1
|
Butterfield JH, Taylor A. Acute/baseline ratios of all 3 MC mediator metabolites can enhance diagnosis and management of mast cell activation syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100399. [PMID: 39906893 PMCID: PMC11791225 DOI: 10.1016/j.jacig.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 02/06/2025]
Abstract
Background Mast cell (MC) activation syndrome (MCAS) can be a challenge to diagnose and treat despite the near continuous appearance of publications outlining specific criteria. Follow-up of the clinical responses to treatment is often lacking, and confirmation that leukotriene C4 (LTC4) is an active participant in MCAS has been overlooked. Objective Three patients with MCAS characterized by anaphylaxis are presented to illustrate (1) the value of contemporaneous urinary mediator sampling during MCAS in addition to serum tryptase measurements and (2) substantiation of the fact that not only can LTC4 (measured metabolite LTE4) be the highest metabolite measured, but (3) blockade of the LTE4 receptor can contribute to symptom prevention. Method The study methods comprised clinical review and quantitation of acute and baseline levels of tryptase and urinary MC mediators. Results The cases of 3 patients with MCAS are reviewed. In the first case, vespid sting-induced anaphylaxis was associated with a marked increase in the LTE4 excretion. The addition of montelukast was instituted, and subsequent stings did not evoke symptoms. In the second case, acute measurements showed substantial increased levels of (2,3-dinor)-11β-prostaglandin F2α, and LTE4. The addition of aspirin plus montelukast prevented subsequent attacks. The third case documents a perioperative anaphylactic event with an acute/baseline LTE4 ratio far higher than those of tryptase or other metabolites. Conclusions The value of measuring all 3 MC mediator metabolites during MCAS should not be overlooked. These measurements can facilitate the successful prevention of attacks. Furthermore, results from these tests show that histamine is often a minor player, whereas acute/baseline levels of the metabolites of LTC4 and prostaglandin D2 are frequently much higher, warranting nonantihistamine treatment.
Collapse
Affiliation(s)
| | - Adela Taylor
- Division of Allergic Diseases, Mayo Clinic, Eau Claire, Wis
| |
Collapse
|
2
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
3
|
Song X, Jiao J, Qin J, Zhang W, Qin W, Ma S. Single-cell transcriptomics reveals the heterogeneity and function of mast cells in human ccRCC. Front Immunol 2025; 15:1494025. [PMID: 39840068 PMCID: PMC11747552 DOI: 10.3389/fimmu.2024.1494025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed. Methods To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC). Results We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS). MC density was significantly greater in ccRCC tissues than in normal tissues, but MC activation characteristics were not significantly different between ccRCC and normal tissues. Activated and resting MCs were defined as having high and low expression of MC receptors and mediators, respectively, whereas proliferating MCs had high expression of proliferation-related genes. The overall percentage of activated MCs in ccRCC tissues did not change significantly but shifted toward a more activated subpopulation (VEGFA+ MCs), with a concomitant decrease in proliferative MCs (TNF+ MCs) and resting MCs. An analysis of the ratio of TNF+/VEGFA+ MCs in tumors revealed that MCs exerted antitumor effects on ccRCC. However, VEGFA+MC was produced in large quantities in ccRCC tissues and promoted tumor angiogenesis compared with adjacent normal tissues, which aroused our concern. In addition, MC signature genes were associated with a better prognosis in the KIRC patient cohort in the TCGA database, which is consistent with our findings. Furthermore, the highest level of IL1B expression was observed in macrophages in ccRCC samples, and spatial transcriptome analysis revealed the colocalization of VEGFA+ MCs with IL1B+ macrophages at the tumor-normal interface. Discussion In conclusion, this study revealed increased MC density in ccRCC. Although the proportion of activated MCs was not significantly altered in ccRCC tissues compared with normal tissues, this finding highlights a shift in the MC phenotype from CTSGhighMCs to more activated VEGFA+MCs, providing a potential therapeutic target for inhibiting ccRCC progression.
Collapse
Affiliation(s)
- Xiyu Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiayang Qin
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuaijun Ma
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Fernández-Guarino M, Bacci S. Mast cells and wound healing: Still an open question. Histol Histopathol 2025; 40:21-30. [PMID: 38742450 DOI: 10.14670/hh-18-757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mast cells, which originate from the bone marrow, possess the ability to secrete a diverse array of active molecules. These molecules include mediators (histamine, heparin), which have been identified for decades and are stored in specific granules, as well as small molecules generated instantaneously in response to stimulation (membrane lipid derivatives, nitric oxide), and a multitude of multifunctional cytokines that are secreted constitutively. Activated mast cells participate in the regulation of the local immune response and exert control over critical events of inflammation and healing with the assistance of a vast array of mediators. The involvement of these cell types in inflammatory states suggests that mast cells may function as sentinels that activate local immune processes in response to various types of stimuli and the entry of antigens. Moreover, due to their proximity to nerve fibers and reactivity to a variety of neurotransmitters, mast cells are among the cells that may facilitate local neuroimmune interactions. With this in mind, it is necessary to consider their participation in the repair of injuries in both acute and chronic conditions.
Collapse
Affiliation(s)
- Montserrat Fernández-Guarino
- Dermatology Service, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Madrid, Spain
| | - Stefano Bacci
- Research Unit of Histology and Embryology, Department of Biology, University of Florence, Italy.
| |
Collapse
|
5
|
Houghton V, Eiwegger T, Florsheim EB, Knibb RC, Thuret S, Santos AF. From bite to brain: Neuro-immune interactions in food allergy. Allergy 2024; 79:3326-3340. [PMID: 39462229 DOI: 10.1111/all.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergies are reported to affect around 3.5% of children and 2.4% of adults, with symptoms varying in range and severity. While being the gold standard for diagnosis, oral food challenges are burdensome, and diagnostic tools based on specific IgE can be flawed. Furthering our understanding of the mechanisms behind food allergy onset, severity and persistence could help reveal immune profiles associated with the disease, to ultimately aid in diagnosis. Alterations to cytokine levels and immune cell ratios have been identified, though further research is needed to fully capture the heterogenous nature of food allergy. Moreover, the existence of such immune alterations also raises the question of potential wider systemic effects. For example, recent research has emphasised the existence and impact of neuro-immune interactions and implicated behavioural and neurological changes associated with food allergy. This review will provide an overview of such food allergy-driven neuro-immune interactions, with the aim of emphasising the importance of furthering our understanding of the immune mechanisms underlying IgE-mediated food allergy.
