1
|
Fu Y, Guzior DV, Okros M, Bridges C, Rosset SL, González CT, Martin C, Karunarathne H, Watson VE, Quinn RA. Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation. Nat Commun 2025; 16:3434. [PMID: 40210868 PMCID: PMC11985902 DOI: 10.1038/s41467-025-58649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat-/- KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.
Collapse
Affiliation(s)
- Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Maxwell Okros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sabrina L Rosset
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Cely T González
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Hansani Karunarathne
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Wen X, Li W, Li S, Chen D, Zheng J, Wang X, Zhang C, Liu Y, Ning Y, Jia R, Li P, Ji M, Ji C, Li J, Guo W. Longitudinal single-cell RNA sequencing reveals a heterogeneous response of plasma cells to colonic inflammation. Int J Biol Macromol 2025; 294:139307. [PMID: 39753172 DOI: 10.1016/j.ijbiomac.2024.139307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
A comprehensive understanding of the dynamic changes in plasma cells (PCs) during inflammation remains elusive. In this study, we analyzed the distinct responses of PCs across different phases of inflammation in a dextran sodium sulfate (DSS)-induced mouse colitis model. Six-week-old male C57BL/6 mice were treated with 2.2 % DSS in distilled water for 5 days to induce colitis, and colonic tissues were collected at the peak of inflammation, during recovery, and at the end of the recovery phase. Single-cell RNA sequencing was performed to investigate temporal changes in the gut immune environment. PCs were categorized into six subsets, with Ube2c + PCs displaying notable alterations during various inflammatory phases. Genes such as Pycard, Gpx1, Lgals3, and Chchd10 were significantly expressed in Ube2c + PCs and appeared critical in resolving DSS-induced inflammation. Transcription factors (TFs), including Atf4, Cebpg, Jund, and Klf6, exhibited high regulatory activity in Ube2c + PCs across inflammatory stages. Additionally, we identified an interaction between Chchd10 and C1qbp in PCs, which stabilized C1qbp, reduced reactive oxygen species (ROS) production, and potentially enhanced PC survival and function under inflammatory conditions. This study highlights dynamic quasi-temporal gene expression and TF regulation in PCs during colitis, providing insights for future PC-targeted immunotherapy research.
Collapse
Affiliation(s)
- Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shifang Li
- Laboratory of Immunology and Vaccinology, FARAH, ULiège, Liège 4000, Belgium
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junjie Zheng
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Wang
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiyu Zhang
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yanting Liu
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yao Ning
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Guo
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Qin X. Emerging Connections Between Inflammatory Bowel Disease Subtypes and Sequential Changes in Total Serum Bilirubin. Inflamm Bowel Dis 2025:izaf004. [PMID: 39832261 DOI: 10.1093/ibd/izaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 01/22/2025]
Abstract
Lay Summary
Building on my long-standing hypothesis that impaired inactivation of digestive proteases by deconjugated bilirubin may be the unifying feature and mechanism of inflammatory bowel disease (IBD), this paper explores potential connections among different subtypes of IBD through sequential changes in total serum bilirubin.
Collapse
|
4
|
Herrlinger KR, Stange EF. [New treatment targets for inflammatory bowel disease?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2025; 66:55-63. [PMID: 39714486 DOI: 10.1007/s00108-024-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
The classic therapeutic goals of chronic inflammatory bowel disease (IBD) are, on the one hand, clinical remission and, on the other, the prevention of disease progression. The introduction of additional "targets" such as normalization of laboratory inflammation values, endoscopic and, possibly, histological mucosal healing and transmural parameters (ultrasound, magnetic resonance imaging and computed tomography) is intended to improve prognosis. A good response to therapy is usually (also) evident from these targets, although the obligatory change in medication in order to improve the prognosis if the additional treatment goals are not achieved is not evidence-based. In the case of Crohn's disease and ulcerative colitis, individual and, if possible, personalized medicine should continue to be provided instead of strict target specifications.
Collapse
Affiliation(s)
| | - E F Stange
- Innere Medizin I, Universitätsklinikum Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Deutschland.
| |
Collapse
|
5
|
Gao JW, Liu YD, Jin MX. Intestinal epithelial glycocalyx and intestinal disease. Shijie Huaren Xiaohua Zazhi 2024; 32:887-896. [DOI: 10.11569/wcjd.v32.i12.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
With the continuous research on glycobiology, more and more diseases are found to be associated with the glycocalyx. Glycocalyx can be categorized as endothelial glycocalyx and epithelial glycocalyx. Past studies mostly target endothelial glycocalyx, and this review focuses on the structure and function of intestinal epithelial glycocalyx, its degradation mechanism and biological relevance to different diseases of the intestinal tract, as well as the targeted delivery of drugs to organs by nanoparticle libraries mimicking the glycocalyx, in order to provide a theoretical basis for the study of potential diagnostic markers and therapeutic targets of intestinal epithelial glycocalyx in intestinal diseases.
