1
|
Willems MET, Blacker SD, Montanari S, Cook MD. Anthocyanin-Rich Blackcurrant Supplementation as a Nutraceutical Ergogenic Aid for Exercise Performance and Recovery: A Narrative Review. Curr Dev Nutr 2025; 9:104523. [PMID: 39896729 PMCID: PMC11782858 DOI: 10.1016/j.cdnut.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Athletes and physically active individuals consume sport nutrition supplements to enhance competitive sport performance and exercise recovery. Polyphenols have emerged as a promising area of research with application for sport and exercise nutrition owing to affecting physiologic mechanisms for exercise performance and recovery. The anthocyanin is a polyphenol that can be abundantly present in dark-colored fruits, berries, and vegetables. Anthocyanins and anthocyanin-induced metabolites will provide antioxidant and anti-inflammatory effects. The focus of this narrative review was on the observations with intake of anthocyanin-rich blackcurrant supplements on whole-body exercise performance and exercise recovery. This review included 17 studies with a randomized placebo-controlled crossover design (10 studies on performance and 8 on recovery effects) and 1 with a randomized placebo-controlled parallel group design (recovery effects). Among the performance studies, 6 studies (60%) reported positive effects, 3 studies (30%) reported no significant effects, and 1 study (10%) reported a mixed outcome. Among the recovery studies, 7 studies (78%) reported positive effects, 1 study (11%) reported no significant effects, and 1 study (11%) reported a negative effect. Studies with intake of supplements made from New Zealand blackcurrants (dose: 1.8-3.2 mg/kg and 105-315 mg anthocyanins, acute to 7-d intake) provided meaningful (but not always consistent) effects on continuous and intermittent exercise performance tasks (i.e. rowing, cycling, and running) and markers for exercise recovery. A mechanistic understanding for the beneficial exercise effects of anthocyanins for athletes and physically active individuals is still limited. Future work requires a better understanding of the specific types of anthocyanins and anthocyanin-induced metabolites and their effects on altering cell function that can enhance exercise performance and recovery.
Collapse
Affiliation(s)
- Mark ET Willems
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Sam D Blacker
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Stefano Montanari
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, United Kingdom
| | - Matthew D Cook
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
2
|
Schlösser L, Borszcz FK, Smeha L, Peres NM, Assumpção TI, Burin VM, da Silva EL, de Lucas RD, Hansen F. No effect of grape juice on exercise-induced muscle damage or performance in male runners: a randomized, placebo-controlled, triple-blind clinical trial. Appl Physiol Nutr Metab 2025; 50:1-11. [PMID: 39536304 DOI: 10.1139/apnm-2024-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study aimed to verify the effect of grape juice (Vitis Labrusca) intake on exercise-induced muscle damage (EIMD) and exercise performance parameters (5 km running time-trial (TT), running economy, and countermovement jump (CMJ)). Twenty trained male runners were randomized into two blinded groups and consumed either placebo (n = 9) or grape juice (n = 11) for six consecutive days (600 mL/day). On the fourth day, the participants performed a downhill running (-15%) at speed that elicited 70% V̇O2max for 20 min, to induce muscle damage, followed by assessment of running economy, 5 km TT, and CMJ tests. Blood samples were obtained before and after the exercise tests for quantifying total phenols, creatine kinase (CK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). On the sixth day, blood parameters and CMJ were evaluated. A two-way Analysis of covariance (ANCOVA) mixed model was employed for data analysis, the effects were the juice groups, measurement and a interaction between the factors. EIMD was confirmed by increased levels of indirect markers (serum AST and LDH activities) and an impairment in TT and CMJ performances after 48 h. The 5 km TT, economy, and CMJ were compromised after EIMD, to a similar extent in the groups. Blood concentrations of CK, LDH, AST, and total phenolic compounds presented similar time course behavior between the groups, showing no group × time interaction effects. In conclusion, grape juice consumption over 6 days did not attenuate EIMD markers or the impairment in running performance in trained male runners. (ReBEC number: RBR-9jkkvbb).
Collapse
Affiliation(s)
- Larissa Schlösser
- Nutrition Postgraduate Program, Nutrition Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Human Performance Research Group, Center for Health and Sport Sciences, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - Laís Smeha
- Nutrition Postgraduate Program, Nutrition Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Natália M Peres
- Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Thalita I Assumpção
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vivian M Burin
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Edson L da Silva
- Nutrition Postgraduate Program, Nutrition Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Pharmacy Postgraduate Program, Department of Clinical Analyses, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ricardo D de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Hansen
- Nutrition Postgraduate Program, Nutrition Department, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
3
|
Perkins IC, Blacker SD, Willems MET. Individual Responses to Repeated Dosing with Anthocyanin-Rich New Zealand Blackcurrant Extract During High-Intensity Intermittent Treadmill Running in Active Males. Nutrients 2024; 16:4253. [PMID: 39770875 PMCID: PMC11677273 DOI: 10.3390/nu16244253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Intake of New Zealand blackcurrant (NZBC) extract for 7 days has been shown to improve high-intensity intermittent running (HIIR) performance. OBJECTIVES We examined the repeat response of NZBC extract on HIIR performance. METHODS Sixteen active males (age: 23 ± 3 yrs, height: 179 ± 5 cm, mass: 79 ± 11 kg, V˙O2max: 55.3 ± 5 mL∙kg-1∙min-1, velocity at V˙O2max: 17.2 ± 0.8 km∙h-1, mean ± SD) participated. Familiarized subjects completed the HIIR test at individualized exercise intensities with stages consisting of six 19 s high-intensity running bouts interspersed by 15 s of low-intensity running and 1 min of inter-stage rest. The test was repeated at increasing speeds until exhaustion, under four conditions; two with a daily dose of 600 mg of NZBC extract (CurraNZ™, providing 210 mg anthocyanins) and two with a placebo, each over 7 days. The study used a double-blind, randomized, cross-over design with a wash-out period of at least 14 days. RESULTS For the cohort, there were no differences between the placebo and NZBC conditions for mean heart rate (p = 0.071), mean oxygen uptake (p = 0.713), and mean lactate (p = 0.121) at exhaustion for the HIIR. The NZBC extract increased the mean total running distance and mean high-intensity running distance by 7.9% and 8.0% compared to the placebo. With NZBC extract, 8 of the 16 participants (50%) enhanced in both trials beyond the smallest worthwhile change for total running distance (≥173 m) and high-intensity running distance (≥111 m). For repeated responders, total running distance and high-intensity running distance was increased by 16.7% (95% CI [11.0, 22.4%] and 16.6% (95% CI [11.0, 22.2%]. Three participants had enhanced running performance in one trial beyond the SWC, and five participants were considered non-responders. CONCLUSIONS This is the first study on the repeated response by an anthocyanin-rich supplement on high-intensity running performance. New Zealand blackcurrant extract can substantially enhance intermittent high-intensity running performance in consistent responders. Future work should examine dosing strategies of New Zealand blackcurrant, and whether a repeated response rate exceeding 50% can be attained. These findings suggest that NZBC extract could be beneficial for athletes participating in high-intensity team sports.