Collapse
Affiliation(s)
- Vikki Houghton
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Eiwegger
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Esther Borges Florsheim
- Center for Health Through Microbiomes, Biodesign Institute Arizona State University Tempe, Arizona, USA
- School of Life Sciences, Arizona State University Tempe, Arizona, USA
| | - Rebecca C Knibb
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Grach SL, Dudenkov DV, Pollack B, Fairweather D, Aakre CA, Munipalli B, Croghan IT, Mueller MR, Overgaard JD, Bruno KA, Collins NM, Li Z, Hurt RT, Tal MC, Ganesh R, Knight DTR. Overlapping conditions in Long COVID at a multisite academic center. Front Neurol 2024; 15:1482917. [PMID: 39524912 PMCID: PMC11543549 DOI: 10.3389/fneur.2024.1482917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Many patients experience persistent symptoms after COVID-19, a syndrome referred to as Long COVID (LC). The goal of this study was to identify novel new or worsening comorbidities self-reported in patients with LC. Methods Patients diagnosed with LC (n = 732) at the Mayo Long COVID Care Clinic in Rochester, Minnesota and Jacksonville, Florida were sent questionnaires to assess the development of new or worsening comorbidities following COVID-19 compared to patients with SARS-CoV-2 that did not develop LC (controls). Both groups were also asked questions screening for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), generalized joint hypermobility (GJH) and orthostatic intolerance. 247 people with LC (33.7%) and 40 controls (50%) responded to the surveys. Results In this study LC patients averaged 53 years of age and were predominantly White (95%) women (75%). The greatest prevalence of new or worsening comorbidities following SARS-CoV-2 infection in patients with LC vs. controls reported in this study were pain (94.4% vs. 0%, p < 0.001), neurological (92.4% vs. 15.4%, p < 0.001), sleep (82.8% vs. 5.3%, p < 0.001), skin (69.8% vs. 0%, p < 0.001), and genitourinary (60.6% vs. 25.0%, p = 0.029) issues. 58% of LC patients screened positive for ME/CFS vs. 0% of controls (p < 0.001), 27% positive for GJH compared to 10% of controls (p = 0.026), and a positive average score of 4.0 on orthostatic intolerance vs. 0 (p < 0.001). The majority of LC patients with ME/CFS were women (77%). Conclusion We found that comorbidities across 12 surveyed categories were increased in patients following SARS-CoV-2 infection. Our data also support the overlap of LC with ME/CFS, GJH, and orthostatic intolerance. We discuss the pathophysiologic, research, and clinical implications of identifying these conditions with LC.
Collapse
Affiliation(s)
- Stephanie L. Grach
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel V. Dudenkov
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Beth Pollack
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - DeLisa Fairweather
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| | - Chris A. Aakre
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Bala Munipalli
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ivana T. Croghan
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Quantitative Health Sciences, Rochester, MN, United States
| | - Michael R. Mueller
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Overgaard
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Katelyn A. Bruno
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Nerissa M. Collins
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zhuo Li
- Department of Biostatistics, Mayo Clinic, Jacksonville, FL, United States
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michal C. Tal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dacre T. R. Knight
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
7
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Obasanmi G, Uppal M, Cui JZ, Xi J, Ju MJ, Song J, To E, Li S, Khan W, Cheng D, Zhu J, Irani L, Samad I, Zhu J, Yoo HS, Aubert A, Stoddard J, Neuringer M, Granville DJ, Matsubara JA. Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization. Angiogenesis 2024; 27:351-373. [PMID: 38498232 PMCID: PMC11303490 DOI: 10.1007/s10456-024-09909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Jun Song
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Wania Khan
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Darian Cheng
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - John Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Lyden Irani
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Julie Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Alexandre Aubert
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | | | | | - David J Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Traina G. Mast Cells in Human Health and Diseases 2.0. Int J Mol Sci 2024; 25:6443. [PMID: 38928149 PMCID: PMC11203736 DOI: 10.3390/ijms25126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This Special Issue collects some scientific pieces of the multifaceted research on the mast cell (MC), and it intends to highlight the broad spectrum of activity that MCs have, both in physiological conditions and in pathological states, focusing attention on some of them [...].
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via Romana, 06126 Perugia, Italy
| |
Collapse
|
10
|
Paroli M, Gioia C, Accapezzato D, Caccavale R. Inflammation, Autoimmunity, and Infection in Fibromyalgia: A Narrative Review. Int J Mol Sci 2024; 25:5922. [PMID: 38892110 PMCID: PMC11172859 DOI: 10.3390/ijms25115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Fibromyalgia (FM) is a chronic disease characterized by widespread musculoskeletal pain of unknown etiology. The condition is commonly associated with other symptoms, including fatigue, sleep disturbances, cognitive impairment, and depression. For this reason, FM is also referred to as FM syndrome. The nature of the pain is defined as nociplastic according to the latest international classification and is characterized by altered nervous sensitization both centrally and peripherally. Psychosocial conditions have traditionally been considered critical in the genesis of FM. However, recent studies in animal models and humans have provided new evidence in favor of an inflammatory and/or autoimmune pathogenesis. In support of this hypothesis are epidemiological data of an increased female prevalence, similar to that of autoimmune diseases, and the frequent association with immune-mediated inflammatory disorders. In addition, the observation of an increased incidence of this condition during long COVID revived the hypothesis of an infectious pathogenesis. This narrative review will, therefore, discuss the evidence supporting the immune-mediated pathogenesis of FM in light of the most current data available in the literature.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University di Roma, 00185 Rome, Italy; (C.G.); (D.A.); (R.C.)
| | | | | | | |
Collapse
|
11
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
12
|
Wang Y, Hils M, Fischer A, Wölbing F, Biedermann T, Schnieke A, Fischer K. Gene-edited pigs: a translational model for human food allergy against alpha-Gal and anaphylaxis. Front Immunol 2024; 15:1358178. [PMID: 38469303 PMCID: PMC10925645 DOI: 10.3389/fimmu.2024.1358178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
The prevalence of food allergy is rising and is estimated to approach 10%. Red meat allergy is the first known food allergy elicited by immunoglobulin E (IgE) antibodies recognizing a carbohydrate. Due to the loss of function of the alpha-1,3-galactosyltransferase (GGTA1) gene in humans, the disaccharide galactose-α-1,3-galactose (α-Gal) cannot be synthesized and therefore became immunogenic. IgE sensitization is elicited through the skin by repetitive tick bites transmitting α-Gal. The underlying mechanisms regarding innate and adaptive immune cell activation, including the B-cell isotype switch to IgE, are poorly understood, requiring further research and physiologically relevant animal models. Here, we describe a new animal model of red meat allergy using percutaneous α-Gal sensitization of gene-edited GGTA1-deficient pigs. Total and α-Gal-specific IgG, IgG1, IgG2, IgG4, and IgE levels were tracked. Further key factors associated with allergic skin inflammation, type 2 immunity, and allergy development were measured in PBMCs and skin samples. Significant increases in α-Gal-specific IgG1 and IgE levels indicated successful sensitization to the allergen α-Gal. Intracutaneous sensitizations with α-Gal recruited lymphocytes to the skin, including elevated numbers of T helper 2 (Th2) cells. Finally, α-Gal-sensitized pigs not only recognized α-Gal as non-self-antigen following α-Gal exposure through the skin but also developed anaphylaxis upon antigen challenge. Based on the similarities between the porcine and human skin, this new large animal model for α-Gal allergy should help to unveil the consecutive steps of cutaneous sensitization and aid the development of prophylactic and treatment interventions.
Collapse
Affiliation(s)
- Ying Wang
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrea Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Mast Cells in Cardiac Remodeling: Focus on the Right Ventricle. J Cardiovasc Dev Dis 2024; 11:54. [PMID: 38392268 PMCID: PMC10889421 DOI: 10.3390/jcdd11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
In response to various stressors, cardiac chambers undergo structural remodeling. Long-term exposure of the right ventricle (RV) to pressure or volume overload leads to its maladaptive remodeling, associated with RV failure and increased mortality. While left ventricular adverse remodeling is well understood and therapeutic options are available or emerging, RV remodeling remains underexplored, and no specific therapies are currently available. Accumulating evidence implicates the role of mast cells in RV remodeling. Mast cells produce and release numerous inflammatory mediators, growth factors and proteases that can adversely affect cardiac cells, thus contributing to cardiac remodeling. Recent experimental findings suggest that mast cells might represent a potential therapeutic target. This review examines the role of mast cells in cardiac remodeling, with a specific focus on RV remodeling, and explores the potential efficacy of therapeutic interventions targeting mast cells to mitigate adverse RV remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
14
|
Fan J, Ma L, Xie B, Qiu S, Song S, Tang Z, Wu Y, Huangfu H, Feng Y, Luo X, Yang P. Modulating endoplasmic reticulum stress attenuates mast cell degranulation. Int Immunopharmacol 2024; 126:111336. [PMID: 38056196 DOI: 10.1016/j.intimp.2023.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES Degranulation of mast cells leads to direct allergic symptoms. The underlying mechanism needs to be explored further. Endoplasmic reticulum (ER) stress is involved in the pathogenesis of allergic conditions. The objective of this study is to gain a better understanding of the mechanism of mast cell degranulation. METHODS Bone marrow derived mast cells and mast cells isolated from the airway tissues were prepared. The role of ER stress in mediating the release of mast cells was tested. RNA sequencing (RNAseq) was used to investigate the genetic activities of mast cells. RESULTS Our observation showed that sensitization increased ER stress in mast cells. X-box-1 binding protein (XBP1) activity was linked to mast cell degranulation. Modulation of ER stress or XBP1 expression regulates the release of the mast cell mediator. XBP1 promoted the mediator release of mast cells by activating spleen tyrosine kinase (Syk). Activation of eukaryotic initiation factor 2a (eIF2a) inhibited XBP1 in mast cells. Semaphorin 3A was effective in preventing experimental allergic rhinitis (AR) due to its ability to suppress the release of mast cell mediators. CONCLUSIONS ER stress is associated with the mast cell degranulation. By inhibiting XBP1, the crucial molecule of ER stress, mast cell degranulation can be suppressed and experimental AR can be mitigated.
