1
|
Ushakova V, Zorkina Y, Abramova O, Kuanaeva R, Barykin E, Vaneev A, Timoshenko R, Gorelkin P, Erofeev A, Zubkov E, Valikhov M, Gurina O, Mitkevich V, Chekhonin V, Morozova A. Beta-Amyloid and Its Asp7 Isoform: Morphological and Aggregation Properties and Effects of Intracerebroventricular Administration. Brain Sci 2024; 14:1042. [PMID: 39452054 PMCID: PMC11506273 DOI: 10.3390/brainsci14101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the hallmarks of Alzheimer's disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice. The toxicity of Aβ peptides may be partly mediated by their structure and morphology. In this respect, in this study we analyzed the structural and aggregation characteristics of the Asp7 isoform of Aβ42 and compared them to those of synthetic Aβ42. We also investigated the effects of intracerebroventricular (i.c.v.) administration of these peptides, a method often used to induce AD-like symptoms in rodent models. METHODS Atomic force microscopy (AFM) was conducted to compare the morphological and aggregation properties of Aβ42 and Asp7 iso-Aβ42. The effects of i.c.v. stereotaxic administration of the proteins were assessed via behavioral analysis and reactive oxygen species (ROS) estimation in vivo using a scanning ion-conductance microscope with a confocal module. RESULTS AFM measurements revealed structural differences between the two peptides, most notably in their soluble toxic oligomeric forms. The i.c.v. administration of Asp7 iso-Aβ42 induced spatial memory deficits in rats and elevated oxidative stress levels in vivo, suggesting a potential of ROS in the pathogenic mechanism of the peptide. CONCLUSIONS The findings support the further investigation of Asp7 iso-Aβ42 in translational research on AD and suggest its involvement in neurodegenerative processes.
Collapse
Affiliation(s)
- Valeriya Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Higher Nervous Function, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Regina Kuanaeva
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Alexander Vaneev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman Timoshenko
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Peter Gorelkin
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Marat Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, 117513 Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| |
Collapse
|
2
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
3
|
Bhoopal B, Gollapelli KK, Damuka N, Miller M, Krizan I, Bansode A, Register T, Frye BM, Kim J, Mintz A, Orr M, Craft S, Whitlow C, Lockhart SN, Shively CA, Solingapuram Sai KK. Preliminary PET Imaging of Microtubule-Based PET Radioligand [ 11C]MPC-6827 in a Nonhuman Primate Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3745-3751. [PMID: 37724996 PMCID: PMC10966409 DOI: 10.1021/acschemneuro.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aβ42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aβ42 levels, which have been shown to correlate with the Aβ plaque burden, similar to humans.
Collapse
Affiliation(s)
- Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Avinash Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Brett M Frye
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University School of Medicine, New York, New York 10032, United States
| | - Miranda Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Samuel N Lockhart
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | |
Collapse
|
4
|
de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Commun Biol 2023; 6:655. [PMID: 37344566 PMCID: PMC10284893 DOI: 10.1038/s42003-023-05034-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Brier A Rigby Dames
- Department of Psychology, University of Bath, Bath, UK
- Department of Computer Science, University of Bath, Bath, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rania Mohamedelhassan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
5
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
6
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
8
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|
9
|
Pan Y, Fan Y, Lu Y, Peng S, Lin H, Deng Q. Molecular characterization of matrix metalloproteinase gene family across primates. Aging (Albany NY) 2022; 14:3425-3445. [PMID: 35444067 PMCID: PMC9085222 DOI: 10.18632/aging.204021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Deregulation of matrix metalloproteinases (MMPs) contributes considerably to cancers, psychiatric disorders, macular degeneration and bone diseases. The use of humans in the development of MMPs as prognostic biomarkers and therapeutic targets is complicated by many factors, while primate models can be useful alternatives for this purpose. Here, we performed genome-enabled identification of putative MMPs across primate species, and comprehensively investigated the genes. Phylogenetic topology of the MMP family showed each type formulates a distinct clade, and was further clustered to classes, largely agreeing with classification based on biochemical properties and domain organization. Across primates, the excess of candidate sites of positive selection was detected for MMP-19, in addition to 1-3 sites in MMP-8, MMP-10 and MMP-26. MMP-26 showed Ka/Ks value above 1 between human and chimpanzee copies. We observed two copies of MMP-19 in the old-world monkey genomes, suggesting gene duplication at the early stage of or prior to the emergence of the lineage. Furin-activatable MMPs demonstrate the most variable properties regarding Domain organization and gene structure. During human aging, MMP-11 showed gradually decreased expression in testis, so as MMP-2, MMP-14, MMP15 and MMP-28 in ovary, while MMP-7 and MMP-21 showed elevated expression, implying their distinct roles in different reproductive organs. Co-expression clusters were formed among human MMPs both within and across classes, and expression correlation was observed in MMP genes across primates. Our results illuminate the utilization of MMPs for the discovery of prognostic biomarkers and therapeutic targets for aging-related diseases and carry new messages on MMP classification.
