1
|
Huanhong K, Lumsangkul C, Arjin C, Sirilun S, Tangpao T, Wang YL, Mektrirat R, Lin CS, Sommano SR, Sringarm K. Dietary supplementation of coffee pulp extract enhances growth performance and intestinal morphology in broiler chicken. Poult Sci 2025; 104:104873. [PMID: 39952143 PMCID: PMC12011096 DOI: 10.1016/j.psj.2025.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Coffee is a renowned beverage derived from plants globally. In the coffee production process, coffee pulp is a by-product that is abundant in phenolic compounds. Therefore, this study aimed to assess the effect of coffee pulp extract (CPE) on growth performance, blood biochemistry, intestinal morphology, carcass characteristics, and meat quality of broiler chickens. A total of 160 one-day-old male Ross 308 broilers were randomly allocated to four treatments with five replicates and eight chicks per replicate in a completely randomized design. These four dietary treatments included a basal diet with CPE of 0 (Control), 250 (CPE250), 500 (CPE500), and 1,000 (CPE1000) mg/kg diet for 35 days. The results showed that the body weight (BW) of the CPE500 group was significantly higher (P < 0.01) compared to the other groups at 35 days. Moreover, CPE500 increased the average daily gain (ADG) (P = 0.004) and reduced the feed conversion ratio (FCR) (P = 0.008). No significant differences (P > 0.05) were observed in the blood biochemistry profile. In addition, the investigation on intestinal morphology showed that CPE supplementation enhanced villus height (VH) (P = 0.004), crypt depth (CD) (P < 0.05), and ratio of VH:CD (P < 0.05) in the duodenum. Dietary supplementation with CPE significantly increased the percentage of neck weight (P < 0.05) compared to the control groups. However, no significant effects of CPE supplementation were observed on the meat quality parameters of breast and thigh muscles, including pH, color, water-holding capacity, and tenderness (P > 0.05). A significant increase (P < 0.05) in thigh fat content was observed with CPE supplementation. In conclusion, CPE500 can improve the growth performance and intestinal morphology of broiler chickens despite the presence of antioxidants and anti-inflammatory agents. This suggests that coffee pulp biomass could potentially be used as an alternative feed additive from agricultural biomass in broiler production.
Collapse
Affiliation(s)
- Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tibet Tangpao
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yu-Lei Wang
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Raktham Mektrirat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand; Chinese-Thai Cooperation Laboratory of Traditional Chinese Veterinary Medicine and Techniques, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 s.4 Roosevelt Rd, Taipei 10617, Taiwan
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Bottegal DN, Latorre MÁ, Lobón S, Argemí-Armengol I, Álvarez-Rodríguez J. Impacts of carob pulp (Ceratonia siliqua L.) and vitamin E on pork colour, oxidative stability, lipid composition and microbial growth. Meat Sci 2025; 220:109710. [PMID: 39549428 DOI: 10.1016/j.meatsci.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
This study aimed to evaluate the impact of the dietary by-product rich in polyphenols (Carob pulp, Cp) and supra-nutritional level of vitamin (Vit) E on pork quality and shelf-life of meat stored in modified atmosphere packaging for 15 days. A total of 44 pigs (entire males and gilts, 170 ± 4.5 days of age and 127.8 ± 3.6 kg of body weight) were randomly selected from a larger group (one pig per pen). Pigs were fed ad libitum with one of four diets in a 2 × 2 factorial arrangement, with two feed inclusion levels each for Cp (0 vs. 20 %) and Vit E (30 (Low) vs. 300 IU/kg of feed (High)) for 40 days. No interactions between Cp and Vit E were detected for most variables assessed. Meat colour attributes evolved regardless of diet or sex, although metmyoglobin formation was preserved until 13 days. The Cp diets did not affect malondialdehyde nor α-tocopherol content in meat. High Vit E limited the malondialdehyde production up to 13 days and increased 1.8-fold the muscle α-tocopherol content compared to Low Vit E. The 20 %-Cp group tended to reduce total aerobic microbial count compared to 0 %-Cp group after 15 days of storage. Including Cp slightly affected the meat fatty acid (FA) profile, whereas Vit E did not modify it. Entire males presented higher content of polyunsaturated FA than gilts. Including 20 % Cp into pigs' diets does not impair meat quality, while High Vit E reduces lipid oxidation but not meat discolouration.
Collapse
Affiliation(s)
- Diego Nicolas Bottegal
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Instituto Nacional de Tecnología Agropecuaria (INTA), Rivadavia 1439, Ciudad de Buenos Aires C1033AAE, Argentina.
| | - María Ángeles Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza-IA2, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Sandra Lobón
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain; Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain.
| | - Immaculada Argemí-Armengol
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Javier Álvarez-Rodríguez
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
3
|
Mullenix GJ, Greene ES, Ramser A, Maynard C, Dridi S. Effect of a microencapsulated phyto/phycogenic blend supplementation on growth performance, processing parameters, meat quality, and sensory profile in male broilers. Front Vet Sci 2024; 11:1382535. [PMID: 38605922 PMCID: PMC11007207 DOI: 10.3389/fvets.2024.1382535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Powered by consumer taste, value, and preferences, natural products including phytogenics and algae are increasingly and separately used in the food systems where they have been reported to improve growth performance in poultry and livestock. The present study aimed to determine the effects of a new feed additive, microencapsulated NUQO© NEX, which contains a combination of phytogenic and phycogenic, on broiler growth performance, blood chemistry, bone health, meat quality and sensory profile. Male Cobb500 chicks (n = 1,197) were fed a 3-phase feeding intervals; 1-14d starter, 15-28d grower, and 29-40d finisher. The dietary treatments included a corn-soy basal Control (CON), basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 28d then 75 g/ton from d 28 to 40 (NEX75), and basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 40d (NEX100). The NEX100 supplemented birds had 62 g more BWG increase and 2.1-point improvement in FCR compared with CON in the finisher and overall growth phase (p < 0.05), respectively. Day 40 processing body weights and carcass weights were heavier for the NEX100 supplemented birds (p < 0.05). The incidences of muscle myopathies were also higher in NEX treatments, which could be associated with the heavier weights, but the differences were not detected to be significant. The NEX75 breast filets had more yellowness than other dietary treatments (p = 0.003) and the NEX 100 treatment reduced the levels of breast filet TBARS at 7 days-post harvest (p = 0.053). Finally, both NEX treatments reduced the incidence of severe bone (tibia and femur) lesions. In conclusion, the supplementation of the phytogenic NUQO© NEX improved finisher performance parameters, whole phase FCR, processing carcass weights, and breast filet yellowness, at varying inclusion levels.