Collapse
Affiliation(s)
- Jialiang Fan
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and Third School of Clinical Medicine, Southern Medical University, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen, China
| | - Longpeng Ma
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and Third School of Clinical Medicine, Southern Medical University, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen, China
| | - Bailing Xie
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen, China; Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Shuyao Qiu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Shuo Song
- Department of General Practice Medicine. Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiyuan Tang
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Yongjin Wu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Hui Huangfu
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Yan Feng
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiangqian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and Third School of Clinical Medicine, Southern Medical University, Shenzhen, China.
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen, China.
| |
Collapse
|
15
|
Son H, Zhang Y, Shannonhouse J, Ishida H, Gomez R, Kim YS. Mast-cell-specific receptor mediates alcohol-withdrawal-associated headache in male mice. Neuron 2024; 112:113-123.e4. [PMID: 37909038 PMCID: PMC10843090 DOI: 10.1016/j.neuron.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
Rehabilitation from alcohol addiction or abuse is hampered by withdrawal symptoms including severe headaches, which often lead to rehabilitation failure. There is no appropriate therapeutic option available for alcohol-withdrawal-induced headaches. Here, we show the role of the mast-cell-specific receptor MrgprB2 in the development of alcohol-withdrawal-induced headache. Withdrawing alcohol from alcohol-acclimated mice induces headache behaviors, including facial allodynia, facial pain expressions, and reduced movement, which are symptoms often observed in humans. Those behaviors were absent in MrgprB2-deficient mice during alcohol withdrawal. We observed in vivo spontaneous activation and hypersensitization of trigeminal ganglia (TG) neurons in alcohol-withdrawal WT mice, but not in alcohol-withdrawal MrgprB2-deficient mice. Increased mast cell degranulation by alcohol withdrawal in dura mater was dependent on the presence of MrgprB2. The results indicate that alcohol withdrawal causes headache via MrgprB2 of mast cells in dura mater, suggesting that MrgprB2 is a potential target for treating alcohol-withdrawal-related headaches.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, Church MK, Maurer M. Mast cell silencing: A novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy 2024; 79:37-51. [PMID: 37605867 DOI: 10.1111/all.15850] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.
Collapse
Affiliation(s)
- Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Martin K Church
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
17
|
Xie Z, Niu L, Zheng G, Du K, Dai S, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Feng F, Zhang J, Zheng J. Single-cell analysis unveils activation of mast cells in colorectal cancer microenvironment. Cell Biosci 2023; 13:217. [PMID: 38031173 PMCID: PMC10687892 DOI: 10.1186/s13578-023-01144-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The role of mast cells (MCs) in colorectal cancer (CRC) remains unclear, and a comprehensive single-cell study on CRC MCs has not been conducted. This study used a multi-omics approach, integrating single-cell sequencing, spatial transcriptomics, and bulk tissue sequencing data to investigate the heterogeneity and impact of MCs in CRC. Five MC signature genes (TPSAB1, TPSB2, CPA3, HPGDS, and MS4A2) were identified, and their average expression was used as a marker of MCs. The MC density was found to be lower in CRC compared to normal tissue, but MCs in CRC demonstrated distinct activation features. Activated MCs were defined by high expression of receptors and MC mediators, while resting MCs had low expression. Most genes, including the five MC signature genes, were expressed at higher levels in activated MCs. The MC signature was linked to a better prognosis in both CRC and pan-cancer patient cohorts. Elevated KITLG expression was observed in fibroblasts and endothelial cells in CRC samples compared to normal tissue, and co-localization of MCs with these cell types was revealed by spatial transcriptome analysis. In conclusion, this study finds decreased MC density in CRC compared to normal tissue, but highlights a shift in MC phenotype from CMA1high resting cells to activated TPSAB1high, CPA3high, and KIThigh cells. The elevated KITLG expression in the tumor microenvironment's fibroblasts and endothelial cells may activate MCs through the KITLG-KIT axis, potentially suppressing tumor progression.
Collapse
Affiliation(s)
- Zhenyu Xie
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Liaoran Niu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Gaozan Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Kunli Du
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110016, China
| | - Ruikai Li
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hanjun Dan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Duan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hongze Wu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Fan Feng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jianyong Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
18
|
Bosveld CJ, Guth C, Limjunyawong N, Pundir P. Emerging Role of the Mast Cell-Microbiota Crosstalk in Cutaneous Homeostasis and Immunity. Cells 2023; 12:2624. [PMID: 37998359 PMCID: PMC10670560 DOI: 10.3390/cells12222624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.
Collapse
Affiliation(s)
- Cameron Jackson Bosveld
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| |
Collapse
|
19
|
Pałgan K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. Int J Mol Sci 2023; 24:12802. [PMID: 37628983 PMCID: PMC10454702 DOI: 10.3390/ijms241612802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Anaphylaxis is a life-threatening or even fatal systemic hypersensitivity reaction. The incidence of anaphylaxis has risen at an alarming rate in the past decades in the majority of countries. Generally, the most common causes of severe or fatal anaphylaxis are medication, foods and Hymenoptera venoms. Anaphylactic reactions are characterized by the activation of mast cells and basophils and the release of mediators. These cells express a variety of receptors that enable them to respond to a wide range of stimulants. Most studies of anaphylaxis focus on IgE-dependent reactions. The mast cell has long been regarded as the main effector cell involved in IgE-mediated anaphylaxis. This paper reviews IgE-independent anaphylaxis, with special emphasis on mast cells, basophils, anaphylactic mediators, risk factors, triggers, and management.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
20
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
21
|
Ghali A, Lacombe V, Ravaiau C, Delattre E, Ghali M, Urbanski G, Lavigne C. The relevance of pacing strategies in managing symptoms of post-COVID-19 syndrome. J Transl Med 2023; 21:375. [PMID: 37291581 PMCID: PMC10248991 DOI: 10.1186/s12967-023-04229-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Post-COVID-19 syndrome (PCS) shares many features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PCS represents a major health issue worldwide because it severely impacts patients' work activities and their quality of life. In the absence of treatment for both conditions and given the beneficial effect of pacing strategies in ME/CFS, we conducted this study to assess the effectiveness of pacing in PCS patients. METHODS We retrospectively included patients meeting the World Health Organization definition of PCS who attended the Internal Medicine Department of Angers University Hospital, France between June 2020 and June 2022, and were followed up until December 2022. Pacing strategies were systematically proposed for all patients. Their medical records were reviewed and data related to baseline and follow-up assessments were collected. This included epidemiological characteristics, COVID-19 symptoms and associated conditions, fatigue features, perceived health status, employment activity, and the degree of pacing adherence assessed by the engagement in pacing subscale (EPS). Recovery was defined as the ability to return to work, and improvement was regarded as the reduction of the number and severity of symptoms. RESULTS A total of 86 patients were included and followed-up for a median time of 10 [6-13] months. Recovery and improvement rates were 33.7% and 23.3%, respectively. The EPS score was the only variable significantly associated with recovery on multivariate analysis (OR 40.43 [95% CI 6.22-262.6], p < 0.001). Patients who better adhered to pacing (high EPS scores) experienced significantly higher recovery and improvement rates (60-33.3% respectively) than those with low (5.5-5.5% respectively), or moderate (4.3-17.4% respectively) scores. CONCLUSION Our findings demonstrated that pacing is effective in the management of patients with PCS, and that high levels of adherence to pacing are associated with better outcomes.