Collapse
Affiliation(s)
- Jian-Wei Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan-Di Liu
- Department of Gastroenterology, Tianjin People's Hospital, Tianjin 300071, China
| | - Ming-Xing Jin
- Department of Gastroenterology, Tianjin People's Hospital, Tianjin 300071, China
| |
Collapse
|
6
|
Brusnic O, Boicean A, Fleacă SR, Grama B, Sofonea F, Roman-Filip C, Roman-Filip I, Solomon A, Birsan S, Dura H, Porr C, Adrian C, Onisor DM. Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases. Nutrients 2024; 16:4411. [PMID: 39771031 PMCID: PMC11676862 DOI: 10.3390/nu16244411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier. These miRNAs serve as biomarkers for disease progression and severity, as well as therapeutic targets for controlling inflammation. This comprehensive review highlights the intricate interplay between the gut microbiota, fecal microbiota transplantation (FMT), and miRNA regulation. It concludes that microbiota and FMT influence miRNA activity, presenting a promising avenue for personalized IBD treatment.
Collapse
Affiliation(s)
- Olga Brusnic
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (B.O.); (D.M.O.)
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Sorin-Radu Fleacă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Blanca Grama
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (G.B.); (S.F.)
| | - Florin Sofonea
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (G.B.); (S.F.)
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania;
| | - Adelaida Solomon
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Corina Porr
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Cristian Adrian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Danusia Maria Onisor
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (B.O.); (D.M.O.)
| |
Collapse
|
7
|
Kang L, Wang W, Yang L, Liu T, Zhang T, Xie J, Zhai M, Zhao X, Duan Y, Jin Y. Effects of feeding patterns on production performance, lipo-nutritional quality and gut microbiota of Sunit sheep. Meat Sci 2024; 218:109642. [PMID: 39208537 DOI: 10.1016/j.meatsci.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the impact of feeding patterns on the production performance, lipo-nutritional quality, and gut microbiota of Sunit sheep. A total of 24 sheep were assigned to two groups: confinement feeding (CF) and pasture feeding (PF) groups. After 90 days, the CF group exhibited significantly increased average daily gain, carcass weight, backfat thickness, and intramuscular fat content of the sheep, whereas the PF group showed significantly increased pH24h and decreased L∗ value and cooking loss of the longissimus lumborum (LL) muscle (P < 0.05). In the PF group, the contents of linoleic, α-linolenic, and docosahexaenoic acids were considerably higher and the n-6/n-3 polyunsaturated fatty acid ratio was significantly lower (P < 0.05). Furthermore, the triglyceride, cholesterol, and nonesterified fatty acid levels in the serum of the CF group significantly increased, whereas the enzyme contents of fatty acid synthase (FASN) and hormone-sensitive lipase (HSL) in the LL muscle of the PF group were markedly elevated (P < 0.05). The PF group also showed altered expression of lipid metabolism-related genes, including upregulated FASN, HSL, fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (P < 0.05). Meanwhile, differences were observed in the abundance of key bacteria and microbiota functions between the groups. Correlation analysis revealed that production performance and lipid metabolism may be related to the differential effects of bacteria. In conclusion, the transition in the feeding patterns of Sunit sheep caused changes in the gut microbial community and lipid metabolism level in the muscle as well as differences in fat deposition and meat quality.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Weihao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Taiwu Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Junkang Xie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Maoqin Zhai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
8
|
Zubair M, Abouelnazar FA, Dawood AS, Pan J, Zheng X, Chen T, Liu P, Mao F, Yan Y, Chu Y. Microscopic messengers: microbiota-derived bacterial extracellular vesicles in inflammatory bowel disease. Front Microbiol 2024; 15:1481496. [PMID: 39606115 PMCID: PMC11600980 DOI: 10.3389/fmicb.2024.1481496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent and complex condition accomplished by inflammation of the gastrointestinal system, encompassing Crohn's disease (CD) and ulcerative colitis (UC). This condition is caused by the combination of genetic predispositions, environmental triggers, and dysregulated immunological responses, which complicates diagnosis and treatment. The latest developments in gastroenterology have revealed the critical significance of the gut microbiota in the pathogenesis of IBD. Extracellular vesicles (EVs) are a type of microbial component that potentially regulate intestinal inflammation. The impact of microbiota-derived bacterial EVs (bEVs) on intestinal inflammation is mediated through several methods. They can intensify inflammation or stimulate defensive responses by delivering immunomodulatory cargo. Improved comprehension could enhance inventive diagnostic and treatment strategies for IBD. This study aimed to explore the relationship between microbiota-derived bEVs and the complex nature of IBD. We performed a thorough analysis of the formation, composition, mechanisms of action, diagnostic possibilities, therapeutic implications, and future prospects of these microbiota-derived bEVs.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ali Sobhy Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Herrlinger KR, Stange EF. To STRIDE or not to STRIDE: a critique of "treat to target" in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:493-504. [PMID: 39193775 DOI: 10.1080/17474124.2024.2397654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The STRIDE consensus intends to complement the clinical endpoint with an endoscopic endpoint of mucosal healing and others as treatment targets in ulcerative colitis. If these targets are not reached, STRIDE requires dose or timing adjustments or switching the medication. This narrative review provides a critique of this concept. AREAS COVERED We analyze and discuss the limitations of current endpoints as targets, their currently limited achievability, and the lacking evidence from controlled trials relating to 'treat to target.' The relevant publications in PubMed were identified in a literature review with the key word 'ulcerative colitis.' EXPERT OPINION In ulcerative colitis, the standard clinical target is measured traditionally by the MAYO-score, but in variable combinations of patient and physician reported outcomes as well as also different definitions of the endoscopic part. Only a score of 0 is more stringent than clinical remission but is only achieved by a minority of patients in first and even less in second line therapy. The concept is not based on clear evidence that patients indeed benefit from appropriate escalation of treatment. Until the STRIDE approach is proven to be superior to standard treatment focusing on clinical well-being, the field should remain reluctant.