Collapse
Affiliation(s)
| | | | | | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Wu H, Wang S, Xie J, Ji F, Peng W, Qian J, Shen Q, Hou G. Effects of Dietary Lycopene on the Growth Performance, Antioxidant Capacity, Meat Quality, Intestine Histomorphology, and Cecal Microbiota in Broiler Chickens. Animals (Basel) 2024; 14:203. [PMID: 38254372 PMCID: PMC10812500 DOI: 10.3390/ani14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The experiment aimed to investigate the effects of dietary lycopene on the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens. We randomly divided five hundred and seventy-six one-day-old male broilers into four groups each with six replicates and 24 chickens in each replicate. The control group (CG) was fed the basal diet, and the other groups were given powder lycopene of 10, 20, and 30 mg/kg lycopene (LP10, LP20, and LP30, respectively). Compared with the control group, (1) the dietary lycopene increased (p = 0.001) the average daily gain and decreased (p = 0.033) the feed conversion ratio in the experimental groups; (2) the glutathione peroxidase enzyme contents in LP20 were higher (p =< 0.001) in myocardium; (3) the crude protein contents were higher (p = 0.007) in the group treated with 30 mg/kg dietary lycopene; (4) the jejunum villous height was higher (p = 0.040) in LP20; (5) the Unclassified-f-Ruminococcaceae relative abundance was significantly higher (p = 0.043) in LP20. In this study, adding 20 mg/kg dietary lycopene to the broiler chickens' diets improved the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Sibo Wang
- Abna Management (Shangai) Co., Ltd., Shanghai 200050, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinyu Qian
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd., Haikou 571127, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
5
|
Zhao X, Du B, Wan M, Li J, Qin S, Nian F, Tang D. Analysis of the antioxidant activity of toons sinensis extract and their biological effects on broilers. Front Vet Sci 2024; 10:1337291. [PMID: 38260193 PMCID: PMC10800727 DOI: 10.3389/fvets.2023.1337291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts are rich in a variety of nutrients and contain a large number of bioactive compounds, and compared with traditional feed additives, they have advantages such as wide sources, natural safety and rich nutrition. This study employed in vitro antioxidant and animal experiments to comprehensively evaluate the use of Toona sinensis extract (TSE) in broiler production. 508 1-day-old Cobb 500 broilers were randomly assigned to the 7 experimental groups with 6 replications and 12 birds/replicate. Two groups received Vitamin C (VC) 300 g/t and Vitamin E 500 g/t, and five dose groups of TSE received 0, 300, 600, 900, and 1,200 g/t of TSE in their feed. The study spanned 42 days, with a starter phase (1-21 days) and a finisher phase (22-42 days). The results showed that compared to ascorbic acid, TSE had the scavenging ability of 2,2-Diphenyl-1-picrylhydrazyl and hydroxyl radical, with IC50 values of 0.6658 mg/mL and 33.1298 mg/mL, respectively. Compared to TSE 0 group, broilers fed with 1,200 g/t TSE showed significant weight gain during the starter phase and increased the feed-to-weight gain ratio during both the starter and finisher phases. Additionally, broilers receiving 1,200 g/t TSE had enhanced dry matter and organic matter utilization. Concerning meat quality, broilers in the 1,200 g/t TSE group demonstrated increased cooked meat yield, and pH value, as well as higher antioxidant capacity (T-AOC), dismutase (SOD), and glutathione peroxidase (GSH-PX) in serum. In addition, there was no significant difference in ileal microflora due to TSE supplementation. In summary, this study confirms the positive impact of a dietary inclusion of 1,200 g/t TSE on broiler growth, meat quality, and serum antioxidants.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baolong Du
- Yizhou District Animal Disease Prevention and Control Center, Hami, China
| | - Minyan Wan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Battacone G, Lunesu MF, Manso T, Vieira C, Pulina G, Nudda A. The quality of meat in milk fed lambs is affected by the ewe diet: A review. Meat Sci 2024; 207:109374. [PMID: 37922665 DOI: 10.1016/j.meatsci.2023.109374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Several scientific publications have highlighted the importance of feeding management practices in improving the nutritional properties of milk from dairy ewes. Meat production quality from suckling lambs is based on the use of milk as exclusive or near exclusive dietary component. There is considerable evidence that lamb meat contains many important nutrients and bioactive compounds that play an important role in consumer health. This paper examines the different quality characteristics of lamb meat from ewes fed different diets to improve milk quality. To conduct this research, we consulted different scientific databases and acquired relevant documents that studied the relationships between the dietary treatment of lactating ewes and the performance of their suckling lambs (growth and carcass traits) as well as the meat quality in terms of nutrient content (fat and protein in particular), bioactive compounds content (fatty acids, vitamins, and antioxidant molecules), color, odor and flavor. The extent of change in meat carcass traits and meat quality of suckling lambs due to different feeding strategies applied to ewes was evaluated and discussed. This overview of the knowledge on the relationship between the milk quality and suckling lamb quality can be useful for production and communication strategies development for the lamb meat industry.
Collapse
Affiliation(s)
- Gianni Battacone
- Dipartimento di Agraria, University of Sassari, Viale Italia 39a, 07100 Sassari, Italy
| | | | - Teresa Manso
- Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Spain
| | - Ceferina Vieira
- Estación Tecnológica de la Carne, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Guijuelo, Salamanca, Spain
| | - Giuseppe Pulina
- Dipartimento di Agraria, University of Sassari, Viale Italia 39a, 07100 Sassari, Italy
| | - Anna Nudda
- Dipartimento di Agraria, University of Sassari, Viale Italia 39a, 07100 Sassari, Italy
| |
Collapse
|
7
|
Hassan S, Abou-Shehema B, Shahba H, Hassan M, Boriy E, Rozan M. Impact of dietary vitamin (E) and Eruca sativa seeds powder on broiler productivity, health, carcass characteristics, and meat quality. Anim Biotechnol 2023; 34:5037-5054. [PMID: 37352431 DOI: 10.1080/10495398.2023.2224844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
This investigation examined the impact of nutritional vitamin E (VE) and Eruca sativa seeds powder (ESSP) on broilers' performance, physiological, and meat quality. A total of 350 two-day-old Arbor Acres broiler chicks were used in this study. Chicks were allocated into five dietary treatments as follows: control (fed a basic diet), VE treatment (fed a basic diet supplemented with 150 mg/kg diet), the third, fourth, and fifth treatments were fed a basic diet supplied by different levels of ESSP (0.1, 0.2 and 0.4 g/kg diet). Outcomes showed that chicks of VE treatment or ESSP (0.2 g/kg) significantly improved vital body weight (BW), body weight gain (BWG) and feed conversion ratio (FCR). Additionally, relevant dressing and hind parts of the carcass for birds of VE treatment or ESSP at different levels were significantly increased. The results showed a significant improvement in meat quality traits. Moreover, ESSP (0.1 and 0.2 g/kg) groups represented a significant decrease in the total bacterial count and E. coli compared with other groups. In conclusion, ESSP positively affected broiler performance, hematological, and immunological indices, carcass characteristics, intestinal bacterial count, meat quality, and cooking properties of the resulting meat, especially at the level of (0.2 g/kg).
