1
|
Huang PN, Hsia SH, Huang KYA, Chen CJ, Wang ET, Shih SR, Lin TY. Reflecting on the 1998 enterovirus outbreak: A 25-year retrospective and learned lessons. Biomed J 2025; 48:100715. [PMID: 38492637 PMCID: PMC11751406 DOI: 10.1016/j.bj.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Enterovirus A71 (EV-A71) infections are a major Asia-Pacific health issue. However, this infection can cause serious and potentially fatal neurological issues. We attempt to explain EV-A71's molecular virology, epidemiology, and recombination events in this review. The clinical and neurological signs of EV-A71 infections are well documented. The review discusses EV-A71 central nervous system infections' causes, diagnostic criteria, treatment choices, and prognosis. Some consequences are aseptic meningitis, acute flaccid paralysis, and acute transverse myelitis. These problems' pathophysiology and EV-A71's central nervous system molecular processes are examined in the review. EV-A71 infections must be diagnosed accurately for therapy. No particular antiviral medications exist for EV-A71 infections, thus supportive care is the main treatment. The study emphasises addressing symptoms including temperature, dehydration, and pain to ease suffering. EV-A71 CNS infections have different prognoses depending on severity. The review discusses long-term effects and neurological sequelae of EV-A71 infections. In conclusion, Asia-Pacific public health is threatened by EV-A71 infections. This review helps prevent, diagnose, and treat EV-A71 infections by addressing the mechanisms, diagnostic criteria, treatment choices, and prognosis. This study fully examines the challenges and considerations of managing and treating EV-A71 infections. It also recommends future research and development to generate effective viral infection treatments.
Collapse
Affiliation(s)
- Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Department of Pediatric Respiratory Therapy, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ying Arthur Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - En-Tzu Wang
- Division of Acute Infectious Diseases, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
3
|
Zhou N, Chen T, You Q, Chen D, Liu L, Hu K. Enterovirus A71 infection-induced dry eye-like symptoms by damaging the lacrimal glands. Front Cell Infect Microbiol 2024; 14:1340075. [PMID: 38628549 PMCID: PMC11018897 DOI: 10.3389/fcimb.2024.1340075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To determine the effects of EV-A71 (Enterovirus A71) infection on ocular surface and its mechanism. Methods AG6 mice aged two to three weeks were randomly divided into control and EV-A71 infected groups. Slit-lamp observation, fluorescein staining, and phenol red thread test were used to assess symptoms of ocular surface at 4 dpi (days post infection). The pathological changes of cornea and lacrimal gland were observed by H&E staining, PAS staining, TUNEL assay, IHC staining and qRT-PCR. Corneas and lacrimal glands from mice were obtained and processed for RNA sequencing analysis. Newly diagnosed HFMD patients caused by EV-A71 were recruited and ensured they met the inclusion criteria. Ocular surface parameters (TMH and NIKBUT) were measured using the OCULUS Keratograph 5M. Tear samples were taken to examine Cxcl1 and IL-6 levels through the ELISA method. Results Mice studies revealed that EV-A71 infection caused tear film instability, decreased tear secretions, decreased in lacrimal gland size, and distinct goblet cell loss. It also resulted in increased large vacuoles within acinar cells and structural damage in lacrimal gland. Apart from minor damage to the epidermis, there was no obvious inflammatory changes or apoptosis in the cornea. However, there were significant inflammatory injury and apoptosis in the lacrimal gland. RNA-seq analysis showed IL-17 and NF-κB signaling pathways were activated in the lacrimal glands of mice infected with EV-A71. In HFMD patients, the THM was in a low range and NITBUT was significantly shorter than the control group by Oculus Keratograph 5M. ELISA assay showed a higher tear Cxcl1 and IL-6 level in them. Conclusion EV-A71 infection affected lacrimal gland structure and function and induced dry eye-like symptoms.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Lifei Liu