Collapse
Affiliation(s)
- Yinglian Pan
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, People's Republic of China
| | - Yadan Fan
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| | - Yanda Lu
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, People's Republic of China
| | - Siyuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| | - Haixue Lin
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| | - Qingchun Deng
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| |
Collapse
|
10
|
Robertson EL, Boehnke SE, Lyra e Silva NDM, Armitage‐Brown B, Winterborn A, Cook DJ, De Felice FG, Munoz DP. Characterization of cerebrospinal fluid biomarkers associated with neurodegenerative diseases in healthy cynomolgus and rhesus macaque monkeys. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12289. [PMID: 35415210 PMCID: PMC8984079 DOI: 10.1002/trc2.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Monkeys are becoming important translational models of neurodegenerative disease. To facilitate model development, we measured cerebrospinal fluid (CSF) concentrations of key biomarkers in healthy male and female cynomolgus and rhesus macaques. Amyloid beta (Aβ40, Aβ42), tau (total tau [t-tau], phosphorylated tau [pThr181]), and neurofilament light (NfL) concentrations were measured in CSF of 82 laboratory-housed, experimentally naïve cynomolgus (n = 33) and rhesus (n = 49) macaques. Aβ40 and Aβ42 were significantly higher in rhesus, and female rhesus were higher than males. NfL and t-tau were higher in males, and NfL was higher in rhesus macaques. p-tau was not affected by species or sex. We also examined whether sample location (lumbar or cisterna puncture) affected concentrations. Sample acquisition site only affected NfL, which was higher in CSF from lumbar puncture compared to cisterna magna puncture. Establishing normative biomarker values for laboratory-housed macaque monkeys provides an important resource by which to compare to monkey models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma L. Robertson
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Susan E. Boehnke
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Natalia de M. Lyra e Silva
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Brittney Armitage‐Brown
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Animal Care ServicesQueen's UniversityKingstonOntarioCanada
| | | | - Douglas J. Cook
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of SurgeryKingston Health Sciences CentreKingstonOntarioCanada
| | - Fernanda G. De Felice
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de Janeiro, Cidade Universitaria – Rio de JaneiroRio de JaneiroBrazil
- D'OR Institute for Research and EducationRio de JaneiroBrazil
- Department of PsychiatryProvidence Care HospitalKingstonOntarioCanada
| | - Douglas P. Munoz
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
11
|
Jester HM, Gosrani SP, Ding H, Zhou X, Ko MC, Ma T. Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. J Alzheimers Dis 2022; 88:957-970. [PMID: 35723096 PMCID: PMC9378582 DOI: 10.3233/jad-215303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic or late onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disease with aging the most known risk factor. Non-human primates (NHPs) may serve as an excellent model to study LOAD because of their close similarity to humans in many aspects including neuroanatomy and neurodevelopment. Recent studies reveal AD-like pathology in old NHPs. OBJECTIVE In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs. METHODS We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs. RESULTS We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation. CONCLUSION These findings may provide insights into the factors contributing to the development of LOAD, particularly during the early stage transitioning from middle to old age. Future endeavors are warranted to elucidate mechanisms underlying the regional (and perhaps cellular) vulnerability with aging and the functional correlation of such pathological changes in NHPs.
Collapse
Affiliation(s)
- Hannah M. Jester
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Saahj P. Gosrani
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Chan AWS, Cho IK, Li CX, Zhang X, Patel S, Rusnak R, Raper J, Bachevalier J, Moran SP, Chi T, Cannon KH, Hunter CE, Martin RC, Xiao H, Yang SH, Gumber S, Herndon JG, Rosen RF, Hu WT, Lah JJ, Levey AI, Smith Y, Walker LC. Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey. AGING BRAIN 2022; 2:100044. [PMID: 36589695 PMCID: PMC9802652 DOI: 10.1016/j.nbas.2022.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-β-(Aβ) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the APP gene into rhesus oocytes, followed by in vitro fertilization and embryo transfer. The APP-transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations (APPSWE/IND) regulated by the human polyubiquitin-C promoter. Overexpression of APP was confirmed in lymphocytes and brain tissue. Upon sacrifice at 10 years of age, one of the monkeys had developed Aβ plaques and cerebral Aβ-amyloid angiopathy in the occipital, parietal, and caudal temporal neocortices. The induction of Aβ deposition more than a decade prior to its usual emergence in the rhesus monkey supports the feasibility of creating a transgenic nonhuman primate model for mechanistic analyses and preclinical testing of treatments for Alzheimer's disease and cerebrovascular amyloidosis.
Collapse
Affiliation(s)
- Anthony W S Chan
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In Ki Cho
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sudeep Patel
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Rusnak
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jocelyne Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Psychology, Emory College, Atlanta, GA 30322, USA
| | - Sean P Moran
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Tim Chi
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Katherine H Cannon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Carissa E Hunter
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ryan C Martin
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shang-Hsun Yang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Gumber
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - James G Herndon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca F Rosen
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lary C Walker
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Frye BM, Craft S, Latimer CS, Keene CD, Montine TJ, Register TC, Orr ME, Kavanagh K, Macauley SL, Shively CA. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol 2021; 83:e23260. [PMID: 33818801 PMCID: PMC8626867 DOI: 10.1002/ajp.23260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Age-related neurodegeneration characteristic of late-onset Alzheimer's disease (LOAD) begins in middle age, well before symptoms. Translational models to identify modifiable risk factors are needed to understand etiology and identify therapeutic targets. Here, we outline the evidence supporting the vervet monkey (Chlorocebus aethiops sabaeus) as a model of aging-related AD-like neuropathology and associated phenotypes including cognitive function, physical function, glucose handling, intestinal physiology, and CSF, blood, and neuroimaging biomarkers. This review provides the most comprehensive multisystem description of aging in vervets to date. This review synthesizes a large body of evidence that suggests that aging vervets exhibit a coordinated suite of traits consistent with early AD and provide a powerful, naturally occurring model for LOAD. Notably, relationships are identified between AD-like neuropathology and modifiable risk factors. Gaps in knowledge and key limitations are provided to shape future studies to illuminate mechanisms underlying divergent neurocognitive aging trajectories and to develop interventions that increase resilience to aging-associated chronic disease, particularly, LOAD.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | | | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