Collapse
Affiliation(s)
- Alaa Ghali
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France.
| | - Valentin Lacombe
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Camille Ravaiau
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Estelle Delattre
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Maria Ghali
- Department of General Medicine, Faculty of Medicine of Angers, Angers, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| | - Christian Lavigne
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 4 Rue Larrey, 49000, Angers, France
| |
Collapse
|
22
|
Gugliandolo E, Macrì F, Fusco R, Siracusa R, Cordaro M, D'amico R, Peritore AF, Impellizzeri D, Genovese T, Cuzzocrea S, Di Paola R, Crupi R. Inhibiting IL-6 in medicine: a new twist to sustain inhibition of his cytokine tin the therapy of Pulmonary Arterial Hypertension. Pharmacol Res 2023; 192:106750. [PMID: 37004831 DOI: 10.1016/j.phrs.2023.106750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive disease characterized by an increase in blood pressure in the lungs' arteries. It can occur in a variety of species, including humans, dogs, cats, and horses. To date, PAH has a high mortality rate in both veterinary and human medicine, often due to complications such as heart failure. The complex pathological mechanisms of PAH involve multiple cellular signalling pathways at various levels. IL-6 is a powerful pleiotropic cytokine that regulates several phases of immune response, inflammation, and tissue remodelling. The hypothesis of this study was that the use of an IL-6 antagonist in PAH could interrupt or mitigate the cascade of events that leads to the progression of the disease and the worsening of clinical outcome, as well as tissue remodelling. In this study, we used two pharmacological protocols with an IL-6 receptor antagonist in a monocrotaline-induced PAH model in rats. Our results showed that the use of an IL-6 receptor antagonist had a significant protective effect, ameliorating both haemodynamic parameters, lung and cardiac function, tissue remodelling, and the inflammation associated with PAH. The results of this study suggest that the inhibition IL-6 could be a useful pharmacological strategy in PAH, in both human and veterinary medicine.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Ramona D'amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| |
Collapse
|
23
|
Wirth KJ, Löhn M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050978. [PMID: 37241210 DOI: 10.3390/medicina59050978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is often associated with various other syndromes or conditions including mast cell activation (MCA), dysmenorrhea and endometriosis, postural tachycardia (POTS) and small fiber neuropathy (SFN). The causes of these syndromes and the reason for their frequent association are not yet fully understood. We previously published a comprehensive hypothesis of the ME/CFS pathophysiology that explains the majority of symptoms, findings and chronicity of the disease. We wondered whether some of the identified key pathomechanisms in ME/CFS are also operative in MCA, endometriosis and dysmenorrhea, POTS, decreased cerebral blood flow and SFN, and possibly may provide clues on their causes and frequent co-occurrence. Our analysis indeed provides strong arguments in favor of this assumption, and we conclude that the main pathomechanisms responsible for this association are excessive generation and spillover into the systemic circulation of inflammatory and vasoactive tissue mediators, dysfunctional β2AdR, and the mutual triggering of symptomatology and disease initiation. Overall, vascular dysfunction appears to be a strong common denominator in these linkages.
Collapse
Affiliation(s)
- Klaus J Wirth
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany
| | - Matthias Löhn
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
25
|
Parente R, Giudice V, Cardamone C, Serio B, Selleri C, Triggiani M. Secretory and Membrane-Associated Biomarkers of Mast Cell Activation and Proliferation. Int J Mol Sci 2023; 24:ijms24087071. [PMID: 37108232 PMCID: PMC10139107 DOI: 10.3390/ijms24087071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Mast cells (MCs) are immune cells distributed in many organs and tissues and involved in the pathogenesis of allergic and inflammatory diseases as a major source of pro-inflammatory and vasoactive mediators. MC-related disorders are heterogeneous conditions characterized by the proliferation of MC within tissues and/or MC hyper-reactivity that leads to the uncontrolled release of mediators. MC disorders include mastocytosis, a clonal disease characterized by tissue MC proliferation, and MC activation syndromes that can be primary (clonal), secondary (related to allergic disorders), or idiopathic. Diagnosis of MC disorders is difficult because symptoms are transient, unpredictable, and unspecific, and because these conditions mimic many other diseases. Validation of markers of MC activation in vivo will be useful to allow faster diagnosis and better management of MC disorders. Tryptase, being the most specific MC product, is a widely used biomarker of proliferation and activation. Other mediators, such as histamine, cysteinyl leukotrienes, and prostaglandin D2, are unstable molecules and have limitations in their assays. Surface MC markers, detected by flow cytometry, are useful for the identification of neoplastic MC in mastocytosis but, so far, none of them has been validated as a biomarker of MC activation. Further studies are needed to identify useful biomarkers of MC activation in vivo.
Collapse
Affiliation(s)
- Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Valentina Giudice
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Selleri
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
26
|
Häder T, Molderings GJ, Klawonn F, Conrad R, Mücke M, Sellin J. Cluster-Analytic Identification of Clinically Meaningful Subtypes in MCAS: The Relevance of Heat and Cold. Dig Dis Sci 2023:10.1007/s10620-023-07921-5. [PMID: 37029308 PMCID: PMC10352424 DOI: 10.1007/s10620-023-07921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Mast cell activation syndrome (MCAS) is a clinically heterogeneous disease with allergy-like symptoms and abdominal complaints. Its etiology is only partially understood and it is often overlooked. AIMS The aim of this study was to identify subgroups of MCAS patients to facilitate diagnosis and allow a personalized therapy. METHODS Based on data from 250 MCAS patients, hierarchical and two-step cluster analyses as well as association analyses were performed. The data used included data from a MCAS checklist asking about symptoms and triggers and a set of diagnostically relevant laboratory parameters. RESULTS Using a two-step cluster analysis, MCAS patients could be divided into three clusters. Physical trigger factors were particularly decisive for the classification as they showed remarkable differences between the three clusters. Cluster 1, labeled high responders, showed high values for the triggers heat and cold, whereas cluster 2, labeled intermediate responders, presented with high values for the trigger heat and low values for cold. The third cluster, labeled low responders, did not react to thermal triggers. The first two clusters showed more divers clinical symptoms especially with regard to dermatological and cardiological complaints. Subsequent association analyses revealed relationships between triggers and clinical complaints: Abdominal discomfort is mainly triggered by histamine consumption, dermatological discomfort by exercise, and neurological symptoms are related to physical exertion and periods of starvation. The reasons for the occurrence of cardiological complaints are manifold and triggers for respiratory complaints still need better identification. CONCLUSION Our study identified three distinct clusters on the basis of physical triggers, which also differ significantly in their clinical symptoms. A trigger-related classification can be helpful in clinical practice for diagnosis and therapy. Longitudinal studies should be conducted to further understand the relationship between triggers and symptoms.