Collapse
Affiliation(s)
- Saber Hassan
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Bahaa Abou-Shehema
- Department of Poultry Nutrition, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hossam Shahba
- Rabbit, Turkey and Water Fowl Research Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Esmail Boriy
- Food & Diary Science and Technology Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mahmoud Rozan
- Food & Diary Science and Technology Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
8
|
Yilmaz E, Gul M. Effects of dietary supplementation of cumin ( Cuminum cyminum L.) essential oil on expression of genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism in heat-stressed broiler chickens. Anim Biotechnol 2023; 34:2766-2777. [PMID: 36052972 DOI: 10.1080/10495398.2022.2117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study was carried out to evaluate the impact of cumin essential oil (CEO) supplementation on levels of certain gene expression related to antioxidant, apoptotic, detoxific, and heat shock mechanisms in the breast meat and ileum of heat-stressed broilers. The study was conducted on a 2 × 6 factorial design (heat stress + feed additive) on 600 day-old male broiler chicks for a period of 42 days. From day 7 to 42, although broilers in heat stress groups (HT) were exposed to constant chronic heat stress (36 °C), others were housed at thermoneutral ambient temperature (TN). The chicks in both conditions were fed with 6 experimental diets: C0 (basal diet with no additive), ANTIB (basal diet + 100 mg/kg chloramphenicol), VITE (basal diet + 50 IU α-tocopherol), C2 (basal diet + 200 mg/kg CEO), C4 (basal diet + 400 mg/kg CEO), C6 (basal diet+ 600 mg/kg CEO). The results showed that heat stress upregulated (except for Bcl-2) the genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism. However, cumin essential oil increased the dose-dependently positive effect on certain genes in tissues of the heat-stressed broilers and downregulated (except for Bcl-2) these genes.
Collapse
Affiliation(s)
- Emre Yilmaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Gul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Effect of L-serine on circadian variation of cloacal and body surface temperatures in broiler chickens subjected to feed restriction during the hot-dry season. J Therm Biol 2023; 112:103445. [PMID: 36796900 DOI: 10.1016/j.jtherbio.2022.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The study aimed to evaluate the effects of L-serine on circadian variation of body temperatures in feed-restricted broiler chickens during the hot-dry season. Day-old broiler chicks of both sexes served as subjects; comprising four groups of 30 chicks each: Group A: water ad libitum + 20% feed restriction (FR); Group B: feed and water ad libitum (AL); Group C: water ad libitum + 20% feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group D feed and water ad libitum + L-serine (200 mg/kg) (AL + L-serine). Feed restriction was performed on days 7-14 and L-serine was administered on days 1-14. Cloacal and body surface temperatures, recorded by digital clinical and infra-red thermometers, respectively, and temperature-humidity index were obtained over 26 h on days 21, 28 and 35. Temperature-humidity index (28.07-34.03) indicated broiler chickens were subjected to heat stress. L-serine decreased (P < 0.05) cloacal temperature in FR + L-serine (40.86 ± 0.07 °C), compared to FR (41.26 ± 0.05 °C) and AL (41.42 ± 0.08 °C) broiler chickens. Peak cloacal temperature occurred at 15:00 h in FR (41.74 ± 0.21 °C), FR + L-serine (41.30 ± 0.41 °C) and AL (41.87 ± 0.16 °C) broiler chickens. Fluctuations in thermal environmental parameters influenced circadian rhythmicity of cloacal temperature; especially the body surface temperatures, positively correlated with CT, and wing temperature recorded the closest mesor. In conclusion, L-serine and feed restriction decreased cloacal and body surface temperatures in broiler chickens during the hot-dry season.
Collapse
|
11
|
Son J, Lee WD, Kim H, Hong EC, Kim HJ, Yun YS, Kang HK. A comparative study on feeding timing and additive types of broilers in a high-temperature environment. J Anim Sci 2023; 101:skad290. [PMID: 37703424 PMCID: PMC10541855 DOI: 10.1093/jas/skad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
Antioxidants such as vitamin C (VC) and green tea extract (GTE) have been reported to have various antioxidant functions and are used as one of the nutritional approaches to alleviate heat stress (HS) in chickens. However, studies on the feeding timing that can produce optimal effects have not been reported. In this study, the stress-relieving effect of VC and GTE addition timing was investigated in high-temperature broiler chickens. A total of 880 1-d-old male chickens were used, and the treatments were as follows: no feed additives provided, CON; VC 250 mg/kg added from 1 d, VC1; GTE 600 mg/kg added from 1 d, GTE1; VC 250 mg/kg added from 22 d, VC22; GTE 600 mg/kg added from 22 d, GTE22. The HS environment was provided for 2 wk from the 22 d and was set at 33 ± 1 °C, 55 ± 10% for 24 h. Feed and water were provided ad libitum. Broiler production was similar in all treatments. In chicken meat quality, the addition of VC and GTE had an effect on meat color and pH (P < 0.05). In particular, GTE had a positive effect on the antioxidant capacity and quality preservation of breast meat (P < 0.05). In blood characteristics, GTE1 significantly lowered the level of total cholesterol, and VC1 affected AST and IgM (P < 0.05). Interestingly, the VC1 group had a positive effect on the maintenance and development of intestinal morphology, a lower rectal temperature, and showed to relieve stress. In conclusion, the addition of VC and GTE has been shown to alleviate the high-temperature stress of broilers, and in the case of VC in particular, feeding from 1 d appeared to alleviate stress more effectively. This study suggests that it is important to determine the appropriate timing of addition of functional substances in order to effectively reduce various stresses that occur in livestock rearing.
Collapse
Affiliation(s)
- Jiseon Son
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Woo-Do Lee
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hyunsoo Kim
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Eui-Chul Hong
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Yeon-Seo Yun
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| |
Collapse
|
12
|