Collapse
Affiliation(s)
- Ian C. Perkins
- Institute of Education and Social Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| | - Sam D. Blacker
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| | - Mark E. T. Willems
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| |
Collapse
|
4
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
5
|
Ji X, Li Q, Liu Z, Wu W, Zhang C, Sui H, Chen M. Identification of Active Components for Sports Supplements: Machine Learning-Driven Classification and Cell-Based Validation. ACS OMEGA 2024; 9:11347-11355. [PMID: 38496927 PMCID: PMC10938306 DOI: 10.1021/acsomega.3c07395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The identification of active components is critical for the development of sports supplements. However, high-throughput screening of active components remains a challenge. This study sought to construct prediction models to screen active components from herbal medicines via machine learning and validate the screening by using cell-based assays. The six constructed models had an accuracy of >0.88. Twelve randomly selected active components from the screening were tested for their active potency on C2C12 cells, and 11 components induced a significant increase in myotube diameters and protein synthesis. The effect and mechanism of luteolin among the 11 active components as potential sports supplements were then investigated by using immunofluorescence staining and high-content imaging analysis. It showed that luteolin increased the skeletal muscle performance via the activation of PGC-1α and MAPK signaling pathways. Thus, high-throughput prediction models can be effectively used to screen active components as sports supplements.
Collapse
Affiliation(s)
- Xiaoning Ji
- State
Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di
Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Qiuyun Li
- NMPA
Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial
Key Laboratory of Tropical Disease Research, Food Safety and Health
Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhaoping Liu
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Weiliang Wu
- NMPA
Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial
Key Laboratory of Tropical Disease Research, Food Safety and Health
Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chaozheng Zhang
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Haixia Sui
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Min Chen
- State
Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di
Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
6
|
Pyka P, Haberek W, Więcek M, Szymanska E, Ali W, Cios A, Jastrzębska-Więsek M, Satała G, Podlewska S, Di Giacomo S, Di Sotto A, Garbo S, Karcz T, Lambona C, Marocco F, Latacz G, Sudoł-Tałaj S, Mordyl B, Głuch-Lutwin M, Siwek A, Czarnota-Łydka K, Gogola D, Olejarz-Maciej A, Wilczyńska-Zawal N, Honkisz-Orzechowska E, Starek M, Dąbrowska M, Kucwaj-Brysz K, Fioravanti R, Nasim MJ, Hittinger M, Partyka A, Wesołowska A, Battistelli C, Zwergel C, Handzlik J. First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT 6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease. J Med Chem 2024; 67:1580-1610. [PMID: 38190615 PMCID: PMC10823479 DOI: 10.1021/acs.jmedchem.3c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.
Collapse
Affiliation(s)
- Patryk Pyka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Wawrzyniec Haberek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Małgorzata Więcek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymanska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wesam Ali
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Agnieszka Cios
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Silvia Di Giacomo
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Italian
National Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Sotto
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Garbo
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Marocco
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Czarnota-Łydka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Dawid Gogola
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Starek
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Dąbrowska
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Muhammad Jawad Nasim
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
- Department
of Drug Delivery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Anna Partyka
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Clemens Zwergel
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
7
|
Ayyadurai VAS, Deonikar P. Attenuation of Aging-Related Oxidative Stress Pathways by Phytonutrients: A Computational Systems Biology Analysis. Nutrients 2023; 15:3762. [PMID: 37686794 PMCID: PMC10489992 DOI: 10.3390/nu15173762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aging results from gradual accumulation of damage to the cellular functions caused by biochemical processes such as oxidative stress, inflammation-driven prolonged cellular senescence state, immune system malfunction, psychological stress, and epigenetic changes due to exposure to environmental toxins. Plant-derived bioactive molecules have been shown to ameliorate the damage from oxidative stress. This research seeks to uncover the mechanisms of action of how phytochemicals from fruit/berry/vegetable (FBV) juice powder mitigate oxidative stress. The study uses a computational systems biology approach to (1) identify biomolecular pathways of oxidative stress; (2) identify phytochemicals from FBV juice powder and their specific action on oxidative stress mechanisms; and (3) quantitatively estimate the effects of FBV juice powder bioactive compounds on oxidative stress. The compounds in FBV affected two oxidative stress molecular pathways: (1) reactive oxygen species (ROS) production and (2) antioxidant enzyme production. Six bioactive compounds including cyanidin, delphinidin, ellagic acid, kaempherol, malvidin, and rutin in FBV significantly lowered production of ROS and increased the production of antioxidant enzymes such as catalase, heme oxygenase-1, superoxide dismutase, and glutathione peroxidase. FBV juice powder provides a combination of bioactive compounds that attenuate aging by affecting multiple pathways of oxidative stress.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Cambridge, MA 02138, USA;
| | | |
Collapse
|
8
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
9
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
10
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
11
|
Kelly CPMG. Is There Evidence for the Development of Sex-Specific Guidelines for Ultramarathon Coaches and Athletes? A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:6. [PMID: 36695958 PMCID: PMC9877268 DOI: 10.1186/s40798-022-00533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/13/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND There is evidence of sex differences in the physiology of endurance exercise, yet most of the advice and guidelines on training, racing, nutrition, and recovery for ultramarathons are based on research that has largely excluded female athletes. The objective was therefore to review the current knowledge of sex differences in ultramarathon runners and determine if sufficient evidence exists for providing separate guidelines for males and females. METHODS This systematic review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three databases were searched for studies investigating differences in elite and recreational male and female ultramarathon runners. Studies were included if they compared males and females and looked at outcomes relating to the performance or health of ultramarathon runners. The quality of the included studies was determined using the Grading of Recommendations Assessment Development and Evaluation (GRADE) approach. RESULTS The search strategy identified 45 studies that met the inclusion criteria. Most studies were observational in design, with only three papers based on randomised controlled trials. The overall quality of the evidence was low. Sex differences in the predictors of ultramarathon performance; physiological responses to training, racing, and recovery; chronic and acute health issues; and pacing strategies were found. There were areas with contradictory findings, and very few studies examined specific interventions. CONCLUSION The results from this review suggest that the development of sex-specific guidelines for ultramarathon coaches and athletes could have a significant effect on the performance and health of female runners. At present, there is insufficient high-quality evidence on which to formulate these guidelines, and further research is required.
