1
|
Mateo-March M, Moya-Ramón M, Sánchez-Jiménez JL, Peña-González I, Javaloyes A. Decoding Victory in Cycling's Grand Monuments: A Performance Analysis of Top-5 Versus Top-6-30 Finishers. Scand J Med Sci Sports 2025; 35:e70057. [PMID: 40281393 DOI: 10.1111/sms.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
This study aimed to examine the key performance metrics and durability differences between cyclists finishing in the top-5 and those ranked between 6th and 30th in the Five Monuments of Cycling (Milan-San Remo, Tour of Flanders, Paris-Roubaix, Liège-Bastogne-Liège, and Il Lombardia). Data from 64 professional male cyclists were analyzed. Cyclists were categorized into top-5 finishers (n = 14) and top-6-30 finishers (n = 50). Race data were extracted from .fit files, including power output (PO), mean maximal power (MMP) across multiple durations (5 s, 30 s, 1 min, 5 min, 10 min, and 20 min), and power decay after accumulated workloads (30, 40, 50, and 60 kJ kg-1). Top-5 finishers exhibited significantly higher MMP for 5-min (d = 0.7; p = 0.02), 10-min (d = 0.8; p = 0.01), and 20-min efforts (d = 1.0; p = 0.01) compared to top-6-30 finishers. No significant differences were found in shorter durations (p > 0.05). Power decay analysis revealed that top-6-30 cyclists experienced greater reductions in MMP at 60 kJ kg-1, particularly for 10-min (d = 1.3; p < 0.01) and 20-min efforts (d = 1.2; p < 0.01). No significant differences were observed in total energy expenditure or time spent in power zones between groups. Top-5 finishers showed higher durability, with less power decay compared to top-6-30 finishers in the Five Monuments. These findings highlight functional performance differences (e.g., MMP, power decay) associated with top-5 finishes, though physiological mechanisms remain speculative. This study extends prior research by focusing on elite finishers in the Five Monuments.
Collapse
Affiliation(s)
- Manuel Mateo-March
- Department of Sports Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
- Faculty of Physical Activity and Sport Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Manuel Moya-Ramón
- Department of Sports Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
| | - Jose Luis Sánchez-Jiménez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Iván Peña-González
- Department of Sports Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
| | - Alejandro Javaloyes
- Department of Sports Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
| |
Collapse
|
2
|
Marwood S, Parker Simpson L, Wilkerson DP, Jones AM, Goulding RP. Utility of the Respiratory Compensation Point for Estimating Critical Power: Insights From Normoxia and Hypoxia. Eur J Sport Sci 2025; 25:e12291. [PMID: 40179032 PMCID: PMC11967705 DOI: 10.1002/ejsc.12291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/27/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
We examined the validity of the respiratory compensation point (RCP) in estimating critical power (CP) by determining the relative agreement between them following an acute intervention, hypoxia, which reduces RCP and CP. RCP and CP were determined in normoxia (N: FiO2 = 0.21) and hypoxia (H: FiO2 = 0.13) with RCP converted to a power output (W) via linear regression of the V̇O2-time relationship with correction for the mean response time. RCP and CP were lower in hypoxia compared to normoxia (p < 0.001), but there was no difference between CP and RCP in N or H (N: 174 ± 26 (CP) vs. 178 ± 30 (RCP) W; H: 133 ± 19 (CP) vs. 139 ± 22 (RCP) W, p = 0.53). In both N (r = 0.32, p = 0.31) and H (r = 0.00, p = 0.99), RCP was not correlated with CP. Moreover, the 95% limits of agreement (LOA) were unacceptably wide (N: 3 ± 64 W; H: 7 ± 57 W). There was no correlation between the change in RCP and the change in CP caused by hypoxia (W: r = 0.32), with similarly poor 95% LOA (W: -3 ± 62 W). The weak correlations and wide LOA within and between conditions suggest little practical values in using RCP to estimate CP.
Collapse
Affiliation(s)
- Simon Marwood
- School of Health & Sport SciencesLiverpool Hope UniversityLiverpoolUK
| | - Len Parker Simpson
- Human Performance Science Research GroupUniversity of EdinburghEdinburghUK
| | - Daryl P. Wilkerson
- Sport and Health SciencesCollege of Life and Environmental SciencesSt. Luke's CampusUniversity of ExeterExeterUK
| | - Andrew M. Jones
- Sport and Health SciencesCollege of Life and Environmental SciencesSt. Luke's CampusUniversity of ExeterExeterUK
| | - Richie P. Goulding
- Department of Human Movement SciencesFaculty of Behavioral and Human Movement SciencesAmsterdam Movement SciencesVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
3
|
Gan J, Dong G, Xu Y, Chen Y, Zhang Y, Gao Q, Bao D. Establishing the minimal important difference of the visual analog scale for assessing exercise-induced fatigue. BMC Sports Sci Med Rehabil 2025; 17:69. [PMID: 40186321 PMCID: PMC11969829 DOI: 10.1186/s13102-025-01122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Exercise-induced fatigue is a physiological state characterized by performance decline. The Visual Analog Scale (VAS) is one of the most commonly used subjective methods for evaluating exercise-induced fatigue. However, there is a limited interpretation of how much a change in this method indicates a fatigue status that matters to the exercise performance due to the lack of a well-established minimal important difference (MID). METHODS This study is a secondary analysis of data from three trials. We analyzed individual participant data before and after exercise-induced fatigue. Anchor-based methods were used to determine the MID of the VAS for fatigue, using Countermovement Jump (CMJ) height as an anchor. Specifically, the MID was calculated using mean change, receiver operating characteristic (ROC) curve analysis, and linear regression methods. RESULTS Data from 71 participants (80.28% male, 22.85 ± 2.51 years), corresponding to 230 person-time measurements, were included in this analysis. The CMJ height fulfilled the requirements to be used as an anchor. MIDs for mean change, ROC curve, and linear regression analysis were 48.51, 44.13, and 43.08, respectively. The Youden's Index indicated that the MID calculated by the mean change method was the most relevant and reliable in distinguishing between fatigued and non-fatigued states. CONCLUSIONS This study establishes a MID (48.51) for interpreting changes in VAS scores. Future research utilizing VAS to assess exercise-induced fatigue should not only consider statistical differences but also examine whether the changes meet the MID threshold to interpret the actual impact of interventions. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR), Registration Number: ChiCTR2500095599 (Retrospectively registered; registration date: 09/01/2025).
Collapse
Affiliation(s)
- Jianyu Gan
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Gengxin Dong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Yilin Xu
- China Basketball College, Beijing Sport University, Beijing, China
| | - Yan Chen
- Sports Department, Beihang University, Beijing, China
| | - Yunqing Zhang
- China Basketball College, Beijing Sport University, Beijing, China
| | - Qi Gao
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
- Medical Examination Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Burnley M, Vanhatalo A, Poole DC, Jones AM. Blue plaque review series: A.V. Hill, athletic records and the birth of exercise physiology. J Physiol 2025; 603:1361-1374. [PMID: 39988844 PMCID: PMC11908475 DOI: 10.1113/jp288130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
One hundred years ago, A.V. Hill authored three manuscripts analysing athletic world records from a physiological perspective. That analysis, grounded in Hill's understanding of contemporary muscle bioenergetics, provides a fascinating sketch of the thoughts and speculations of one of the fathers of exercise physiology. In this review, we reflect on Hill's prose with the benefit of 100 years of hindsight, and illustrate how Hill was able to draw startlingly accurate conclusions from what limited data were available on the physiology of intense exercise. Hill discusses the energetics of running, swimming, rowing and cycling in both males and females, as well as addressing exercise performance in horses and the mechanics of jumping. He also considers sports nutrition, pacing strategy and ultra-endurance exercise. Perhaps most impactfully, he establishes that the speed-duration relationship has characteristics that reflect the underlying physiological basis of exercise performance. That physiology, in turn, differs depending on the duration of the event itself, providing one of the first descriptions of the task-dependent nature of mechanisms limiting exercise tolerance. A remarkable feature of Hill's papers is that they were written just a few years before a major revolution in muscle biochemistry, and yet Hill was still able to develop conceptually sound ideas about human performance. His hypotheses require only minor revision to bring them into line with current understanding. In reaching their centenary, therefore, the surprising feature of these papers is not how well they have aged, but how relevant they remain.
Collapse
Affiliation(s)
- Mark Burnley
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Anni Vanhatalo
- Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - David C. Poole
- Departments of Kinesiology and Anatomy and PhysiologyKansas State UniversityKansasUSA
| | - Andrew M. Jones
- Public Health and Sport SciencesUniversity of ExeterExeterUK
| |
Collapse
|
5
|
Ruiz‐Alias SA, Marcos‐Blanco A, Fernández‐Navarrete I, Pérez‐Castilla A, García‐Pinillos F. The 9/3 Min Running Test: A Simple and Practical Approach to Estimate the Critical and Maximal Aerobic Power. Eur J Sport Sci 2025; 25:e12254. [PMID: 39865906 PMCID: PMC11770271 DOI: 10.1002/ejsc.12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
This study aims to determine the validity of the linear critical power (CP) and Peronnet models to estimate the power output associated with the second ventilatory threshold (VT2) and the maximal aerobic power (MAP) using two-time trials. Nineteen recreational runners (10 males and 9 females and maximum oxygen uptake: 53.0 ± 4.7 mL/kg/min) performed a graded exercise test (GXT) to determine the VT2 and MAP. On a second test, athletes performed two-time trials of 9 and 3 min interspaced by 30 min. The CP was determined from the linear CP model and compared with the power output associated with the VT2. The MAP was determined from the linear Peronnet model, established at 7 min, and compared with the MAP determined in the GXT. The CP model was valid for determining the VT2, regardless of sex (p = 0.130; 9/3 vs. GXT: 3.5 [-1.1 to 8.2] W). The MAP was overestimated (p = 0.015) specifically in males (9/3 vs. GXT: 9.2 [3.3 to 15.1] W) rather than in females (p = 9/3 vs. GXT: 1.7 [-4.4 to 8.0] W). Therefore, MAP estimates were determined introducing the CP and W' parameters to a stepwise multiple linear regression analysis. For females, the CP was the unique significant predictor of MAP (p < 0.001) explaining 96.7% of the variance. In males, both CP and W' were significant predictors of MAP (p < 0.001) explaining 97.7% of the variance. Practitioners can validly estimate the VT2 and MAP through a practical testing protocol in both male and female recreational runners.
Collapse
Affiliation(s)
- Santiago A. Ruiz‐Alias
- Department of Physical Education and SportsFaculty of Sport SciencesUniversity of GranadaGranadaSpain
- Sport and Health University Research Center (iMUDS)University of GranadaGranadaSpain
| | - Aitor Marcos‐Blanco
- Department of Physical Education and SportsFaculty of Sport SciencesUniversity of GranadaGranadaSpain
- Sport and Health University Research Center (iMUDS)University of GranadaGranadaSpain
| | - Iván Fernández‐Navarrete
- Department of Physical Education and SportsFaculty of Sport SciencesUniversity of GranadaGranadaSpain
- Sport and Health University Research Center (iMUDS)University of GranadaGranadaSpain
| | - Alejandro Pérez‐Castilla
- Department of EducationFaculty of Education SciencesUniversity of AlmeríaAlmeríaSpain
- SPORT Research Group (CTS‐1024)CERNEP Research CenterUniversity of AlmeríaAlmeríaSpain
| | - Felipe García‐Pinillos
- Department of Physical Education and SportsFaculty of Sport SciencesUniversity of GranadaGranadaSpain
- Sport and Health University Research Center (iMUDS)University of GranadaGranadaSpain
- Department of Physical EducationSports and Recreation. Universidad de La FronteraTemucoChile
| |
Collapse
|
6
|
Salas-Montoro JA, Valdivia-Fernández I, de Rozas A, Reyes-Sánchez JM, Zabala M, Pérez-Díaz JJ. Do Power Meter Data Depend on the Device on Which They Are Collected? Comparison of Eleven Different Recordings. SENSORS (BASEL, SWITZERLAND) 2025; 25:295. [PMID: 39860665 PMCID: PMC11768215 DOI: 10.3390/s25020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
This study evaluated the influence of cycle computers on the accuracy of power and cadence data. The research was divided into three phases: (1) a graded exercise test (GXT) at different constant loads to record power and cadence data; (2) a self-paced effort lasting 1 min to measure mean maximal power output (MMP); and (3) a short all-out effort. Eight cyclists completed the GXT, ten participated in the 1-min test, and thirty participated in the sprint effort. All participants pedaled on a controlled-resistance cycle ergometer, and the data were recorded using the ergometer itself and ten synchronized cycle computers of the same brand, configured to record at 1 Hz. The results showed minimal variations in power and cadence between devices during the GXT, suggesting adequate accuracy for constant efforts lasting a certain duration. However, in self-paced and high-intensity efforts (1-min and short all-out efforts), significant differences were observed between several devices, particularly in cadence and mean power, highlighting the relevance of device selection in these contexts. These findings suggest that, while variations in constant efforts may be negligible, in short-duration, high-intensity activities, the choice of device may be crucial for the accuracy and reliability of the data.