Xiao C, Zhu Q, Comer L, Pan X, Everaert N, Schroyen M, Song B, Song Z. Dietary 25-hydroxy-cholecalciferol and additional vitamin E improve bone development and antioxidant capacity in high-density stocking broilers. J Anim Sci 2023; 101:skad369. [PMID: 37933958 PMCID: PMC10642724 DOI: 10.1093/jas/skad369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to investigate the effects of diets supplemented with 25-hydroxycholecalciferol [25-(OH)D3] and additional vitamin E on growth performance, antioxidant capacity, bone development, and carcass characteristics at different stocking densities on commercial broiler farms. A total of 118,800 one-day-old Arbor Acres broilers were assigned to a 2 × 2 factorial treatment consisting of two dietary vitamin levels (5,500 IU vitamin D3 and 60 IU vitamin E: normal diet, using half 25-(OH)D3 as a source of vitamin D3 and an additional 60 IU of vitamin E: 25-(OH)D3+VE diet) and two stocking densities (high density of 20 chickens/m2: HD and 16 chickens/m2: LD). The experiment lasted for 42 d. The results showed that high-density stocking negatively affected the growth performance of broilers during the first four weeks, whereas the vitamin diet treatment significantly improved the feed conversion ratios (FCR) during the last 2 wk. Vitamin diets increased catalase at 14 and 42 d, and the glutathione peroxidase (GSH-px) levels at 42 d in high-density-stocked broilers. The interaction showed that serum vitamin E levels were significantly improved at 28 d of age in high-density-stocked broilers as a result of the vitamin diets. Stocking density and dietary treatments were found to significantly affect bone development, with the vitamin diet significantly increasing metatarsal length and femoral bone strength in broilers from high-density stocking density at 28 d of age. High stocking density increased the proportion of leg muscles and meat yield per square meter. In general, 25-(OH)D3 and additional vitamin E suppressed oxidative stress and ameliorated the negative effects of high-density stocking on bone development in a commercial chicken farm setting. Vitamin diets improved the FCR of broilers, while high-density stocking resulted in better economic outcomes.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Qijiang Zhu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven 3000, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Nadia Everaert
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| |
Collapse
|
13
|
Zhu C, Yang J, Nie X, Wu Q, Wang L, Jiang Z. Influences of Dietary Vitamin E, Selenium-Enriched Yeast, and Soy Isoflavone Supplementation on Growth Performance, Antioxidant Capacity, Carcass Traits, Meat Quality and Gut Microbiota in Finishing Pigs. Antioxidants (Basel) 2022; 11:antiox11081510. [PMID: 36009229 PMCID: PMC9405041 DOI: 10.3390/antiox11081510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Jingsen Yang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| |
Collapse
|
14
|
Pečjak M, Leskovec J, Levart A, Salobir J, Rezar V. Effects of Dietary Vitamin E, Vitamin C, Selenium and Their Combination on Carcass Characteristics, Oxidative Stability and Breast Meat Quality of Broiler Chickens Exposed to Cyclic Heat Stress. Animals (Basel) 2022; 12:ani12141789. [PMID: 35883336 PMCID: PMC9312137 DOI: 10.3390/ani12141789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary High ambient temperatures present challenging environmental factors in the poultry meat industry, causing heat stress. Heat stress impairs animal health and welfare, growth performance, and productivity, and deteriorates meat quality and its oxidative stability, resulting in economic losses. To mitigate the negative effects of heat stress, several nutritional strategies have been proposed, with vitamin and mineral supplementation being one of the most promising. Several studies reported that the addition of vitamins E and C, as well as selenium, to broiler diets improved the production performance and meat quality of broilers reared under heat stress. Due to the synergistic effects of these antioxidants against the oxidative damage to lipids, combined supplementation could be even more effective in alleviating the symptoms of heat stress on meat quality than supplementation alone, but this has not yet been studied. The results of the present study indicate positive effects of the supplementation with vitamin E on the oxidative stability of breast meat. However, no synergistic effects of the added antioxidants on the measured parameters were observed. Abstract The present study was conducted to investigate the effects of dietary supplementation with vitamin E, vitamin C, and Se, alone or in combination, on carcass characteristics, oxidative stability and meat quality parameters of breast meat from broilers exposed to cyclic heat stress (HS), and stored under different conditions. A total of 120 one-day-old male Ross 308 broilers were randomly assigned to six dietary treatments: NRC (minimal nutrition requirements), AVI (commercial nutritional recommendations for Ross 308 broilers), AVI + vitE (as AVI + 200 IU vitamin E/kg feed), AVI + vitC (as AVI + 250 mg vitamin C/kg feed), AVI + Se (as AVI + 0.2 mg Se/kg feed), and AVI + ECSe (as AVI + vitE + vitC + Se). From day 26 onwards, all birds were exposed to a high ambient temperature (31 °C) for 8 h per day. The results showed that dietary vitamin E alone or in combination with vitamin C and Se significantly increased the α-tocopherol content and decreased the malondialdehyde (MDA) content in breast meat. Although no obvious synergistic effects of the added antioxidants were observed, the addition of higher levels of vitamin E, vitamin C and Se to broiler diets had no adverse effects on carcass traits, oxidative stability and meat quality parameters when supplemented either alone or in combination.
Collapse
|
15
|
Amevor FK, Cui Z, Ning Z, Shu G, Du X, Jin N, Deng X, Xu D, Tian Y, Zhang Y, Li D, Wang Y, Du X, Zhao X. Dietary quercetin and vitamin E supplementation modulates the reproductive performance and antioxidant capacity of aged male breeder chickens. Poult Sci 2022; 101:101851. [PMID: 35472738 PMCID: PMC9061638 DOI: 10.1016/j.psj.2022.101851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Aged male chickens experience rapid declines in spermatogenesis, antioxidant capacity, immunity, and hormone synthesis. Vitamin E plays a significant role in reproduction, nervous system function, and disease resistance in animals. Quercetin also exerts many biological effects, such as antioxidant ability, immunostimulation, and protection of spermatozoal plasma membranes. This study evaluated the effects of combining dietary quercetin (Q) and vitamin E (VE) on sperm quality, antioxidant capacity, immunity, and expression of genes related to spermatogenesis, immunity, apoptosis, and inflammation in aged male chickens. A total of 120 Tianfu breeder male chickens (65 wk old) were randomly allotted to 4 treatments with 3 replicates (10 birds each). The birds were fed diets containing Q (0.4g/kg), VE (0.2g/kg), Q+VE (0.4g/kg + 0.2g/kg), and a basal diet for 11 wk. At the end of the experimental period, blood, semen, liver, testes, and spleen samples were collected from 2 birds per replicate. Serum hormones, antioxidant parameters, cytokines, and immunoglobulins were evaluated; and the mRNA expression of genes related to spermatogenesis, apoptosis, and inflammation are determined in the testes and liver tissues. The results showed that the combination quercetin and vitamin E significantly promoted the sperm count and motility, as well as elevated the levels of testosterone, follicle-stimulating hormone, and luteinizing hormone, antioxidant enzymes (Superoxide dismutase, Glutathione, and Total antioxidant capacity), and serum immunoglobulins (IgA and IgM) in the aged male chickens; also Q+VE showed protective effects on the liver against injury. In addition, Q+VE significantly increased the expression of genes related to spermatogenesis (AR, pgk2, Cyclin A1, and Cyclin A2), immunity (IFN-γ and IL-2), and anti-inflammatory cytokines (IL-10) (P < 0.05), whereas the expression of proinflammatory cytokines (IL-1β and IL-6) was decreased (P < 0.05). Taken together, these data indicate that the combination of quercetin and vitamin E improved reproductive characteristics such as spermatogenesis, sperm quality, and hormone regulation, as well as promoted antioxidant defense, hepatoprotective capacity, and immune response in aged male chickens without any detrimental effects.