Collapse
Affiliation(s)
- Claudia P M G Kelly
- College of Medicine and Health, The University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK.
| |
Collapse
|
12
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
13
|
Li S, Fasipe B, Laher I. Potential harms of supplementation with high doses of antioxidants in athletes. J Exerc Sci Fit 2022; 20:269-275. [PMID: 35812825 PMCID: PMC9241084 DOI: 10.1016/j.jesf.2022.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
| | | | - Ismail Laher
- University of British Columbia, Canada
- Corresponding author.
| |
Collapse
|
14
|
Ayyadurai VS, Deonikar P, Bannuru RR. Attenuation of low-grade chronic inflammation by phytonutrients: A computational systems biology analysis. Clin Nutr ESPEN 2022; 49:425-435. [DOI: 10.1016/j.clnesp.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
15
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
16
|
Beck KL, von Hurst PR, O'Brien WJ, Badenhorst CE. Micronutrients and athletic performance: A review. Food Chem Toxicol 2021; 158:112618. [PMID: 34662692 DOI: 10.1016/j.fct.2021.112618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Optimising nutrition intake is a key component for supporting athletic performance and supporting adaption to training. Athletes often use micronutrient supplements in order to correct vitamin and mineral deficiencies, improve immune function, enhance recovery and or to optimise their performance. The aim of this review was to investigate the recent literature regarding micronutrients (specifically iron, vitamin C, vitamin E, vitamin D, calcium) and their effects on physical performance. Over the past ten years, several studies have investigated the impacts of these micronutrients on aspects of athletic performance, and several reviews have aimed to provide an overview of current use and effectiveness. Currently the balance of the literature suggests that micronutrient supplementation in well-nourished athletes does not enhance physical performance. Excessive intake of dietary supplements may impair the body's physiological responses to exercise that supports adaptation to training stress. In some cases, micronutrient supplementation is warranted, for example, with a diagnosed deficiency, when energy intake is compromised, or when training and competing at altitude, however these micronutrients should be prescribed by a medical professional. Athletes are encouraged to obtain adequate micronutrients from a wellbalanced and varied dietary intake.
Collapse
Affiliation(s)
- Kathryn L Beck
- School of Sport, Exercise and Nutrition, College of Health, Massey University, New Zealand, Private Bag 102904, North Shore, Auckland, 0745, New Zealand.
| | - Pamela R von Hurst
- School of Sport, Exercise and Nutrition, College of Health, Massey University, New Zealand, Private Bag 102904, North Shore, Auckland, 0745, New Zealand.
| | - Wendy J O'Brien
- School of Sport, Exercise and Nutrition, College of Health, Massey University, New Zealand, Private Bag 102904, North Shore, Auckland, 0745, New Zealand.
| | - Claire E Badenhorst
- School of Sport, Exercise and Nutrition, College of Health, Massey University, New Zealand, Private Bag 102904, North Shore, Auckland, 0745, New Zealand.
| |
Collapse
|
17
|
Broome SC, Braakhuis AJ, Mitchell CJ, Merry TL. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr 2021; 18:58. [PMID: 34419082 PMCID: PMC8379793 DOI: 10.1186/s12970-021-00454-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exercise increases skeletal muscle reactive oxygen species (ROS) production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ, which contains a ubiquinone moiety and is targeted to mitochondria through the addition of a lipophilic triphenylphosphonium cation, are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here, we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial. METHOD In a randomized, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg- 1·min- 1, distance cycled per week during 6 months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg·day- 1) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rating of perceived exertion (RPE) were also collected. RESULTS Mean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, p = 0.04, 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (p = 0.82) despite there being a 4.4% increase in average power output during the time trial following MitoQ supplementation compared to placebo (placebo; 270 ± 51 W, MitoQ; 280 ± 53 W, p = 0.04, 95% CI [0.49, 8.22], d = 0.2). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg·ml- 1) compared to placebo (44.7 ± 16.9 pg·ml- 1 p = 0.03). CONCLUSION These data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.
Collapse
Affiliation(s)
- S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - A J Braakhuis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - C J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
19
|
Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126294. [PMID: 34200767 PMCID: PMC8296102 DOI: 10.3390/ijerph18126294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Despite the steady increase in female participation in sport over the last two decades, comprehensive research on interventions attenuating the influence of female menstrual physiology on performance remains scarce. Studies involving eumenorrheic women often only test in one menstrual phase to limit sex hormone variance, which may restrict the application of these findings to the rest of the menstrual cycle. The impacts of nutrition-based interventions on athletic performance throughout the menstrual cycle have not been fully elucidated. We addressed this gap by conducting a focused critical review of clinical studies that reported athletic outcomes as well as menstrual status for healthy eumenorrheic female participants. In total, 1443 articles were identified, and 23 articles were included. These articles were published between 2011 and 2021, and were retrieved from Google Scholar, Medline, and PubMed. Our literature search revealed that hydration-, micronutrient-, and phytochemical-based interventions can improve athletic performance (measured by aerobic capacity, anaerobic power, and strength performance) or attenuate exercise-induced damage (measured by dehydration biomarkers, muscle soreness, and bone resorption biomarkers). Most performance trials, however, only assessed these interventions in one menstrual phase, limiting the application throughout the entire menstrual cycle. Improvements in athletic performance through nutrition-based interventions may be contingent upon female sex hormone variation in eumenorrheic women.