Collapse
Affiliation(s)
- Tinus Häder
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | | | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbuettel, Germany
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Martin Mücke
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Sellin
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany.
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
27
|
Lauritano D, Mastrangelo F, D’Ovidio C, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Trimarchi M, Carinci F, Conti P. Activation of Mast Cells by Neuropeptides: The Role of Pro-Inflammatory and Anti-Inflammatory Cytokines. Int J Mol Sci 2023; 24:ijms24054811. [PMID: 36902240 PMCID: PMC10002992 DOI: 10.3390/ijms24054811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mast cells (MCs) are tissue cells that are derived from bone marrow stem cells that contribute to allergic reactions, inflammatory diseases, innate and adaptive immunity, autoimmunity, and mental disorders. MCs located near the meninges communicate with microglia through the production of mediators such as histamine and tryptase, but also through the secretion of IL-1, IL-6 and TNF, which can create pathological effects in the brain. Preformed chemical mediators of inflammation and tumor necrosis factor (TNF) are rapidly released from the granules of MCs, the only immune cells capable of storing the cytokine TNF, although it can also be produced later through mRNA. The role of MCs in nervous system diseases has been extensively studied and reported in the scientific literature; it is of great clinical interest. However, many of the published articles concern studies on animals (mainly rats or mice) and not on humans. MCs are known to interact with neuropeptides that mediate endothelial cell activation, resulting in central nervous system (CNS) inflammatory disorders. In the brain, MCs interact with neurons causing neuronal excitation with the production of neuropeptides and the release of inflammatory mediators such as cytokines and chemokines. This article explores the current understanding of MC activation by neuropeptide substance P (SP), corticotropin-releasing hormone (CRH), and neurotensin, and the role of pro-inflammatory cytokines, suggesting a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, School of Dentistry, University of Foggia, 71100 Foggia, Italy
| | - Cristian D’Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece
| | - Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
28
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
29
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
31
|
Rujitharanawong C, Yoodee S, Sueksakit K, Peerapen P, Tuchinda P, Kulthanan K, Thongboonkerd V. Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Res 2022; 390:413-428. [PMID: 36125550 DOI: 10.1007/s00441-022-03687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Mast cell activation plays a key role in various allergic diseases and anaphylaxis. Several methods/techniques can be used for detection of mast cell activation. However, there was no previous systematic evaluation to compare the efficacy of each method/technique. The present study thus systematically compared various markers for mast cell activation induced by IgE cross-linking. The widely used RBL-2H3 mast cells were sensitized with anti-DNP (dinitrophenyl) IgE overnight and activated with DNP-BSA (bovine serum albumin) for up to 4 h. The untreated cells and those with anti-DNP IgE sensitization but without DNP-BSA activation served as the controls. Intracellular calcium level gradually increased to ~2-fold at 1 h, reached its peak (~5-fold) at 2 h, and returned to the basal level at 3-h post-activation. The increases in cellular tryptase level (by Western blotting) (~0.3- to 0.4-fold) and average cell size (~2.5-fold) and decrease of nucleus/cytoplasm ratio (~0.4- to 0.5-fold) were marginal at all time-points. By contrast, β-hexosaminidase release and CD63 expression (by both flow cytometry and immunofluorescence detection/localization), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence detection/localization) stably and obviously increased (~10-fold as compared with the untreated control and sensitized-only cells or detectable only after activation). Based on these data, the stably obvious increases (by ≥ 10-fold) in β-hexosaminidase release, CD63 expression (by both flow cytometry and immunofluorescence staining), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence staining) are recommended as the markers of choice for the in vitro study of mast cell activation using RBL-2H3 cells.
Collapse
Affiliation(s)
- Chuda Rujitharanawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Papapit Tuchinda
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
32
|
Nontryptase Urinary and Hematologic Biomarkers of Mast Cell Expansion and Mast Cell Activation: Status 2022. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1974-1984. [PMID: 35346887 DOI: 10.1016/j.jaip.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Quantitation of urinary metabolites of histamine, prostaglandin D2, and leukotriene E4 can fill the gap in our current efforts to improve diagnosis and management of symptomatic patients with systemic mastocytosis, and/or mast cell activation syndrome, In addition, patients symptomatic due to mast cell activation but who do not meet all the criteria for mast cell activation syndrome can have elevated baseline mediator metabolites. Serum tryptase levels have been the workhorse in diagnosing these disorders, but it has several drawbacks including the need to obtain acute and baseline samples, which require 2 visits to health care facilities and 2 venipunctures. Recently, increased baseline tryptase level has been reported in hereditary alpha tryptasemia, complicating diagnostic possibilities of an increased baseline tryptase level. Furthermore, no treatment can specifically be targeted at tryptase itself. In contrast, the finding of 1 or more elevated urinary levels of histamine, prostaglandin D2, and/or leukotriene E4 metabolites (1) greatly narrows diagnostic possibilities for causes of symptoms; (2) informs the practitioner what specific metabolic pathways are involved; and (3) targets the treatment in a specific, direct fashion. As a bonus, baseline spot/random urine samples can be obtained by the patients themselves and repeated at exactly the correct time when symptoms occur.
Collapse
|
33
|
Arun S, Storan A, Myers B. Mast cell activation syndrome and the link with long COVID. Br J Hosp Med (Lond) 2022; 83:1-10. [DOI: 10.12968/hmed.2022.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mast cells are innate immune cells found in connective tissues throughout the body, most prevalent at tissue-environment interfaces. They possess multiple cell-surface receptors which react to various stimuli and, after activation, release many mediators including histamine, heparin, cytokines, prostaglandins, leukotrienes and proteases. In mast cell activation syndrome, excessive amounts of inflammatory mediators are released in response to triggers such as foods, fragrances, stress, exercise, medications or temperature changes. Diagnostic markers may be difficult to assess because of their rapid degradation; these include urinary N-methyl histamine, urinary prostaglandins D2, DM and F2α and serum tryptase (which is stable) in the UK. Self-management techniques, medications and avoiding triggers may improve quality of life. Treatments include mast cell mediator blockers, mast cell stabilisers and anti-inflammatory agents. ‘Long COVID’ describes post-COVID-19 syndrome when symptoms persist for more than 12 weeks after initial infection with no alternative diagnosis. Both mast cell activation syndrome and long COVID cause multiple symptoms. It is theorised that COVID-19 infection could lead to exaggeration of existing undiagnosed mast cell activation syndrome, or could activate normal mast cells owing to the persistence of viral particles. Other similarities include the relapse-remission cycle and improvements with similar treatments. Importantly, however, aside from mast cell disorders, long COVID could potentially be attributed to several other conditions.
Collapse
Affiliation(s)
- Soumya Arun
- Division of Biosciences, University College London, London, UK
- Mast Cell Action, Leamington Spa, UK
| | - Abbie Storan
- Mast Cell Action, Leamington Spa, UK
- Department of Science, Engineering, and Environment, The University of Salford, Salford, UK
| | - Bethan Myers
- Haematology Department, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
34
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
35
|
Rattray C. Idiopathic osteoporosis, Ehlers–Danlos syndrome, postural orthostatic tachycardia syndrome, and mast cell activation disorder in a 27‐year‐old male patient: A unique case presentation. Clin Case Rep 2022; 10:e05887. [PMID: 35600027 PMCID: PMC9122800 DOI: 10.1002/ccr3.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
A young male patient presents with widespread pain and varying chronic inflammatory symptoms for three years and idiopathic low bone density for more than ten years. Based on the patient’s clinical history, the patient has been diagnosed with an hypermobile Ehlers–Danlos syndrome, postural orthostatic tachycardia syndrome, and mast cell activation disorder trifecta with affiliated inflammation‐induced osteoporosis.