Collapse
|
16
|
Zhang K, Li X, Zhao J, Wang Y, Hao X, Liu K, Liu H. Protective effects of chlorogenic acid on the meat quality of oxidatively stressed broilers revealed by integrated metabolomics and antioxidant analysis. Food Funct 2022; 13:2238-2252. [PMID: 35133368 DOI: 10.1039/d1fo03622j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidation is a major cause of meat quality deterioration during broiler production, which leads to undesirable meat color and impaired water holding capacity (WHC), thereby impacting consumer appeal and satisfaction. Chlorogenic acid (CGA), a natural phenolic acid, is regarded as a potential, safer and healthier antioxidant to improve meat quality. To investigate the protective effects of CGA on the meat quality of oxidatively stressed broilers, 240 one-day-old male Cobb broiler chickens were allocated to four treatments: basal diet (control group), basal diet + dexamethasone (DEX) injection (DEX group), basal diet containing 500 mg kg-1 CGA (CGA group), and basal diet containing 500 mg kg-1 CGA + DEX injection (DEX_CGA group). Meat quality, antioxidant capacity, the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, and metabolomic profile were detected in the breast muscle of broilers. Then, correlation analysis between meat quality and antioxidant capacity, antioxidant-related genes, and metabolites was performed. The results indicated that CGA supplementation improved the growth performance and meat quality traits (pH, WHC, and meat color) and enhanced the antioxidant enzyme activity by activating the Nrf2 pathway in the breast muscle of oxidatively stressed broilers. A total of 619 metabolites were identified, among which 93 differential metabolites were found between control and DEX groups, and 65 differential metabolites were observed between DEX and DEX_CGA groups. Breast metabolic profiles were changed by DEX treatment, while CGA supplementation could normalize the metabolic changes in DEX-challenged broilers. Metabolic pathway analysis revealed that most of the differential metabolites between DEX and DEX_CGA groups were involved in pyrimidine/purine, propanoate and phenylalanine metabolism, primary bile acid biosynthesis, and lysine metabolism, which may contribute to explain the protective effects of CGA on meat quality. Moreover, according to the correlation analysis, four metabolites were identified as potential biomarkers to predict the meat quality. In conclusion, our findings demonstrate that CGA is an effective, natural and safe antioxidant to enhance the quality of meat from intensive industrial poultry production.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaojing Hao
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Kaidong Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
17
|
Vitamin E Supplementation Enhances Lipid Oxidative Stability via Increasing Vitamin E Retention, Rather Than Gene Expression of MAPK-Nrf2 Signaling Pathway in Muscles of Broilers. Foods 2021; 10:foods10112555. [PMID: 34828836 PMCID: PMC8624736 DOI: 10.3390/foods10112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Dietary vitamin E (VE) supplementation is a method to produce VE-enriched meat and improve meat lipid oxidative stability. We aimed to study the effect of the VE supplementation duration on meat lipid oxidative stability, VE retention, and antioxidant enzymes’ activity, and explore its relationship with the mitogen-activated protein kinases (MAPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in broilers slaughtered after electrical stunning. A total of 240 male 18-day-old Arbor Acres Plus broilers were distributed to four treatments, with six replicates in each treatment, and ten broilers per replicate. Broilers were fed with a basal diet (no supplementation of VE) or VE diet (200 IU/kg VE, DL-α- tocopherol) for one (W1), two (W2), or three (W3) weeks before electrical stunning (130 mA, 60 Hz, for 1s) and slaughter. The VE retention was positively and linearly affected (p < 0.01) by the VE feeding duration at one to three weeks before slaughter, and negatively (all p < 0.01) related to the thiobarbituric acid reactive substance (TBARS) content in both breast and thigh muscles at d 0, d 2, and d 6 postmortem. The VE retention was negatively (p < 0.05) related to the gene expression of c-Jun N-terminal kinases 1 (JNK1) and 2 (JNK2), Nrf2 in breast muscles, and JNK1 and p38 MAPK in thigh muscles. In conclusion, dietary vitamin E supplementation at 200 IU/kg for three weeks before electrical stunning and slaughter improved lipid oxidative stability via increasing VE retention, rather than the regulation by gene expression of the MAPK-Nrf2 signaling pathway in skeletal muscles of broilers.
Collapse
|
18
|
Ayo JO, Ogbuagu NE. Heat stress, haematology and small intestinal morphology in broiler chickens: insight into impact and antioxidant-induced amelioration. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J. O. Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - N. E. Ogbuagu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
19
|
Mavrommatis A, Giamouri E, Myrtsi ED, Evergetis E, Filippi K, Papapostolou H, Koulocheri SD, Zoidis E, Pappas AC, Koutinas A, Haroutounian SA, Tsiplakou E. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants (Basel) 2021; 10:1250. [PMID: 34439498 PMCID: PMC8389203 DOI: 10.3390/antiox10081250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Vinification by-products display great potential for utilization as feed additives rich in antioxidant compounds. Thus, the effect of dietary ground grape pomace (GGP), wine lees extract rich in yeast cell walls (WYC), and grape stem extracts (PE) on the relative expression of several genes involved in liver oxidative mechanisms and the oxidative status of the blood and breast muscle of broiler chickens was investigated. In total, 240 one-day-old as hatched chicks (Ross 308) were assigned to four treatments, with four replicate pens and 15 birds in each pen. Birds were fed either a basal diet (CON) or a basal diet supplemented with 25 g/kg GGP, or 2 g/kg WYC, or 1 g starch including 100 mg pure stem extract/kg (PE) for 42 days. The polyphenolic content of vinification by-products was determined using an LC-MS/MS library indicating as prevailing compounds procyanidin B1 and B2, gallic acid, caftaric acid, (+)-catechin, quercetin, and trans-resveratrol. Body weight and feed consumption were not significantly affected. The relative transcript level of GPX1 and SOD1 tended to increase in the liver of WYC-fed broilers, while NOX2 tended to decrease in the PE group. SOD activity in blood plasma was significantly increased in WYC and PE compared to the CON group. The total antioxidant capacity measured with FRAP assay showed significantly higher values in the breast muscle of PE-fed broilers, while the malondialdehyde concentration was significantly decreased in both WYC- and PE-fed broilers compared to the CON group. The exploitation of vinification by-products as feed additives appears to be a promising strategy to improve waste valorization and supply animals with bioactive molecules capable of improving animals' oxidative status and products' oxidative stability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Katiana Filippi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Harris Papapostolou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| |
Collapse
|
20
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
21
|
Cooper-Mullin C, Carter WA, Amato RS, Podlesak D, McWilliams SR. Dietary vitamin E reaches the mitochondria in the flight muscle of zebra finches but only if they exercise. PLoS One 2021; 16:e0253264. [PMID: 34181660 PMCID: PMC8238215 DOI: 10.1371/journal.pone.0253264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Whether dietary antioxidants are effective for alleviating oxidative costs associated with energy-demanding life events first requires they are successfully absorbed in the digestive tract and transported to sites associated with reactive species production (e.g. the mitochondria). Flying birds are under high energy and oxidative demands, and although birds commonly ingest dietary antioxidants in the wild, the bioavailability of these consumed antioxidants is poorly understood. We show for the first time that an ingested lipophilic antioxidant, α-tocopherol, reached the mitochondria in the flight muscles of a songbird but only if they regularly exercise (60 min of perch-to-perch flights two times in a day or 8.5 km day-1). Deuterated α-tocopherol was found in the blood of exercise-trained zebra finches within 6.5 hrs and in isolated mitochondria from pectoral muscle within 22.5 hrs, but never reached the mitochondria in caged sedentary control birds. This rapid pace (within a day) and extent of metabolic routing of a dietary antioxidant to muscle mitochondria means that daily consumption of such dietary sources can help to pay the inevitable oxidative costs of flight muscle metabolism, but only when combined with regular exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Wales A. Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ronald S. Amato
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David Podlesak
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
22
|
Jin S, Pang Q, Yang H, Diao X, Shan A, Feng X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem 2021; 363:130263. [PMID: 34116495 DOI: 10.1016/j.foodchem.2021.130263] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022]
Abstract
The effects of dietary resveratrol (0, 300, 400 and 500 mg/kg) on the chemical composition, antioxidative capacity, meat quality and volatile compound concentrations of duck meat were investigated. The results showed that dietary resveratrol had no significant effects on the chemical composition. Dietary resveratrol supplementation increased superoxide dismutase, glutathione peroxidase, catalase activity, pH15 min, pH24 h and color, and reduced the malondialdehyde, and carbonyl contents and shear force, thereby improving water mobility and distribution (T2b, T21, T22), drip loss, cooking loss and volatile compounds concentration of duck meat. In conclusion, dietary resveratrol supplementation improved the meat quality of ducks by enhancing the antioxidant capacity, improving the color and shear force, and suppressing lipid and protein oxidation, and 500 mg/kg dietary resveratrol had the greatest effect in this study.
