEV1), systolic blood pressure, glycated hemoglobin, total cholesterol, C-reactive protein, creatinine, urea nitrogen, albumin, and alkaline phosphatase. Accelerated/decelerated aging was determined as the difference between biological and chronological age (BioAGE). Results The deviations between biological and chronological age in young adulthood ranged from -2.84 to 4.39 years. Accelerated biological aging was predicted by higher BMI [in both early (R2 adj = 0.05) and late 20s (R2 adj = 0.22)], subcutaneous (R2 adj = 0.21) and visceral fat (R2 adj = 0.25), puberty onset (η p 2 = 0.07), birth length (R2 adj = 0.03), and the increase of BMI over the 5-year period between the two follow-ups in young adulthood (R2 adj = 0.09). Single hierarchical model revealed that shorter birth length, early puberty onset, and greater levels of visceral fat were the main predictors, together explaining 21% of variance in accelerated biological aging. Conclusion Our findings provide comprehensive support of the Life History Theory, suggesting that early life adversity might trigger accelerated aging, which leads to earlier onset of puberty but decreasing fitness in adulthood, reflected by more visceral fat and higher BMI. Our findings also suggest that reduction of BMI in young adulthood slows down biological aging.
Collapse
Affiliation(s)
- Martin Jáni
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Lenka Zacková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klára Marečková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia,*Correspondence: Klára Mare čková,
| |
Collapse
|
35
|
Gardner ST, Bertucci EM, Sutton R, Horcher A, Aubrey D, Parrott BB. Development of DNA methylation-based epigenetic age predictors in loblolly pine (Pinus taeda). Mol Ecol Resour 2023; 23:131-144. [PMID: 35957540 PMCID: PMC10087248 DOI: 10.1111/1755-0998.13698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.
Collapse
Affiliation(s)
- Steven T. Gardner
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Emily M. Bertucci
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Randall Sutton
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Andy Horcher
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Doug Aubrey
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Warnell School of ForestryUniversity of GeorgiaAthensGeorgiaUSA
| | - Benjamin B. Parrott
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
36
|
Euclydes V, Gomes C, Gouveia G, Gastaldi VD, Feltrin AS, Camilo C, Vieira RP, Felipe-Silva A, Grisi S, Fink G, Brentani A, Brentani H. Gestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposure. Clin Epigenetics 2022; 14:152. [PMID: 36443840 PMCID: PMC9703828 DOI: 10.1186/s13148-022-01374-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. RESULTS Using the Western Region Birth Cohort (ROC-São Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R2 = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R2 = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. CONCLUSION Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition.
Collapse
Affiliation(s)
- Verônica Euclydes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Catarina Gomes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gisele Gouveia
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Daguano Gastaldi
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Arthur Sant’Anna Feltrin
- grid.412368.a0000 0004 0643 8839Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Caroline Camilo
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rossana Pulcineli Vieira
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Aloísio Felipe-Silva
- grid.11899.380000 0004 1937 0722Departamento de Patologia, Hospital Universitário, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Sandra Grisi
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Günther Fink
- grid.416786.a0000 0004 0587 0574Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Alexandra Brentani
- grid.11899.380000 0004 1937 0722Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
37
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
38
|
Kuzawa CW, Ryan CP, Adair LS, Lee NR, Carba DB, MacIsaac JL, Dever K, Atashzay P, Kobor MS, McDade TW. Birth weight and maternal energy status during pregnancy as predictors of epigenetic age acceleration in young adults from metropolitan Cebu, Philippines. Epigenetics 2022; 17:1535-1545. [PMID: 35574972 PMCID: PMC9586628 DOI: 10.1080/15592294.2022.2070105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic clocks quantify regular changes in DNA methylation that occur with age, or in relation to biomarkers of ageing, and are strong predictors of morbidity and mortality. Here, we assess whether measures of fetal nutrition and growth that predict adult chronic disease also predict accelerated biological ageing in young adulthood using a suite of commonly used epigenetic clocks. Data come from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), a long-running cohort followed since birth in metropolitan Cebu, Philippines. Past work has shown that birth weight (BW) and the mother's arm fat during pregnancy (a measure of pregnancy energy status) relate inversely to health outcomes in the CLHNS but primarily in males. Genome-wide DNA methylation was assessed in whole blood using the