Collapse
Affiliation(s)
- Cameron Rattray
- St. George’s University School of Medicine St. George Grenada, West Indies
| |
Collapse
|
36
|
Meghnem D, Leong E, Pinelli M, Marshall JS, Di Cara F. Peroxisomes Regulate Cellular Free Fatty Acids to Modulate Mast Cell TLR2, TLR4, and IgE-Mediated Activation. Front Cell Dev Biol 2022; 10:856243. [PMID: 35756999 PMCID: PMC9215104 DOI: 10.3389/fcell.2022.856243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Marinella Pinelli
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S. Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| | - Francesca Di Cara
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| |
Collapse
|
37
|
Kurin M, Elangovan A, Alikhan MM, Dulaijan BA, Silver E, Kaelber DC, Cooper G. Irritable bowel syndrome is strongly associated with the primary and idiopathic mast cell disorders. Neurogastroenterol Motil 2022; 34:e14265. [PMID: 34535952 PMCID: PMC9191257 DOI: 10.1111/nmo.14265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mounting evidence supports a mechanistic association between irritable bowel syndrome (IBS) symptoms and mast cell hyperactivity. Yet, association between IBS and mast cell disorders (MCDs) has not been studied. We examined this association using two large databases and verified with manual chart review. METHODS The IBM Watson Health Explorys database (Somers, NY), an aggregate of electronic health record (EHR) data from over two dozen US healthcare systems, and Epic's SlicerDicer tool, a self-service tool containing de-identified data from the Epic EHR, were used to identify patients with IBS and MCDs. Patients with organic gastrointestinal disease or diseases associated with secondary mast cell hyperproliferation were excluded. Results were verified with manual chart review from two academic centers. KEY RESULTS Up to 4% of IBS patients had a comorbid MCD. IBS was strongly associated with all MCDs. The strongest association was between IBS and mast cell activation syndrome (OR 16.3; 95% CI 13.1-20.3). Odds ratios for IBS+urticaria, IBS+idiopathic urticaria, IBS+non-malignant mastocytosis, and IBS+mast cell malignancy ranged from 4.5 to 9.9. Patients from each of these overlap cohorts were predominantly female, and the overlap occurred with all IBS subtypes. Thorough endoscopic evaluation and comorbid mood disorders and migraines are more common in the overlap cohorts than in IBS alone. CONCLUSIONS/INFERENCES In a large US database encompassing >53 million patients over >20 years, patients with IBS are at least 4 times more likely to have a MCD than the general population. Further study of mast cell involvement in the pathogenesis of IBS is warranted.
Collapse
Affiliation(s)
- Michael Kurin
- Division of Gastroenterology and Hepatology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Abbinaya Elangovan
- Internal Medicine-Pediatrics Residency Program, MetroHealth Medical Center, Cleveland, OH
| | - Muhammed Mustafa Alikhan
- Internal Medicine Residency Program, Department of General Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Basmah Al Dulaijan
- Internal Medicine Residency Program, Department of General Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Eli Silver
- Division of Pediatric Allergy and Immunology, University Hospitals Cleveland Medical Center, Assistant Professor of Pediatrics, Case Western Reserve University, Cleveland, OH
| | - David C. Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System and Departments of Internal Medicine, Pediatrics and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH
| | - Gregory Cooper
- Gastroenterology Fellowship Program director, University Hospitals Cleveland Medical Center, Professor of Medicine, Oncology, Population and Quantitative Health Sciences, Case Western Reserve University
| |
Collapse
|
38
|
Activation of TRESK background potassium channels by cloxyquin exerts protective effects against excitotoxic-induced brain injury and neuroinflammation in neonatal rats. J Neuroimmunol 2022; 368:577894. [DOI: 10.1016/j.jneuroim.2022.577894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
|
39
|
Schreiner TG, Romanescu C, Popescu BO. The Blood-Brain Barrier-A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022; 12:538. [PMID: 35454127 PMCID: PMC9025898 DOI: 10.3390/biom12040538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, multiple sclerosis (MS), a chronic neuroinflammatory disease with severe personal and social consequences, has undergone a steady increase in incidence and prevalence rates worldwide. Despite ongoing research and the development of several novel therapies, MS pathology remains incompletely understood, and the prospect for a curative treatment continues to be unpromising in the near future. A sustained research effort, however, should contribute to a deeper understanding of underlying disease mechanisms, which will undoubtedly yield improved results in drug development. In recent years, the blood-brain barrier (BBB) has increasingly become the focus of many studies as it appears to be involved in both MS disease onset and progression. More specifically, neurovascular unit damage is believed to be involved in the critical process of CNS immune cell penetration, which subsequently favors the development of a CNS-specific immune response, leading to the classical pathological and clinical hallmarks of MS. The aim of the current narrative review is to merge the relevant evidence on the role of the BBB in MS pathology in a comprehensive and succinct manner. Firstly, the physiological structure and functions of the BBB as a component of the more complex neurovascular unit are presented. Subsequently, the authors review the specific alteration of the BBB encountered in different stages of MS, focusing on both the modifications of BBB cells in neuroinflammation and the CNS penetration of immune cells. Finally, the currently accepted theories on neurodegeneration in MS are summarized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Constantin Romanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
40
|
Goncharov NV, Vasilyev KA, Kudryavtsev IV, Avdonin PP, Belinskaia DA, Stukova MA, Shamova OV, Avdonin PV. Experimental Search for New Means of Pathogenetic Therapy COVID-19: Inhibitor of H2-Receptors Famotidine Increases the Effect of Oseltamivir on Survival and Immune Status of Mice Infected by A/PR/8/34 (H1N1). J EVOL BIOCHEM PHYS+ 2022; 58:230-246. [PMID: 35283537 PMCID: PMC8897615 DOI: 10.1134/s0022093022010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
The development of drugs for the therapy of COVID-19 is one
of the main problems of modern physiology, biochemistry and pharmacology.
Taking into account the available information on the participation
of mast cells and the role of histamine in the pathogenesis of COVID-19,
as well as information on the positive role of famotidine in the
prevention and treatment of coronavirus infection, an experiment
was carried out using famotidine in a mouse model. We used a type
A/PR/8/34 (H1N1) virus adapted to mice. The antiviral drug oseltamivir
(Tamiflu), which belongs to the group of neuraminidase inhibitors,
was used as a reference drug. The use of famotidine in combination
with oseltamivir can increase survival, improve the dynamics of
animal weight, reduce the level of NKT cells and increase the level
of naive T-helpers. Further studies of famotidine in vivo should
be aimed at optimizing the regimen of drug use at a higher viral
load, as well as with a longer use of famotidine.
Collapse
Affiliation(s)
- N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| | - K. A. Vasilyev
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - P. P. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| | - D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - M. A. Stukova
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - O. V. Shamova
- Institute of Experimental
Medicine, St. Petersburg, Russia
| | - P. V. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
The Role of Nutrients in Prevention, Treatment and Post-Coronavirus Disease-2019 (COVID-19). Nutrients 2022; 14:nu14051000. [PMID: 35267974 PMCID: PMC8912782 DOI: 10.3390/nu14051000] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 virus, infecting human cells via its spike protein, causes Coronavirus disease 2019 (COVID-19). COVID-19 is characterized by shortness of breath, fever, and pneumonia and is sometimes fatal. Unfortunately, to date, there is still no definite therapy to treat COVID-19. Therefore, the World Health Organization (WHO) approved only supportive care. During the COVID-19 pandemic, the need to maintain a correct intake of nutrients to support very weakened patients in overcoming disease arose. The literature available on nutrient intake for COVID-19 is mainly focused on prevention. However, the safe intake of micro- and/or macro-nutrients can be useful either for preventing infection and supporting the immune response during COVID-19, as well as in the post-acute phase, i.e., “long COVID”, that is sometimes characterized by the onset of various long lasting and disabling symptoms. The aim of this review is to focus on the role of nutrient intake during all the different phases of the disease, including prevention, the acute phase, and finally long COVID.