Collapse
Affiliation(s)
| | - Eduard F Stange
- Innere Medizin I, UniversitätsklinikTübingen, Tübingen, Germany
| |
Collapse
|
10
|
Tan M, Wang Y, Ji Y, Mei R, Zhao X, Song J, You J, Chen L, Wang X. Inflammatory bowel disease alters in vivo distribution of orally administrated nanoparticles: Revealing via SERS tag labeling technique. Talanta 2024; 275:126172. [PMID: 38692050 DOI: 10.1016/j.talanta.2024.126172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.
Collapse
Affiliation(s)
- Mingyue Tan
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Song
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
11
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z, Cao H. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight. Front Immunol 2024; 15:1430001. [PMID: 39131163 PMCID: PMC11310172 DOI: 10.3389/fimmu.2024.1430001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.
Collapse
Affiliation(s)
- Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Wei
- Department of Orthodontics, Tianjin Stomatological Hospital School of Medicine, Nankai University, Tianjin, China
- Tianjin Key laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Zhong M, An H, Gan H. The causal relationship between inflammatory bowel diseases and erythema nodosum: a bidirectional two-sample mendelian randomization study. BMC Gastroenterol 2024; 24:231. [PMID: 39044191 PMCID: PMC11267788 DOI: 10.1186/s12876-024-03330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Individuals with inflammatory bowel disease (IBD) exhibit a heightened likelihood of developing erythema nodosum (EN), but the presence of causal link is unknown. The purpose of the present research was to investigate this connection using a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS Summarized statistics for EN were sourced from the FinnGen consortium of European ancestry. The International Inflammatory Bowel Disease Genetic Consortium (IBDGC) was used to extract summary data for IBD. The inverse variance weighted (IVW) technique was the major method used to determine the causative link between them. RESULTS The study evaluated the reciprocal causal link between IBD and EN. The IVW technique confirmed a positive causal link between IBD and EN (OR = 1.237, 95% CI: 1.109-1.37, p = 1.43 × 10- 8), as well as a strong causality connection between Crohn's disease (CD) and EN (OR = 1.248, 95% CI: 1.156-1.348, p = 1.00 × 10- 4). Nevertheless, a causal connection between ulcerative colitis (UC) and EN could not be established by the data. The reverse MR research findings indicated that analysis indicated that an increase in EN risks decreased the likelihood of UC (OR = 0.927, 95% CI: 0.861-0.997, p = 0.041), but the causal association of EN to IBD and CD could not be established. CONCLUSION This investigation confirmed that IBD and CD had a causal connection with EN, whereas UC did not. In addition, EN may decrease the likelihood of UC. Further study must be performed to uncover the underlying pathophysiological mechanisms producing that connection.