Infinium EPIC array. Participants included males (n=895) and females (n=803) measured in 2005 (20.8-22.5 years). Clocks included the Hannum and Horvath clocks trained on chronological age, the DNAmPhenoAge and DNAmGrimAge clocks trained on clinical biomarkers, the Dunedin pace of ageing (DunedinPACE) clock trained on longitudinal changes in ageing biomarkers, and the DNAmTL clock trained on leukocyte telomere length. In males, lower BW predicted advanced biological ageing using the Hannum, DNAmPhenoAge, DunedinPoAm, and DNAmTL clocks. In contrast, BW did not predict any clock in female participants. Participants' mothers' pregnancy arm fat only predicted DNAmTL in males. These findings suggest that epigenetic clocks are a useful tool for gauging long-term outcomes predicted by fetal growth, and add to existing evidence in the CLHNS for sex differences in these relationships.
Collapse
Affiliation(s)
- Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, USA.,Institute for Policy Research, Northwestern University, Evanston, USA
| | - Calen P Ryan
- Butler Columbia Aging Center, Department of Epidemiology, Columbia University Mailman School of Public Health
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City
| | - Delia B Carba
- USC-Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Kristy Dever
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Parmida Atashzay
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, USA.,Institute for Policy Research, Northwestern University, Evanston, USA
| |
Collapse
|
39
|
Franzago M, Pilenzi L, Di Rado S, Vitacolonna E, Stuppia L. The epigenetic aging, obesity, and lifestyle. Front Cell Dev Biol 2022; 10:985274. [PMID: 36176280 PMCID: PMC9514048 DOI: 10.3389/fcell.2022.985274] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence of obesity has dramatically increased worldwide over the past decades. Aging-related chronic conditions, such as type 2 diabetes and cardiovascular disease, are more prevalent in individuals with obesity, thus reducing their lifespan. Epigenetic clocks, the new metrics of biological age based on DNA methylation patterns, could be considered a reflection of the state of one's health. Several environmental exposures and lifestyle factors can induce epigenetic aging accelerations, including obesity, thus leading to an increased risk of age-related diseases. The insight into the complex link between obesity and aging might have significant implications for the promotion of health and the mitigation of future disease risk. The present narrative review takes into account the interaction between epigenetic aging and obesity, suggesting that epigenome may be an intriguing target for age-related physiological changes and that its modification could influence aging and prolong a healthy lifespan. Therefore, we have focused on DNA methylation age as a clinical biomarker, as well as on the potential reversal of epigenetic age using a personalized diet- and lifestyle-based intervention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| | - Sara Di Rado
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
40
|
Mayer F, Becker J, Reinauer C, Böhme P, Eickhoff SB, Koop B, Gündüz T, Blum J, Wagner W, Ritz-Timme S. Altered DNA methylation at age-associated CpG sites in children with growth disorders: impact on age estimation? Int J Legal Med 2022; 136:987-996. [PMID: 35551445 PMCID: PMC9170667 DOI: 10.1007/s00414-022-02826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Age estimation based on DNA methylation (DNAm) can be applied to children, adolescents and adults, but many CG dinucleotides (CpGs) exhibit different kinetics of age-associated DNAm across these age ranges. Furthermore, it is still unclear how growth disorders impact epigenetic age predictions, and this may be particularly relevant for a forensic application. In this study, we analyzed buccal mucosa samples from 95 healthy children and 104 children with different growth disorders. DNAm was analysed by pyrosequencing for 22 CpGs in the genes PDE4C, ELOVL2, RPA2, EDARADD and DDO. The relationship between DNAm and age in healthy children was tested by Spearman's rank correlation. Differences in DNAm between the groups "healthy children" and the (sub-)groups of children with growth disorders were tested by ANCOVA. Models for age estimation were trained (1) based on the data from 11 CpGs with a close correlation between DNAm and age (R ≥ 0.75) and (2) on five CpGs that also did not present significant differences in DNAm between healthy and diseased children. Statistical analysis revealed significant differences between the healthy group and the group with growth disorders (11 CpGs), the subgroup with a short stature (12 CpGs) and the non-short stature subgroup (three CpGs). The results are in line with the assumption of an epigenetic regulation of height-influencing genes. Age predictors trained on 11 CpGs with high correlations between DNAm and age revealed higher mean absolute errors (MAEs) in the group of growth disorders (mean MAE 2.21 years versus MAE 1.79 in the healthy group) as well as in the short stature (sub-)groups; furthermore, there was a clear tendency for overestimation of ages in all growth disorder groups (mean age deviations: total growth disorder group 1.85 years, short stature group 1.99 years). Age estimates on samples from children with growth disorders were more precise when using a model containing only the five CpGs that did not present significant differences in DNAm between healthy and diseased children (mean age deviations: total growth disorder group 1.45 years, short stature group 1.66 years). The results suggest that CpGs in genes involved in processes relevant for growth and development should be avoided in age prediction models for children since they may be sensitive for alterations in the DNAm pattern in cases of growth disorders.