Collapse
Affiliation(s)
| | - Ignacio Valdivia-Fernández
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (J.-A.S.-M.); (A.d.R.); (J.-M.R.-S.); (M.Z.); (J.-J.P.-D.)
| | | | | | | | | |
Collapse
|
7
|
Ozkaya O, As H, Peker A, Burnley M, Jones AM. Resolving Differences between MLSS and CP by Considering Rates of Change of Blood Lactate during Endurance Exercise. Med Sci Sports Exerc 2025; 57:217-226. [PMID: 39186673 DOI: 10.1249/mss.0000000000003548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
PURPOSE This study aimed to develop a new method that more closely represents the heavy to severe exercise domain boundary by evaluating the rates of blood lactate accumulation during the constant power output exercise bouts that are used in the assessment of the maximal lactate steady state (MLSS). METHODS Eight well-trained male cyclists completed five exercise tests of up to 30 min for the determination of the traditional MLSS (MLSS TRAD ) and a further four maximal tests for the determination of critical power (CP). The rates of change of blood [lactate] between 10 min and the end of exercise in the MLSS tests were plotted against the corresponding power outputs, and a two-segment linear regression model was used to identify individualized break points in lactate accumulation versus power output (modified MLSS [MLSS MOD ]). RESULTS MLSS MOD was significantly higher than MLSS TRAD (297 ± 41 vs 278 ± 41 W, P < 0.001) but was not significantly different from CP (297 ± 41 W, P > 0.05); MLSS MOD and CP were closely aligned ( r = 0.97, bias = -0.52 W, SEE = 10 W, limits of agreement = -20 to 19 W). The rates of change of both blood [lactate] and V̇O 2 were significantly greater, and exercise intolerance occurred before 30 min, at a power output slightly above MLSS MOD . CONCLUSIONS A novel method for evaluating blood lactate kinetics during MLSS TRAD protocol produces MLSS MOD that is not different from CP and better represents the heavy to severe exercise domain boundary.
Collapse
Affiliation(s)
| | - Hakan As
- Institution of Health Sciences, Ege University, Bornova, Izmir, TURKIYE
| | - Arda Peker
- Faculty of Sports Sciences, Ege University, Bornova, Izmir, TURKIYE
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UNITED KINGDOM
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UNITED KINGDOM
| |
Collapse
|
8
|
McConnochie G, Fox A, Badger H, Bellenger C, Thewlis D. Fatigue assessment in distance runners: A scoping review of inertial sensor-based biomechanical outcomes and their relation to fatigue markers and assessment conditions. Gait Posture 2025; 115:21-33. [PMID: 39471649 DOI: 10.1016/j.gaitpost.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Fatigue manifests as a decline in performance during high-intensity and prolonged exercise. With technological advancements and the increasing adoption of inertial measurement units (IMUs) in sports biomechanics, there is an opportunity to enhance our understanding of running-related fatigue beyond controlled laboratory environments. RESEARCH QUESTION How have IMUs have been used to assess running biomechanics under fatiguing conditions? METHODS Following the PRISMA-ScR guidelines, our literature search covered six databases without date restrictions until September 2024. The Population, Concept, and Context criteria were used: Population (distance runners ranging from novice to competitive), Concept (fatigue induced by running a distance over 400 m), Context (assessment of fatigue using accelerometer, gyroscope, and/or magnetometer wearable devices). Biomechanical outcomes were extracted and synthesised, and interpreted in the context of three main study characteristics (cohort ability, testing environment, and the inclusion of physiological outcomes) to explore their potential role in influencing outcomes. RESULTS A total of 88 articles were included in the review. There was a high prevalence of treadmill-based studies (n=46, 52%), utilising only 1-2 sensors (n=69, 78%), and cohorts ranged in experience, from sedentary to elite-level runners, and were largely comprised of males (69% of all participants). The majority of biomechanical outcomes assessed showed varying responses to fatigue across studies, likely attributable to individual variability, exercise intensity, and differences in fatigue protocol settings and prescriptions. Spatiotemporal outcomes such as stride time and frequency (n=37, 42 %) and impact accelerations (n=55, 62%) were more widely assessed, with a fatigue response that appeared population and environment specific. SIGNIFICANCE There was notable heterogeneity in the IMU-based biomechanical outcomes and methods evaluated in this review. The review findings emphasise the need for standardisation of IMU-based outcomes and fatigue protocols to promote interpretable metrics and facilitate inter-study comparisons.
Collapse
Affiliation(s)
- Grace McConnochie
- Centre for Orthopaedic & Trauma Research, Adelaide Medical School, University of Adelaide, Australia.
| | - Aaron Fox
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Australia
| | - Heather Badger
- Centre for Orthopaedic & Trauma Research, Adelaide Medical School, University of Adelaide, Australia
| | - Clint Bellenger
- Alliance for Research in Exercise, Nutrition and Activity (ARENA); Allied Health and Human Performance Unit; University of South Australia, Australia
| | - Dominic Thewlis
- Centre for Orthopaedic & Trauma Research, Adelaide Medical School, University of Adelaide, Australia
| |
Collapse
|
9
|
Antonio DS, Krause MP, Fernando de Borba E, Ulbrich AZ, Buzzachera CF, Silva SG. Fractional utilization of the 10-minute treadmill test velocity in running performance. Int J Sports Med 2025; 46:51-58. [PMID: 39227039 DOI: 10.1055/a-2408-7467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study aimed to evaluate the applicability of the 10-minute submaximal treadmill test (T10 test), a self-paced test, in determining critical speed (CS) and predicting running performance. Specifically, we sought to identify the percentage of T10 velocity (vT10) that runners performed in official distance races, and to compare physiological and performance indicators between sexes. 60 recreational runners (n=34 males and n=26 females) underwent a maximum incremental test, the novel T10 test, and ran 1200-m and 2400-m on the track. Runners self-reported their best performance times. Generalized Linear Model was used to compare running performances between sexes. For both males and females, the %vT10 in 5 km, 10 km, and half-marathon races occurred at 107.5% and 106.5%, 99.9% and 100.8%, and 92.6% and 97.1%, respectively. There was no interaction effect (p=0.520) and no main effect of sex (p=0.443). There was a main effect of distance (p<0.001), indicating that %vT10 in the 5km race differed from that found in the 10 km race (p=0.012), as well as in the half-marathon (p<0.001). Our findings suggest that %vT10 values can be used to determine pace in recreational endurance runners for race distances regardless of sex.
Collapse
Affiliation(s)
| | - Maressa Priscilla Krause
- Academic Department of Physical Education, Federal Technological University of Parana, Curitiba, Brazil
| | | | | | - Cosme Franklim Buzzachera
- Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | | |
Collapse
|
10
|
Bascuas PJ, Gutiérrez H, Piedrafita E, Bataller-Cervero AV, Berzosa C. Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands. J Funct Morphol Kinesiol 2024; 9:230. [PMID: 39584883 PMCID: PMC11586947 DOI: 10.3390/jfmk9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Research into key performance factors in trail running, particularly in vertical kilometer (VK) races, is crucial for effective training and periodization. However, recent studies on metabolic and cardiorespiratory responses during VK races, especially using field tests, are limited. Objectives: Therefore, the aim of this study is to evaluate the metabolic and cardiorespiratory responses during a VK field test, identifying differences based on sex and performance level, as well as key performance factors and their deterioration due to fatigue. Fifteen trained trail runners (ten males and five females, 19 to 38 years old) perform a VK race. Methods: The global physiological response is evaluated using the portable gas analyzer Cosmed K5 and the local response using near-infrared spectroscopy technology. Results: In gender comparisons, the ANCOVA test shows significant differences (p < 0.05) in the ventilation, tidal volume, expiratory time-to-inspiratory time ratio, inspiratory flow rate, end-tidal CO2 partial pressure, heart rate, oxygen pulse, and total hemoglobin. Additionally, the performance comparison reveals significant differences in the variables' velocity, oxygen consumption, carbon dioxide production, ventilation, dead space-to-tidal volume ratio, total time of the breathing cycle, expiratory time-to-inspiratory time ratio, inspiratory duty cycle, expiratory fractions of CO2, quadriceps saturation index, and VE/VCO2 ratio. Finally, the correlation analysis shows oxygen consumption (r = -0.80 mean; r = -0.72 peak), carbon dioxide production (r = -0.91 mean; r = -0.75 peak), expiratory time-to-inspiratory time ratio (r = 0.68 peak), ventilation (r = -0.58 mean), and quadriceps saturation index (r = 0.54 mean; r = -0.76 coefficient of variation) as the key performance factors in the VK race. Conclusions: Overall, the physiological analysis indicates the importance of local muscular adaptations and respiratory system capacity in this type of short-duration race.
Collapse
Affiliation(s)
| | | | | | - Ana Vanessa Bataller-Cervero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca, KM 299, 50830 Villanueva de Gállego, Zaragoza, Spain; (P.J.B.); (H.G.); (E.P.); (C.B.)
| | | |
Collapse
|
11
|
Sheoran S, Stavropoulos-Kalinoglou A, Simpson C, Ashby M, Webber E, Weaving D. Exercise intensity measurement using fractal analysis of heart rate variability: Reliability, agreement and influence of sex and cardiorespiratory fitness. J Sports Sci 2024; 42:2012-2020. [PMID: 39488502 DOI: 10.1080/02640414.2024.2421691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The study aimed to establish the test-retest reliability of detrended fluctuation analysis of heart rate variability (DFA-α1) based exercise intensity thresholds, assess its agreement with ventilatory- and lactate-derived thresholds and the moderating effect of sex and cardiorespiratory fitness (CRF) on the agreement. Intensity thresholds for thirty-seven participants (17 females) based on blood lactate (LT1/LT2), gas-exchange (VT1/VT2) and DFA-α1 (αTh1/αTh2) were assessed. Heart rate (HR) at αTh1 and αTh2 showed good test-retest reliability (coefficient of variation [CV] < 6%), and moderate to high agreement with LTs (r = 0.40 - 0.57) and VTs (r = 0.61 - 0.66) respectively. Mixed effects models indicated bias magnitude depended on CRF, with DFA-α1 overestimating thresholds versus VTs for lower fitness levels (speed at VT1 <8.5 km⋅hr-1), while underestimating for higher fitness levels (speed at VT2 >15 km⋅hr-1; VO2max >55 mL·kg-1·min-1). Controlling for CRF, sex significantly affected bias magnitude only at first threshold, with males having higher mean bias (+2.41 bpm) than females (-1.26 bpm). DFA-α1 thresholds are practical and reliable intensity measures, however it is unclear if they accurately represent LTs/VTs from the observed limits of agreement and unexplained variance. To optimise DFA-α1 threshold estimation across different populations, bias should be corrected based on sex and CRF.