Collapse
Affiliation(s)
- Min Zhong
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Wuhou District, Chengdu, 332001, Sichuan, China
| | - Hongjin An
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Wuhou District, Chengdu, 332001, Sichuan, China
| | - Huatian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Department of Gastroenterology and Laboratory of Inflammatory Bowel Disease, the Center for Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital , Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Yu ZL, Gao RY, Lv C, Geng XL, Ren YJ, Zhang J, Ren JY, Wang H, Ai FB, Wang ZY, Zhang BB, Liu DH, Yue B, Wang ZT, Dou W. Notoginsenoside R1 promotes Lgr5 + stem cell and epithelium renovation in colitis mice via activating Wnt/β-Catenin signaling. Acta Pharmacol Sin 2024; 45:1451-1465. [PMID: 38491161 PMCID: PMC11192909 DOI: 10.1038/s41401-024-01250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 μM) promoted wound healing and reduced cell apoptosis. NGR1 (100 μM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/β-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/β-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Zhi-Lun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Rui-Yang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiao-Long Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Yi-Jing Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jing Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jun-Yu Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Fang-Bin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zi-Yi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei-Bei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Dong-Hui Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| |
Collapse
|
14
|
Hou X, Dai P, Song X, Long X, Gao J, Chai T. Understanding the Effect of Compound Probiotics on the Health of Rabbits and Its Mechanisms Through Metagenomics. Probiotics Antimicrob Proteins 2024; 16:815-828. [PMID: 37160588 DOI: 10.1007/s12602-023-10072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 05/11/2023]
Abstract
In this study, we investigated the effects of probiotics on growth performance, immunity, intestinal flora, and antioxidant capacity of rabbits. Three hundred New Zealand white rabbits were randomly divided into four groups. Groups A, B, C, and D were the lactobacillus group, compound probiotic group, control group, and antibiotic group, respectively. The results showed compared with the control group, the average weight of groups A, B, and D increased by 14.88%, 12.33%, and 11.97%, respectively. Moreover, the index of immune organs and the IgG and IgM in serum of group B were significantly increased (P < 0.05). Meanwhile, the activities of superoxide dismutase (SOD) in group B and catalase (CAT) in group A were significantly increased (P < 0.05). At week 5, the contents of rabbit cecum were taken for metagenome sequencing, and the results showed probiotics increased the relative abundance of Akkermansia, and decreased the relative abundance of Bacteroides. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found probiotics could enrich metabolic pathways such as carbohydrates, amino acids, and lipids. According to the Comprehensive Antibiotic Resistance Database (CARD), we found antibiotic resistance ontology (ARO) in cecum mainly included β-lactamases, macrolide 2'-phosphotransferase II, and plasmid-mediated quinolone resistance protein. Among them, there were 1964, 2105, and 1982 types of ARO in group B, group D, and groups A and C, respectively. These results showed probiotics played a beneficial role in maintaining or enhancing the health and growth of rabbits and could replace antibiotics under certain feeding conditions.
Collapse
Affiliation(s)
- Xiaohong Hou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China
| | - Peiqiang Dai
- Sino-Science Biological Research Institute, Taian, China
| | - Xingdong Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xianrong Long
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China
| | - Jing Gao
- Taian Central Hospital, Taian, 271000, China.
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
15
|
Stange EF. Dysbiosis in inflammatory bowel diseases: egg, not chicken. Front Med (Lausanne) 2024; 11:1395861. [PMID: 38846142 PMCID: PMC11153678 DOI: 10.3389/fmed.2024.1395861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
There is agreement that inflammatory bowel diseases are, both in terms of species composition and function, associated with an altered intestinal microbiome. This is usually described by the term "dysbiosis," but this is a vague definition lacking quantitative precision. In this brief narrative review, the evidence concerning the primary or secondary role of this dysbiotic state is critically evaluated. Among others, the following facts argue against a primary etiological impact: 1) There is no specific dysbiotic microbiome in IBD, 2) the presence or absence of mucosal inflammation has a profound impact on the composition of the microbiome, 3) dysbiosis is not specific for IBD but linked to many unrelated diseases, 4) antibiotics, probiotics, and microbiome transfer have a very limited therapeutic effect, 5) the microbiome in concordant twins is similar to disease-discordant twins, and 6) the microbiome in relatives of IBD patients later developing IBD is altered, but these individuals already display subclinical inflammation.
Collapse
Affiliation(s)
- Eduard F. Stange
- Klinik für Innere Medizin I, Universitätsklinik Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Wang M, Huang Q, Liu M, Zhao T, Song X, Chen Q, Yang Y, Nan Y, Liu Z, Zhang Y, Wu W, Ai K. Precisely Inhibiting Excessive Intestinal Epithelial Cell Apoptosis to Efficiently Treat Inflammatory Bowel Disease with Oral Pifithrin-α Embedded Nanomedicine (OPEN). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309370. [PMID: 37747308 DOI: 10.1002/adma.202309370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The increased incidence of inflammatory bowel disease (IBD) has seriously affected the life quality of patients. IBD develops due to excessive intestinal epithelial cell (IEC) apoptosis, disrupting the gut barrier, colonizing harmful bacteria, and initiating persistent inflammation. The current therapeutic approaches that reduce inflammation are limited. Although IBD can be treated significantly by directly preventing IEC apoptosis, achieving this therapeutic approach remains challenging. Accordingly, the authors are the first to develop an oral pifithrin-α (PFTα, a highly specific p53 inhibitor) embedded nanomedicine (OPEN) to effectively treat IBD by inhibiting excessive IEC apoptosis. As a major hub for various stressors, p53 is a central determinant of cell fate, and its inhibition can effectively reduce excessive IEC apoptosis. The tailored OPEN can precisely inhibit the off-target and inactivation resulting from PFTα entry into the bloodstream. Subsequently, it persistently targets IBD lesions with high specificity to inhibit the pathological events caused by excessive IEC apoptosis. Eventually, OPEN exerts a significant curative effect compared with the clinical first-line drugs 5-aminosalicylic acid (5-ASA) and dexamethasone (DEX). Consequently, the OPEN therapeutic strategy provides new insights into comprehensive IBD therapy.