Collapse
|
42
|
Leru PM. Evaluation and Classification of Mast Cell Disorders: A Difficult to Manage Pathology in Clinical Practice. Cureus 2022; 14:e22177. [PMID: 35174041 PMCID: PMC8841127 DOI: 10.7759/cureus.22177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 01/28/2023] Open
Abstract
Mast cells are granulocytic immunomodulatory cells with an important role in physiologic and pathogenic processes due to their location at the junction between the internal and external environment and to their capacity to release a broad range of active mediators. Mast cells mediators have both pro-inflammatory and anti-inflammatory activities and are implicated in various and complex pathology. Mast cells disorders (MCDs) represent a heterogeneous pathology, with frequently difficult and challenging evaluation and diagnostic workup. MCDs can be primary, secondary to other diseases, or idiopathic. Increased research interest in this field was noted during the last decade and various classification criteria, as well as diagnostic and treatment recommendations, were proposed. The aim of this paper is to review the most recent published data on the classification and evaluation of mast cells disorders and to point out the main difficulties in diagnosing and managing these complex diseases in medical practice.
Collapse
Affiliation(s)
- Polliana Mihaela Leru
- Clinical Department 5, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU.,Internal Medicine, Colentina Clinical Hospital/Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| |
Collapse
|
43
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
44
|
Baddireddy SM, Akula ST, Nagilla J, Manyam R. Quantification of mast cells in oral reactive lesions - an immunohistochemical study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022219. [PMID: 36300240 PMCID: PMC9686154 DOI: 10.23750/abm.v93i5.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Reactive lesions (RLs) are the most common oral mucosal lesions that are benign in nature and are more likely to reoccur if the lesion or local irritants at the site are not completely removed. The histopathology is usually determined by the stage of the lesion, which includes neovascularization, inflammation, and fibrosis etc. Aim: To evaluate and compare mast cell counts in different reactive lesions with normal gingiva (NG) and to determine the correlation between mast cell count and inflammation, fibrosis, and angiogenesis using immunohistochemistry. MATERIALS & METHODS 10 pyogenic granulomas (early and late), 10 irritational fibromas, 5 inflammatory fibrous hyperplasia, and 5 peripheral cemento-ossifying fibromas 5 normal gingiva were evaluated. Mast cell counts were compared. ANOVA and t-tests were used to analyze the data. Spearman correlation was used to compare the mast cell count to the inflammation, fibrosis, and vascular components. A p-value of 0.05 was considered statistically significant. RESULTS The mean number of mast cells were increased in oral reactive lesions when compared to NG. Although mast cells were significantly higher in IFH and IF, there was no correlation found among mast cells and fibrosis/inflammation/vascularity. CONCLUSION Reactive process involves multiple interactions among mast cells, endothelial cells, fibroblasts, and other immune cells, among which the role of mast cells has been evaluated. Mast cell count increases in these reactive lesions, possibly reflecting an important role in microenvironment modification, but it is not the sole cause of these lesions' pathogenesis.
Collapse
Affiliation(s)
| | - Satya Tejaswi Akula
- Department of Oral Pathology and Microbiology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Jithender Nagilla
- Department of Public Health Dentistry, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Ravikanth Manyam
- Department of Oral Pathology and Microbiology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|
45
|
Taruselli MT, Kolawole EM, Qayum AA, Haque TT, Caslin HL, Abebayehu D, Kee SA, Dailey JM, Jackson KG, Burchett JR, Spence AJ, Pondicherry N, Barnstein BO, Gomez G, Straus DB, Ryan JJ. Fluvastatin enhances IL-33-mediated mast cell IL-6 and TNF production. Cell Immunol 2022; 371:104457. [PMID: 34883342 PMCID: PMC8782378 DOI: 10.1016/j.cellimm.2021.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Statins are HMG-CoA reductase inhibitors prescribed for lowering cholesterol. They can also inhibit inflammatory responses by suppressing isoprenylation of small G proteins. Consistent with this, we previously found that fluvastatin suppresses IgE-mediated mast cell function. However, some studies have found that statins induced pro-inflammatory cytokines in macrophages and NK cells. In contrast to IgE signaling, we show that fluvastatin augments IL-33-induced TNF and IL-6 production by mast cells. This effect required the key mast cell growth factor, stem cell factor (SCF). Treatment of IL-33-activated mast cells with mevalonic acid or isoprenoids reduced fluvastatin effects, suggesting fluvastatin acts at least partly by reducing isoprenoid production. Fluvastatin also enhanced IL-33-induced NF-κB transcriptional activity and promoted neutrophilic peritonitis in vivo, a response requiring mast cell activation. Other statins tested did not enhance IL-33 responsiveness. Therefore, this work supports observations of unexpected pro-inflammatory effects of some statins and suggests mechanisms by which this may occur. Because statins are candidates for repurposing in inflammatory disorders, our work emphasizes the importance of understanding the pleiotropic and possible unexpected effects of these drugs.
Collapse
Affiliation(s)
- Marcela T Taruselli
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | | | - Amina Abdul Qayum
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sydney A Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jordan M Dailey
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason R Burchett
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Neha Pondicherry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Gregorio Gomez
- University of Houston College of Medicine, Department of Biomedical Sciences, Houston, TX 77204, United States
| | - David B Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - John J Ryan
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
46
|
Monaco-Brown M, Lawrence DA. Obesity and Maternal-Placental-Fetal Immunology and Health. Front Pediatr 2022; 10:859885. [PMID: 35573953 PMCID: PMC9100592 DOI: 10.3389/fped.2022.859885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity rates in women of childbearing age is now at 29%, according to recent CDC reports. It is known that obesity is associated with oxidative stress and inflammation, including disruptions in cellular function and cytokine levels. In pregnant women who are obese, associated placental dysfunction can lead to small for gestational age (SGA) infants. More frequently, however, maternal obesity is associated with large for gestational age (LGA) newborns, who also have higher incidence of metabolic disease and asthma due to elevated levels of inflammation. In addition, anthropogenic environmental exposures to "endocrine disrupting" and "forever" chemicals affect obesity, as well as maternal physiology, the placenta, and fetal development. Placental function is intimately associated with the control of inflammation during pregnancy. There is a large amount of literature examining the relationship of placental immunology, both cellular and humoral, with pregnancy and neonatal outcomes. Cells such as placental macrophages and NK cells have been implicated in spontaneous miscarriage, preeclampsia, preterm birth, perinatal neuroinflammation, and other post-natal conditions. Differing levels of placental cytokines and molecular inflammatory mediators also have known associations with preeclampsia and developmental outcomes. In this review, we will specifically examine the literature regarding maternal, placental, and fetal immunology and how it is altered by maternal obesity and environmental chemicals. We will additionally describe the relationship between placental immune function and clinical outcomes, including neonatal conditions, autoimmune disease, allergies, immunodeficiency, metabolic and endocrine conditions, neurodevelopment, and psychiatric disorders.