| | - Shannon L. Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| |
Collapse
|
14
|
Wang X, Zhou X, Uberseder B, Lee J, Latimer CS, Furdui CM, Keene CD, Montine TJ, Register TC, Craft S, Shively CA, Ma T. Isoform-specific dysregulation of AMP-activated protein kinase signaling in a non-human primate model of Alzheimer's disease. Neurobiol Dis 2021; 158:105463. [PMID: 34363967 PMCID: PMC8440492 DOI: 10.1016/j.nbd.2021.105463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a molecular sensor that is critical for the maintenance of cellular energy homeostasis, disruption of which has been indicated in multiple neurodegenerative diseases including Alzheimer's disease (AD). Mammalian AMPK is a heterotrimeric complex and its enzymatic α subunit exists in two isoforms: AMPKα1 and AMPKα2. Here we took advantage of a recently characterized non-human primate (NHP) model with sporadic AD-like neuropathology to explore potential relationships between AMPK signaling and AD-like neuropathology. Subjects were nine female vervet monkeys aged 19.5 to 23.4 years old. Subjects were classified into three groups, control lacking AD pathology (n = 3), moderate AD pathology (n = 3), and more severe AD Pathology (n = 3). We found increased activity (assessed by phosphorylation) of AMPKα2 in hippocampi of NHP with AD-like neuropathology, compared to the subjects without AD pathology, with no alterations of AMPKα1 activity. Across all subjects, CSF Abeta42 was inversely associated with cerebral amyloid plaque density. Further, Aβ plaque burden is correlated with levels of either soluble or insoluble brain Aβ measurement. Unbiased mass spectrometry based proteomics studies combined with bioinformatics analysis revealed that many of the dysregulated proteins characteristic of AD neuropathology are associated with AMPK signaling. Our findings on the AMPK molecular signaling cascades provide further support for use of the NHP model to investigate new therapeutic strategies and development of novel biomarkers for Alzheimer's disease.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Beth Uberseder
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Caitlin S Latimer
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Cristina M Furdui
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Darusman HS, Saepuloh U, Mariya SS, Sajuthi D, Schapiro SJ, Hau J. Increased expression of GAPDH in cynomolgus monkeys with spontaneous cognitive decline and amyloidopathy reminiscent of an Alzheimer's-type disease is reflected in the circulation. Am J Primatol 2021; 83:e23296. [PMID: 34196425 DOI: 10.1002/ajp.23296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Previous studies of aging cynomolgus monkeys from our group identified spontaneous age-associated cognitive declines associated with biomarkers and brain lesions reminiscent of Alzheimer's Disease (AD), in a proportion of aged monkeys. However, the molecular mechanisms that underlie the spontaneous amyloid disorders and cognitive declines observed in these affected monkeys have yet to be investigated in detail. Using reverse transcriptase quantitative real time PCR techniques, normalized to the ACTB housekeeping gene, we analyzed the expression patterns of a number of genes which have been implicated in amyloid and tau abnormalities, in well-characterized aged cynomolgus monkeys with cognitive decline. A significantly increased expression of the genes coding for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was found in aged-cognitive decline monkeys compared to age-matched healthy controls. GAPDH has been implicated in several neurodegenerative diseases and interacts with beta amyloid precursor proteins. These findings provide support for the utilization of cynomolgus macaques in translational preclinical research as valid spontaneous models in experimental investigations of the relationships among aging, cognitive decline, and the neuropathy of AD.
Collapse
Affiliation(s)
- Huda S Darusman
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia.,Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Uus Saepuloh
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Sela S Mariya
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Dondin Sajuthi
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia.,Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Steven J Schapiro
- Department of Comparative Medicine, UTMD Anderson Cancer Center, Bastrop, Texas, USA.,Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jann Hau
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
The Moral Status of Cognitively Enhanced Monkeys and Other Novel Beings. Camb Q Healthc Ethics 2021; 30:492-503. [PMID: 34109929 DOI: 10.1017/s0963180120001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discussion about the moral status of novel beings tends to focus on artificial intelligence, robots, and other man-made systems. We should, however, also consider a likelier kind of novel beings: animals that are genetically modified to develop human-like cognitive capabilities. This paper focuses on the possibility of conferring human characteristics on nonhuman primates (NHPs) in the context of neuroscientific research. It first discusses the use of NHPs for neuroscientific research and then, second, describes recent developments that promise to revolutionize the field and how that may lead to NHPs attaining human-like cognitive capabilities. Third, an account of moral status is developed to ground the central claim, that making the NHP brain more human-like is unproblematic as long as the NHPs do not become persons. In conclusion, this paper discusses the implications for the moral status of cognitively enhanced NHPs, as well as the implications for other novel beings.
Collapse
|
17
|
Evaluation of the prevention and treatment effects of acupuncture-moxibustion for Alzheimer disease based on various mouse models. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Preclinical Marmoset Model for Targeting Chronic Inflammation as a Strategy to Prevent Alzheimer's Disease. Vaccines (Basel) 2021; 9:vaccines9040388. [PMID: 33920929 PMCID: PMC8071309 DOI: 10.3390/vaccines9040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the aging population, modern society is facing an increasing prevalence of neurological diseases such as Alzheimer’s disease (AD). AD is an age-related chronic neurodegenerative disorder for which no satisfying therapy exists. Understanding the mechanisms underlying the onset of AD is necessary to find targets for protective treatment. There is growing awareness of the essential role of the immune system in the early AD pathology. Amyloidopathy, the main feature of early-stage AD, has a deregulating effect on the immune function. This is reciprocal as the immune system also affects amyloidopathy. It seems that the inflammatory reaction shows a heterogeneous pattern depending on the stage of the disease and the variation between individuals, making not only the target but also the timing of treatment important. The lack of relevant translational animal models that faithfully reproduce clinical and pathogenic features of AD is a major cause of the delay in developing new disease-modifying therapies and their optimal timing of administration. This review describes the communication between amyloidopathy and inflammation and the possibility of using nonhuman primates as a relevant animal model for preclinical AD research.