Collapse
Affiliation(s)
- Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, China
| | - Zerun Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
18
|
Whitehead AJ, Atcha H, Hocker JD, Ren B, Engler AJ. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci 2023; 136:jcs261152. [PMID: 37994565 PMCID: PMC10753496 DOI: 10.1242/jcs.261152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.
Collapse
Affiliation(s)
- Alexander J. Whitehead
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - James D. Hocker
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
| | - Bing Ren
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Herrlinger KR, Stange EF. To STRIDE or not to STRIDE: a critique of "treat to target" in Crohn´s disease. Expert Rev Gastroenterol Hepatol 2023; 17:1205-1219. [PMID: 38131269 DOI: 10.1080/17474124.2023.2296564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The STRIDE consensus suggested to focus on mucosal healing, based on biomarkers and endoscopy, in addition to clinical endpoints as treatment target. This narrative review provides a critique of this concept in Crohn´s disease. AREAS COVERED We analyze and discuss the limitations of endpoints as targets, their currently limited achievability, and the controversial evidence relating to 'treat to target.' The relevant publications in Pubmed were identified in a literature review with the key word 'Crohn´s disease.' EXPERT OPINION All targets and endpoints have their limitations, and, even if reached, not all have unequivocally been shown to improve prognosis. The major deficiency of STRIDE is not only the lack of validation and agreement upon endpoints but little evidence of their achievability in a sizable proportion of patients by dose or timing adjustments or switching the medication. Above all, the concept should be based on clear evidence that patients indeed benefit from appropriate escalation of treatment and relevant controlled studies in this regard have been controversial. Until the STRIDE approach is proven to be superior to standard treatment focusing on clinical well-being, the field should remain reluctant and expect more convincing evidence before new targets are approved.
Collapse
Affiliation(s)
| | - Eduard F Stange
- Innere Medizin I, UniversitätsklinikTübingen, Tübingen, Germany
| |
Collapse
|
20
|
Świrkosz G, Szczygieł A, Logoń K, Wrześniewska M, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023; 11:3144. [PMID: 38137365 PMCID: PMC10740415 DOI: 10.3390/biomedicines11123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the colon and rectum. UC's pathogenesis involves colonic epithelial cell abnormalities and mucosal barrier dysfunction, leading to recurrent mucosal inflammation. The purpose of the article is to show the complex interplay between ulcerative colitis and the microbiome. The literature search was conducted using the PubMed database. After a screening process of studies published before October 2023, a total of 136 articles were selected. It has been discovered that there is a fundamental correlation of a robust intestinal microbiota and the preservation of gastrointestinal health. Dysbiosis poses a grave risk to the host organism. It renders the host susceptible to infections and has been linked to the pathogenesis of chronic diseases, with particular relevance to conditions such as ulcerative colitis. Current therapeutic strategies for UC involve medications such as aminosalicylic acids, glucocorticoids, and immunosuppressive agents, although recent breakthroughs in monoclonal antibody therapies have significantly improved UC treatment. Furthermore, modulating the gut microbiome with specific compounds and probiotics holds potential for inflammation reduction, while fecal microbiota transplantation shows promise for alleviating UC symptoms. This review provides an overview of the gut microbiome's role in UC pathogenesis and treatment, emphasizing areas for further research.
Collapse
Affiliation(s)
- Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
21
|
D’Auria E, Minutoli M, Colombo A, Sartorio MUA, Zunica F, Zuccotti G, Lougaris V. Allergy and autoimmunity in children: non-mutually exclusive diseases. A narrative review. Front Pediatr 2023; 11:1239365. [PMID: 38027278 PMCID: PMC10652575 DOI: 10.3389/fped.2023.1239365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
In last decades a simultaneous increase in the prevalence of atopic and autoimmune disorders in pediatric population has been observed. Despite the Th1-Th2 paradigm, supporting the polarization of the immune system with Th1 response involved in autoimmune diseases and Th2 response leading to hypersensitivity reactions, recent evidence suggests a possible coexistence of common pathogenic pathways as result of shared immune dysregulation. Similar genes and other mechanisms such as epithelial barrier damage, gut microbiota dysbiosis and reduced number of T regs and IL-10 contribute to the onset of allergy and autoimmunity. IgA deficiency is also hypothesized to be the crosslink between celiac disease and allergy by lowering gut mucous membrane protection from antigens and allergens. The present narrative review aims to give an overview of the co-occurrence of allergic and autoimmune disorders (celiac disease, inflammatory bowel diseases, type 1 diabetes mellitus, thyroid disease, juvenile idiopathic arthritis) in pediatric population, based on the available evidence. We also highlighted the common pathogenic pathways that may underpin both. Our findings confirm that allergic and autoimmune diseases are commonly associated, and clinicians should therefore be aware of the possible coexistence of these conditions in order to ameliorate disease management and patient care. Particular attention should be paid to the association between atopic dermatitis or asthma and celiac disease or type 1 diabetes and vice versa, for therapeutic interventions. Further studies are needed to better clarify mechanisms involved in the pathogenesis and eventually identify new therapeutic strategies.