Collapse
Affiliation(s)
- F Mayer
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | - J Becker
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - C Reinauer
- Department of General Paediatrics, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - P Böhme
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - S B Eickhoff
- Institute for Systems Neuroscience, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
| | - B Koop
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - T Gündüz
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - J Blum
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - W Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - S Ritz-Timme
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
41
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Epigenetic aging of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics 2022; 17:1774-1785. [PMID: 35603816 DOI: 10.1080/15592294.2022.2080993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic age has emerged as an important biomarker of biological aging. It has revealed that some tissues age faster than others, which is vital to understanding the complex phenomenon of aging and developing effective interventions. Previous studies have demonstrated that humans exhibit heterogeneity in pace of epigenetic aging among brain structures that are consistent with differences in structural and microanatomical deterioration. Here, we add comparative data on epigenetic brain aging for chimpanzees, humans' closest relatives. Such comparisons can further our understanding of which aspects of human aging are evolutionarily conserved or specific to our species, especially given that humans are distinguished by a long lifespan, large brain, and, potentially, more severe neurodegeneration with age. Specifically, we investigated epigenetic aging of the dorsolateral prefrontal cortex and cerebellum, of humans and chimpanzees by generating genome-wide CpG methylation data and applying established epigenetic clock algorithms to produce estimates of biological age for these tissues. We found that both species exhibit relatively slow epigenetic aging in the brain relative to blood. Between brain structures, humans show a faster rate of epigenetic aging in the dorsolateral prefrontal cortex compared to the cerebellum, which is consistent with previous findings. Chimpanzees, in contrast, show comparable rates of epigenetic aging in the two brain structures. Greater epigenetic change in the human dorsolateral prefrontal cortex compared to the cerebellum may reflect both the protracted development of this structure in humans and its greater age-related vulnerability to neurodegenerative pathology.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.,Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,MAEBIOS, Alamogordo, NM 88310, USA
| | - Brenda J Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
42
|
Ellis BJ, Sheridan MA, Belsky J, McLaughlin KA. Why and how does early adversity influence development? Toward an integrated model of dimensions of environmental experience. Dev Psychopathol 2022; 34:447-471. [PMID: 35285791 DOI: 10.1017/s0954579421001838] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two extant frameworks - the harshness-unpredictability model and the threat-deprivation model - attempt to explain which dimensions of adversity have distinct influences on development. These models address, respectively, why, based on a history of natural selection, development operates the way it does across a range of environmental contexts, and how the neural mechanisms that underlie plasticity and learning in response to environmental experiences influence brain development. Building on these frameworks, we advance an integrated model of dimensions of environmental experience, focusing on threat-based forms of harshness, deprivation-based forms of harshness, and environmental unpredictability. This integrated model makes clear that the why and the how of development are inextricable and, together, essential to understanding which dimensions of the environment matter. Core integrative concepts include the directedness of learning, multiple levels of developmental adaptation to the environment, and tradeoffs between adaptive and maladaptive developmental responses to adversity. The integrated model proposes that proximal and distal cues to threat-based and deprivation-based forms of harshness, as well as unpredictability in those cues, calibrate development to both immediate rearing environments and broader ecological contexts, current and future. We highlight actionable directions for research needed to investigate the integrated model and advance understanding of dimensions of environmental experience.