Collapse
|
20
|
Chen X, Zhang S, Zhang J, Chen L, Wang R, Zhou Y. Noninvasive quantification of nonhuman primate dynamic 18F-FDG PET imaging. Phys Med Biol 2021; 66:064005. [PMID: 33709956 DOI: 10.1088/1361-6560/abe83b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
18F-FDG uptake rate constant Ki is the main physiology parameter measured in dynamic PET studies. A model-independent graphical analysis using Patlak plot with plasma input function (PIF) is a standard approach used to estimate Ki . The PIF is the 18F-FDG time activity curve (TAC) in plasma that is obtained by serial arterial blood sampling. The purpose of the study is to evaluate a Patlak plot-based optimization approach with reduced blood samples for noninvasive quantification of dynamic 18F-FDG PET imaging. Eight 60 min rhesus monkey brain dynamic 18F-FDG PET scans with arterial blood samples were collected. The measured PIF (mPIF) was determined by arterial blood samples. TACs of seven cerebral regions of interest were generated from each study. With a given number of blood samples, the population-based PIF (pPIF) was determined by either interpolation or extrapolation method using scale calibrated population mean of normalized PIF. The optimal sampling scheme with given blood sample size was determined by maximizing the correlations between the Ki estimated from pPIF and those obtained by mPIF. A leave-two-out cross-validation method was used for evaluation. The linear correlations between the Ki estimates from pPIF with optimal sampling schemes and those from mPIF were: Ki (pPIF 1 sample at 40 min) = 1.015 Ki (mPIF) - 0.000, R 2 = 0.974; Ki (pPIF 2 samples at 35 and 50 min) = 1.052 Ki (mPIF) - 0.001, R 2 = 0.976; Ki (pPIF 3 samples at 12, 40, and 50 min) = 1.030 Ki (mPIF) - 0.000, R 2 = 0.985; and Ki (pPIF 4 samples at 10, 20, 40, and 50 min) = 1.016 Ki (mPIF)- 0.000, R 2 = 0.993. As the sample size became greater or equal to 4, the Ki estimates from pPIF with the optimal protocol were almost identical to those from mPIF. The Patlak plot-based optimization approach is a reliable method to estimate PIF for noninvasive quantification of non-human primate dynamic 18F-FDG PET imaging and is potentially extendable to further translational human studies.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Sulei Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Lixin Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Yun Zhou
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kinshighway Blvd., Campus Box 8225, St Louis, MO 63110, United States of America.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, People's Republic of China
| |
Collapse
|
21
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
22
|
Danielyan L, Schwab M, Siegel G, Brawek B, Garaschuk O, Asavapanumas N, Buadze M, Lourhmati A, Wendel HP, Avci-Adali M, Krueger MA, Calaminus C, Naumann U, Winter S, Schaeffeler E, Spogis A, Beer-Hammer S, Neher JJ, Spohn G, Kretschmer A, Krämer-Albers EM, Barth K, Lee HJ, Kim SU, Frey WH, Claussen CD, Hermann DM, Doeppner TR, Seifried E, Gleiter CH, Northoff H, Schäfer R. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine 2020; 60:102989. [PMID: 32920368 PMCID: PMC7494685 DOI: 10.1016/j.ebiom.2020.102989] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Nithi Asavapanumas
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Hertie Institute for Clinical Brain Research and Center Neurology, Department of Vascular Neurology, Tübingen Neuro-Campus (TNC), University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Annett Spogis
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, and ICePhA, University Hospital Tübingen, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Tübingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, MN, U.S.A
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Hernandez M, Shenk MK, Perry GH. Factors influencing taxonomic unevenness in scientific research: a mixed-methods case study of non-human primate genomic sequence data generation. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201206. [PMID: 33047065 PMCID: PMC7540799 DOI: 10.1098/rsos.201206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 05/06/2023]
Abstract
Scholars have noted major disparities in the extent of scientific research conducted among taxonomic groups. Such trends may cascade if future scientists gravitate towards study species with more data and resources already available. As new technologies emerge, do research studies employing these technologies continue these disparities? Here, using non-human primates as a case study, we identified disparities in massively parallel genomic sequencing data and conducted interviews with scientists who produced these data to learn their motivations when selecting study species. We tested whether variables including publication history and conservation status were significantly correlated with publicly available sequence data in the NCBI Sequence Read Archive (SRA). Of the 179.6 terabases (Tb) of sequence data in SRA for 519 non-human primate species, 135 Tb (approx. 75%) were from only five species: rhesus macaques, olive baboons, green monkeys, chimpanzees and crab-eating macaques. The strongest predictors of the amount of genomic data were the total number of non-medical publications (linear regression; r 2 = 0.37; p = 6.15 × 10-12) and number of medical publications (r 2 = 0.27; p = 9.27 × 10-9). In a generalized linear model, the number of non-medical publications (p = 0.00064) and closer phylogenetic distance to humans (p = 0.024) were the most predictive of the amount of genomic sequence data. We interviewed 33 authors of genomic data-producing publications and analysed their responses using grounded theory. Consistent with our quantitative results, authors mentioned their choice of species was motivated by sample accessibility, prior published work and relevance to human medicine. Our mixed-methods approach helped identify and contextualize some of the driving factors behind species-uneven patterns of scientific research, which can now be considered by funding agencies, scientific societies and research teams aiming to align their broader goals with future data generation efforts.
Collapse
Affiliation(s)
- Margarita Hernandez
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
- Authors for correspondence: Margarita Hernandez e-mail:
| | - Mary K. Shenk
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Authors for correspondence: George H. Perry e-mail:
| |
Collapse
|
24
|
Boehnke SE, Robertson EL, Armitage‐Brown B, Wither RG, Lyra e Silva NM, Winterborn A, Levy R, Cook DJ, De Felice FG, Munoz DP. The effect of lumbar puncture on the neurodegeneration biomarker neurofilament light in macaque monkeys. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12069. [PMID: 32695873 PMCID: PMC7366296 DOI: 10.1002/dad2.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Neurofilament light (NFL) in cerebrospinal fluid (CSF) is elevated in neurodegenerative disease patients, and may track disease progression and treatment. Macaque monkeys are emerging as important translational models of neurodegeneration, and NFL may be a useful biomarker. METHODS To determine the influence of a previous lumbar puncture (LP) on NFL, we collected CSF at multiple time points in macaque monkeys via LP or cisterna magna puncture. NFL, amyloid beta (Aβ40, Aβ42), and tau (tTau, pTau) in CSF were measured by standard enzyme-linked immunosorbent assay and multiplex. RESULTS NFL was significantly elevated at 14 to 23 days after an LP (median increase: 162%). Aβ and tau biomarkers remained stable. NFL peaked and decayed over 1 to 2 months after LP. NFL was not elevated after cisterna magna puncture. DISCUSSION Results suggest damage of the cauda equina during LP may increase NFL. Caution should be taken in interpreting NFL concentration in studies in which repeat LPs are performed.