Collapse
|
20
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
21
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
22
|
Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:1293-1316. [PMID: 33687663 DOI: 10.1007/s40279-021-01440-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Flavonoid polyphenols are bioactive phytochemicals found in fruits and teas among other sources. It has been postulated that foods and supplements containing flavonoid polyphenols may enhance recovery from exercise-induced muscle damage (EIMD) through upregulation of cell signalling stress response pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway. OBJECTIVES This study aims to investigate the ability of polyphenol treatments containing flavonoids to enhance recovery of skeletal muscle strength, soreness and creatine kinase post EIMD. METHODS Medline (Pubmed), Embase and SPORTdiscus were searched from inception to August 2020 for randomised placebo-controlled trials which assessed the impact of 6 or more days of flavonoid containing polyphenol ingestion on skeletal muscle recovery in the 96-h period following a single bout of EIMD. A total of 2983 studies were screened in duplicate resulting in 26 studies included for analysis. All meta-analyses were undertaken using a random-effects model. RESULTS The pooled results of these meta-analyses show flavonoid polyphenol treatments can enhance recovery of muscle strength by 7.14% (95% CI [5.50-8.78], P < 0.00001) and reduce muscle soreness by 4.12% (95% CI [- 5.82 to - 2.41] P = 0.00001), no change in the recovery of creatine kinase concentrations was observed. CONCLUSION These results indicate that ingestion of polyphenol treatments which contain flavonoids has significant potential to improve recovery of muscular strength and reduce muscle soreness in the 4-day period post EIMD. However, the characterisation of polyphenol dosage and composition of study treatments should be prioritised in future research to facilitate the development of specific guidelines for the inclusion of flavonoid-rich foods in the diet of athletes and active individuals.
Collapse
|
23
|
Higgins MR, Izadi A, Kaviani M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8452. [PMID: 33203106 PMCID: PMC7697466 DOI: 10.3390/ijerph17228452] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Antioxidant supplementation, including vitamin E and C supplementation, has recently received recognition among athletes as a possible method for enhancing athletic performance. Increased oxidative stress during exercise results in the production of free radicals, which leads to muscle damage, fatigue, and impaired performance. Despite their negative effects on performance, free radicals may act as signaling molecules enhancing protection against greater physical stress. Current evidence suggests that antioxidant supplementation may impair these adaptations. Apart from athletes training at altitude and those looking for an immediate, short-term performance enhancement, supplementation with vitamin E does not appear to be beneficial. Moreover, the effectiveness of vitamin E and C alone and/or combined on muscle mass and strength have been inconsistent. Given that antioxidant supplements (e.g., vitamin E and C) tend to block anabolic signaling pathways, and thus, impair adaptations to resistance training, special caution should be taken with these supplements. It is recommended that athletes consume a diet rich in fruits and vegetables, which provides vitamins, minerals phytochemicals, and other bioactive compounds to meet the recommended intakes of vitamin E and C.
Collapse
Affiliation(s)
- Madalyn Riley Higgins
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Azimeh Izadi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Mojtaba Kaviani
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| |
Collapse
|
24
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
25
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
26
|
Braakhuis AJ, Somerville VX, Hurst RD. The effect of New Zealand blackcurrant on sport performance and related biomarkers: a systematic review and meta-analysis. J Int Soc Sports Nutr 2020; 17:25. [PMID: 32460873 PMCID: PMC7251677 DOI: 10.1186/s12970-020-00354-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 11/12/2022] Open
Abstract
Background Blackcurrants have come to be regarded as a superfood because of their high polyphenol content, namely anthocyanins. While many berry types have been studied, blackcurrant-anthocyanins may be the superior berry when it comes to athletic performance. The purpose of the review was to evaluate the effects of blackcurrant supplementation on athletic performance, oxidative markers, cognition, and side effects. Methods Systematic review and meta-analysis. Review manager software (version 5.3) was used for the meta-analysis. The risks of bias was independently assessed using the guidelines and criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions. The data sources for the search included MEDLINE (Ovid), Google Scholar databases, additional references lists, conference proceedings and grey literature until August 2019. Eligibility Criteria included all blackcurrant (New Zealand derived) interventions, randomised control trials, human participants, placebo-controlled only. Results A total of 16 separate studies met the criteria for inclusion in the systematic review, with 9 studies contributing to this sport performance meta-analysis. There was an improvement in sport performance when supplementing with blackcurrant, 0.45 (95% CI 0.09–0.81, p = 0.01). The effective dose appears to be between 105 and 210 mg of total blackcurrant anthocyanins, prior to exercise. There were insufficient studies reporting oxidative markers, cognitive effects or biomarkers, and/or side effects to comment on the mechanism of action. Conclusion Blackcurrant has a small, but significant, effect on sport performance, with no known detrimental side effects.
Collapse
Affiliation(s)
- A J Braakhuis
- Discipline of Nutrition, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| | - V X Somerville
- Discipline of Nutrition, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - R D Hurst
- The New Zealand Institute for Plant and Food Research Limited, Food Innovation Portfolio, Food & Wellness Group, Private Bag, Palmerston North, 11600, New Zealand
| |
Collapse
|
27
|
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020; 33:745-760. [PMID: 32174127 DOI: 10.1089/ars.2019.7949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.