Collapse
Affiliation(s)
- Samrat Sheoran
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | | | | | | - Elliot Webber
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Dan Weaving
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Applied Sports Science and Exercise Testing Laboratory, The University of Newcastle, Ourimbah, Australia
- Department of Physical Activity and Sport, Faculty of Arts and Sciences, Edge Hill University, Ormskirk, UK
| |
Collapse
|
12
|
Galán-Rioja MÁ, González-Mohíno F, Abián-Vicen J, Gonzalez-Ravé JM. Comparison of Physiological Responses between a W´BAL-INT Training Model and a Critical Power Test. J Hum Kinet 2024; 94:105-115. [PMID: 39563762 PMCID: PMC11571457 DOI: 10.5114/jhk/186976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 11/21/2024] Open
Abstract
This study aimed to compare acute physiological responses during the W prime (W´) balance training model (W´BAL-INT) with performance in the critical power test (CPTest). Additionally, the study sought to determine the extent of neuromuscular and metabolic fatigue associated with severe and extreme intensity domains. Fourteen road master cyclists (13 male, 1 female) completed graded incremental exercise tests to determine their maximum oxygen uptake and 12-, 7- and 3-min maximal efforts to assess CP and W´ (CPTest). Additionally, they participated in a reconstitutive intermittent training session following the W´BAL-INT model. Physiological responses including oxygen uptake (V˙O2), the heart rate (HR), blood lactate (BLa̅) concentration, and perceptual responses (RPE), were measured and compared to CPTest performance data. The W´BAL-INT induced steady-state physiological responses in V˙O2mean (F = 0.76, p = 0.655) and absolute HR, relative HR and HRCP (F = 0.70, p = 0.704; F = 1.11, p = 0.359; F = 1.70, p = 0.095, respectively) comparable to CPTest. During the 3-min work intervals in the training session, V˙O2 was stable and similar to V˙O2peak (54.2 ± 6.7 to 59.3 ± 4.9 ml·kg-1·min-1) in the CPTest. Furthermore, 4-min rest intervals facilitated recovery up to moderate fatigue levels (80-100% of W´ balance). HR responses were sensitive to interval intensity and accumulated time. Meanwhile, BLa̅ responses and the RPE increased fatigue development during W´BAL-INT. The W´BAL-INT training model generates consistent physiological responses in mean oxygen kinetics, the percentage of CP and the HR, similar to those observed during the CPTest. However, different physiological responses were observed in peak oxygen kinetics and W´ energy balance.
Collapse
Affiliation(s)
- Miguel Ángel Galán-Rioja
- Sport Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain
- Faculty of Health, International University of La Rioja, Logroño, Spain
| | - Fernando González-Mohíno
- Sport Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Javier Abián-Vicen
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain
| | - José María Gonzalez-Ravé
- Sport Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain
| |
Collapse
|
13
|
Matomäki P, Nuuttila OP, Heinonen OJ, Kyröläinen H, Nummela A. How to Equalize High- and Low-Intensity Endurance Exercise Dose. Int J Sports Physiol Perform 2024; 19:851-859. [PMID: 39032919 DOI: 10.1123/ijspp.2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Without appropriate standardization of exercise doses, comparing high- (HI) and low-intensity (LI) training outcomes might become a matter of speculation. In athletic preparation, proper quantification ensures an optimized stress-to-recovery ratio. This review aims to compare HI and LI doses by estimating theoretically the conversion ratio, 1:x, between HI and LI: How many minutes, x, of LI are equivalent to 1 minute of HI using various quantification methods? A scrutinized analysis on how the dose increases in relation to duration and intensity was also made. ANALYSIS An estimation was conducted across 4 categories encompassing 10 different approaches: (1) "arbitrary" methods, (2) physiological and perceptual measurements during exercise, (3) postexercise measurements, and comparison to (4a) acute and (4b) chronic intensity-related maximum dose. The first 2 categories provide the most conservative estimation for the HI:LI ratio (1:1.5-1:10), and the third, slightly higher (1:4-1:11). The category (4a) provides the highest estimation (1:52+) and (4b) suggests 1:10 to 1:20. The exercise dose in the majority of the approaches increase linearly in relation to duration and exponentially in relation to intensity. CONCLUSIONS As dose estimations provide divergent evaluations of the HI:LI ratio, the choice of metric will have a large impact on the research designs, results, and interpretations. Therefore, researchers should familiarize themselves with the foundations and weaknesses of their metrics and justify their choice. Last, the linear relationship between duration and exercise dose is in many cases assumed rather than thoroughly tested, and its use should be subjected to closer scrutiny.
Collapse
Affiliation(s)
- Pekka Matomäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
- Paavo Nurmi Center & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Olli-Pekka Nuuttila
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - Olli J Heinonen
- Paavo Nurmi Center & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| |
Collapse
|
14
|
Jones AM. The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. J Physiol 2024; 602:4113-4128. [PMID: 37606604 DOI: 10.1113/jp284205] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake (V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation ofV ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
15
|
O'Malley CA, Smith SA, Mauger AR, Norbury R. Exercise-induced pain within endurance exercise settings: Definitions, measurement, mechanisms and potential interventions. Exp Physiol 2024; 109:1446-1460. [PMID: 38985528 PMCID: PMC11363130 DOI: 10.1113/ep091687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Pain can be defined as an unpleasant sensory and emotional experience associated with or resembling that associated with actual or potential tissue damage. Though consistent with this definition, different types of pain result in different behavioural and psychophysiological responses. For example, the transient, non-threatening, acute muscle pain element of exercise-induced pain (EIP) is entirely different from other pain types like delayed onset muscle soreness, muscular injury or chronic pain. However, studies often conflate the definitions or assume parity between distinct pain types. Consequently, the mechanisms through which pain might impact exercise behaviour across different pain subcategories may be incorrectly assumed, which could lead to interventions or recommendations that are inappropriate. Therefore, this review aims to distinguish EIP from other subcategories of pain according to their aetiologies and characteristics, thereby providing an updated conceptual and operational definition of EIP. Secondly, the review will discuss the experimental pain models currently used across several research domains and their relevance to EIP with a focus on the neuro-psychophysiological mechanisms of EIP and its effect on exercise behaviour and performance. Finally, the review will examine potential interventions to cope with the impact of EIP and support wider exercise benefits. HIGHLIGHTS: What is the topic of this review? Considerations for future research focusing on exercise-induced pain within endurance exercise settings. What advances does it highlight? An updated appraisal and guide of research concerning exercise-induced pain and its impact on endurance task behaviour, particularly with reference to the aetiology, measurement, and manipulation of exercise-induced pain.
Collapse
Affiliation(s)
- Callum A. O'Malley
- School of Sport, Exercise, and Nutritional SciencesUniversity of ExeterExeterUK
| | - Samuel A. Smith
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Alexis R. Mauger
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Ryan Norbury
- Faculty of Sport, Technology, and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
16
|
MacDougall KB, Aboodarda SJ, Westergard PH, MacIntosh BR. The validity and reliability of quadriceps twitch force as a measure of skeletal muscle fatigue while cycling. Eur J Sport Sci 2024; 24:1328-1340. [PMID: 39118274 PMCID: PMC11369328 DOI: 10.1002/ejsc.12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The measurement of skeletal muscle fatigue in response to cycling exercise is commonly done in isometric conditions, potentially limiting its ecological validity, and creating challenges in monitoring the time course of muscle fatigue across an exercise bout. This study aimed to determine if muscle fatigue could be reliably assessed by measuring quadriceps twitch force evoked while pedaling, using instrumented pedals. Nine participants completed three laboratory visits: a step incremental test to determine power output at lactate threshold, and on separate occasions, two constant-intensity bouts at a power output 10% above lactate threshold. Femoral nerve electrical stimulation was applied to elicit quadriceps twitch force both while pedaling (dynamic) and at rest (isometric). The test-retest reliability of the dynamic twitch forces and the agreement between the dynamic and isometric twitch forces were evaluated. Dynamic twitch force was found to have excellent reliability in an unfatigued state (intraclass correlation coefficient (ICC) = 0.920 and mean coefficient of variation (CV) = 7.5%), and maintained good reliability at task failure (ICC = 0.846 and mean CV = 11.5%). When comparing dynamic to isometric twitch forces across the task, there was a greater relative decline in the dynamic condition (P = 0.001). However, when data were normalized to the 5 min timepoint when potentiation between conditions was presumed to be more similar, this difference disappeared (P = 0.207). The reliability of this method was shown to be commensurate with the gold standard method utilizing seated isometric dynamometers and offers a new avenue to monitor the kinetics of muscle fatigue during cycling in real time.
Collapse
|
17
|
Liu Y, Lao W, Mao H, Zhong Y, Wang J, Ouyang W. Comparison of alterations in local field potentials and neuronal firing in mouse M1 and CA1 associated with central fatigue induced by high-intensity interval training and moderate-intensity continuous training. Front Neurosci 2024; 18:1428901. [PMID: 39211437 PMCID: PMC11357951 DOI: 10.3389/fnins.2024.1428901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood. Methods In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region. Results A range of responses were elicited, including a decrease in coherence values of LFP rhythms in both areas, and an increase in slow and a decrease in fast power spectral density (PSD, n = 7-9) respectively. HIIT/MICT also decreased the gravity frequency (GF, n = 7-9) in M1 and CA1. Both exercises decreased overall firing rates, increased time lag of firing, declined burst firing rates and the number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n = 7-9). While several neuronal firing properties showed a recovery tendency, the alterations of LFP parameters were more sustained during the 10-min post-HIIT/MICT period. MICT appeared to be more effective than HIIT in affecting LFP parameters, neuronal firing rate, and burst firing properties, particularly in CA1. Both exercises significantly affected neural network activities and local neuronal firing in M1 and CA1, with MICT associated with a more substantial and consistent suppression of functional integration between M1 and CA1. Conclusion Our study provides valuable insights into the neural mechanisms involved in exercise-induced central fatigue by examining the changes in functional connectivity and coordination between the M1 and CA1 regions. These findings may assist individuals engaged in exercise in optimizing their exercise intensity and timing to enhance performance and prevent excessive fatigue. Additionally, the findings may have clinical implications for the development of interventions aimed at managing conditions related to exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
18
|
MacDougall KB, Zhang J, Grunau M, Anklovitch E, MacIntosh BR, MacInnis MJ, Aboodarda SJ. Acute performance fatigability following continuous versus intermittent cycling protocols is not proportional to total work done. Appl Physiol Nutr Metab 2024; 49:1055-1067. [PMID: 38631044 DOI: 10.1139/apnm-2023-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Classical training theory postulates that performance fatigability following a training session should be proportional to the total work done (TWD); however, this notion has been questioned. This study investigated indices of performance and perceived fatigability after primary sessions of high-intensity interval training (HIIT) and constant work rate (CWR) cycling, each followed by a cycling time-to-task failure (TTF) bout. On separate days, 16 participants completed an incremental cycling test, and, in a randomized order, (i) a TTF trial at 80% of peak power output (PPO), (ii) an HIIT session, and (iii) a CWR session, both of which were immediately followed by a TTF trial at 80% PPO. Central and peripheral aspects of performance fatigability were measured using interpolated twitch technique, and perceptual measures were assessed prior to and following the HIIT and CWR trials, and again following the TTF trial. Despite TWD being less following HIIT (P = 0.029), subsequent TTF trial was an average of 125 s shorter following HIIT versus CWR (P < 0.001), and this was accompanied by greater impairments in voluntary and electrically evoked forces (P < 0.001), as well as exacerbated perceptual measures (P < 0.001); however, there were no differences in any fatigue measure following the TTF trial (P ≥ 0.149). There were strong correlations between the decline in TTF and indices of peripheral (r = 0.70) and perceived fatigability (r ≥ 0.80) measured at the end of HIIT and CWR. These results underscore the dissociation between TWD and performance fatigability and highlight the importance of peripheral components of fatigability in limiting endurance performance during high-intensity cycling exercise.