Collapse
Affiliation(s)
- Susan E. Boehnke
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Emma L. Robertson
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | | | - Robert G. Wither
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | | | | | - Ron Levy
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of SurgeryKingston General HospitalKingstonOntarioCanada
| | - Douglas J. Cook
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of SurgeryKingston General HospitalKingstonOntarioCanada
| | - Fernanda G. De Felice
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of PsychiatryProvidence Care HospitalKingstonOntarioCanada
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Douglas P. Munoz
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
25
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
26
|
Alzheimer's disease: A clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci U S A 2019; 116:26224-26229. [PMID: 31871211 DOI: 10.1073/pnas.1912954116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the sixth leading cause of death and the most common cause of dementia worldwide. Over the last few decades, significant advancements have been made in our understanding of AD by investigating the molecular mechanisms underlying amyloid-β and tau pathology. Despite this progress, no disease-modifying treatments exist for AD, an issue that will exacerbated by the rising costs and prevalence of the disorder. Moreover, effective therapies to address the devastating cognitive and behavioral symptoms are also urgently needed. This perspective focuses on the value of nonhuman primate (NHP) models in bridging the molecular, circuit, and behavioral levels of analysis to better understand the complex genetic and environmental/lifestyle factors that contribute to AD pathogenesis. These investigations could provide an opportunity for translating our understanding of the pathogenesis and physiological mechanisms underlying AD and related disorders into new diagnostic approaches and disease-modifying therapies to prevent disease or restore brain function for symptomatic individuals.
Collapse
|
27
|
Van Dam D, De Deyn PP. How does a researcher choose the best rodent model for their Alzheimer's disease drug discovery study? Expert Opin Drug Discov 2019; 15:269-271. [PMID: 31592694 DOI: 10.1080/17460441.2020.1676719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
28
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
29
|
The search for improved animal models of Alzheimer's disease and novel strategies for therapeutic intervention. Future Med Chem 2019; 11:1853-1857. [DOI: 10.4155/fmc-2019-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Cam M, Durieu E, Bodin M, Manousopoulou A, Koslowski S, Vasylieva N, Barnych B, Hammock BD, Bohl B, Koch P, Omori C, Yamamoto K, Hata S, Suzuki T, Karg F, Gizzi P, Erakovic Haber V, Bencetic Mihaljevic V, Tavcar B, Portelius E, Pannee J, Blennow K, Zetterberg H, Garbis SD, Auvray P, Gerber H, Fraering J, Fraering PC, Meijer L. Induction of Amyloid-β42 Production by Fipronil and Other Pyrazole Insecticides. J Alzheimers Dis 2019; 62:1663-1681. [PMID: 29504531 DOI: 10.3233/jad-170875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Generation of amyloid-β peptides (Aβs) by proteolytic cleavage of the amyloid-β protein precursor (AβPP), especially increased production of Aβ42/Aβ43 over Aβ40, and their aggregation as oligomers and plaques, represent a characteristic feature of Alzheimer's disease (AD). In familial AD (FAD), altered Aβ production originates from specific mutations of AβPP or presenilins 1/2 (PS1/PS2), the catalytic subunits of γ-secretase. In sporadic AD, the origin of altered production of Aβs remains unknown. We hypothesize that the 'human chemical exposome' contains products able to favor the production of Aβ42/Aβ43 over Aβ40 and shorter Aβs. To detect such products, we screened a library of 3500 + compounds in a cell-based assay for enhanced Aβ42/Aβ43 production. Nine pyrazole insecticides were found to induce a β- and γ-secretase-dependent, 3-10-fold increase in the production of extracellular Aβ42 in various cell lines and neurons differentiated from induced pluripotent stem cells derived from healthy and FAD patients. Immunoprecipitation/mass spectrometry analyses showed increased production of Aβs cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and shorter. Strongly supporting a direct effect on γ-secretase activity, pyrazoles shifted the cleavage pattern of another γ-secretase substrate, alcadeinα, and shifted the cleavage of AβPP by highly purified γ-secretase toward Aβ42/Aβ43. Focusing on fipronil, we showed that some of its metabolites, in particular the persistent fipronil sulfone, also favor the production of Aβ42/Aβ43 in both cell-based and cell-free systems. Fipronil administered orally to mice and rats is known to be metabolized rapidly, mostly to fipronil sulfone, which stably accumulates in adipose tissue and brain. In conclusion, several widely used pyrazole insecticides enhance the production of toxic, aggregation prone Aβ42/Aβ43 peptides, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in sporadic AD.