Collapse
Affiliation(s)
- Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Martina Minutoli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Alessandra Colombo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | | | - Fiammetta Zunica
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, ASST – Spedali Civili di Brescia, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Jensen BAH, Heyndrickx M, Jonkers D, Mackie A, Millet S, Naghibi M, Pærregaard SI, Pot B, Saulnier D, Sina C, Sterkman LGW, Van den Abbeele P, Venlet NV, Zoetendal EG, Ouwehand AC. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep Med 2023; 4:101190. [PMID: 37683651 PMCID: PMC10518632 DOI: 10.1016/j.xcrm.2023.101190] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.
Collapse
Affiliation(s)
| | - Marc Heyndrickx
- Flanders Research Institute of Agriculture, Fisheries and Food, Belgium & Ghent University, Department Pathobiology, Pharmacology and Zoological Medicine, B-9090 Melle, 9820 Merelbeke, Belgium
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sam Millet
- Flanders Research Institute of Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | | | - Simone Isling Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bruno Pot
- Yakult Europe BV, 1332 Almere, the Netherlands
| | | | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center of Schleswig-Holstein & University of Lübeck, 23538 Lübeck, Germany
| | | | | | - Naomi Vita Venlet
- International Life Science Institute, European Branch, Brussels, Belgium.
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | | |
Collapse
|
23
|
Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 2023; 51:59-72. [PMID: 36372205 PMCID: PMC10491976 DOI: 10.1016/j.jare.2022.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, the first affiliated hospital of Southern University of Science and Technology of China, Shenzhen People's Hospital, Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
24
|
Li H, Ye XF, Su YS, He W, Zhang JB, Zhang Q, Zhan LB, Jing XH. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chin J Integr Med 2023; 29:847-856. [PMID: 35412218 DOI: 10.1007/s11655-022-3531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.
Collapse
Affiliation(s)
- Han Li
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Feng Ye
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bin Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 211005, China
| | - Qi Zhang
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Liaoning University of Chinese Medicine, Shenyang, 116600, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
25
|
Xu YY, Zhu M, Wu J, Luo LB, Dong SJ, Zhang MG, Liu X, Wang K, Luo H, Jing WH, Wang L, Wang SC. A mannitol-modified emodin nano-drug restores the intestinal barrier function and alleviates inflammation in a mouse model of DSS-induced ulcerative colitis. Chin Med 2023; 18:98. [PMID: 37568235 PMCID: PMC10416390 DOI: 10.1186/s13020-023-00801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the colon that is characterized by mucosal ulcers. Given its increasing prevalence worldwide, it is imperative to develop safe and effective drugs for treating UC. Emodin, a natural anthraquinone derivative present in various medicinal herbs, has demonstrated therapeutic effects against UC. However, low bioavailability due to poor water solubility limits its clinical applications. METHODS Emodin-borate nanoparticles (EmB) were synthesized to improve drug solubility, and they modified with oligomeric mannitol into microgels (EmB-MO) for targeted delivery to intestinal macrophages that express mannose receptors. UC was induced in a mouse model using dextran sulfate sodium (DSS), and different drug formulations were administered to the mice via drinking water. The levels of inflammation-related factors in the colon tissues and fecal matter were measured using enzyme-linked immunosorbent assay. Intestinal permeability was evaluated using fluorescein isothiocyanate dextran. HE staining, in vivo imaging, real-time PCR, and western blotting were performed to assess intestinal barrier dysfunction. RESULTS Both EmB and EmB-MO markedly alleviated the symptoms of UC, including body weight loss, stool inconsistency, and bloody stools and restored the levels of pro- and anti-inflammatory cytokines. However, the therapeutic effects of EmB-MO on the macroscopic and immunological indices were stronger than those of EmB and similar to those of 5-aminosalicylic acid. Furthermore, EmB-MO selectively accumulated in the inflamed colon epithelium and restored the levels of the gut barrier proteins such as ZO-1 and Occludin. CONCLUSIONS EmB-MO encapsulation significantly improved water solubility, which translated to greater therapeutic effects on the immune balance and gut barrier function in mice with DSS-induced UC. Our findings provide novel insights into developing emodin-derived drugs for the management of UC.
Collapse
Affiliation(s)
- Yin-Yue Xu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Jiang Wu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Long-Biao Luo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si-jing Dong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Meng-Gai Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Xue Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wang-Hui Jing
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438 China
| | - Si-Cen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| |
Collapse
|
26
|
Li CX, Wang YM, Zhang WJ, Zhang S, Li JP, Zhou T, Duan JA, Guo JM. IL-10-dependent Effect of Chinese Medicine Abelmoschus manihot on Alleviating Intestinal Inflammation and Modulating Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1527-1546. [PMID: 37518098 DOI: 10.1142/s0192415x23500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.
Collapse
Affiliation(s)
- Cheng-Xi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yu-Meng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Wen-Jing Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Shu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Ping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Tong Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
27
|
Caetano MAF, Magalhães HIR, Duarte JRL, Conceição LB, Castelucci P. Butyrate Protects Myenteric Neurons Loss in Mice Following Experimental Ulcerative Colitis. Cells 2023; 12:1672. [PMID: 37443707 PMCID: PMC10340616 DOI: 10.3390/cells12131672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.