- Department of Infectious Disease, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Wang X, Hu Z, Zhang W, Wu S, Hao Y, Xiao X, Li J, Yu X, Yang C, Wang J, Zhang H, Ma F, Shi W, Wang J, Lei X, Zhang X, He S. Inhibition of lysosome-tethered Ragulator-Rag-3D complex restricts the replication of Enterovirus 71 and Coxsackie A16. J Cell Biol 2023; 222:e202303108. [PMID: 37906052 PMCID: PMC10619577 DOI: 10.1083/jcb.202303108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Enterovirus 71 (EV71) and Coxsackie A16 (CVA16) are two major causative agents of hand, foot, and mouth disease (HFMD) in young children. However, the mechanisms regulating the replication and pathogenesis of EV71/CVA16 remain incompletely understood. We performed a genome-wide CRISPR-Cas9 knockout screen and identified Ragulator as a mediator of EV71-induced apoptosis and pyroptosis. The Ragulator-Rag complex is required for EV71 and CVA16 replication. Upon infection, the Ragulator-Rag complex recruits viral 3D protein to the lysosomal surface through the interaction between 3D and RagB. Disruption of the lysosome-tethered Ragulator-Rag-3D complex significantly impairs the replication of EV71/CVA16. We discovered a novel EV71 inhibitor, ZHSI-1, which interacts with 3D and significantly reduces the lysosomal tethering of 3D. ZHSI-1 treatment significantly represses replication of EV71/CVA16 as well as virus-induced pyroptosis associated with viral pathogenesis. Importantly, ZHSI-1 treatment effectively protects against EV71 infection in neonatal and young mice. Thus, our study indicates that targeting lysosome-tethered Ragulator-Rag-3D may be an effective therapeutic strategy for HFMD.
Collapse
Affiliation(s)
- Xinhui Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Zhilin Hu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Wei Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yongjin Hao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xia Xiao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Xiaoliang Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Chengkui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Jingfeng Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Huiying Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Sudan He
- State Key Laboratory of Common Mechanism Research for Major Diseases, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Li Z, Ji W, Chen S, Duan G, Jin Y. Hand, Foot, and Mouth Disease Challenges and Its Antiviral Therapeutics. Vaccines (Basel) 2023; 11:571. [PMID: 36992155 PMCID: PMC10054684 DOI: 10.3390/vaccines11030571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an infectious disease caused by enteroviruses (EVs) and is extremely contagious and prevalent among infants and children under 5 years old [...].
Collapse
Affiliation(s)
- Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhu W, Li J, Wu Z, Li H, Zhang Z, Zhu X, Sun M, Dong S. Dual blockages of a broad and potent neutralizing IgM antibody targeting GH loop of EV-As. Immunology 2023. [PMID: 36726218 DOI: 10.1111/imm.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1. The 20-IgM blocks the interaction between the EV-As and its receptors, scavenger receptor class B, member 2 (SCARB2) and Kringle-containing transmembrane protein 1(KREMEN1) of the host cell. The 20-IgM also neutralizes the EV-As at the post-attachment stages, including postattachment neutralization, uncoating and RNA release inhibition after internalization. Mechanistically, the dual blockage effect of 20-IgM is dependent on both a conserved site targeting and high affinity binding. Meanwhile, 20-IgM provides cross-antiviral efficacy in EV-As orally infected neonatal ICR mice. Collectively, 20-IgM and its property exhibit excellent antiviral activity with a dual-blockage inhibitory effect at both the pre- and post-attachment stages. The finding enhances our understanding of IgM-mediated immunity and highlights the potential of IgM subtype antibodies against enterovirus infections.