Collapse
Affiliation(s)
- Morgane Cam
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France
| | - Emilie Durieu
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France
| | - Marion Bodin
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France
| | - Antigoni Manousopoulou
- Faculty of Medicine, Cancer Sciences and Clinical and Experimental Medicine, University of Southampton, Southampton, UK
| | - Svenja Koslowski
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France.,C.RIS Pharma, Parc Technopolitain, Atalante Saint Malo, Saint Malo, France
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bettina Bohl
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany.,Central Institute of Mental Health, University of Heidelberg/ Medical, Faculty Mannheim and Hector Institut for Translational Brain Research (HITBR gGmbH), Mannheim, Germany
| | - Chiori Omori
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Department of Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Kazuo Yamamoto
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Frank Karg
- HPC INTERNATIONAL SAS and Atlantis Développement SAS, Noyal-Châtillon sur Seiche, Saint-Erblon, France
| | - Patrick Gizzi
- Plate-forme TechMedILL, UMR 7242, ESBS - Pôle API, Illkirch cedex, France
| | | | | | | | - Erik Portelius
- Clinical Neurochemical Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Pannee
- Clinical Neurochemical Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemical Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemical Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Spiros D Garbis
- Faculty of Medicine, Cancer Sciences and Clinical and Experimental Medicine, University of Southampton, Southampton, UK
| | - Pierrick Auvray
- C.RIS Pharma, Parc Technopolitain, Atalante Saint Malo, Saint Malo, France
| | - Hermeto Gerber
- Foundation Eclosion, Switzerland.,Campus Biotech Innovation Park, Geneva, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jeremy Fraering
- Foundation Eclosion, Switzerland.,Campus Biotech Innovation Park, Geneva, Switzerland
| | - Patrick C Fraering
- Foundation Eclosion, Switzerland.,Campus Biotech Innovation Park, Geneva, Switzerland
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France
| |
Collapse
|
31
|
Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN, Swaab DF. Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds. Neurosci Bull 2019; 35:244-252. [PMID: 30604279 PMCID: PMC6426918 DOI: 10.1007/s12264-018-0328-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands.
| | - Ronald W H Verwer
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rawien A Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Sabina Luchetti
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Jiang-Ning Zhou
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, China
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| |
Collapse
|
32
|
Lyra E Silva NDM, Gonçalves RA, Boehnke SE, Forny-Germano L, Munoz DP, De Felice FG. Understanding the link between insulin resistance and Alzheimer's disease: Insights from animal models. Exp Neurol 2019; 316:1-11. [PMID: 30930096 DOI: 10.1016/j.expneurol.2019.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people worldwide. AD is characterized by a profound impairment of higher cognitive functions and still lacks any effective disease-modifying treatment. Defective insulin signaling has been implicated in AD pathophysiology, but the mechanisms underlying this process are not fully understood. Here, we review the molecular mechanisms underlying defective brain insulin signaling in rodent models of AD, and in a non-human primate (NHP) model of the disease that recapitulates features observed in AD brains. We further highlight similarities between the NHP and human brains and discuss why NHP models of AD are important to understand disease mechanisms and to improve the translation of effective therapies to humans. We discuss how studies using different animal models have contributed to elucidate the link between insulin resistance and AD.
Collapse
Affiliation(s)
| | | | - Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Lane RM, Smith A, Baumann T, Gleichmann M, Norris D, Bennett CF, Kordasiewicz H. Translating Antisense Technology into a Treatment for Huntington's Disease. Methods Mol Biol 2019; 1780:497-523. [PMID: 29856033 DOI: 10.1007/978-1-4939-7825-0_23] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington's disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.
Collapse
Affiliation(s)
| | - Anne Smith
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | - Dan Norris
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | |
Collapse
|
34
|
Hwang S, Jeong H, Hong EH, Joo HM, Cho KS, Nam SY. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 2019; 8:bio.036657. [PMID: 30670376 PMCID: PMC6398453 DOI: 10.1242/bio.036657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is widely used in medicine and is valuable in both the diagnosis and treatment of many diseases. However, its health effects are ambiguous. Here, we report that low-dose ionizing radiation has beneficial effects in human amyloid-β42 (Aβ42)-expressing Drosophila Alzheimer's disease (AD) models. Ionizing radiation at a dose of 0.05 Gy suppressed AD-like phenotypes, including developmental defects and locomotive dysfunction, but did not alter the decreased survival rates and longevity of Aβ42-expressing flies. The same dose of γ-irradiation reduced Aβ42-induced cell death in Drosophila AD models through downregulation of head involution defective (hid), which encodes a protein that activates caspases. However, 4 Gy of γ-irradiation increased Aβ42-induced cell death without modulating pro-apoptotic genes grim, reaper and hid. The AKT signaling pathway, which was suppressed in Drosophila AD models, was activated by either 0.05 or 4 Gy γ-irradiation. Interestingly, p38 mitogen-activated protein-kinase (MAPK) activity was inhibited by exposure to 0.05 Gy γ-irradiation but enhanced by exposure to 4 Gy in Aβ42-expressing flies. In addition, overexpression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, or a null mutant of AKT strongly suppressed the beneficial effects of low-dose ionizing radiation in Aβ42-expressing flies. These results indicate that low-dose ionizing radiation suppresses Aβ42-induced cell death through regulation of the AKT and p38 MAPK signaling pathways, suggesting that low-dose ionizing radiation has hormetic effects on the pathogenesis of Aβ42-associated AD. Summary: Low-dose ionizing radiation can reduce cell death by regulating AKT/p38 signaling pathway and improve Aβ42-induced symptoms in Drosophila Alzheimer's disease, suggesting that low-dose ionizing radiation may be applicable for treatment.
Collapse
Affiliation(s)
- Soojin Hwang
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Haemin Jeong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Hae Mi Joo
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| |
Collapse
|
35
|
Braak H, Del Tredici K. Top-Down Projections Direct the Gradual Progression of Alzheimer-Related Tau Pathology Throughout the Neocortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:291-303. [PMID: 32096045 DOI: 10.1007/978-981-32-9358-8_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In sporadic Alzheimer's disease (sAD), tau pathology gradually but relentlessly progresses from the transentorhinal region of the temporal lobe into both the allocortex and temporal high order association areas of the neocortex. From there, it ultimately reaches the primary sensory and motor fields of the neocortex. The brunt of the changes seen during neurofibrillary stages (NFT) I-VI is borne by top-down projection neurons that contribute to cortico-cortical connectivities between different neocortical fields. Very early changes develop in isolated pyramidal cells in layers III and V, and these cells are targets of top-down projections terminating in association areas of the first temporal gyrus or in peristriate regions of the occipital lobe. Neurofibrillary pathology in these regions is routinely associated with late NFT stages. Sequential changes occur in different cell compartments (dendritic, somatic, axonal) of these early-involved neurons. Tau pathology first develops in distal segments of basal dendrites, then in proximal dendrites, the soma, and, finally, in the axon of affected pyramidal neurons. This sequence of abnormal changes supports the concept that axons of cortico-cortical top-down neurons may carry and spread abnormal tau seeds in a focused manner (transsynaptically) into the distal dendritic segments of nerve cells directly following in the neuronal chain, thereby sustaining tau-seeded templating in sAD.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany.