Collapse
Affiliation(s)
- Marcos A. F. Caetano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Henrique I. R. Magalhães
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Jheniffer R. L. Duarte
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Laura B. Conceição
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| |
Collapse
|
28
|
Liu M, Wang Z, Liu X, Xiao H, Liu Y, Wang J, Chen C, Wang X, Liu W, Xiang Z, Yue D. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116301. [PMID: 36842724 DOI: 10.1016/j.jep.2023.116301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiyi Fuzi Baijiang formula (YFB) is a traditional Chinese medicine prescription composed of Coix seed, Radix Aconiti Lateralis and Patrinia villosa, which has been used to treat ulcerative colitis (UC) for thousands of years. AIM OF THE STUDY To investigate the therapeutic effect and metabolic analysis of YFB formula on UC in rats induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS). MATERIALS AND METHODS Six main alkaloids in the YFB formula were determined by UPLC‒MS/MS. The rat UC model was induced by TNBS, and the therapeutic effect of YFB formula on UC was evaluated by disease activity index (DAI) score and hematoxylin-eosin (HE) staining. UPLC-QTRAP-MS metabolomics technology was used to screen potential biomarkers for YFB treatment of UC in combination with multivariate data statistics and further analyze related metabolic pathways. Western blotting was used to detect the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in rat liver tissues. ELISA and immunohistochemistry were used to detect the contents of interleukin (IL)-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in rat serum and liver tissues. RESULTS The DAI scores of the YFB groups were significantly reduced, and colon tissue injury was significantly improved (p < 0.01). The results of metabolomics analysis revealed 29 potential biomarkers in serum and 27 potential biomarkers in liver. YFB formula can treat UC by affecting glycerophospholipid metabolism, primary bile acid biosynthesis, glyoxylic acid and dicarboxylic acid metabolism, and arginine and proline metabolism. Compared with the model group, the contents of IL-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in the YFB groups were decreased in a dose-dependent manner (p < 0.01). Compared with those in the model group, the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in the YFB groups were significantly decreased in a dose-dependent manner (p < 0.01). CONCLUSIONS The therapeutic effect of YFB formula on UC rats was dose dependent, and the effect of the YFB (2.046 g/kg) group was close to that of the positive group. YFB formula has an anti-inflammatory effect on UC by regulating the balance of Th17/Treg cells in rats.
Collapse
Affiliation(s)
- Meihua Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zhonghua Wang
- Rongtong Agricultural Development (Shenyang) Co., Ltd., China
| | - Xuan Liu
- Dezhou Xiangxuan Pharmaceutical Technology Co., Ltd., China
| | - Hang Xiao
- Basic Medical College, Shenyang Medical College, China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Changlan Chen
- School of Pharmaceutical Science, Liaoning University, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, China.
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
29
|
Zhou Y, Zhu F, Jing D, Wang Q, Zhou G. Ulcerative colitis and thrombocytosis: Case report and literature review. Medicine (Baltimore) 2023; 102:e33784. [PMID: 37335733 DOI: 10.1097/md.0000000000033784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
RATIONALE Ulcerative colitis (UC) is an autoimmune disease of unknown etiology, sometimes associated with anemia and thrombocytosis. Platelets (PLTs) play a role in amplifying inflammatory and immune responses in chronic inflammation. This study discusses the diagnosis and treatment of a case of UC combined with secondary thrombocytosis and reviews the relevant literature. We report an interaction between thrombocytosis and UC to raise clinicians' awareness of this condition. PATIENT CONCERNS In the current report, we discuss the case of a 30-year-old female patient who presented with frequent diarrhea and thrombocytosis. DIAGNOSIS Severe UC combined with intestinal infection was diagnosed based on colonoscopy and intestinal biopsy. The patient had a PLT count >450 × 109/L and was diagnosed with reactive thrombocytosis. INTERVENTIONS AND OUTCOMES The patient was discharged from the hospital in remission after receiving vedolizumab and anticoagulant treatment. LESSONS In patients with severe UC with thrombocytosis, clinicians should pay attention to PLTs promoting inflammatory progression, as well as screening for venous thromboembolism risk and prophylactic anti-venous thromboembolism therapy at the time of dosing to avoid adverse effects.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, P.R. China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Quanyi Wang
- Pathology Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| |
Collapse
|
30
|