Collapse
Affiliation(s)
- Bruce J Ellis
- Departments of Psychology and Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jay Belsky
- Department of Human Ecology, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
43
|
Barrett JE, Herzog C, Kim YN, Bartlett TE, Jones A, Evans I, Cibula D, Zikan M, Bjørge L, Harbeck N, Colombo N, Howell SJ, Rådestad AF, Gemzell-Danielsson K, Widschwendter M. Susceptibility to hormone-mediated cancer is reflected by different tick rates of the epithelial and general epigenetic clock. Genome Biol 2022; 23:52. [PMID: 35189945 PMCID: PMC8862470 DOI: 10.1186/s13059-022-02603-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background A variety of epigenetic clocks utilizing DNA methylation changes have been developed; these clocks are either tissue-independent or designed to predict chronological age based on blood or saliva samples. Whether discordant tick rates between tissue-specific and general epigenetic clocks play a role in health and disease has not yet been explored. Results Here we analyze 1941 cervical cytology samples, which contain a mixture of hormone-sensitive cervical epithelial cells and immune cells, and develop the WID general clock (Women’s IDentification of risk), an epigenetic clock that is shared by epithelial and immune cells and optimized for cervical samples. We then develop the WID epithelial clock and WID immune clock, which define epithelial- and immune-specific clocks, respectively. We find that the WID-relative-epithelial-age (WID-REA), defined as the difference between the epithelial and general clocks, is significantly reduced in cervical samples from pre-menopausal women with breast cancer (OR 2.7, 95% CI 1.28-5.72). We find the same effect in normal breast tissue samples from pre-menopausal women at high risk of breast cancer and show that potential risk reducing anti-progesterone drugs can reverse this. In post-menopausal women, this directionality is reversed. Hormone replacement therapy consistently leads to a significantly lower WID-REA in cancer-free women, but not in post-menopausal women with breast or ovarian cancer. Conclusions Our findings imply that there are multiple epigenetic clocks, many of which are tissue-specific, and that the differential tick rate between these clocks may be an informative surrogate measure of disease risk. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02603-3.