Collapse
Affiliation(s)
- Sanjun Jin
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian Pang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Yang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinping Diao
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xingjun Feng
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
23
|
Plant Feed Additives as Natural Alternatives to the Use of Synthetic Antioxidant Vitamins on Yield, Quality, and Oxidative Status of Poultry Products: A Review of the Literature of the Last 20 Years. Antioxidants (Basel) 2021; 10:antiox10050757. [PMID: 34064573 PMCID: PMC8151085 DOI: 10.3390/antiox10050757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Scientific evidence demonstrates that plant feed additives (PFA) can be a viable alternative to synthetic antioxidant vitamins in poultry nutrition. PFA are represented by plants, essential oils, plant extracts, and by-products from herbal or crop processing. The use of PFA in the feed industry has increased in recent years as their biologically active compounds (polyphenols) have demonstrated antimicrobial and antioxidant effects in food-producing animals. However, few trials have directly compared the effects of PFA with synthetic vitamins. After a systematic literature review of studies comparing the effects of PFA and synthetic vitamins on poultry products in the last 20 years (2000–2020), a total of 44 peer-reviewed articles were included in the present work. A positive effect of PFA on poultry products’ oxidative stability during storage, organoleptic characteristics, and fatty acids profile has been observed without a specific impact on their performances. The effects of PFA are variable but often similar to those of vitamin E, suggesting the opportunity for a partial substitution of the latter in poultry diets.
Collapse
|
24
|
Hu H, Bai X, Xu K, Zhang C, Chen L. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers. Poult Sci 2021; 100:101217. [PMID: 34161850 PMCID: PMC8237358 DOI: 10.1016/j.psj.2021.101217] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/28/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023] Open
Abstract
The objective of this work was to evaluate the effect of phloretin on growth performance, serum biochemical parameters, antioxidant profile, glutathione (GSH)-related enzymes, nuclear factor erythroid 2-related 2 (Nrf2) and heat shock protein 70 (HSP70) in heat-stressed broilers. A total of 240, 22-day-old Arbor Acres broilers were divided into 4 groups. The control group was housed at 23.0 ± 0.61°C and fed with basal diet, while the 3 heat-stressed groups (A, B, and C groups) were housed at 30.5 ± 0.69°C and fed with basal diet containing 0, 100, and 200 mg/kg phloretin, respectively. Serum was taken form 42-day-old broilers. Results showed that heat stress decreased (P < 0.05) the final body weight (FBW), body weight gain (BWG), feed intake (FI), serum total protein (TP), triglyceride (TG), triiodothyronine (T3), thyroxine (T4), GSH, catalase (CAT), and total antioxidant capacity (T-AOC) levels, but increased (P < 0.05) the feed-to-gain ratio (FGR) and serum malondialdehyde (MDA) levels in broilers compared with that in the control group. Among the heat-stressed groups, supplementary 200 mg/kg phloretin increased (P < 0.05) the FBW, BWG, FI, serum TP, TG, T4, GSH, CAT, and T-AOC levels, and decreased (P < 0.05) the FGR and serum MDA in broilers. There were significant decreases (P < 0.05) in the glutathione peroxidase (GSH-Px), γ-glutamylcysteine synthetase (γ-GCS), and Nrf2, but significant increases (P < 0.05) in the HSP70 of the broiler serum after heat stress treatment. Among the heat-stressed groups, supplementary 200 mg/kg phloretin increased (P < 0.05) the GSH-Px, γ-GCS, and Nrf2 levels, but decreased (P < 0.05) the serum HSP70 level in the heat-stressed broilers. Under high temperature condition, FBW, BWG, FI, FGR, serum TP, TG, T4, MDA, GSH, CAT, T-AOC, GSH-Px, γ-GCS, Nrf2 and HSP70 were linearly affected by inclusion of phloretin. These results indicated that phloretin may improve growth performance, serum parameters, and antioxidant profiles through regulated GSH-related enzymes, Nrf2 and HSP70 in heat-stressed broilers.
Collapse
Affiliation(s)
- Hong Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Kexing Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Righi F, Pitino R, Manuelian CL, Simoni M, Quarantelli A, De Marchi M, Tsiplakou E. Plant Feed Additives as Natural Alternatives to the Use of Synthetic Antioxidant Vitamins on Poultry Performances, Health, and Oxidative Status: A Review of the Literature in the Last 20 Years. Antioxidants (Basel) 2021; 10:antiox10050659. [PMID: 33922786 PMCID: PMC8146777 DOI: 10.3390/antiox10050659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Plant feed additives (PFA) such as essential oils, extracts, and by-products from plant processing can be included in poultry diets. A total of 39 peer-reviewed articles were selected from the literature published in the last 20 years (2000–2020) comparing PFA antioxidant effects with synthetic antioxidant vitamins (mainly vitamin E) in poultry nutrition. The PFA can be used as an effective nutritional strategy to face poultry’s oxidative stress with positive impact also on their productivity and efficiency. They can partially or completely replace antioxidant synthetic vitamins (the latter administered at doses between 150 and 500 mg/kg) in animal diets, sometimes affecting important physiological functions or expressing synergistic effect with the synthetic antioxidants. It is crucial to take into consideration the issues related to the absorption and the metabolism of these additives and their interaction with gut microbiota. However, some form- and dose-dependent negative effects on growth performances are observed.
Collapse
Affiliation(s)
- Federico Righi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (R.P.); (M.S.); (A.Q.)
- Correspondence: (F.R.); (E.T.); Tel.: +39-05-2103-2624 (F.R.); +30-21-0529-4435 (E.T.)
| | - Rosario Pitino
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (R.P.); (M.S.); (A.Q.)
| | - Carmen L. Manuelian
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (C.L.M.); (M.D.M.)
| | - Marica Simoni
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (R.P.); (M.S.); (A.Q.)
| | - Afro Quarantelli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (R.P.); (M.S.); (A.Q.)
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (C.L.M.); (M.D.M.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (F.R.); (E.T.); Tel.: +39-05-2103-2624 (F.R.); +30-21-0529-4435 (E.T.)