Collapse
Affiliation(s)
| | - Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Micah Grunau
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Eric Anklovitch
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | | |
Collapse
|
19
|
Krause MP, Haile L, Antonio DS, Peres AL, Robertson RJ. The Use of a Just Noticeable Difference Approach to Improve Perceptual Acuity Ability in Male Runners. Percept Mot Skills 2024; 131:1341-1359. [PMID: 38889916 DOI: 10.1177/00315125241252852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We were interested in micro-variations in an athlete's psychophysical state that separate peak exertion from physiological collapse. Thus, we measured perceptual acuity in runners using a classic psychophysical approach, the just noticeable difference (JND) on two standard stimuli runs at treadmill speed corresponding to 70%VO2max and 80%VO2max. Thirty-four male runners (M age = 35.26, SD = 7.33 years) first performed a maximal treadmill test to determine the speed of a standard exercise bout for the JND trials. The JND trials consisted of four 5-minute running bouts on a treadmill with 5-minute rests between bouts. For bouts 1 and 3, participants ran at the standard stimuli pace, but for bouts 2 and 4, they adjusted their speeds to achieve a level of exertion at a JND above/below the SS. They achieved differences in the final 30 seconds of the VO2 between each JND bout and the previous standard stimuli at just above (JND-A) and just below (JND-B) the JND perceived exertions. We used a Generalized Linear Model analysis to compare the JND-A and JND-B within and between ventilatory threshold groups (lower/higher) in absolute and relative VO2 and in terms of the total JND magnitude. The magnitude of JND-A was greater than that of JND-B at 70%VO2max and 80%VO2max in absolute units (70%VO2 Δ = 2.62; SE = 0.37; p < .001; 80%VO2 Δ = 1.67; SE = 0.44; p = .002) and in relative units (70%VO2max Δ = 4.70; SE = 0.66; p < .001; 80%VO2max Δ = 2.96; SE = 0.80; p = .002). The total magnitude was greater in the 70%VO2max trial than 80%VO2max in absolute units (70%VO2 M = 3.78, SE = 0.31 mL·kg-1·min-1; 80%VO2 M = 2.62, SE = 0.37 mL·kg-1·min-1; p = .020) and in relative units (70%VO2max M = 6.57, SE = 0.53%VO2max; 80%VO2max M = 4.71, SE = 0.64%VO2max; p = .030). The JND range narrowed when physiologic demand increased, for both physical (speed) and psychological (RPE) variables.
Collapse
Affiliation(s)
- Maressa Priscila Krause
- Departamento Acadêmico de Educação Física, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Luke Haile
- Department of Health and Exercise Science, Commonwealth University of Pennsylvania - Bloomsburg, Bloomsburg, PA, USA
| | | | - Andre L Peres
- Departamento de Educação Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Robert J Robertson
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Gallo G, Faelli EL, Ruggeri P, Filipas L, Codella R, Plews DJ, Maunder E. Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur J Appl Physiol 2024; 124:2353-2364. [PMID: 38483635 PMCID: PMC11322563 DOI: 10.1007/s00421-024-05440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The aims of this study were to: (i) describe the time course of the decrease in power output at the moderate-to-heavy intensity transition during prolonged exercise; (ii) investigate the association between durability of the moderate-to-heavy intensity transition and exercise capacity; and (iii) explore physiological correlates of durability of the moderate-to-heavy intensity transition. METHODS Twelve trained cyclists (age: 40 ± 8 y, V ˙ O2peak: 52.3 ± 5.2 mL·min-1·kg-1) performed an exhaustive cycling protocol involving alternating incremental exercise tests to determine power output at the moderate-to-heavy intensity transition via the first ventilatory threshold (VT1), and 30-min bouts at 90% of the power output at the previously estimated VT1 in the rested state. The individual time course of VT1 was modelled using linear and second-order polynomial functions, and time to a 5% decrease in VT1 (Δ5%VT1) was estimated using the best-fitting model. RESULTS Power output at VT1 decreased according to a second-order polynomial function in 11 of 12 participants. Time-to-task failure (234 ± 66 min) was correlated with Δ5%VT1 (139 ± 78 min, rs = 0.676, p = 0.016), and these were strongly correlated with absolute and relative rates of fat oxidation at specific exercise intensities measured during the incremental test performed in the rested state. CONCLUSIONS These data: (i) identify a non-linear time course of decreases in the moderate-to-heavy intensity transition during prolonged exercise; (ii) support the importance of durability of the moderate-to-heavy intensity transition in prolonged exercise capacity; and (iii) suggest durability of the moderate-to-heavy intensity transition is related to fat oxidation rates.
Collapse
Affiliation(s)
- Gabriele Gallo
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Department of Neuroscience, RehabilitationGenoa, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Viale Benedetto XV, 16100, Genoa, Italy
| | | | - Piero Ruggeri
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
21
|
Fleitas-Paniagua PR, Marinari G, Rasica L, Rogers B, Murias JM. Heart Rate Variability Thresholds: Agreement with Established Approaches and Reproducibility in Trained Females and Males. Med Sci Sports Exerc 2024; 56:1317-1327. [PMID: 38376998 DOI: 10.1249/mss.0000000000003412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE To determine in trained females and males i) the agreement between the gas exchange threshold (GET), lactate threshold 1 (LT1), and heart rate variability threshold 1 (HRVT1), as well as between the respiratory compensation point (RCP), lactate threshold 2 (LT2), and heart rate variability threshold 2 (HRVT2), and ii) the reproducibility of HRVT1 and HRVT2 during 2-min incremental step protocols. METHODS Fifty-seven trained participants (24 females) completed a 2-min step incremental test to task failure. Nineteen participants (eight females) completed a second test to evaluate reproducibility. Gas exchange and ventilatory responses, blood lactate concentration, and RR time series were recorded to assess the oxygen consumption (V̇O 2 ) and heart rate (HR) associated with the GET, RCP, LT1, LT2, HRVT1, and HRVT2. RESULTS V̇O 2 -GET versus V̇O 2 -HRVT1 and HR-GET versus HR-HRVT1 were statistically different for females (29.5 ± 4.0 vs 34.6 ± 6.1 mL·kg -1 ·min -1 ; 154 ± 11 vs 166 ± 12 bpm) and for males (33.9 ± 4.2 vs 42.7 ± 4.6 mL·kg -1 ·min -1 ; 145 ± 11 vs 165 ± 9 bpm; P < 0.001). V̇O 2 and HR at HRVT1 were greater than at LT1 ( P < 0.05). V̇O 2 -RCP versus V̇O 2 -HRVT2 and HR-RCP versus HR-HRVT2 were not statistically different for females (40.1 ± 4.7 vs 39.5 ± 6.7 mL·kg -1 ·min -1 ; 177 ± 9 vs 176 ± 9 bpm) and males (48.4 ± 5.4 vs 47.8 ± 4.8 mL·kg -1 ·min -1 ; 176 ± 8 vs 175 ± 9 bpm; P > 0.05). V̇O 2 and HR responses at LT2 were similar to HRVT2 ( P > 0.05). Intraclass correlation coefficient for V̇O 2 -HRVT1, HR-HRVT1, V̇O 2 -HRVT2, and HR-HRVT2 indicated good reproducibility when comparing the two different time points to standard methods. CONCLUSIONS Whereas HRVT2 is a valid and reproducible estimate of the RCP/LT2, current approaches for HRVT1 estimation did not show good agreement with outcomes at GET and LT1.
Collapse
Affiliation(s)
| | | | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, CANADA
| | - Bruce Rogers
- College of Medicine, University of Central Florida, Orlando, FL
| | | |
Collapse
|
22
|
Falk Neto JH, Faulhaber M, Kennedy MD. The Characteristics of Endurance Events with a Variable Pacing Profile-Time to Embrace the Concept of "Intermittent Endurance Events"? Sports (Basel) 2024; 12:164. [PMID: 38921858 PMCID: PMC11207974 DOI: 10.3390/sports12060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
A variable pacing profile is common in different endurance events. In these races, several factors, such as changes in elevation or race dynamics, lead participants to perform numerous surges in intensity. These surges are so frequent that certain events, such as cross-country (XC) skiing, mountain biking (MTB), triathlon, and road cycling, have been termed "intermittent endurance events". The characteristics of these surges vary depending on the sport: MTB and triathlon require athletes to perform numerous short (<10 s) bouts; XC skiing require periods of short- and moderate-(30 s to 2 min) duration efforts, while road cycling is comprised of a mix of short-, moderate-, and long-duration (>2 min) bouts. These bouts occur at intensities above the maximal metabolic steady state (MMSS), with many efforts performed at intensities above the athletes' maximal aerobic power or speed (MAP/MAS) (i.e., supramaximal intensities). Given the factors that influence the requirement to perform surges in these events, athletes must be prepared to always engage in a race with a highly stochastic pace. The aim of this review is to characterize the variable pacing profile seen in endurance events and to discuss how the performance of multiple maximal and supramaximal surges in intensity can affect how athletes fatigue during a race and influence training strategies that can lead to success in these races.
Collapse
Affiliation(s)
- Joao Henrique Falk Neto
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Michael D. Kennedy
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
23
|
Borrelli M, Shokohyar S, Rampichini S, Bruseghini P, Doria C, Limonta EG, Ferretti G, Esposito F. Energetics of sinusoidal exercise below and across critical power and the effects of fatigue. Eur J Appl Physiol 2024; 124:1845-1859. [PMID: 38242972 PMCID: PMC11130025 DOI: 10.1007/s00421-023-05410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Previous studies investigating sinusoidal exercise were not devoted to an analysis of its energetics and of the effects of fatigue. We aimed to determine the contribution of aerobic and anaerobic lactic metabolism to the energy balance and investigate the fatigue effects on the cardiorespiratory and metabolic responses to sinusoidal protocols, across and below critical power (CP). METHODS Eight males (26.6 ± 6.2 years; 75.6 ± 8.7 kg; maximum oxygen uptake 52.8 ± 7.9 ml·min-1·kg-1; CP 218 ± 13 W) underwent exhausting sinusoidal cycloergometric exercises, with sinusoid midpoint (MP) at CP (CPex) and 50 W below CP (CP-50ex). Sinusoid amplitude (AMP) and period were 50 W and 4 min, respectively. MP, AMP, and time-delay (tD) between mechanical and metabolic signals of expiratory ventilation (V ˙ E ), oxygen uptake (V ˙ O 2 ), and heart rate ( f H ) were assessed sinusoid-by-sinusoid. Blood lactate ([La-]) and rate of perceived exertion (RPE) were determined at each sinusoid. RESULTS V ˙ O 2 AMP was 304 ± 11 and 488 ± 36 ml·min-1 in CPex and CP-50ex, respectively. Asymmetries between rising and declining sinusoid phases occurred in CPex (36.1 ± 7.7 vs. 41.4 ± 9.7 s forV ˙ O 2 tD up and tD down, respectively; P < 0.01), with unchanged tDs.V ˙ O 2 MP and RPE increased progressively during CPex. [La-] increased by 2.1 mM in CPex but remained stable during CP-50ex. Anaerobic contribution was larger in CPex than CP-50ex. CONCLUSION The lower aerobic component during CPex than CP-50ex associated with lactate accumulation explained lowerV ˙ O 2 AMP in CPex. The asymmetries in CPex suggest progressive decline of muscle phosphocreatine concentration, leading to fatigue, as witnessed by RPE.