| |
Collapse
|
36
|
Rao CV, Farooqui M, Asch AS, Yamada HY. Critical role of mitosis in spontaneous late-onset Alzheimer's disease; from a Shugoshin 1 cohesinopathy mouse model. Cell Cycle 2018; 17:2321-2334. [PMID: 30231670 DOI: 10.1080/15384101.2018.1515554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From early-onset Alzheimer's disease (EOAD) studies, the amyloid-beta hypothesis emerged as the foremost theory of the pathological causes of AD. However, how amyloid-beta accumulation is triggered and progresses toward senile plaques in spontaneous late-onset Alzheimer's disease (LOAD) in humans remains unanswered. Various LOAD facilitators have been proposed, and LOAD is currently considered a complex disease with multiple causes. Mice do not normally develop LOAD. Possibly due to the multiple causes, proposed LOAD facilitators have not been able to replicate spontaneous LOAD in mice, representing a disease modeling issue. Recently, we reported spontaneous late-onset development of amyloid-beta accumulation in brains of Shugoshin 1 (Sgo1) haploinsufficient mice, a cohesinopathy-mediated chromosome instability model. The result for the first time expands disease relevance of mitosis studies to a major disease other than cancers. Reverse-engineering of the model would shed light on the process of late-onset amyloid-beta accumulation in the brain and spontaneous LOAD development, and contribute to development of interventions for LOAD. This review will discuss the Sgo1 model, our current "three-hit hypothesis" regarding LOAD development with an emphasis on critical role of prolonged mitosis in amyloid-beta accumulation, and implications for human LOAD intervention and treatment. Abbreviations: Alzheimer's disease (AD); Late-onset Alzheimer's disease (LOAD); Early-onset Alzheimer's disease (EOAD); Shugoshin-1 (Sgo1); Chromosome Instability (CIN); apolipoprotein (Apoe); Central nervous system (CNS); Amyloid precursor protein (APP); N-methyl-d-aspartate (NMDA); Hazard ratio (HR); Cyclin-dependent kinase (CDK); Chronic Atrial Intestinal Dysrhythmia (CAID); beta-secretase 1 (BACE); phosphor-Histone H3 (p-H3); Research and development (R&D); Non-steroidal anti-inflammatory drugs (NSAIDs); Brain blood barrier (BBB).
Collapse
Affiliation(s)
- Chinthalapally V Rao
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Mudassir Farooqui
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Adam S Asch
- b Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Hiroshi Y Yamada
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| |
Collapse
|
37
|
Ranjan VD, Qiu L, Tan EK, Zeng L, Zhang Y. Modelling Alzheimer's disease: Insights from in vivo to in vitro three-dimensional culture platforms. J Tissue Eng Regen Med 2018; 12:1944-1958. [PMID: 30011422 DOI: 10.1002/term.2728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss, impairment of other cognitive functions, and inability to perform activities of daily life. The key to understanding AD aetiology lies in the development of effective disease models, which should ideally recapitulate all aspects pertaining to the disease. A plethora of techniques including in vivo, in vitro, and in silico platforms have been utilized in developing disease models of AD over the years. Each of these approaches has revealed certain essential characteristics of AD; however, none have managed to fully mimic the pathological hallmarks observed in the AD human brain. In this review, we will provide details into the genesis, evolution, and significance of the principal methods currently employed in modelling AD, the advantages and limitations faced in their application, including the headways made by each approach. This review will focus primarily on two-dimensional and three-dimensional in vitro modelling of AD, which during the last few years has made significant breakthroughs in the areas of AD pathology and therapeutic screening. In addition, a glimpse into state-of-the-art neural tissue engineering techniques incorporating biomaterials and microfluidics technologies is provided, which could pave the way for the development of more accurate and comprehensive AD models in the future.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore.,School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.,Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
38
|
Kong Y, Jiang B, Luo X. Gut microbiota influences Alzheimer's disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 2018; 13:1117-1128. [PMID: 30043649 DOI: 10.2217/fmb-2018-0185] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The aim of present study is to investigate the relationship between gut microbiota and Alzheimer's disease (AD) using Drosophila model. MATERIALS & METHODS The microbiota was characterized by Illumina sequencing of 16S rRNA gene. Gas chromatography-mass spectrometer was performed to measure the level of short-chain fatty acids (SCFAs), metabolites of the commensal microbiota. RESULTS The diversity of the gut microbiota increased in AD Drosophila. As the most enriched bacteria at genus level, the proportions of Acetobacter and Lactobacillus decreased dramatically. Acetate was the most abundant SCFA derived from the dysregulated microbiota and markedly downregulated in AD Drosophila. CONCLUSION Our study on Drosophila model suggests that dysregulation of gut microbiota may participate in AD pathogenesis by influencing SCFA level.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry & Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education & Department of Genetics, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, PR China
| | - Xuancai Luo
- Department of Neurology, Huiyang Hospital, Southern Medical University, Huizhou, Guangdong 516211, PR China
| |
Collapse
|
39
|