Collapse
Affiliation(s)
- James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Milser Str. 10, 6060, Hall in Tirol, Austria.,Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Milser Str. 10, 6060, Hall in Tirol, Austria.,Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Yoo-Na Kim
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Milser Str. 10, 6060, Hall in Tirol, Austria.,Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Thomas E Bartlett
- Department of Statistical Science, University College London, WC1E 7HB, London, UK
| | - Allison Jones
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, Medical School Building, Room 340, 74 Huntley Street, WC1E 6AU, London, UK
| | - Iona Evans
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, Medical School Building, Room 340, 74 Huntley Street, WC1E 6AU, London, UK
| | - David Cibula
- Gynaecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Michal Zikan
- Department of Gynecology and Obstetrics, Charles University in Prague, First Faculty of Medicine and University Hospital Bulovka, Prague, Czech Republic
| | - Line Bjørge
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nadia Harbeck
- Breast Center, Department of Obstetrics and Gynecology, University of Munich (LMU), Munich, Germany
| | - Nicoletta Colombo
- Istituto Europeo di Oncologia IRCCS, Milan, Italy.,University of Milano-Bicocca, Milan, Italy
| | - Sacha J Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Angelique Flöter Rådestad
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Milser Str. 10, 6060, Hall in Tirol, Austria. .,Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria. .,Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, Medical School Building, Room 340, 74 Huntley Street, WC1E 6AU, London, UK. .,Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
McGill MG, Pokhvisneva I, Clappison AS, McEwen LM, Beijers R, Tollenaar MS, Pham H, Kee MZL, Garg E, de Mendonça Filho EJ, Karnani N, Silveira PP, Kobor MS, de Weerth C, Meaney MJ, O'Donnell KJ. Maternal Prenatal Anxiety and the Fetal Origins of Epigenetic Aging. Biol Psychiatry 2022; 91:303-312. [PMID: 34756561 DOI: 10.1016/j.biopsych.2021.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The fetal origins of mental health is a well-established framework that currently lacks a robust index of the biological embedding of prenatal adversity. The Pediatric-Buccal-Epigenetic (PedBE) clock is a novel epigenetic tool that associates with aspects of the prenatal environment, but additional validation in longitudinal datasets is required. Likewise, the relationship between prenatal maternal mental health and the PedBE clock has not been described. METHODS Longitudinal cohorts from the Netherlands (Basal Influences on Baby Development [BIBO] n = 165) and Singapore (Growing Up in Singapore Towards Healthy Outcomes [GUSTO] n = 340) provided data on prenatal maternal anxiety and longitudinal assessments of buccal cell-derived genome-wide DNA methylation assessed at 6 and 10 years of age in BIBO, and at 3, 9, and 48 months of age in GUSTO. Measures of epigenetic age acceleration were calculated using the PedBE clock and benchmarked against an established multi-tissue epigenetic predictor. RESULTS Prenatal maternal anxiety predicted child PedBE epigenetic age acceleration in both cohorts, with effects largely restricted to males and not females. These results were independent of obstetric, socioeconomic, and genetic risk factors, with a larger effect size for prenatal anxiety than depression. PedBE age acceleration predicted increased externalizing symptoms in males from mid- to late childhood in the BIBO cohort only. CONCLUSIONS These findings point to the fetal origins of epigenetic age acceleration and reveal an increased sensitivity in males. Convergent evidence underscores the societal importance of providing timely and effective mental health support to pregnant individuals, which may have lasting consequences for both mother and child.
Collapse
Affiliation(s)
- Megan G McGill
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Irina Pokhvisneva
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Andrew S Clappison
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roseriet Beijers
- Department of Developmental Psychology, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Hung Pham
- Yale Child Study Center and Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | | | - Elika Garg
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | | | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore
| | - Patricia P Silveira
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Michael J Meaney
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Singapore Institute for Clinical Sciences, Singapore; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kieran J O'Donnell
- Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, and Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Yale Child Study Center and Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
46
|
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev 2022; 23 Suppl 1:e13389. [PMID: 34816569 DOI: 10.1111/obr.13389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene-environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0-18 years) were included. The risk of bias was assessed with a modified Newcastle-Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Evangelos Handakas
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Unit of Molecular and Genetic Epidemiology, Human Genetic Foundation (HuGeF), Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
47
|
Bertucci EM, Mason MW, Rhodes OE, Parrott BB. Exposure to ionizing radiation disrupts normal epigenetic aging in Japanese medaka. Aging (Albany NY) 2021; 13:22752-22771. [PMID: 34644261 PMCID: PMC8544305 DOI: 10.18632/aging.203624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the epigenome are a hallmark of biological aging and age-dependent patterning of the DNA methylome ("epigenetic aging") can be modeled to produce epigenetic age predictors. Rates of epigenetic aging vary amongst individuals and correlate to the onset of age-related disease and all-cause mortality. Yet, the origins of epigenetic-to-chronological age discordance are not empirically resolved. Here, we investigate the relationship between aging, DNA methylation, and environmental exposures in Japanese medaka (Oryzias latipes). We find age-associated DNA methylation patterning enriched in genomic regions of low CpG density and that, similar to mammals, most age-related changes occur during early life. We construct an epigenetic clock capable of predicting chronological age with a mean error of 61.1 days (~8.4% of average lifespan). To test the role of environmental factors in driving epigenetic age variation, we exposed medaka to chronic, environmentally relevant doses of ionizing radiation. Because most organisms share an evolutionary history with ionizing radiation, we hypothesized that exposure would reveal fundamental insights into environment-by-epigenetic aging interactions. Radiation exposure disrupted epigenetic aging by accelerating and decelerating normal age-associated patterning and was most pronounced in cytosines that were moderately associated with age. These findings empirically demonstrate the role of DNA methylation in integrating environmental factors into aging trajectories.