Collapse
Affiliation(s)
- Marta Borrelli
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Sheida Shokohyar
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy.
| | - Paolo Bruseghini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Eloisa Guglielmina Limonta
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| |
Collapse
|
24
|
Lu X, Wang M, Yue H, Feng X, Tian Y, Xue C, Zhang T, Wang Y. Novel peptides from sea cucumber intestines hydrolyzed by neutral protease alleviate exercise-induced fatigue via upregulating the glutaminemediated Ca 2+ /Calcineurin signaling pathway in mice. J Food Sci 2024; 89:1727-1738. [PMID: 38258958 DOI: 10.1111/1750-3841.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.
Collapse
Affiliation(s)
- Xutong Lu
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Meng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hao Yue
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Xiaoxuan Feng
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yingying Tian
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
25
|
Cejuela R, Arévalo-Chico H, Sellés-Pérez S. Power Profile during Cycling in World Triathlon Series and Olympic Games. J Sports Sci Med 2024; 23:25-33. [PMID: 38455440 PMCID: PMC10915604 DOI: 10.52082/jssm.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024]
Abstract
This study aimed to analyze the power profile (PP) during the cycling segment of international-level triathletes in the World Triathlon Series (WTS) and Olympics and to evaluate the influence of circuit type, race distance (Sprint or Olympic distance) and race dynamics on the development of the cycling leg and the final race position. Four male triathletes participated in the study. Twenty races were analyzed using geolocation technology and power-meter data to analyze PP, race dynamics, and course characteristics. Before the races, incremental tests of volitional exhaustion with gas analysis were performed to determine power intensity zones. Nonparametric Mann-Whitney U tests and correlation analyses were conducted to identify differences and relationships between various variables. A correlation between the time spent above maximal aerobic power (MAP) and dangerous curves per kilometer (r = 0.46; p < 0.05) and bike split result (BSR) (r = -0.50; p < 0.05) was observed. Also, moderate correlation was found between BSR and the final race position (r = 0.46; p < 0.01). No differences were found between sprint and Olympic distance races in any variable. Power output variability, influenced by technical circuit segments, remains the main characteristic in international short-distance races. The results of the present study suggest that the triathletes who are better adapted to intermittent high intensity efforts perform better cycling legs at international high-level races.
Collapse
Affiliation(s)
- Roberto Cejuela
- Physical Education and Sports, Faculty of Education, University of Alicante, Spain
| | - Héctor Arévalo-Chico
- Physical Education and Sports, Faculty of Education, University of Alicante, Spain
| | - Sergio Sellés-Pérez
- Physical Education and Sports, Faculty of Education, University of Alicante, Spain
| |
Collapse
|
26
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Perez N, Miller P, Farrell JW. Intensity Distribution of Collegiate Cross-Country Competitions. Sports (Basel) 2024; 12:18. [PMID: 38251292 PMCID: PMC10821186 DOI: 10.3390/sports12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The primary purpose of the current investigation was to perform an intensity distribution analysis of a collegiate cross-country (CC) competition, with a secondary purpose to compare race times (RT) with modeled performance times (MPT). Participants completed an incremental treadmill test to determine gas exchange threshold (GET), while the three-minute all-out test was conducted on a 400 m outdoor track to determine critical velocity (CV) and D prime (D'). GET and CV were used as physiological markers for the intensity zones based on heart rate (HR) and running velocity (RV), while CV and D' were used to determine modeled performance times. Participants wore a Global Positioning System (GPS) watch and heart rate (HR) monitor during competition races. Statistically, less time was spent in HR Zone 1 (12.1% ± 13.7%) compared to Zones 2 (37.6% ± 30.2%) and 3 (50.3% ± 33.7%), while a statically greater amount of time was spent in RV Zone 2 (75.0% ± 20.7%) compared to Zones 1 (8.4% ± 14.0%) and 3 (16.7% ± 19.1%). RTs (1499.5 ± 248.5 seconds (s)) were statistically slower compared to MPTs (1359.6 ± 192.7 s). The observed differences in time spent in each zone are speculated to be related to the influence of environmental conditions on internal metrics and difference in the kinetics of HR and running velocity. Differences in RTs and MPTs are likely due to the MPT equation modeling all-out performance and not considering race strategies.
Collapse
Affiliation(s)
| | | | - John W. Farrell
- Clinical Biomechanics and Exercise Physiology Laboratory, Texas State University, San Marcos, TX 78666, USA; (N.P.); (P.M.)
| |
Collapse
|
28
|
Berger NJA, Best R, Best AW, Lane AM, Millet GY, Barwood M, Marcora S, Wilson P, Bearden S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med 2024; 54:73-93. [PMID: 37751076 DOI: 10.1007/s40279-023-01936-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Ultra-endurance running (UER) poses extreme mental and physical challenges that present many barriers to completion, let alone performance. Despite these challenges, participation in UER events continues to increase. With the relative paucity of research into UER training and racing compared with traditional endurance running distance (e.g., marathon), it follows that there are sizable improvements still to be made in UER if the limitations of the sport are sufficiently understood. The purpose of this review is to summarise our current understanding of the major limitations in UER. We begin with an evolutionary perspective that provides the critical background for understanding how our capacities, abilities and limitations have come to be. Although we show that humans display evolutionary adaptations that may bestow an advantage for covering large distances on a daily basis, these often far exceed the levels of our ancestors, which exposes relative limitations. From that framework, we explore the physiological and psychological systems required for running UER events. In each system, the factors that limit performance are highlighted and some guidance for practitioners and future research are shared. Examined systems include thermoregulation, oxygen delivery and utilisation, running economy and biomechanics, fatigue, the digestive system, nutritional and psychological strategies. We show that minimising the cost of running, damage to lower limb tissue and muscle fatigability may become crucial in UER events. Maintaining a sustainable core body temperature is critical to performance, and an even pacing strategy, strategic heat acclimation and individually calculated hydration all contribute to sustained performance. Gastrointestinal issues affect almost every UER participant and can be due to a variety of factors. We present nutritional strategies for different event lengths and types, such as personalised and evidence-based approaches for varying types of carbohydrate, protein and fat intake in fluid or solid form, and how to avoid flavour fatigue. Psychology plays a vital role in UER performance, and we highlight the need to be able to cope with complex situations, and that specific long and short-term goal setting improves performance. Fatigue in UER is multi-factorial, both physical and mental, and the perceived effort or level of fatigue have a major impact on the ability to continue at a given pace. Understanding the complex interplay of these limitations will help prepare UER competitors for the different scenarios they are likely to face. Therefore, this review takes an interdisciplinary approach to synthesising and illuminating limitations in UER performance to assist practitioners and scientists in making informed decisions in practice and applicable research.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
| | - Russ Best
- Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand
| | - Andrew W Best
- Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA, USA
| | - Andrew M Lane
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University Horsforth, Leeds, UK
| | - Samuele Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrick Wilson
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shawn Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
29
|
O'Malley CA, Fullerton CL, Mauger AR. Analysing experienced and inexperienced cyclists' attentional focus and self-regulatory strategies during varying intensities of fixed perceived effort cycling: A mixed method study. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 70:102544. [PMID: 37844746 DOI: 10.1016/j.psychsport.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Using a think aloud approach during fixed perceived effort exercise is a unique method to explore the decision-making processes that guide the self-regulation of perceived effort during endurance-based activity. In a two-part study, authors investigated the attentional focus and self-regulatory strategies associated with: Part A - perceived effort corresponding to (RPEGET) and above gas exchange threshold (RPE+15%GET); Part B - between experienced and inexperienced cyclists during fixed perceived effort cycling tasks. Eighteen (15 male, 3 female) healthy, active individuals completed three visits (visit 1 - ramped incremental test and familiarisation, visit 2 and 3-30-min fixed perceived effort cycling). During which, power output, heart rate, lactate, think aloud, and perceptual markers were taken. Random-intercepts linear mixed-effects models assessed the condition, time, and condition × time interactions on all dependent variables. Power output, heart rate, lactate and instances of internal sensory monitoring (t195=2.57,p=.011,β=0.95[0.23,1.68]) and self-regulation (t195=4.14,p=.001,β=1.69[0.89,2.49]) were significantly higher in the RPE+15%GET versus RPEGET trial. No significant differences between inexperienced and experienced cyclists for internal sensory monitoring (t196=-1.78,p=.095,β=-1.73[-3.64,0.18]) or self-regulatory thoughts (t196=-0.39,p=.699,β=-1.06[-6.32,4.21]) were noted but there were significant condition × time interactions for internal monitoring (t196=2.02,p=.045,β=0.44[0.01,0.87]) and self-regulation (t196=3.45,p=.001,β=0.85[0.37,1.33]). Seemingly, experienced athletes associatively attended to internal psychophysiological state and subsequently self-regulate their psychophysiological state at earlier stages of exercise than inexperienced athletes. This is the first study to exhibit the differences in attentional focus and self-regulatory strategies that are activated based on perceived effort intensity and experience level in cyclists.
Collapse
Affiliation(s)
- C A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK; Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | - C L Fullerton
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK; Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA, UK
| | - A R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, CT2 7PE, UK
| |
Collapse
|
30
|
Stevenson JD, Kilding AE, Plews DJ, Maunder E. Prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition. Eur J Appl Physiol 2024; 124:309-315. [PMID: 37495864 PMCID: PMC10786968 DOI: 10.1007/s00421-023-05285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE To quantify the effects of prolonged cycling on the rate of ventilation ([Formula: see text]), frequency of respiration (FR), and tidal volume (VT) associated with the moderate-to-heavy intensity transition. METHODS Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-heavy intensity transition, determined as the first ventilatory threshold (VT1), before (PRE) and after (POST) two hours of moderate-intensity cycling. The power output, [Formula: see text], FR, and VT associated with VT1 were determined PRE and POST. RESULTS As previously reported, power output at VT1 significantly decreased by ~ 10% from PRE to POST. The [Formula: see text] associated with VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13 L.min-1, ∆ - 3 ± 5 L.min-1, ∆ - 4 ± 8%, P = 0.075), and relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The [Formula: see text] associated with VT1 was produced with increased FR (27.6 ± 5.8 vs. 31.9 ± 6.5 breaths.min-1, ∆ 4.3 ± 3.1 breaths.min-1, ∆ 16 ± 11%, P = 0.0002) and decreased VT (2.62 ± 0.43 vs. 2.19 ± 0.36 L.breath-1, ∆ - 0.44 ± 0.22 L.breath-1, ∆ - 16 ± 7%, P = 0.0002) in POST. CONCLUSION These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, but [Formula: see text] remains stable. Real-time monitoring of [Formula: see text] may be a useful means of assessing proximity to the moderate-to-heavy intensity transition during prolonged exercise and is worthy of further research.
Collapse
Affiliation(s)
- Julian D Stevenson
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
31
|
Forbes SC, Candow DG, Neto JHF, Kennedy MD, Forbes JL, Machado M, Bustillo E, Gomez-Lopez J, Zapata A, Antonio J. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr 2023; 20:2204071. [PMID: 37096381 PMCID: PMC10132248 DOI: 10.1080/15502783.2023.2204071] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Creatine supplementation is an effective ergogenic aid to augment resistance training and improve intense, short duration, intermittent performance. The effects on endurance performance are less known. The purpose of this brief narrative review is to discuss the potential mechanisms of how creatine can affect endurance performance, defined as large muscle mass activities that are cyclical in nature and are >~3 min in duration, and to highlight specific nuances within the literature. Mechanistically, creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine lowers inflammation and oxidative stress and has the potential to increase mitochondrial biogenesis. In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities. Overall, creatine supplementation increases time to exhaustion during high-intensity endurance activities, likely due to increasing anaerobic work capacity. In terms of time trial performances, results are mixed; however, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity and/or during end spurts, which are often key race-defining moments. Given creatines ability to enhance anaerobic work capacity and performance through repeated surges in intensity, creatine supplementation may be beneficial for sports, such as cross-country skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance, such as rowing, kayaking, and track cycling.