| |
Collapse
|
26
|
Serra V, Salvatori G, Pastorelli G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals (Basel) 2021; 11:ani11020401. [PMID: 33562524 PMCID: PMC7914517 DOI: 10.3390/ani11020401] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyphenols are secondary plant metabolites mainly known for their antioxidant properties. Their use as feed additives in the nutrition of farm animals is becoming increasingly popular as they are particularly exposed to oxidative stress which is reflected in a lipoperoxidation of the final product. For this reason, it is essential to preserve the quality and the safety of meat and milk products by attenuating oxidative deterioration. Moreover, polyphenols present the advantage of being more acceptable to the consumers than synthetic counterparts, as they are considered to be “non-toxic”. The present review presents an overview of several studies focused on the dietary supplementation of polyphenols to monogastric and ruminants, as well as their direct addition to meat and dairy products, with particular emphasis on their antioxidant effects on the final product. Abstract The growing interest in producing healthier animal products with a higher ratio of polyunsaturated to saturated fatty acids, is associated with an increase in lipoperoxidation. For this reason, it is essential to attenuate oxidative deterioration in the derived products. Natural antioxidants such as polyphenols represent a good candidate in this respect. The first part of the review highlights the occurrence, bioavailability, and the role of polyphenols in food-producing animals that, especially in intensive systems, are exposed to stressful situations in which oxidation plays a crucial role. The second part offers an overview of the effects of polyphenols either supplemented to the diet of monogastric and ruminants or added directly to meat and dairy products on the physicochemical and sensorial properties of the product. From this review emerges that polyphenols play an important, though not always clear, role in the quality of meat and meat products, milk and dairy products. It cannot be ruled out that different compounds or amounts of polyphenols may lead to different results. However, the inclusion of agro-industrial by-products rich in polyphenols, in animal feed, represents an innovative and alternative source of antioxidants as well as being useful in reducing environmental and economic impact.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| | - Giancarlo Salvatori
- Department of Medicine and Sciences for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| |
Collapse
|
27
|
Woods SL, Rose SP, Whiting IM, Yovchev DG, Ionescu C, Blanchard A, Pirgozliev V. The effect of selenium source on the oxidative status and performance of broilers reared at standard and high ambient temperatures. Br Poult Sci 2020; 62:235-243. [PMID: 32993355 DOI: 10.1080/00071668.2020.1824292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. This study investigated the oxidative status of broilers fed diets containing selenium (Se) from 14 to 35 d of age and reared at two different constant temperatures. Measurements of oxidative status included blood glutathione peroxidase (GSH-Px) and plasma total antioxidant status (TAS). Other variables included feed intake (FI), weight gain (WG), feed conversion ratio (FCR), Se levels in breast and liver tissue, jejunal villus morphometry, percentage weight of organs in relation to body weight; apparent metabolisable energy adjusted for nitrogen (AMEn); dry matter retention (DMR); fat retention (FR) and nitrogen retention (NR).2. The experiment started at 14 d of age, when 240 birds were randomly allocated to 48 pens (12 pens in four rooms). Treatments included a control diet 1 (SFC; 209.4 g/kg CP and 12.98 MJ/kg ME and no added Se containing saturated fat); diet 2 (SFSe) the control plus 12.605 mg/kg Se additive; diet 3 (USFC) was a second control diet (208.2 g/kg CP and 13.10 MJ/kg ME with no added Se containing unsaturated fat as rapeseed oil); diet 4 (USFSe) was the latter control plus 12.605 mg/kg Se additive. Two rooms were kept at a standard temperature of 20°C (ST) and two rooms were kept at high temperature of 35°C (HT).3. A temperature x Se interaction existed for GSH-Px in birds reared at ST (P < 0.05), and these birds had the highest levels of Se in liver tissue (P < 0.05). Fat x Se interactions were evident in breast tissue with highest levels in USFSe (P < 0.05). Adding Se improved jejunal VH: CD in USFSe fed birds (P < 0.001).4. Birds reared at ST had higher FI and WG than those reared at HT (P < 0.001), and had lower FCR than those reared at HT (P < 0.05). AMEn (MJ/kg DM) and FR were higher in birds fed USF diets, and lowest in birds fed SF (P < 0.50 and P < 0.001 respectively). NR was highest in birds raised at ST (P < 0.50).5. Broiler growth performance was reduced by HT. Oxidative status and Se in liver tissue was improved by adding Se in both diets.
Collapse
Affiliation(s)
- S L Woods
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - S P Rose
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - I M Whiting
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - D G Yovchev
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | | | | | - V Pirgozliev
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| |
Collapse
|
28
|
Effects of Feeding Dried Fruit Pomaces as Additional Fibre-Phenolic Compound on Meat Quality, Blood Chemistry and Redox Status of Broilers. Animals (Basel) 2020; 10:ani10111968. [PMID: 33114718 PMCID: PMC7692383 DOI: 10.3390/ani10111968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Fruit juice production resulted in a considerable amount of by-products that are rich in phenolic compounds. Several studies have already reported that polyphenols seemed to have antioxidant, anti-inflammatory and hypolipidemic properties. For this reason, fruit extracts have been widely used as a human food supplement for health promotion and disease prevention. However, little information about their application in animal feeds is available. The aim of this study was to investigate whether 3% or 6% apple, blackcurrant and strawberry dietary inclusion could have a positive effect on meat quality, blood chemistry and redox status of broiler chickens. Overall, the obtained results seem encouraging as both 3% and 6% fruit pomaces diets did not impair carcass traits and meat quality. Moreover, fruit pomaces groups showed lower blood triglycerides and improved renal function with lower creatinine level. Regarding antioxidant activity, all fruit pomaces improved the redox status in liver, breast and blood. No differences have been recorded between 3% and 6% diets. From a productive and biological point of view, the use of fruit pomaces in broiler chicken nutrition seems to be promising, in particular, 3% dietary inclusion seems to be preferable as higher fibre level can impair nutrient digestibility in poultry. Abstract The present study investigated the effects of apple (A), blackcurrant (B) and strawberry (S) dried pomaces on meat quality, blood chemistry and redox status of broiler chickens. A total of 480 Ross-308 male broilers were divided into 8 dietary treatments containing 3% and 6% of cellulose preparation (C), A, B or S. Six birds/group were slaughtered at 35 days of age and blood samples were collected. Carcass traits and meat quality were determined on the Pectoralis major muscles, recording nonsignificant differences. Antioxidant activity was evaluated in serum, liver and breast muscle. In serum, fruit pomaces lowered triglycerides, creatinine and atherogenic index (p < 0.05). Regarding redox status, in serum, ACW (antioxidant capacity of water-soluble substances) and ACL (antioxidant capacity of lipid-soluble substances) were greater in A (p < 0.001). In breast, ACW and ACL were higher in B and S compared to C (p < 0.05). In liver, ACL was greater in B and S compared to C (p < 0.001) and in higher dosage compared to low (p = 0.036). GSSG (oxidized glutathione) concentration was lower in A, whereas A, B and S presented a higher GSH (reduced glutathione)/GSSG ratio. The results showed that fruit pomaces could represent promising feed ingredients for broilers, improving serum, meat and tissue antioxidant parameters.