Collapse
Affiliation(s)
- Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhixiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
7
|
Wang H, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Targeting 7-dehydrocholesterol reductase against EV-A71 replication by upregulating interferon response. Antiviral Res 2023; 209:105497. [PMID: 36528172 DOI: 10.1016/j.antiviral.2022.105497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Recent studies have shown a close link between viral infections and cholesterol metabolism. Here, we reported that 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme for catalyzing cholesterol synthesis in the Kandutsch-Russell pathway, is harnessed by enterovirus A71 (EV-A71) benefitting for its replication. Overexpression of DHCR7 resulted in upregulating of EV-A71 replication, while the S14A mutation, which reduces DHCR7 enzyme activity, has no effect on EV-A71 replication. Knockdown of DHCR7 expression with small interfering RNA (siRNA) or enzyme activity inhibition with pharmacological inhibitor AY9944 could significantly inhibit EV-A71 replication. Adding cholesterol to DHCR7 knockdown cells or AY9944-treated cells could rescue EV-A71 replication. More importantly, prophylactic administration of AY9944 effectively protected mice from lethal EV-A71 infection. In addition, the natural cholesterol precursor 7-dehydrocholesterol (7-DHC), which is converted to cholesterol by DHCR7, has a similar effect against EV-A71 infection. Mechanistically, AY9944 or 7-DHC treatment can specifically promote IRF3 phosphorylation to activate interferon response. Moreover, AY9944 effectively cleared coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) infections in vitro. In conclusion, pharmacological modulation of DHCR7 might provide a chance for treatment of enterovirus infection, including EV-A71.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
8
|
Ji W, Sun T, Li D, Chen S, Yang H, Jin Y, Duan G. TBK1 and IRF3 are potential therapeutic targets in Enterovirus A71-associated diseases. PLoS Negl Trop Dis 2023; 17:e0011001. [PMID: 36626364 PMCID: PMC9831319 DOI: 10.1371/journal.pntd.0011001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is an important causative agent of hand-foot-and-mouth disease (HFMD) associated with enormous healthcare and socioeconomic burden. Although a range of studies about EV-A71 pathogenesis have been well described, the underlying molecular mechanism in terms of innate immune response is still not fully understood, especially the roles of TANK-binding kinase 1 (TBK1) and interferon-regulatory factor 3 (IRF3). METHODOLOGY/PRINCIPAL FINDINGS Here, we applied TBK1 inhibitor and IRF3 agonist, for the first time, to evaluate the antiviral activities of TBK1 and IRF3 in vivo. We found that, through regulating EV-A71-induced type I interferon (IFN) response, IRF3 agonist effectively alleviated EV-A71-induced illness, while TBK1 inhibitor aggravated disease progression. In addition, EV-A71 replication was suppressed in EVA-71-infected mice administrated with IRF3 agonist. On the other hand, more severe pathological alterations of neuronal degeneration, muscle fiber breaks, fractured or fused alveolar walls, and diffuse congestion occurred in EVA-71-infected mice treated with TBK1 inhibitor administration. Furthermore, we determined the concentrations of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1β, monocyte chemotactic protein-1 (MCP-1), and IL-10 in both lungs and brains of mice and found that TBK1 inhibitor promoted EV-A71-induced inflammatory response, while IRF3 agonist alleviated it, which was consistent with clinical manifestations and pathological alterations. CONCLUSIONS Collectively, our findings suggest that TBK1 and IRF3 are potential therapeutic targets in EV-A71-induced illness.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
10
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Hand, Foot, and Mouth Disease: A Narrative Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:77-95. [PMID: 36284392 DOI: 10.2174/1570180820666221024095837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease is a common viral disease in childhood. Because the disease has the potential to reach epidemic levels and mortality is high in some countries, early recognition of this disease is of paramount importance. OBJECTIVE This purpose of this article is to familiarize pediatricians with the clinical manifestations and management of hand, foot, and mouth disease. METHODS A search was conducted in February 2022 in PubMed Clinical Queries using the key term "hand, foot, and mouth disease". The search strategy included all clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in English were included in this review. RESULTS Hand, foot, and mouth disease is characterized by a painful oral enanthem and asymptomatic exanthem on the palms and soles. Children younger than 5 years are most commonly affected. Hand, foot, and mouth disease caused by enterovirus A71 is more severe and has a higher rate of complications than that attributed to other viruses such as coxsackievirus A16. Circulatory failure secondary to myocardial impairment and neurogenic pulmonary edema secondary to brainstem damage are the main causes of death. Fortunately, the disease is usually benign and resolves in 7 to10 days without sequelae. Given the self-limited nature of most cases, treatment is mainly symptomatic and supportive. Intravenous immunoglobulin should be considered for the treatment of severe/complicated hand, foot, and mouth disease and has been recommended by several national and international guideline committees. Currently, there are no specific antiviral agents approved for the treatment of the disease. Drugs such as ribavirin, suramin, mulberroside C, aminothiazole analogs, and sertraline have emerged as potential candidates for the treatment of hand, foot, and mouth disease. Vaccination of susceptible individuals in high-risk areas and good personal hygiene are important preventative measures to combat the disease. CONCLUSION Familiarity of the disease including its atypical manifestations is crucial so that a correct diagnosis can be made, and appropriate treatment initiated. A timely diagnosis can help avoid contact with the affected individual and decrease the risk of an outbreak.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Paediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Hong Kong Institute of Integrative Medicine, and the Jockey Club School of Public Health and Primary Care, The Chinese University Hong Kong, Hong Kong