Collapse
Affiliation(s)
- Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Michael D Kennedy
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, AB, Canada
| | - Jennifer L Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | | | - Erik Bustillo
- Train 8Nine/CrossFit Coconut Grove, Erik Bustillo Consulting, Miami, FL, USA
| | - Jose Gomez-Lopez
- Rehab & Nutrition Center, Human Performance Laboratory, Motion Training, Lo Barnechea, Chile
| | | | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
32
|
McDougall RM, Tripp TR, Frankish BP, Doyle-Baker PK, Lun V, Wiley JP, Aboodarda SJ, MacInnis MJ. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans. J Physiol 2023; 601:5295-5316. [PMID: 37902588 DOI: 10.1113/jp284958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Critical torque (CT) represents the highest oxidative steady state for intermittent knee extensor exercise, but the extent to which it is influenced by skeletal muscle mitochondria and sex is unclear. Vastus lateralis muscle biopsy samples were collected from 12 females and 12 males -matched for relative maximal oxygen uptake normalized to fat-free mass (FFM) (F: 57.3 (7.5) ml (kg FFM)-1 min-1 ; M: 56.8 (7.6) ml (kg FFM)-1 min-1 ; P = 0.856) - prior to CT determination and performance fatiguability trials. Males had a lower proportion of myosin heavy chain (MHC) I isoform (40.6 (18.4)%) compared to females (59.5 (18.9)%; P = 0.021), but MHC IIa and IIx isoform distributions and protein markers of mitochondrial content were not different between sexes (P > 0.05). When normalized to maximum voluntary contraction (MVC), the relative CT (F: 42.9 (8.3)%; M: 37.9 (9.0)%; P = 0.172) and curvature constant, W' (F: 26.6 (11.0) N m s (N m)-1 ; M: 26.4 (6.5) N m s (N m)-1 ; P = 0.962) were not significantly different between sexes. All protein biomarkers of skeletal muscle mitochondrial content, as well as the proportion of MHC I isoform, positively correlated with relative CT (0.48 < r < 0.70; P < 0.05), and the proportion of MHC IIx isoform correlated positively with relative W' (r = 0.57; P = 0.007). Indices of performance fatiguability were not different between males and females for MVC- and CT-controlled trials (P > 0.05). Greater mitochondrial protein abundance was associated with attenuated declines in potentiated twitch torque for exercise at 60% MVC (P < 0.05); however, the influence of mitochondrial protein abundance on performance fatiguability was reduced when exercise was prescribed relative to CT. Whether these findings translate to whole-body exercise requires additional research. KEY POINTS: The quadriceps critical torque represents the highest intensity of intermittent knee extensor exercise for which an oxidative steady state is attainable, but its relationship with skeletal muscle mitochondrial protein abundance is unknown. Matching males and females for maximal oxygen uptake relative to fat-free mass facilitates investigations of sex differences in exercise physiology, but studies that have compared critical torque and performance fatiguability during intermittent knee extensor exercise have not ensured equal aerobic fitness between sexes. Skeletal muscle mitochondrial protein abundance was correlated with critical torque and fatigue resistance for exercise prescribed relative to maximum voluntary contraction but not for exercise performed relative to the critical torque. Differences between sexes in critical torque, skeletal muscle mitochondrial protein abundance and performance fatiguability were not statistically significant. Our results suggest that skeletal muscle mitochondrial protein abundance may contribute to fatigue resistance by influencing the critical intensity of exercise.
Collapse
Affiliation(s)
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - S Jalal Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Ozkaya O, Jones AM, Burnley M, As H, Balci GA. Different categories of VO 2 kinetics in the 'extreme' exercise intensity domain. J Sports Sci 2023; 41:2144-2152. [PMID: 38380593 DOI: 10.1080/02640414.2024.2316504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
The aim of this study was to classify potential sub-zones within the extreme exercise domain. Eight well-trained male cyclists participated in this study. The upper boundary of the severe exercise domain (Pupper-bound) was estimated by constant-work-rate tests. Then three further extreme-work-rate tests were performed in discrete regions within the extreme domain: extreme-1) at a work-rate greater than the Pupper-bound providing an 80-110-s time to task failure; extreme-2) a 30-s maximal sprint; and extreme-3) a 4-s maximal sprint. Different functions were used to describe the behaviour of the V ˙ O 2 kinetics over time. V ˙ O 2 on-kinetics during extreme-1 exercise was best described by a single-exponential model (R2 ≥ 0.97; SEE ≤ 0.10; p < 0.001), and recovery V ˙ O 2 decreased immediately after the termination of exercise. In contrast, V ˙ O 2 on-kinetics during extreme-2 exercise was best fitted by a linear function (R2 ≥ 0.96; SEE ≤ 0.16; p < 0.001), and V ˙ O 2 responses continued to increase during the first 10-20 s of recovery. During the extreme-3 exercise, V ˙ O 2 could not be modelled due to inadequate data, and there was an M-shape recovery V ˙ O 2 response with an exponential decay at the end. The V ˙ O 2 response to exercise across the extreme exercise domain has distinct features and must therefore be characterised with different fitting strategies in order to describe the responses accurately.
Collapse
Affiliation(s)
- Ozgur Ozkaya
- Department of Coaching Education, Faculty of Sports Sciences, Ege University, Izmir, Turkiye
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Hakan As
- Department of Sports Health Sciences, Institution of Health Sciences, Ege University, Izmir, Turkiye
| | - Gorkem A Balci
- Department of Coaching Education, Faculty of Sports Sciences, Ege University, Izmir, Turkiye
| |
Collapse
|
34
|
Bourgois G, Mucci P, Boone J, Colosio AL, Bourgois JG, Pogliaghi S, Caen K. Critical power, W' and W' reconstitution in women and men. Eur J Appl Physiol 2023; 123:2791-2801. [PMID: 37369796 DOI: 10.1007/s00421-023-05268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE The aim of this study was to compare critical power (CP) and work capacity W', and W' reconstitution (W'REC) following repeated maximal exercise between women and men. METHODS Twelve women ([Formula: see text]O2PEAK: 2.53 ± 0.37 L·min-1) and 12 men ([Formula: see text]O2PEAK: 4.26 ± 0.30 L·min-1) performed a minimum of 3 constant workload tests, to determine CP and W', and 1 maximal exercise repetition test with three work bouts (WB) to failure, to quantify W'REC during 2 recovery periods, i.e., W'REC1 and W'REC2. An independent samples t test was used to compare CP and W' values between women and men, and a repeated-measures ANOVA was used to compare W'REC as fraction of W' expended during the first WB, absolute W'REC, and normalized to lean body mass (LBM). RESULTS CP normalized to LBM was not different between women and men, respectively, 3.7 ± 0.5 vs. 4.1 ± 0.4 W·kgLBM-1, while W' normalized to LBM was lower in women 256 ± 29 vs. 305 ± 45 J·kgLBM-1. Fractional W'REC1 was higher in women than in men, respectively, 74.0 ± 12.0% vs. 56.8 ± 9.5%. Women reconstituted less W' than men in absolute terms (8.7 ± 1.2 vs. 10.9 ± 2.0 kJ) during W'REC1, while normalized to LBM no difference was observed between women and men (174 ± 23 vs. 167 ± 31 J·kgLBM-1). W'REC2 was lower than W'REC1 both in women and men. CONCLUSION Sex differences in W'REC (absolute women < men; fractional women > men) are eliminated when LBM is accounted for. Prediction models of W'REC might benefit from including LBM as a biological variable in the equation. This study confirms the occurrence of a slowing of W'REC during repeated maximal exercise.
Collapse
Affiliation(s)
- Gil Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | - Patrick Mucci
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.
| | - Alessandro L Colosio
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Silvia Pogliaghi
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Kevin Caen
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
35
|
Goreham JA, Landry SC, Kozey JW, Smith B, Ladouceur M. Using principal component analysis to investigate pacing strategies in elite international canoe kayak sprint races. Sports Biomech 2023; 22:1444-1459. [PMID: 32844729 DOI: 10.1080/14763141.2020.1806348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
The aim of this research was to use principal component analysis (PCA) to investigate the current pacing strategies of elite canoe kayak sprint athletes and to determine if there are differences in pacing patterns between medallists and non-medallists at major international competitions. Velocity data collected using global positioning systems (GPS) from all a-finals of major international competitions in 2016-2017 (including canoe and kayak, single and crew boat, and male and female) were downloaded from the International Canoe Federation's website. Data were normalised by the average velocity within each race and organised by race distance. In total 10, 14 and 16 races were analysed, and they followed all-out, positive, and 'seahorse-shaped' pacing strategies for the 200 m, 500 m, and 1000 m events, respectively. Normalised velocity PC1 (p = 0.039, ES = -0.44) and PC2 scores (p < 0.001, ES = -0.73) for 1000 m races were significantly different between medallists and non-medallists; however, significant differences between PCs were not found between groups in shorter race distances (i.e. 200 m and 500 m). Data collected using GPS provide information that can be used to better prepare athletes for canoe kayak sprint races lasting between 30 s and 240 s in duration.
Collapse
Affiliation(s)
| | - Scott C Landry
- Kinesiology, Acadia University, Wolfville, Nova Scotia, Canada
| | - John W Kozey
- Kinesiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce Smith
- Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
36
|
Barreto RV, Lima LC, Borszcz FK, de Lucas RD, Denadai BS. Acute physiological responses to eccentric cycling: a systematic review and meta-analysis. J Sports Med Phys Fitness 2023; 63:1051-1068. [PMID: 37410446 DOI: 10.23736/s0022-4707.23.14971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Eccentric cycling (ECCCYC) has attracted considerable interest due to its potential applicability for exercise treatment/training of patients with poor exercise tolerance as well as healthy and trained individuals. Conversely, little is known about the acute physiological responses to this exercise modality, thus challenging its proper prescription. This study aimed to provide precise estimates of the acute physiological responses to ECCCYC in comparison to traditional concentric cycling (CONCYC). EVIDENCE ACQUISITION Searches were performed until November 2021 using the PubMed, Embase, and ScienceDirect databases. Studies that examined individuals' cardiorespiratory, metabolic, and perceptual responses to ECCCYC and CONCYC sessions were included. Bayesian multilevel meta-analysis models were used to estimate the population mean difference between acute physiological responses from ECCCYC and CONCYC bouts. Twenty-one studies were included in this review. EVIDENCE SYNTHESIS The meta-analyses showed that ECCCYC induced lower cardiorespiratory (i.e., V̇O2, V̇E, and HR), metabolic (i.e., [BLa]), and perceptual (i.e., RPE) responses than CONCYC performed at the same absolute power output, while greater cardiovascular strain (i.e., greater increases in HR, Q, MAP, [norepinephrine], and lower SV) was detected when compared to CONCYC performed at the same V̇O2. CONCLUSIONS The prescription of ECCCYC based on workloads used in the CONCYC sessions may be considered safe and, therefore, feasible for the rehabilitation of individuals with poor exercise tolerance. However, the prescription of ECCCYC based on the V̇O2 obtained during CONCYC sessions should be conducted with caution, especially in clinical settings, since there is a high probability of additional cardiovascular overload in this condition.