Collapse
Affiliation(s)
- Emily M. Bertucci
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Marilyn W. Mason
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Olin E. Rhodes
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Benjamin B. Parrott
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| |
Collapse
|
48
|
Abstract
ABSTRACT Recent research efforts have provided compelling evidence of genome-wide DNA methylation alterations in pediatrics. It is currently well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to understand development, growth and diseases in early life.
Collapse
|
49
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
50
|
Maddock J, Castillo-Fernandez J, Wong A, Ploubidis GB, Kuh D, Bell JT, Hardy R. Childhood growth and development and DNA methylation age in mid-life. Clin Epigenetics 2021; 13:155. [PMID: 34372922 PMCID: PMC8351141 DOI: 10.1186/s13148-021-01138-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In the first study of its kind, we examine the association between growth and development in early life and DNAm age biomarkers in mid-life. METHODS Participants were from the Medical Research Council National Survey of Health and Development (n = 1376). Four DNAm age acceleration (AgeAccel) biomarkers were measured when participants were aged 53 years: AgeAccelHannum; AgeAccelHorvath; AgeAccelLevine; and AgeAccelGrim. Exposure variables included: relative weight gain (standardised residuals from models of current weight z-score on current height, and previous weight and height z-scores); and linear growth (standardised residuals from models of current height z-score on previous height and weight z-scores) during infancy (0-2 years, weight gain only), early childhood (2-4 years), middle childhood (4-7 years) and late childhood to adolescence (7-15 years); age at menarche; and pubertal stage for men at 14-15 years. The relationship between relative weight gain and linear growth and AgeAccel was investigated using conditional growth models. We replicated analyses from the late childhood to adolescence period and pubertal timing among 240 participants from The National Child and Development Study (NCDS). RESULTS A 1SD increase in relative weight gain in late childhood to adolescence was associated with 0.50 years (95% CI 0.20, 0.79) higher AgeAccelGrim. Although the CI includes the null, the estimate was similar in NCDS [0.57 years (95% CI - 0.01, 1.16)] There was no strong evidence that relative weight gain and linear growth in childhood was associated with any other AgeAccel biomarker. There was no relationship between pubertal timing in men and AgeAccel biomarkers. Women who reached menarche ≥ 12 years had 1.20 years (95% CI 0.15, 2.24) higher AgeAccelGrim on average than women who reached menarche < 12 years; however, this was not replicated in NCDS and was not statistically significant after Bonferroni correction. CONCLUSIONS Our findings generally do not support an association between growth and AgeAccel biomarkers in mid-life. However, we found rapid weight gain during pubertal development, previously related to higher cardiovascular disease risk, to be associated with older AgeAccelGrim. Given this is an exploratory study, this finding requires replication.
Collapse
Affiliation(s)
- Jane Maddock
- MRC Unit for Lifelong Health and Ageing at UCL, Faculty of Population Health, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| | | | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Faculty of Population Health, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - George B Ploubidis
- Centre for Longitudinal Studies, UCL Social Research Institute, University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, Faculty of Population Health, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Rebecca Hardy
- CLOSER, UCL Institute of Education, University College London, London, WC1H 0NU, UK
| |
Collapse
|