| |
Collapse
|
11
|
Zhao H, Jiao W, Xiu Y, Zhou K, Zhong P, Wang N, Yu S. Enzymatic Biotransformation of Gypenoside XLIX into Gylongiposide I and Their Antiviral Roles against Enterovirus 71 In Vitro. Molecules 2022; 27:4094. [PMID: 35807341 PMCID: PMC9268165 DOI: 10.3390/molecules27134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Biotransformation of specific saponins in the valuable medical plants to increase their bioavailability and pharmaceutical activities has attracted more and more attention. A gene encoding a thermophilic glycoside hydrolase from Fervidobaterium pennivorans DSM9078 was cloned and expressed in Escherichia coli. The purified recombinant enzyme, exhibiting endoglucanase cellulase activity, was used to transform gypenoside XLIX into gylongiposide I via highly selective and efficient hydrolysis of the glucose moiety linked to the C21 position in gypenoside XLIX. Under the optimal reaction conditions for large scale production of gylongiposide I, 35 g gypenoside XLIX was transformed by using 20 g crude enzyme at pH 6.0 and 80 °C for 4 h with a molar yield of 100%. Finally, 11.51 g of gylongiposide I was purified using a silica gel column with 91.84% chromatographic purity. Furthermore, inhibitory activities of gypenoside XLIX and gylongiposide I against Enterovirus 71 (EV71) were investigated. Importantly, the EC50 of gypenoside XLIX and gylongiposide I calculated from viral titers in supernatants was 3.53 μM and 1.53 μM, respectively. Moreover, the transformed product gylongiposide I has better anti-EV71 activity than the glycosylated precursor. In conclusion, this enzymatic method would be useful in the large-scale production of gylongiposide I, which would be a novel potent anti-EV71 candidate.
Collapse
Affiliation(s)
- Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| | - Wenbo Jiao
- Department of Clinical Laboratory, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yang Xiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| | - Kailu Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| | - Peng Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| | - Nan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| | - Shanshan Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Z.); (Y.X.); (K.Z.); (P.Z.); (N.W.)
| |
Collapse
|
12
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
14
|
Hu Y, Kitamura N, Musharrafieh R, Wang J. Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. J Med Chem 2021; 64:8755-8774. [PMID: 34085827 PMCID: PMC9179928 DOI: 10.1021/acs.jmedchem.1c00758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enterovirus genus of the picornavirus family contains many important human pathogens. EV-D68 primarily infects children, and the disease manifestations range from respiratory illnesses to neurological complications such as acute flaccid myelitis (AFM). EV-A71 is a major pathogen for the hand, foot, and mouth disease (HFMD) in children and can also lead to AFM and death in severe cases. CVB3 infection can cause cardiac arrhythmias, acute heart failure, as well as type 1 diabetes. There is currently no FDA-approved antiviral for any of these enteroviruses. In this study, we report our discovery and development of pyrazolopyridine-containing small molecules with potent and broad-spectrum antiviral activity against multiple strains of EV-D68, EV-A71, and CVB3. Serial viral passage experiments, coupled with reverse genetics and thermal shift binding assays, suggested that these molecules target the viral protein 2C. Overall, the pyrazolopyridine inhibitors represent a promising class of candidates for the urgently needed nonpolio enterovirus antivirals.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Ding Y, Xu J, Cheng LB, Huang YQ, Wang YQ, Li H, Li Y, Ji JY, Zhang JH, Zhao L. Effect of Emodin on Coxsackievirus B3m-Mediated Encephalitis in Hand, Foot, and Mouth Disease by Inhibiting Toll-Like Receptor 3 Pathway In Vitro and In Vivo. J Infect Dis 2021; 222:443-455. [PMID: 32115640 DOI: 10.1093/infdis/jiaa093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-β in serum were tested with enzyme-linked immunosorbent assay. RESULTS Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-β, in serum. CONCLUSIONS Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Medical and Health Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei Province, People's Republic of China.,Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Liang-Bin Cheng
- Department of Liver Diseases, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yong-Qian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - You-Qin Wang
- Department of Pediatrics, Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Yichang Central People's Hospital, Yichang, Hubei Province, People's Republic of China
| | - Jing-Yu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ji-Hong Zhang
- Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|