Collapse
Affiliation(s)
- Meredith Monaco-Brown
- Department of Pediatrics, Bernard and Millie Duker Children's Hospital at Albany Medical Center, Albany, NY, United States
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, NY, United States.,Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, United States
| |
Collapse
|
47
|
Brock I, Prendergast W, Maitland A. Mast cell activation disease and immunoglobulin deficiency in patients with hypermobile Ehlers-Danlos syndrome/hypermobility spectrum disorder. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:473-481. [PMID: 34747107 DOI: 10.1002/ajmg.c.31940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Mast cell activation disease (MCAD) includes single organ disease such as asthma, urticaria, and gastroenteritis, as well as multiorgan system involvement such as mast cell activation syndrome and anaphylaxis. Reports link MCAD with hypermobile Ehlers-Danlos syndrome (hEDS), hypermobility spectrum disorder (HSD), and with primary immune deficiencies such as complement and immunoglobulin deficiencies (Ig Def). This study assesses the concurrence of these syndromes. We undertook a cohort analysis of patients seen in a community-based Allergy/Immunology clinic from 2015 to 2019. We searched for diagnostic codes for Ig Def disorders, hypermobility syndrome, hypermobile/Ehlers-Danlos syndrome, and MCADs. Of 974 patients with suspected MCAD, 449 (46%) had a diagnosis of MCAD; 496 (51%) of cases had a combination of at least two of hEDS/HSD, MCAD, and Ig Def. Ig Def was present in 417 (43%) of patients; 188 (19.3%) had hEDS/HSD with an Ig Def with or without MCAD and accounted for 45% of all the cases with Ig Def. Of 974 cases, 101 (10%) had hEDS/HSD and MCAD; 207 (21%) had Ig Def and MCAD; 7 (0.7%) had Ig Def and hEDS/HSD; and 181 (19%) had a combination of all three syndromes. Most patients (74%) with these comorbidities were female. The presence of MCAD and Ig Def should be explored in patients with hEDS/HSD. Identifying underlying contributors to recurrent/chronic inflammation and tissue injury is needed to tailor and personalize therapies. This, in turn, can reduce tissue damage, iatrogenic intervention, and optimize health outcomes.
Collapse
Affiliation(s)
- Isabelle Brock
- Comprehensive Asthma and Allergy, Tarrytown, New York, USA.,Qolify, New York, New York, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Anne Maitland
- Comprehensive Asthma and Allergy, Tarrytown, New York, USA.,Department of Neurology, Mount Sinai-South Nassau, Hewlett, New York, USA
| |
Collapse
|
48
|
Lam HY, Tergaonkar V, Kumar AP, Ahn KS. Mast cells: Therapeutic targets for COVID-19 and beyond. IUBMB Life 2021; 73:1278-1292. [PMID: 34467628 PMCID: PMC8652840 DOI: 10.1002/iub.2552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Mast cells (MCs) are innate immune cells that widely distribute throughout all tissues and express a variety of cell surface receptors. Upon activation, MCs can rapidly release a diverse array of preformed mediators residing within their secretory granules and newly synthesize a broad spectrum of inflammatory and immunomodulatory mediators. These unique features of MCs enable them to act as sentinels in response to rapid changes within their microenvironment. There is increasing evidence now that MCs play prominent roles in other pathophysiological processes besides allergic inflammation. In this review, we highlight the recent findings on the emerging roles of MCs in the pathogenesis of coronavirus disease-2019 (COVID-19) and discuss the potential of MCs as novel therapeutic targets for COVID-19 and other non-allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vinay Tergaonkar
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
49
|
Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis 2021; 112:217-226. [PMID: 34563706 PMCID: PMC8459548 DOI: 10.1016/j.ijid.2021.09.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives Hyper-inflammation caused by COVID-19 may be mediated by mast cell activation (MCA) which has also been hypothesized to cause Long-COVID (LC) symptoms. We determined prevalence/severity of MCA symptoms in LC. Methods Adults in LC-focused Facebook support groups were recruited for online assessment of symptoms before and after COVID-19. Questions included presence and severity of known MCA and LC symptoms and validated assessments of fatigue and quality of life. General population controls and mast cell activation syndrome (MCAS) patients were recruited for comparison if they were ≥18 years of age and never had overt COVID-19 symptoms. Results There were 136 LC subjects (89.7% females, age 46.9 ±12.9 years), 136 controls (65.4% females, age 49.2 ±15.5), and 80 MCAS patients (85.0% females, age 47.7 ±16.4). Pre-COVID-19 LC subjects and controls had virtually identical MCA symptom and severity analysis. Post-COVID-19 LC subjects and MCAS patients prior to treatment had virtually identical MCA symptom and severity analysis. Conclusions MCA symptoms were increased in LC and mimicked the symptoms and severity reported by patients who have MCAS. Increased activation of aberrant mast cells induced by SARS-CoV-2 infection by various mechanisms may underlie part of the pathophysiology of LC, possibly suggesting routes to effective therapy.
Collapse
Affiliation(s)
- Leonard B Weinstock
- Associate Professor of Clinical Medicine, Departments of Medicine, Missouri Baptist Medical Center and Washington University School of Medicine, President, Specialists in Gastroenterology, 11525 Olde Cabin Road, St. Louis, MO, USA 63141, TEL 314-997-4627, FAX 314-997-5086.
| | - Jill B Brook
- Biostatistics, Private Practice, 13285 Roundhill, Truckee, CA, USA 96161, TEL 626-375-6725.
| | - Arthur S Walters
- Professor of Neurology, Division of Sleep Medicine, Vanderbilt University School of Medicine, Medical Center North A-0118, 1161 21(st) Ave South, Nashville, TN, USA 37232-2551, TEL 615-322-0283, FAX 615- 936-5663.
| | - Ashleigh Goris
- Manager, Infection Prevention & Control and Clinical Quality, Missouri Baptist Medical Center, Mailstop: 95, 3015 N. Ballas Road, St. Louis, MO, USA 63131, TEL 314-996-5421, FAX 314-996-5909.
| | - Lawrence B Afrin
- Department of Mast Cell Studies, Hematology/Oncology, AIM Center for Personalized Medicine, Purchase, NY, USA 10577, TEL 914-730-7390, FAX 914-730-7391.
| | - Gerhard J Molderings
- Associate Professor of Pharmacology and Toxicology, Molecular Geneticist, Immunologist, Institute of Human Genetics, University Hospital Bonn, D53127 Bonn, Germany, TEL ++49 1623322001, FAX ++49 2225 9984911.
| |
Collapse
|
50
|
Shulpekova YO, Nechaev VM, Popova IR, Deeva TA, Kopylov AT, Malsagova KA, Kaysheva AL, Ivashkin VT. Food Intolerance: The Role of Histamine. Nutrients 2021; 13:3207. [PMID: 34579083 PMCID: PMC8469513 DOI: 10.3390/nu13093207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Histamine is a natural amine derived from L-histidine. Although it seems that our knowledge about this molecule is wide and diverse, the importance of histamine in many regulatory processes is still enigmatic. The interplay between different types of histamine receptors and the compound may cause ample effects, including histamine intoxication and so-called histamine intolerance or non-allergic food intolerance, leading to disturbances in immune regulation, manifestation of gastroenterological symptoms, and neurological diseases. Most cases of clinical manifestations of histamine intolerance are non-specific due to tissue-specific distribution of different histamine receptors and the lack of reproducible and reliable diagnostic markers. The diagnosis of histamine intolerance is fraught with difficulties, in addition to challenges related to the selection of a proper treatment strategy, the regular course of recovery, and reduced amelioration of chronic symptoms due to inappropriate treatment prescription. Here, we reviewed a history of histamine uptake starting from the current knowledge about its degradation and the prevalence of histamine precursors in daily food, and continuing with the receptor interactions after entering and the impacts on the immune, central nervous, and gastrointestinal systems. The purpose of this review is to build an extraordinarily specific method of histamine cycle assessment in regard to non-allergic intolerance and its possible dire consequences that can be suffered.
Collapse
Affiliation(s)
- Yulia O. Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Vladimir M. Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Irina R. Popova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Tatiana A. Deeva
- Department of Biological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Vladimir T. Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| |
Collapse
|