Collapse
Affiliation(s)
- Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo P Matta
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Corinne Dupuy
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Denise P Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Acute effect of juçara juice (Euterpe edulis Martius) on oxidative stress biomarkers and fatigue in a high-intensity interval training session: A single-blind cross-over randomized study. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Abstract
Polyphenols are characterised structurally by two or more hydroxyl groups attached to one or more benzene rings, and provide the taste and colour characteristics of fruits and vegetables. They are radical scavengers and metal chelators, but due to their low concentration in biological fluids in vivo their antioxidant properties seem to be related to enhanced endogenous antioxidant capacity induced via signalling through the Nrf2 pathway. Polyphenols also seem to possess anti-inflammatory properties and have been shown to enhance vascular function via nitric oxide-mediated mechanisms. As a consequence, there is a rationale for supplementation with fruit-derived polyphenols both to enhance exercise performance, since excess reactive oxygen species generation has been implicated in fatigue development, and to enhance recovery from muscle damage induced by intensive exercise due to the involvement of inflammation and oxidative damage within muscle. Current evidence would suggest that acute supplementation with ~ 300 mg polyphenols 1–2 h prior to exercise may enhance exercise capacity and/or performance during endurance and repeated sprint exercise via antioxidant and vascular mechanisms. However, only a small number of studies have been performed to date, some with methodological limitations, and more research is needed to confirm these findings. A larger body of evidence suggests that supplementation with > 1000 mg polyphenols per day for 3 or more days prior to and following exercise will enhance recovery following muscle damage via antioxidant and anti-inflammatory mechanisms. The many remaining unanswered questions within the field of polyphenol research and exercise performance and recovery are highlighted within this review article.
Collapse
|
30
|
Bloedon TK, Braithwaite RE, Carson IA, Klimis-Zacas D, Lehnhard RA. Impact of anthocyanin-rich whole fruit consumption on exercise-induced oxidative stress and inflammation: a systematic review and meta-analysis. Nutr Rev 2019; 77:630-645. [PMID: 31228241 DOI: 10.1093/nutrit/nuz018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CONTEXT Supplementing with fruits high in anthocyanins to reduce exercise-induced oxidative stress and inflammation has produced mixed results. OBJECTIVE This systematic review and meta-analysis aims to discuss the impact of whole fruits high in anthocyanins, including processing methods and the type and amount of fruit, on inflammation and oxidative stress. DATA SOURCES PICOS reporting guidelines and a customized coding scheme were used to search 5 databases (SPORTDiscus, Science Direct, Web of Science [BIOSIS], Medline [Pubmed], and the Cochrane Collaboration) with additional cross-referencing selection. DATA EXTRACTION A random-effects meta-analysis was used to measure effects of the fruit supplements with 3 statistics; the QTotal value based on a χ2 distribution, τ2 value, and I2 value were used to determine homogeneity of variances on 22 studies (out of 807). Outliers were identified using a relative residual value. RESULTS A small significant negative summary effect across the sum of all inflammatory marker outcomes (P < 0.001) and a moderate negative effect for the sum of all oxidative stress marker outcomes (P = 0.036) were found. Moderator analyses did not reveal significant (P > 0.05) differences between subgrouping variables. CONCLUSIONS Results indicate that consumption of whole fruit high in anthocyanins can be beneficial for reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Taylor K Bloedon
- Department of Kinesiology and Recreation Administration, Humboldt State University, Arcata, California, USA
| | - Rock E Braithwaite
- Department of Kinesiology and Recreation Administration, Humboldt State University, Arcata, California, USA
| | - Imogene A Carson
- Department of Kinesiology and Recreation Administration, Humboldt State University, Arcata, California, USA
| | | | - Robert A Lehnhard
- School of Kinesiology, Physical Education and Athletic Training, University of Maine, Orono, Maine, USA
| |
Collapse
|
31
|
Cortez RE, Gonzalez de Mejia E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J Food Sci 2019; 84:2387-2401. [PMID: 31454085 DOI: 10.1111/1750-3841.14781] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 02/02/2023]
Abstract
Blackcurrants (BC; Ribes nigrum) are relatively new to the U.S. market; however, they are well known and popular in Europe and Asia. The use of BC has been trending worldwide, particularly in the United States. We believe that demand for BC will grow as consumers become aware of the several potential health benefits these berries offer. The objectives of this review were to provide an up-to-date summary of information on BC based on articles published within the last decade; furthermore, to provide the food industry insights into possibilities for the utilization of BC. The chemistry, processing methods, and health benefits have been highlighted in addition to how the environment and variety impact the chemical constituents of BC. A search for journal publications on BC was conducted, which included keywords such as chemical characterization, health benefits, processing, technologies, anthocyanins (ANC), and proanthocyanidins. This review provides up-to-date information available on the subject. In conclusion, BC and their products have industrial uses from which extractions can be made to produce natural pigments to be used as food additives. BC contain flavonoids, specifically ANC, which provide the fruits with their purple color. BC are a rich source of phytochemicals with potent antioxidant, antimicrobial, and anti-inflammatory properties. Also, BC have the potential to improve overall human health particularly with diseases associated with inflammation and regulation of blood glucose.
Collapse
Affiliation(s)
- Regina E Cortez
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| | - Elvira Gonzalez de Mejia
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| |
Collapse
|
32
|
[Influence of soccer training on parameters of oxidative stress in erythrocytes]. NUTR HOSP 2019; 36:926-930. [PMID: 31192692 DOI: 10.20960/nh.02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: the situations of stress among which physical exercise is included imply the possibility of an excessive production of free radicals and, by their action, an oxidative stress in the cells. To combat these effects, cells have defense mechanisms called antioxidant systems. Objectives: the objective of this study is to analyze the possible physiological changes in relation to parameters related to oxidative stress (MDA) and antioxidant activity (vitamin A, vitamin C and vitamin E) in the erythrocytes of professional soccer players, in comparison with untrained subjects. Methods: forty-two men divided into 21 soccer players (SG) (24.95 ± 3.03 years) and 21 sedentary students (CG) (23.71 ± 2.42 years) participated in the study. Their basal levels of MDA, vitamin C, vitamin A and vitamin E in erythrocytes, as well as their anthropometric characteristics and VO2max, were evaluated. Results: significant differences were observed in the anthropometric characteristics (p < 0.05) and VO2max (p > 0.01). SG presented statistically lower levels of MDA (p > 0.01), vitamin C (p > 0.05), vitamin E (p > 0.05) and vitamin A (p > 0.01). Conclusions: there is higher oxidative stress in soccer players than in sedentary players and it may be necessary to supplement with antioxidants in this group.