Collapse
Affiliation(s)
- Renan V Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil -
| | - Leonardo Cr Lima
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ricardo D de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Benedito S Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
37
|
Gures A, Colakoglu M, Ozkaya O, As H, Balci GA. Cardiovascular responses of exercises performed within the extreme exercise domain. Physiol Res 2023; 72:319-327. [PMID: 37449745 PMCID: PMC10668999 DOI: 10.33549/physiolres.935068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 08/26/2023] Open
Abstract
Stroke volume (SV), heart rate (HR) and arterio-venous O2 difference (a-vO2diff) responses to heavy and severe-intensity exercise have been well documented; however, there is a lack of information on the SV, HR and a v-O2diff responses of work rates within extreme exercise domain. The aim of this study was, therefore, to focus on central and peripheral components of VO2 responses to exercises performed within the heavy, severe and extreme exercise domain. Eight well-trained male cyclists participated in this study. Maximal O2 consumption (VO2max) and corresponding work rate (P@VO2max) were determined by multisession constant work rate exercises. Cardiovascular responses to exercises were evaluated by nitrous-oxide rebreathing method with work rates from 40 % to 160 % of P@VO2max, VO2max corresponded to 324+/-39.4 W; however, maximal SV responses occurred at 205+/-54.3 W (p<0.01). Maximal cardiac output (Q), HR, and a vO2diff responses were revealed by the P@VO2max. VO2 response to exercise significantly decreased from severe-intense exercises to the first work rate of extreme exercise domain due to significant decreases in Q, SV, and HR responses (p<0.05), except a v-O2diff (p>0.05). Moreover, non-significant decreases in Q, SV, and a v-O2diff were evaluated as response to increase in work rate belonging to extreme work rates (p>0.05), except the HR (p<0.05). Work rates within the lower district of the extreme exercise domain have an important potential to improve peripheral component of VO2, while the P@VO2max seems the most appropriate intensity for aerobic endurance development as it maximizes the central component of VO2max.
Collapse
Affiliation(s)
- A Gures
- Department of Coaching Education, Faculty of Sports Sciences, Adnan Menderes University, Aydin, Republic of Türkiye, Department of Coaching Education, Faculty of Sports Sciences, Ege University, Izmir, Republic of Türkiye.
| | | | | | | | | |
Collapse
|
38
|
Bi Y, Liu X, Liu Y, Wang M, Shan Y, Yin Y, Meng X, Sun F, Li H, Li Z. Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue. Front Mol Biosci 2023; 10:1223411. [PMID: 37416624 PMCID: PMC10319583 DOI: 10.3389/fmolb.2023.1223411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Background: The molecular mechanisms regulating the therapeutic effects of plant-based ingredients on the exercise-induced fatigue (EIF) remain unclear. The therapeutic effects of both tea polyphenols (TP) and fruit extracts of Lycium ruthenicum (LR) on mouse model of EIF were investigated. Methods: The variations in the fatigue-related biochemical factors, i.e., lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), and interleukin-6 (IL-6), in mouse models of EIF treated with TP and LR were determined. The microRNAs involved in the therapeutic effects of TP and LR on the treatment of mice with EIF were identified using the next-generation sequencing technology. Results: Our results revealed that both TP and LR showed evident anti-inflammatory effect and reduced oxidative stress. In comparison with the control groups, the contents of LDH, TNF-α, IL-6, IL-1β, and IL-2 were significantly decreased and the contents of SOD were significantly increased in the experimental groups treated with either TP or LR. A total of 23 microRNAs (21 upregulated and 2 downregulated) identified for the first time by the high-throughput RNA sequencing were involved in the molecular response to EIF in mice treated with TP and LR. The regulatory functions of these microRNAs in the pathogenesis of EIF in mice were further explored based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with a total of over 20,000-30,000 target genes annotated and 44 metabolic pathways enriched in the experimental groups based on GO and KEGG databases, respectively. Conclusion: Our study revealed the therapeutic effects of TP and LR and identified the microRNAs involved in the molecular mechanisms regulating the EIF in mice, providing strong experimental evidence to support further agricultural development of LR as well as the investigations and applications of TP and LR in the treatment of EIF in humans, including the professional athletes.
Collapse
Affiliation(s)
- Yingxin Bi
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianjun Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yue Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyuan Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
39
|
Gunda YR, Gupta S, Singh LK. Assessing human performance and human reliability: a review. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2023; 14:817-828. [DOI: 10.1007/s13198-023-01893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 07/19/2023]
|
40
|
Spragg J, Leo P, Swart J. An improved methodology for estimating critical power from mean maximal power output data. J Sports Sci 2023; 41:964-971. [PMID: 37660315 DOI: 10.1080/02640414.2023.2254574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The aim of this study was to determine if Critical Power (CP) and W' can be estimated from mean maximal power output (MMP) data collected in cycling races. Data were collected from 13 under 23 professional cyclists (mean ± SD; age, 19.5 ± 1.1 y; body mass, 66.3 ± 5.0 kg; height, 180.0 ± 5.0 cm; CP, 5.7 ± 0.3 W · kg-1). Participants conducted a CP test in the field to determine CPTest and W'Test. MMP data were then collected in races for the subsequent 90 days. CP and W' were estimated from MMP values in two ways, using fixed MMP durations, 2, 5 and 12 min (CPFixed and W'Fixed), and via a novel filtering of second-by-second MMP data (CPFiltered and W'Filtered). CPFixed and CPFiltered were not significantly different from CPTest (Mean Difference (MD) 5 W and 7 W, respectively, p > 0.05). W'Fixed and W'Filtered were not significantly different from W'Test (MD 2.68 kJ and 0.89 kJ, respectively, p > 0.05). CPFixed and CPFiltered correlated significantly with CPTest (r = 0.872 and 0.922, respectively, p < 0.0001 for both). Neither W'Fixed nor W'Filtered correlated significantly with W'Test (p > 0.05). Both CPFixed and CPFiltered provide valid estimates of CPTest.; however, CPFiltered provides a better estimate.
Collapse
Affiliation(s)
- James Spragg
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Peter Leo
- Department of Performance Physiology and Prevention, Faculty of Sports Sciences, University of Innsbruck, Innsbruck, Austria
| | - Jeroen Swart
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UAE Team Emirates professional cycling team, Innsbruck, Austria
| |
Collapse
|
41
|
Levine NA, Baek S, Tuttle N, Alvis HB, Hung CJ, Sokoloski ML, Kim J, Hamner MS, Lee S, Rigby BR, Kwon YH. Biomechanical effects of fatigue on lower-body extremities during a maximum effort kettlebell swing protocol. Sports Biomech 2023:1-18. [PMID: 37126368 DOI: 10.1080/14763141.2023.2207556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kettlebell training provides multiple health benefits, including the generation of power. The primary purpose of this study was to examine the kinematics and kinetics of lower-body joints during a repeated, maximum effort kettlebell swing protocol. Sixteen resistance and kettlebell swing experienced males performed 10 rounds of a kettlebell swing routine (where one round equates to 30s of swings followed by 30s of rest). Kinematic (i.e., swing duration and angular velocities) and kinetic (i.e., normalised sagittal plane ground reaction force, resultant joint moment [RJM] and power) variables were extracted for the early portion and late portion of the round. Average swing duration and the magnitude of normalised ground reaction forces (GRF) increased within rounds, while hip joint power decreased. Changes in swing duration were minimal, but consistent due to an increase in overall fatigue. An increase in the magnitude of GRF was observed at the end of rounds, which is a potential concern for injury. Hip joint power decreased primarily due to a slower angular velocity. This protocol may be an effective routine for those who are resistance trained with kettlebell swing experience, and who want to optimise power in their exercise program.
Collapse
Affiliation(s)
- Nicholas A Levine
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Seungho Baek
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Noelle Tuttle
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Hunter B Alvis
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Cheng-Ju Hung
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Matthew L Sokoloski
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Jemin Kim
- Biomechanics Laboratory, Kinesiology and Health Science, Louisiana State University Shreveport, Shreveport, LA, USA
| | - Mark S Hamner
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Sangwoo Lee
- Biomechanics Laboratory, Western Michigan University, Kalamazoo, MI, USA
| | - Brandon R Rigby
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Young-Hoo Kwon
- Biomechanics and Motor Behavior Laboratory, School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
42
|
Fulton TJ, Sundberg CW, Arney BE, Hunter SK. Sex Differences in the Speed-Duration Relationship of Elite Runners across the Lifespan. Med Sci Sports Exerc 2023; 55:911-919. [PMID: 36728809 PMCID: PMC10106388 DOI: 10.1249/mss.0000000000003112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine if the speed-duration relationship is altered with age and sex of elite Master's runners. METHODS The world's top 10 performances for men and women in three events (800, 1500, and 5000 m) across six age groups (18-34 yr, 40-49 yr, 50-59 yr, 60-69 yr, 70-79 yr, and 80-89 yr) were analyzed from public data to establish theoretical models of the speed-duration relationship. Critical speed (CS) and the curvature constant ( D ') were estimated by fitting the average speeds and performance times with a two-parameter hyperbolic model. RESULTS Critical speed expressed relative to the 18- to 34-yr-olds, declined with age (92.2% [40-49] to 55.2% [80-89]; P < 0.001), and absolute CS was higher in men than women within each age group ( P < 0.001). The percent difference in CS between the men and women progressively increased across age groups (10.8% [18-34] to 15.5% [80-89]). D ' was lower in women than men in the 60-69 yr, 70-79 yr, and 80-89 yr age groups ( P < 0.001), but did not differ in the 18-34 yr, 40-49 yr, or 50-59 yr age groups. CONCLUSIONS Critical speed progressively decreased with age, likely due to age-related decrements in several physiological systems that cause reduced aerobic capacity. The mechanism for the larger sex difference in CS in the older age groups is unknown but may indicate physiological differences that occur with aging and/or historical sociological factors that have reduced participation opportunities of older female runners resulting in a more limited talent pool.
Collapse
Affiliation(s)
- Timothy J. Fulton
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Christopher W. Sundberg
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, WI
| | - Blaine E. Arney
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Sandra K. Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, WI
| |
Collapse
|
43
|
Burnley M. Invited review: The speed-duration relationship across the animal kingdom. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111387. [PMID: 36740171 DOI: 10.1016/j.cbpa.2023.111387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The parameters of the hyperbolic speed-duration relationship (the asymptote critical speed, CS, and the curvature constant, D') provide estimates of the maximal steady state speed (CS) and the distance an animal can run, swim, or fly at speeds above CS before it is forced to slow down or stop (D'). The speed-duration relationship has been directly studied in humans, horses, mice and rats. The technical difficulties with treadmill running in dogs and the relatively short greyhound race durations means that, perhaps surprisingly, it has not been assessed in dogs. The endurance capabilities of lizards, crabs and salamanders has also been measured, and the speed-duration relationship can be calculated from these data. These analyses show that 1) raising environmental temperature from 25 °C to 40 °C in lizards can double the CS with no change in D'; 2) that lungless salamanders have an extremely low critical speed due, most likely, to O2 diffusion limitations associated with cutaneous respiration; and 3) the painted ghost crab possesses the highest endurance parameter ratio (D'/CS) yet recorded (470 s), allowing it to maintain high speeds for extended periods. Although the speed-duration relationship has not been measured in fish, the sustainable swimming speed has been quantified in a range of species and is conceptually similar to the maximal steady state in humans. The high aerobic power of birds and low metabolic cost of transport during flight permits the extreme feats of endurance observed in bird migrations. However, the parameters of the avian speed-duration relationship have not been quantified.