Herline K, Prelli F, Mehta P, MacMurray C, Goñi F, Wisniewski T. Immunotherapy to improve cognition and reduce pathological species in an Alzheimer's disease mouse model. ALZHEIMERS RESEARCH & THERAPY 2018; 10:54. [PMID: 29914551 PMCID: PMC6006698 DOI: 10.1186/s13195-018-0384-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is characterized by physiologically endogenous proteins amyloid beta (Aβ) and tau undergoing a conformational change and accumulating as soluble oligomers and insoluble aggregates. Tau and Aβ soluble oligomers, which contain extensive β-sheet secondary structure, are thought to be the most toxic forms. The objective of this study was to determine the ability of TWF9, an anti-β-sheet conformation antibody (aβComAb), to selectively recognize pathological Aβ and phosphorylated tau in AD human tissue compared with cognitively normal age-matched controls and to improve the performance of old 3xTg-AD mice with advanced pathology in behavioral testing after acute treatment with TWF9. Methods In this study, we used immunohistochemistry, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) to characterize TWF9 specificity. We further assessed cognitive performance in old (18–22 months) 3xTg-AD mice using both a Barnes maze and novel object recognition after intraperitoneal administration of TWF9 (4 mg/kg) biweekly for 2 weeks before the start of behavioral testing. Injections continued for the duration of the behavioral testing, which lasted 2 weeks. Results Histological analysis of TWF9 in formalin-fixed paraffin-embedded human control and AD (ABC score: A3B3C3) brain tissue revealed preferential cytoplasmic immunoreactivity in neurons in the AD tissue compared with controls (p < 0.05). Furthermore, ELISA using oligomeric and monomeric Aβ showed a preferential affinity for oligomeric Aβ. Immunoprecipitation studies showed that TWF9 extracted both phosphorylated tau (p < 0.01) and Aβ (p < 0.01) from fresh frozen brain tissues. Results show that treated old 3xTg-AD mice have an enhanced novel object recognition memory (p < 0.01) and Barnes maze performance (p = 0.05) compared with control animals. Overall plaque burden, neurofibrillary tangles, microgliosis, and astrocytosis remained unchanged. Soluble phosphorylated tau was significantly reduced in TWF9-treated mice (p < 0.05), and there was a trend for a reduction in soluble Aβ levels in the brain homogenates of female 3xTg-AD mice (p = 0.06). Conclusions This study shows that acute treatment with an aβComAb can effectively improve performance in behavioral testing without reduction of amyloid plaque burden, and that peripherally administered IgG can affect levels of pathological species in the brain.
Collapse
Affiliation(s)
- Krystal Herline
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Frances Prelli
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Pankaj Mehta
- Department of Immunology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | - Fernando Goñi
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA. .,Departments of Pathology and Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Neuhaus CP. Ethical issues when modelling brain disorders innon-human primates. JOURNAL OF MEDICAL ETHICS 2018; 44:323-327. [PMID: 28801311 DOI: 10.1136/medethics-2016-104088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Non-human animal models of human diseases advance our knowledge of the genetic underpinnings of disease and lead to the development of novel therapies for humans. While mice are the most common model organisms, their usefulness is limited. Larger animals may provide more accurate and valuable disease models, but it has, until recently, been challenging to create large animal disease models. Genome editors, such as Clustered Randomised Interspersed Palindromic Repeat (CRISPR), meet some of these challenges and bring routine genome engineering of larger animals and non-human primates (NHPs) well within reach. There is growing interest in creating NHP models of brain disorders such as autism, depression and Alzheimer's, which are very difficult to model or study in other organisms, including humans. New treatments are desperately needed for this set of disorders. This paper is novel in asking: Insofar as NHPs are being considered for use as model organisms for brain disorders, can this be done ethically? The paper concludes that it cannot. Notwithstanding ongoing debate about NHPs' moral status, (1) animal welfare concerns, (2) the availability of alternative methods of studying brain disorders and (3) unmet expectations of benefit justify a stop on the creation of NHP model organisms to study brain disorders. The lure of using new genetic technologies combined with the promise of novel therapeutics presents a formidable challenge to those who call for slow, careful, and only necessary research involving NHPs. But researchers should not create macaques with social deficits or capuchin monkeys with memory deficits just because they can.
Collapse
Affiliation(s)
- Carolyn P Neuhaus
- Division of Medical Ethics, New York University School of Medicine, New York, USA
| |
Collapse
|
41
|
Zhou FQ, Jiang J, Griffith CM, Patrylo PR, Cai H, Chu Y, Yan XX. Lack of human-like extracellular sortilin neuropathology in transgenic Alzheimer's disease model mice and macaques. Alzheimers Res Ther 2018; 10:40. [PMID: 29690919 PMCID: PMC5978992 DOI: 10.1186/s13195-018-0370-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis. Transgenic mice and nonhuman primates are used as disease models for mechanistic and translational research into AD; the extent to which these animal models recapitulate AD-type neuropathology is an issue of importance. Putative C-terminal fragments from sortilin, a member of the vacuolar protein sorting 10 protein (Vps10p) family, have recently been shown to deposit in the neuritic β-amyloid (Aβ) plaques in the human brain. METHODS We set out to explore if extracellular sortilin neuropathology exists in AD-related transgenic mice and nonhuman primates. Brains from different transgenic strains and ages developed overt cerebral Aβ deposition, including the β-amyloid precursor protein and presenilin 1 double-transgenic (APP/PS1) mice at ~ 14 months of age, the five familial Alzheimer's disease mutations transgenic (5×FAD) mice at ~ 8 months, the triple-transgenic Alzheimer's disease (3×Tg-AD) mice at ~ 22 months, and aged monkeys (Macaca mulatta and Macaca fascicularis) were examined. Brain samples from young transgenic mice, middle-aged/aged monkeys, and AD humans were used as negative and positive pathological controls. RESULTS The C-terminal sortilin antibody, which labeled senile plaques in the AD human cerebral sections, did not display extracellular immunolabeling in the transgenic mouse or aged monkey brain sections with Aβ deposition. In Western blot analysis, sortilin fragments ~ 15 kDa were not detectable in transgenic mouse cortical lysates, but they occurred in control AD lysates. CONCLUSIONS In reference to their human brain counterparts, neuritic plaques seen in transgenic AD model mouse brains represent an incomplete form of this AD pathological hallmark. The species difference in neuritic plaque constituents also indicates more complex secondary proteopathies in the human brain relative to rodents and nonhuman primates during aging and in AD.
Collapse
Affiliation(s)
- Feng-Qin Zhou
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901 USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901 USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan China
| |
Collapse
|