Collapse
|
33
|
Henríquez-Olguín C, Renani LB, Arab-Ceschia L, Raun SH, Bhatia A, Li Z, Knudsen JR, Holmdahl R, Jensen TE. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol 2019; 24:101188. [PMID: 30959461 PMCID: PMC6454063 DOI: 10.1016/j.redox.2019.101188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). METHODS HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. RESULTS A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. CONCLUSION This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Leila Baghersad Renani
- Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Islamic Republic of Iran
| | - Lyne Arab-Ceschia
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Steffen H Raun
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Aakash Bhatia
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| |
Collapse
|
34
|
LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1. Can J Physiol Pharmacol 2019; 97:797-807. [PMID: 30970215 DOI: 10.1139/cjpp-2019-0067] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
35
|
Enhancement of Exercise Performance by 48 Hours, and 15-Day Supplementation with Mangiferin and Luteolin in Men. Nutrients 2019; 11:nu11020344. [PMID: 30736383 PMCID: PMC6412949 DOI: 10.3390/nu11020344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
The natural polyphenols mangiferin and luteolin have free radical-scavenging properties, induce the antioxidant gene program and down-regulate the expression of superoxide-producing enzymes. However, the effects of these two polyphenols on exercise capacity remains mostly unknown. To determine whether a combination of luteolin (peanut husk extract containing 95% luteolin, PHE) and mangiferin (mango leave extract (MLE), Zynamite®) at low (PHE: 50 mg/day; and 140 mg/day of MLE containing 100 mg of mangiferin; L) and high doses (PHE: 100 mg/day; MLE: 420 mg/day; H) may enhance exercise performance, twelve physically active men performed incremental exercise to exhaustion, followed by sprint and endurance exercise after 48 h (acute effects) and 15 days of supplementation (prolonged effects) with polyphenols or placebo, following a double-blind crossover design. During sprint exercise, mangiferin + luteolin supplementation enhanced exercise performance, facilitated muscle oxygen extraction, and improved brain oxygenation, without increasing the VO₂. Compared to placebo, mangiferin + luteolin increased muscle O₂ extraction during post-exercise ischemia, and improved sprint performance after ischemia-reperfusion likely by increasing glycolytic energy production, as reflected by higher blood lactate concentrations after the sprints. Similar responses were elicited by the two doses tested. In conclusion, acute and prolonged supplementation with mangiferin combined with luteolin enhances performance, muscle O₂ extraction, and brain oxygenation during sprint exercise, at high and low doses.
Collapse
|
36
|
Montmorency cherry supplementation improves 15-km cycling time-trial performance. Eur J Appl Physiol 2019; 119:675-684. [PMID: 30617467 PMCID: PMC6394654 DOI: 10.1007/s00421-018-04058-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
Aim Montmorency cherries are rich in polyphenols that possess antioxidant, anti-inflammatory and vasoactive properties. We investigated whether 7-day Montmorency cherry powder supplementation improved cycling time-trial (TT) performance. Methods 8 trained male cyclists (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot {V}{{\text{O}}_{2{\text{peak}}}}$$\end{document}V˙O2peak: 62.3 ± 10.1 ml kg−1 min−1) completed 10-min steady-state (SS) cycling at ~ 65% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot {V}{{\text{O}}_{2{\text{peak}}}}$$\end{document}V˙O2peak followed by a 15-km TT on two occasions. Participants consumed 6 pills per day (Montmorency cherry powder, MC; anthocyanin 257 mg day−1 or dextrose powder, PL) for a 7-day period, 3 pills in the morning and evening. Capillary blood [lactate] was measured at baseline, post SS and post TT. Pulmonary gas exchange and tissue oxygenation index (TOI) of m. vastus lateralis via near-infrared spectroscopy, were measured throughout. Results TT completion time was 4.6 ± 2.9% faster following MC (1506 ± 86 s) supplementation compared to PL (1580 ± 102 s; P = 0.004). Blood [lactate] was significantly higher in MC after SS (PL: 4.4 ± 2.1 vs. MC: 6.7 ± 3.3 mM, P = 0.017) alongside an elevated baseline TOI (PL: 68.7 ± 2.1 vs. MC: 70.4 ± 2.3%, P = 0.018). Discussion Montmorency cherry supplementation improved 15-km cycling TT performance. This improvement in exercise performance was accompanied by enhanced muscle oxygenation suggesting that the vasoactive properties of the Montmorency cherry polyphenols may underpin the ergogenic effects.
Collapse
|
37
|
Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med 2018; 27:147-165. [PMID: 30596287 DOI: 10.1080/15438627.2018.1563899] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.
Collapse
Affiliation(s)
- Ambra Antonioni
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Cristina Fantini
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Ivan Dimauro
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Daniela Caporossi
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| |
Collapse
|
38
|
Dietary Anthocyanins: A Review of the Exercise Performance Effects and Related Physiological Responses. Int J Sport Nutr Exerc Metab 2018; 29:322-330. [PMID: 30160565 DOI: 10.1123/ijsnem.2018-0088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Foods and supplements high in anthocyanins are gaining popularity within sports nutrition. Anthocyanins are pigments within berries and other colorful fruits and vegetables. They have antioxidative and anti-inflammatory actions that improve recovery from exercise. Furthermore, anthocyanins can also affect vasoactive properties, including decreasing mean arterial blood pressure and increasing vasodilation during exercise. In vitro observations have shown anthocyanin- and metabolite-induced activation of endothelial nitric oxide synthase and human vascular cell migration. However, effects of anthocyanins on exercise performance without a prior muscle-damaging or metabolically demanding bout of exercise are less clear. For example, exercise performance effects have been observed for blackcurrant but are less apparent for cherry, therefore indicating that the benefits could be due to the specific source-dependent anthocyanins. The mechanisms by which anthocyanin intake can enhance exercise performance may include effects on blood flow, metabolic pathways, and peripheral muscle fatigue, or a combination of all three. This narrative review focuses on the experimental evidence for anthocyanins to improve exercise performance in humans.