Collapse
|
29
|
Pirgozliev VR, Mansbridge SC, Westbrook CA, Woods SL, Rose SP, Whiting IM, Yovchev DG, Atanasov AG, Kljak K, Staykova GP, Ivanova SG, Karakeçili MR, Karadaş F, Stringhini JH. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Arch Anim Nutr 2020; 74:496-511. [PMID: 32967440 DOI: 10.1080/1745039x.2020.1820807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The use of natural antioxidants, in particular polyphenols such as dihydroquercetin (DHQ), in animal nutrition has recently increased in popularity. This may partly be due to the risk of increased incidences of heat stress associated with raising livestock in warmer ambient temperatures, facilitated by global warming, reducing antioxidant capacity. The current research demonstrates the effect of dietary DHQ, vitaminEand standard or high ambient temperatures on growth performance, energy and nutrient metabolism, gastrointestinal tract (GIT) development, jejunal villus morphometry and antioxidant status in broiler chickens. Each of the four experimental diets was fed to 16 pens of five birds, which were allocated to four rooms (four pens in each room). The temperature in two rooms was maintained at aconstant 35°C (high temperature; HT), and the temperature in the other two rooms was gradually reduced from 27°C at 7 dof age to 22°C at 20 dof age (standard temperature; ST). Rearing birds at HT reduced feed intake, weight gain, weight of small intestine, total GIT, liver, spleen, heart, villus height, villus surface area and lowered blood glutationperoxidase (GSH-Px). Dietary DHQ increased blood GSH-Px and total antioxidant status, increased heart weight and reduced caecal size. When fed separately, DHQ and vitamin E improved hepatic vitamin E concentration. Feeding vitamin Eincreased spleen and liver weights. When fed together, DHQ and vitamin Ereduced villus height, villus height to crypt depth ratio and villus surface area. Temperature and antioxidants did not affect energy and nutrient metabolism. There were no effects of dietary antioxidants on growth performance of broiler chickens and there were no mortalities. At present, it is unclear if feeding antioxidants (in particular DHQ) at different levels, using different dietary formulations, and rearing birds under arange of environmental conditions may be effective at enhancing production performance and bird health in hot ambient climates.
Collapse
Affiliation(s)
| | | | | | - Sarah Louise Woods
- The National Institute of Poultry Husbandry, Harper Adams University , Shropshire, UK
| | - Stephen Paul Rose
- The National Institute of Poultry Husbandry, Harper Adams University , Shropshire, UK
| | | | | | - Atanas Georgiev Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna , Vienna, Austria.,Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Magdalenka, Poland.,Institute of Neurobiology, Bulgarian Academy of Sciences , Sofia, Bulgaria.,Department of Pharmacognosy, University of Vienna , Vienna, Austria
| | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb , Zagreb, Croatia
| | | | | | | | - Filiz Karadaş
- Department of Animal Science, Yuzuncu Yil University , Van, Turkey
| | | |
Collapse
|
30
|
Gopi M, Dutta N, Kumar Pattanaik A, Ekant Jadhav S, Madhupriya V, Kumar Tyagi P, Mohan J. Effect of polyphenol extract on performance, serum biochemistry, skin pigmentation and carcass characteristics in broiler chickens fed with different cereal sources under hot-humid conditions. Saudi J Biol Sci 2020; 27:2719-2726. [PMID: 32994731 PMCID: PMC7499289 DOI: 10.1016/j.sjbs.2020.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022] Open
Abstract
This study investigated the interaction between polyphenols with different cereal sources and their effects on performance, serum biochemistry, corticosterone levels and carcass characteristics in broiler chickens reared under hot-humid environment. Newly hatched coloured broiler chicks (n = 240) were randomly divided into six groups with five replicates of two different cereal sources, namely corn and broken rice-sorghum combined, and three levels of pomegranate peel polyphenol extracts (PPP) 0, 50 and 100 mg/kg in each cereal groups. Birds were maintained under standard management conditions for six weeks during hot-humid environment (Temperature: 29-36 °C; Relative Humidity: 69-80%). Fortnight body weight and feed consumption were recorded and serum biochemical constituents were estimated at 28 and 42 days of age. The body weight gain was significantly (p < 0.05) higher in broken rice-sorghum diet than in corn diet. The supplementation of polyphenols increased the skin and shank pigmentation. Serum protein, lipids and minerals showed significant difference due to cereals, polyphenols and their interactions. Corn-fed birds had significantly higher visceral organs weight than the alternate grain-fed broilers. The serum corticosterone levels were significantly reduced in the PPP supplemented groups than the control, it could be concluded that, supplementation of 50 mg/kg polyphenol extract from pomegranate peels improved production performance in broilers fed broken rice-sorghum as cereal source under hot-humid conditions.
Collapse
Affiliation(s)
- Marappan Gopi
- Avian Physiology and Reproduction Division, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Narayan Dutta
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Asok Kumar Pattanaik
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sunil Ekant Jadhav
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Velusamy Madhupriya
- Avian Physiology and Reproduction Division, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Pramod Kumar Tyagi
- Avian Physiology and Reproduction Division, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Jag Mohan
- Avian Physiology and Reproduction Division, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
31
|
Li W, Zhang XY, Du J, Li YF, Chen YJ, Cao Y. RNA-seq-based quanitative transcriptome analysis of meat color and taste from chickens administered by eucalyptus leaf polyphenols extract. J Food Sci 2020; 85:1319-1327. [PMID: 32175699 DOI: 10.1111/1750-3841.15082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023]
Abstract
To evaluate how eucalyptus leaf polyphenol extract (EPE) affects chicken meat color and taste, we added different levels of EPE (0%, 0.06%, 0.09%, and 0.12%) to chicken feed. The redness (a* value) and the myoglobin content of breast muscle in EPE group were remarkably higher. Furthermore, the guanosine monophosphate, histidine, and glycine muscle contents were also enhanced. Transcriptome analysis showed that 10 candidate genes related to meat quality were affected by EPE treatment. The identified genes, with functions critical to chicken meat color and taste, will help to determine the molecular mechanisms of EPE.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Xiao-Ying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Jie Du
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yi-Feng Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yun-Jiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| |
Collapse
|
32
|
Zhang Z, Qiu M, Du H, Li Q, Gan W, Xiong X, Yu C, Peng H, Xia B, Song X, Yang L, Hu C, Chen J, Yang C, Jiang X. Small RNA sequencing of pectoral muscle tissue reveals microRNA-mediated gene modulation in chicken muscle growth. J Anim Physiol Anim Nutr (Berl) 2020; 104:867-875. [PMID: 31957920 DOI: 10.1111/jpn.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Sichuan mountainous black-bone (SMB) chicken is a small-sized black-feathered chicken breed with low amount of meat, while Dahen (DH) chicken has a larger body size and a faster growth rate. MicroRNAs (miRNAs) are involved in various physiological processes, but their role in chicken muscle growth remains unclear. We aimed to investigate the miRNAs and pathways participating in the muscle growth of chicken. MiRNA profiles of four SMB chickens and four DH chickens were detected by small RNA sequencing. A total of 994 known miRNAs were identified, among which gga-miR-1a-3p, gga-miR-148-3p and gga-miR-133a-3p exhibited the highest enrichment in both breeds of chickens. Thirty-two miRNAs were differently expressed between SMB and DH chickens. The differently expressed miRNAs were mainly associated with fatty acid metabolism, immunity and MAPK activation-related processes. Kyoto encyclopaedia of genes and genomes (KEGG) analysis showed that miRNAs were involved in the immunity-related and MAPK signalling pathways. Moreover, miR-204 was downregulated in DH chicken compared with SMB chicken, and significantly inhibited the expression of MAP3K13, which is involved in the MAPK pathway. It was confirmed through luciferase reporter assays that miR-204 specifically inhibited the activity of MAP3K13. Our results helped demonstrate the potential molecular mechanisms of muscle growth in chickens and provide valuable information for chicken breeding.
Collapse
Affiliation(s)
- Zengrong Zhang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Wu Gan
- Shanghai Ying Biotechnology Company, Shanghai, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Bo Xia
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaoyan Song
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Li Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jialei Chen
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Hosseini-Vashan SJ, Safdari-Rostamabad M, Piray AH, Sarir H. The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|