Collapse
Affiliation(s)
- Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK.
| |
Collapse
|
44
|
Vinetti G, Pollastri L, Lanfranconi F, Bruseghini P, Taboni A, Ferretti G. Modeling the Power-Duration Relationship in Professional Cyclists During the Giro d'Italia. J Strength Cond Res 2023; 37:866-871. [PMID: 36026464 DOI: 10.1519/jsc.0000000000004350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/12/2022] [Indexed: 11/08/2022]
Abstract
ABSTRACT Vinetti, G, Pollastri, L, Lanfranconi, F, Bruseghini, P, Taboni, A, and Ferretti, G. Modeling the power-duration relationship in professional cyclists during the Giro d'Italia. J Strength Cond Res 37(4): 866-871, 2023-Multistage road bicycle races allow the assessment of maximal mean power output (MMP) over a wide spectrum of durations. By modeling the resulting power-duration relationship, the critical power ( CP ) and the curvature constant ( W' ) can be calculated and, in the 3-parameter (3-p) model, also the maximal instantaneous power ( P0 ). Our aim is to test the 3-p model for the first time in this context and to compare it with the 2-parameter (2-p) model. A team of 9 male professional cyclists participated in the 2014 Giro d'Italia with a crank-based power meter. The maximal mean power output between 10 seconds and 10 minutes were fitted with 3-p, whereas those between 1 and 10 minutes with the 2- model. The level of significance was set at p < 0.05. 3-p yielded CP 357 ± 29 W, W' 13.3 ± 4.2 kJ, and P0 1,330 ± 251 W with a SEE of 10 ± 5 W, 3.0 ± 1.7 kJ, and 507 ± 528 W, respectively. 2-p yielded a CP and W' slightly higher (+4 ± 2 W) and lower (-2.3 ± 1.1 kJ), respectively ( p < 0.001 for both). Model predictions were within ±10 W of the 20-minute MMP of time-trial stages. In conclusion, during a single multistage racing event, the 3-p model accurately described the power-duration relationship over a wider MMP range without physiologically relevant differences in CP with respect to 2-p, potentially offering a noninvasive tool to evaluate competitive cyclists at the peak of training.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Luca Pollastri
- Pentavis, Laboratory of Sport Sciences, Lecco, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; and
| | | | - Paolo Bruseghini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Anna Taboni
- Department of Anesthesiology, Pharmacology, Intensive Care and Emergencies, University of Geneva, Geneva, Switzerland
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Anesthesiology, Pharmacology, Intensive Care and Emergencies, University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Hurd KA, Surges MP, Farrell JW. Use of Exercise Training to Enhance the Power-Duration Curve: A Systematic Review. J Strength Cond Res 2023; 37:733-744. [PMID: 35852374 DOI: 10.1519/jsc.0000000000004315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Hurd, KA, Surges, MP, and Farrell, JW. Use of exercise training to enhance the power-duration curve: a systematic review. J Strength Cond Res 37(3): 733-744, 2023-The power/velocity-duration curve consists of critical power (CP), the highest work rate at which a metabolic steady state can obtained, and W' (e.g., W prime), the finite amount of work that can be performed above CP. Significant associations between CP and performance during endurance sports have been reported resulting in CP becoming a primary outcome for enhancement following exercise training interventions. This review evaluated and summarized the effects of different exercise training methodologies for enhancing CP and respective analogs. A systematic review was conducted with the assistance of a university librarian and in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Ten studies met the criteria for inclusion and were reviewed. Four, 2, 2, 1, and 1 articles included swimming, cycling, resistance training, rowing, and running, respectively. Improvements in CP, and respective analogs, were reported in 3 swimming, 2 cycling, and 1 rowing intervention. In addition, only 2 cycling and 1 swimming intervention used CP, and respective analogs, as an index of intensity for prescribing exercise training, with one cycling and one swimming intervention reporting significant improvements in CP. Multiple exercise training modalities can be used to enhance the power/velocity-duration curve. Significant improvements in CP were often reported with no observed improvements in W' or with slight decreases. Training may need to be periodized in a manner that targets enhancements in either CP or W' but not simultaneously.
Collapse
Affiliation(s)
- Kweisi A Hurd
- Clinical Biomechanics and Exercise Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas
| | | | | |
Collapse
|
46
|
Wong S, Burnley M, Mauger A, Fenghua S, Hopker J. Functional threshold power is not a valid marker of the maximal metabolic steady state. J Sports Sci 2023; 40:2578-2584. [PMID: 36803419 DOI: 10.1080/02640414.2023.2176045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Functional Threshold Power (FTP) has been considered a valid alternative to other performance markers that represent the upper boundary of the heavy intensity domain. However, such a claim has not been empirically examined from a physiological perspective.This study examined the blood lactate and VO2 response when exercising at and 15 W above the FTP (FTP+15W). Thirteen cyclists participated in the study. The VO2 was recorded continuously throughout FTP and FTP+15W, with blood lactate measured before the test, every 10 minutes and at task failure. Data were subsequently analysed using two-way ANOVA. The time to task failure at FTP and FTP+15W were 33.7 ± 7.6 and 22.0 ± 5.7 minutes (p < 0.001), respectively. The VO2peak was not attained when exercising at FTP+15W (VO2peak: 3.61 ± 0.81 vs FTP+15W 3.33 ± 0.68 L·min-1, p < 0.001). The VO2 stabilised during both intensities. However, the end test blood lactate corresponding to FTP and FTP+15W was significantly different (6.7 ± 2.1 mM vs 9.2 ± 2.9 mM; p < 0.05). The VO2 response corresponding to FTP and FTP+15W suggests that FTP should not be considered a threshold marker between heavy and severe intensity.
Collapse
Affiliation(s)
- Stephen Wong
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury Campus, Canterbury, UK
| | - Mark Burnley
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury Campus, Canterbury, UK
| | - Alexis Mauger
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury Campus, Canterbury, UK
| | - Sun Fenghua
- Department of Health and Physical Education, Education University of Hong Kong, Tai Po, Hong Kong
| | - James Hopker
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury Campus, Canterbury, UK
| |
Collapse
|
47
|
James JJ, Leach OK, Young AM, Newman AN, Mpongo KL, Quirante JM, Wardell DB, Ahmadi M, Gifford JR. The exercise power-duration relationship is equally reproducible in eumenorrheic female and male humans. J Appl Physiol (1985) 2023; 134:230-241. [PMID: 36548510 DOI: 10.1152/japplphysiol.00416.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and work-prime (W') being lower during the early follicular phase than the late follicular and midluteal phases. Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three timepoints across the MC (early follicular, late follicular, and midluteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65%) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06%). CP was similar for male and female subjects (11.82 ± 1.42 W·kg-1 vs. 11.56 ± 1.51 W·kg-1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J·kg-1) than female subjects (490.03 ± 136.70 J·kg-1) when controlling for leg lean mass. MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.NEW & NOTEWORTHY Females are often excluded from exercise performance research due to experimental challenges in controlling for the menstrual cycle (MC), causing uncertainty regarding how the MC impacts female performance. The present study examined the influences that biological sex and the MC have on the power-duration relationship (PDR) by comparing critical power (CP), Work-prime (W'), and maximum power output (PMAX) in males and females. Our data provide evidence that the MC does not influence the PDR and that females exhibit similar reproducibility as males. Thus, when conducting aerobic endurance exercise research on eumenorrheic females without menstrual dysfunction, the phase of the MC does not need to be controlled. Although differences in body composition account for some differences between the sexes, sex differences in W' and PMAX persisted even after normalizing for different metrics of body composition. These data highlight the necessity and feasibility of examining sex differences in performance, as previously generated male-only data within the literature may not apply to female subjects.
Collapse
Affiliation(s)
- Jessica J James
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Olivia K Leach
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Arianna M Young
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Audrey N Newman
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Kiese L Mpongo
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jaron M Quirante
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Devon B Wardell
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, Utah.,Program of Gerontology, Brigham Young University, Provo, Utah
| |
Collapse
|
48
|
The effect of constant load cycling at extreme- and severe-intensity domains on performance fatigability and its determinants in young female. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Matomäki P, Heinonen OJ, Nummela A, Laukkanen J, Auvinen EP, Pirkola L, Kyröläinen H. Durability is improved by both low and high intensity endurance training. Front Physiol 2023; 14:1128111. [PMID: 36875044 PMCID: PMC9977827 DOI: 10.3389/fphys.2023.1128111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction: This is one of the first intervention studies to examine how low- (LIT) and high-intensity endurance training (HIT) affect durability, defined as 'time of onset and magnitude of deterioration in physiological-profiling characteristics over time during prolonged exercise'. Methods: Sedentary and recreationally active men (n = 16) and women (n = 19) completed either LIT (average weekly training time 6.8 ± 0.7 h) or HIT (1.6 ± 0.2 h) cycling for 10 weeks. Durability was analyzed before and after the training period from three factors during 3-h cycling at 48% of pretraining maximal oxygen uptake (VO2max): 1) by the magnitude and 2) onset of drifts (i.e. gradual change in energy expenditure, heart rate, rate of perceived exertion, ventilation, left ventricular ejection time, and stroke volume), 3) by the 'physiological strain', defined to be the absolute responses of heart rate and its variability, lactate, and rate of perceived exertion. Results: When all three factors were averaged the durability was improved similarly (time x group p = 0.42) in both groups (LIT: p = 0.03, g = 0.49; HIT: p = 0.01, g = 0.62). In the LIT group, magnitude of average of drifts and their onset did not reach statistically significance level of p < 0.05 (magnitude: 7.7 ± 6.8% vs. 6.3 ± 6.0%, p = 0.09, g = 0.27; onset: 106 ± 57 min vs. 131 ± 59 min, p = 0.08, g = 0.58), while averaged physiological strain improved (p = 0.01, g = 0.60). In HIT, both magnitude and onset decreased (magnitude: 8.8 ± 7.9% vs. 5.4 ± 6.7%, p = 0.03, g = 0.49; onset: 108 ± 54 min vs. 137 ± 57 min, p = 0.03, g = 0.61), and physiological strain improved (p = 0.005, g = 0.78). VO2max increased only after HIT (time x group p < 0.001, g = 1.51). Conclusion: Durability improved similarly by both LIT and HIT based on reduced physiological drifts, their postponed onsets, and changes in physiological strain. Despite durability enhanced among untrained people, a 10-week intervention did not alter drifts and their onsets in a large amount, even though it attenuated physiological strain.
Collapse
Affiliation(s)
- Pekka Matomäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Olli J Heinonen
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Jari Laukkanen
- Central Finland Healthcare District, Department of Medicine, Jyväskylä, Finland.,Department of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eero-Pekka Auvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Leena Pirkola
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
50
|
Li C, Zhu X, Zhang J, Xu T, Zhang H, Zheng Z, Kumar RR. Polysaccharides from apple pomace exhibit anti-fatigue activity through increasing glycogen content. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:283-291. [PMID: 36618038 PMCID: PMC9813301 DOI: 10.1007/s13197-022-05613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
The polysaccharides were isolated from apple pomace by hot-water extraction, and their anti-fatigue activity was evaluated in C2C12 muscle myoblasts and male Kunming mice. The purified polysaccharides from apple pomace (PAP) have a molecular weight of 1.74 × 105 Da and were composed of mannose, rhamnose, glucose, galactose and arabinose. In C2C12 myoblasts, PAP showed no cytotoxicity in the concentrations of 0-300 μg/ml. PAP treatment increased the glycogen content, while the ATP content was not affected in C2C12 myoblasts. Further investigation found that the activity and gene expression of glycogen synthase, rather than glycogen phosphorylase, were upregulated by PAP treatment. The studies in vivo showed that PAP treatment did not affect the food intake and weight again in mice. Importantly, PAP prolonged the exhaustive swimming time, increased hepatic and skeletal muscle glycogen levels, and effectively inhibited the accumulation of blood lactic and blood urea nitrogen in mice. Taken together, the results suggested that PAP exhibit anti-fatigue activity in vitro and in vivo through increasing glycogen content.
Collapse
Affiliation(s)
- Chunguang Li
- College of Physical Education, Dezhou University, #566 Daxuexi Road, Dezhou, 253023 People’s Republic of China
| | - Xinjun Zhu
- College of Life Science, Dezhou University, Dezhou, 253023 People’s Republic of China
| | - Jingxia Zhang
- College of Life Science, Dezhou University, Dezhou, 253023 People’s Republic of China
| | - Tisen Xu
- College of Life Science, Dezhou University, Dezhou, 253023 People’s Republic of China
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, 253023 People’s Republic of China
| | - Zhiping Zheng
- College of Physical Education, Dezhou University, #566 Daxuexi Road, Dezhou, 253023 People’s Republic of China
| | - Ramasamy Rajesh Kumar
- Key Laboratory of Nuclear Agriculture Sciences Ministry of Agriculture China, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|