Collapse
|
39
|
Abstract
BACKGROUND Polyphenols exert physiological effects that may impact athletic performance. Polyphenols are antioxidants that have been noted to hinder training adaptations, yet conversely they stimulate stress-related cell signalling pathways that trigger mitochondrial biogenesis and influence vascular function. OBJECTIVE To determine the overall effect of polyphenols on human athletic performance. METHODS A search strategy was completed using MEDLINE, EMBASE, CINAHL, AMED and SPORTDiscus in April 2016. The studies were screened and independently reviewed by two researchers against predetermined criteria for eligibility. As a result of this screening, 14 studies were included for meta-analysis. Of these, the studied populations were predominately-trained males with an average intervention dose of 688 ± 478 mg·day-1. RESULTS The pooled results demonstrate polyphenol supplementation for at least 7 days increases performance by 1.90% (95% CI 0.40-3.39). Sub-analysis of seven studies using quercetin identified a performance increase of 2.82% (95% CI 2.05-3.58). There were no adverse effects reported in the studies in relation to the intervention. CONCLUSION Overall the pooled results show that polyphenols, and of note quercetin, are viable supplements to improve performance in healthy individuals.
Collapse
|
40
|
García-Flores LA, Medina S, Gómez C, Wheelock CE, Cejuela R, Martínez-Sanz JM, Oger C, Galano JM, Durand T, Hernández-Sáez Á, Ferreres F, Gil-Izquierdo Á. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food Funct 2018; 9:463-475. [PMID: 29231216 DOI: 10.1039/c7fo01409k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, we examined whether particular urinary oxylipins (isoprostanes (IsoPs), leukotrienes (LTs), prostaglandins (PGs), and thromboxanes (TXs)) in 16 elite triathletes could alter during 145 days of training. Within this time span, 45 days were dedicated to examining the effects of the intake of a beverage rich in polyphenols (one serving: 200 mL per day) supplemented in their diet. The beverage was a mixture of citrus juice (95%) and Aronia melanocarpa juice (5%) (ACJ). Fifty-two oxylipins were analyzed in the urine. The quantification was carried out using solid-phase extraction, liquid chromatography coupled with triple quadrupole mass spectrometry. The physical activity decreased the excretion of some PG, IsoP, TX, and LT metabolites from arachidonic acid, γ-dihomo-linolenic acid, and eicosapentaenoic acid. The ACJ also reduced the excretion of 2,3-dinor-11β-PGF2α and 11-dehydro-TXB2, although the levels of other metabolites increased after juice supplementation (PGE2, 15-keto-15-F2t-IsoP, 20-OH-PGE2, LTE4, and 15-epi-15-E2t-IsoP), compared to the placebo. The metabolites that increased in abundance have been related to vascular homeostasis and smooth muscle function, suggesting a positive effect on the cardiovascular system. In conclusion, exercise influences mainly the decrease in oxidative stress and the inflammation status in elite triathletes, while ACJ supplementation has a potential benefit regarding the cardiovascular system that is connected in a synergistic manner with elite physical activity.
Collapse
Affiliation(s)
- Libia Alejandra García-Flores
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koivisto AE, Paulsen G, Paur I, Garthe I, Tønnessen E, Raastad T, Bastani NE, Hallén J, Blomhoff R, Bøhn SK. Antioxidant-rich foods and response to altitude training: A randomized controlled trial in elite endurance athletes. Scand J Med Sci Sports 2018; 28:1982-1995. [PMID: 29749641 DOI: 10.1111/sms.13212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
High doses of isolated antioxidant supplements such as vitamin C and E have demonstrated the potential to blunt cellular adaptations to training. It is, however, unknown whether intake of high doses of antioxidants from foods has similar effects. Hence, the aim of the study was to investigate whether intake of antioxidant-rich foods affects adaptations to altitude training in elite athletes. In a randomized controlled trial, 31 national team endurance athletes (23 ± 5 years) ingested antioxidant-rich foods (n = 16) or eucaloric control foods (n = 15) daily during a 3-week altitude training camp (2320 m). Changes from baseline to post-altitude in hemoglobin mass (Hbmass ; optimized CO rebreathing), maximal oxygen uptake (VO2max ; n = 16) or 100 m swimming performance (n = 10), and blood parameters were compared between the groups. The antioxidant group significantly increased total intake of antioxidant-rich foods (~118%) compared to the control group during the intervention. The total study population improved VO2max by 2.5% (1.7 mL/kg/min, P = .006) and Hbmass by 4.7% (48 g, P < .001), but not 100 m swimming performance. No difference was found between the groups regarding changes in Hbmass , VO2max or swimming performance. However, hemoglobin concentration increased more in the antioxidant group (effect size = 0.7; P = .045) with a concomitantly larger decrease in plasma and blood volumes compared to control group. Changes in ferritin and erythropoietin from pre- to post-altitude did not differ between the groups. Doubling the intake of antioxidant-rich foods was well tolerated and did not negatively influence the adaptive response to altitude training in elite endurance athletes.
Collapse
Affiliation(s)
| | - G Paulsen
- Norwegian Olympic Sports Centre, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - I Paur
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - I Garthe
- Norwegian Olympic Sports Centre, Oslo, Norway
| | - E Tønnessen
- Norwegian Olympic Sports Centre, Oslo, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - N E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - R Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - S K Bøhn
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Beyer KS, Stout JR, Fukuda DH, Jajtner AR, Townsend JR, Church DD, Wang R, Riffe JJ, Muddle TWD, Herrlinger KA, Hoffman JR. Impact of Polyphenol Supplementation on Acute and Chronic Response to Resistance Training. J Strength Cond Res 2018; 31:2945-2954. [PMID: 29068862 PMCID: PMC5662159 DOI: 10.1519/jsc.0000000000002104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beyer, KS, Stout, JR, Fukuda, DH, Jajtner, AR, Townsend, JR, Church, DD, Wang, R, Riffe, JJ, Muddle, TWD, Herrlinger, KA, and Hoffman, JR. Impact of polyphenol supplementation on acute and chronic response to resistance training. J Strength Cond Res 31(11): 2945–2954, 2017—This study investigated the effect of a proprietary polyphenol blend (PPB) on acute and chronic adaptations to resistance exercise. Forty untrained men were assigned to control, PPB, or placebo. Participants in PPB or placebo groups completed a 4-week supplementation period (phase I), an acute high-volume exercise bout (phase II), and a 6-week resistance training program (phase III); whereas control completed only testing during phase II. Blood draws were completed during phases I and II. Maximal strength in squat, leg press, and leg extension were assessed before and after phase III. The exercise protocol during phase II consisted of squat, leg press, and leg extension exercises using 70% of the participant's strength. The resistance training program consisted of full-body exercises performed 3 d·wk−1. After phase I, PPB (1.56 ± 0.48 mM) had greater total antioxidant capacity than placebo (1.00 ± 0.90 mM). Changes in strength from phase III were similar between PPB and placebo. Polyphenol blend supplementation may be an effective strategy to increase antioxidant capacity without limiting strength gains from training.
Collapse
Affiliation(s)
- Kyle S Beyer
- 1Department of Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida;2Department of Exercise Physiology, Kent State University, Kent, Ohio;3Department of Kinesiology, Lipscomb University, Nashville, Tennessee; and4Kemin Foods, L.C., Des Moines, Iowa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biol Sport 2018; 35:181-189. [PMID: 30455547 PMCID: PMC6234303 DOI: 10.5114/biolsport.2018.74194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Intense exercise generates an imbalance in the redox system. However, chronic exercise can yield antioxidant adaptations. A few studies with humans have investigated the effects of antioxidant diets on athletes. Therefore we compared the effects of two dietary interventions on oxidative stress in competitive triathletes. Thirteen male triathletes were selected and divided into 2 groups: one that had a regular antioxidant diet (RE-diet) and the other that had a high antioxidant diet (AO-diet). The diet period was 14 days and blood samples were collected before and after this period. The AO-diet provided twice the dietary reference intake (DRI) of α-tocopherol (30 mg), five times the DRI of ascorbic acid (450 mg), and twice the DRI of vitamin A (1800 g), while the RE-diet provided the DRI of α-tocopherol (15 mg), twice the DRI of ascorbic acid (180 mg) and the DRI of vitamin A (900 μg). The oxidative stress parameters evaluated were: thiobarbituric acid reactive substances (TBARS), total reactive antioxidant potential (TRAP), total sulfhydryl, carbonyl, superoxide dismutase (SOD) activity, hydrogen peroxide consumption and glutathione peroxidase (GPx) activity. We observed, after the diet period, an increase in sulfhydryl, TRAP, TBARS and SOD activity, and a decrease in carbonyl levels. However, no changes were found in hydrogen peroxide consumption or GPx activity. We concluded that antioxidant-enriched diets can improve the redox status of triathletes.
Collapse
|
45
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 2017; 12:CD009789. [PMID: 29238948 PMCID: PMC6486214 DOI: 10.1002/14651858.cd009789.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - David Rogerson
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - Hora Soltani
- Sheffield Hallam UniversityCentre for Health and Social Care Research32 Collegiate CrescentSheffieldUKS10 2BP
| | - Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | | |
Collapse
|
46
|
Pickering C, Kiely J. Understanding Personalized Training Responses: Can Genetic Assessment Help? ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1875399x01710010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Traditional exercise prescription is based on the assumption that exercise adaptation is predictable and standardised across individuals. However, evidence has emerged in the past two decades demonstrating that large inter-individual variation exists regarding the magnitude and direction of adaption following exercise.Objective:The aim of this paper was to discuss the key factors influencing this personalized response to exercise in a narrative review format.Findings:Genetic variation contributes significantly to the personalized training response, with specific polymorphisms associated with differences in exercise adaptation. These polymorphisms exist in a number of pathways controlling exercise adaptation. Environmental factors such as nutrition, psycho-emotional response, individual history and training programme design also modify the inter-individual adaptation following training. Within the emerging field of epigenetics, DNA methylation, histone modifications and non-coding RNA allow environmental and lifestyle factors to impact genetic expression. These epigenetic mechanisms are themselves modified by genetic and non-genetic factors, illustrating the complex interplay between variables in determining the adaptive response. Given that genetic factors are such a fundamental modulator of the inter-individual response to exercise, genetic testing may provide a useful and affordable addition to those looking to maximise exercise adaption, including elite athletes. However, there are ethical issues regarding the use of genetic tests, and further work is needed to provide evidence based guidelines for their use.Conclusion:There is considerable inter-individual variation in the adaptive response to exercise. Genetic assessments may provide an additional layer of information allowing personalization of training programmes to an individual’s unique biology.
Collapse
|
47
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
48
|
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 2016; 594:5135-47. [PMID: 26638792 PMCID: PMC5023714 DOI: 10.1113/jp270654] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training-induced and ROS/RNS-mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high-intensity training, suggesting that remodelling of skeletal muscle following resistance and high-intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions. Overall, ROS/RNS are likely to exhibit a non-linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland
| |
Collapse
|
49
|
Morales-Alamo D, Calbet JAL. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species. Free Radic Biol Med 2016; 98:68-77. [PMID: 26804254 DOI: 10.1016/j.freeradbiomed.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain.
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| |
Collapse
|
50
|
A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol 2016; 118:88-93. [PMID: 27224647 DOI: 10.1016/j.biopsycho.2016.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/01/2016] [Accepted: 05/15/2016] [Indexed: 11/21/2022]
Abstract
We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people.
Collapse
|