Li J, Pu Y, Li S, He B, Chen J. Orally Administrated Olsalazine-Loaded Multilayer Pectin/Chitosan/Alginate Composite Microspheres for Ulcerative Colitis Treatment. Biomacromolecules 2023; 24:2250-2263. [PMID: 37068182 DOI: 10.1021/acs.biomac.3c00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The pathogenesis of inflammatory bowel diseases (IBDs) including ulcerative colitis (UC) and Crohn's disease is extremely cloudy. Maintaining the level of remission lesions in colitis is the default treatment attitude at present. Epithelial barrier restoration is considered as the same important strategy as colonic targeted drug delivery in UC treatment. In this paper, we developed a multilayer natural polysaccharide microsphere (pectin/chitosan/alginate) with pH and enzyme dual sensitivity to reduce the loss of medication in the upper digestive tract and preferentially adhere to exposed epithelial cells in colonic tissues by electrostatic forces for efficiently targeted UC treatment. Olsalazine as an inflammatory drug was efficiently loaded in the chitosan layer and realized a colonic pH-responsive drug release. Furthermore, the multilayer microspheres exhibited excellent capability in suppressing harmful flora and a bio-adhesion effect to extend the duration of local medicine. In the in vivo anti-colitis study, the downregulated levels of pro-inflammatory factors and the increase of tight junction protein indicated the excellent anti-inflammation effect of the olsalazine-loaded microspheres. In summary, these results showed that the multilayer natural polysaccharide microspheres could be a powerful candidate in the targeted drug delivery system for UC therapy.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sai Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
31
|
Fournier E, Leveque M, Ruiz P, Ratel J, Durif C, Chalancon S, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Lagarde F, Engel E, Etienne-Mesmin L, Blanquet-Diot S, Mercier-Bonin M. Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130010. [PMID: 36182891 DOI: 10.1016/j.jhazmat.2022.130010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Erwan Engel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| |
Collapse
|
32
|
Hassan D, Hossain A. Gut microbiome and COVID-19. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:263-277. [DOI: 10.1016/b978-0-323-85730-7.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Wiredu Ocansey DK, Hang S, Yuan X, Qian H, Zhou M, Valerie Olovo C, Zhang X, Mao F. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes 2023; 15:2176118. [PMID: 36794838 PMCID: PMC9980661 DOI: 10.1080/19490976.2023.2176118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, P.R. China
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
34
|
Bozomitu L, Miron I, Adam Raileanu A, Lupu A, Paduraru G, Marcu FM, Buga AML, Rusu DC, Dragan F, Lupu VV. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022; 10:biomedicines10123117. [PMID: 36551874 PMCID: PMC9775516 DOI: 10.3390/biomedicines10123117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
The gastrointestinal (GI) tract is one of the most studied compartments of the human body as it hosts the largest microbial community including trillions of germs. The relationship between the human and its associated flora is complex, as the microbiome plays an important role in nutrition, metabolism and immune function. With a dynamic composition, influenced by many intrinsic and extrinsic factors, there is an equilibrium maintained in the composition of GI microbiota, translated as "eubiosis". Any disruption of the microbiota leads to the development of different local and systemic diseases. This article reviews the human GI microbiome's composition and function in healthy individuals as well as its involvement in the pathogenesis of different digestive disorders. It also highlights the possibility to consider flora manipulation a therapeutic option when treating GI diseases.
Collapse
Affiliation(s)
- Laura Bozomitu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ingrith Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Adam Raileanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Gabriela Paduraru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Mihai Marcu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ana Maria Laura Buga
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Carmen Rusu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
35
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
36
|
Di Rosa C, Altomare A, Imperia E, Spiezia C, Khazrai YM, Guarino MPL. The Role of Dietary Fibers in the Management of IBD Symptoms. Nutrients 2022; 14:nu14224775. [PMID: 36432460 PMCID: PMC9696206 DOI: 10.3390/nu14224775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, progressive, immune-mediated diseases of the intestinal tract. The main subtypes of IBDs are Chron's disease (CD) and ulcerative colitis (UC). The etiology is still unclear, but there are genetic, environmental and host-related factors that contribute to the development of these diseases. Recent literature has shown that dietary therapy is the cornerstone of IBD treatment in terms of management of symptoms, relapse and care of the pathology. IBD patients show that microbiota dysbiosis and diet, especially dietary fiber, can modulate its composition. These patients are more at risk of energy protein malnutrition than the general population and are deficient in micronutrients. So far, no dietary component is considered responsible for IBD and there is not a specific therapeutic diet for it. The aim of this review is to evaluate the role of dietary fibers in CD and UC and help health professionals in the nutritional management of these pathologies. Further studies are necessary to determine the appropriate amount and type of fiber to suggest in the case of IBD to ameliorate psychosocial conditions and patients' quality of life.
Collapse
Affiliation(s)
- Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annamaria Altomare
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Correspondence:
| | - Elena Imperia
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
37
|
Bao J, Qi W, Sun C, Tian M, Jiao H, Guo G, Guo B, Ren Y, Zheng H, Wang Y, Yan M, Zhang Z, McManus DP, Li J, Zhang W. Echinococcus granulosus sensu stricto and antigen B may decrease inflammatory bowel disease through regulation of M1/2 polarization. Parasit Vectors 2022; 15:391. [PMID: 36289514 PMCID: PMC9608937 DOI: 10.1186/s13071-022-05498-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic idiopathic disease characterized by inflammation-related epithelial barrier damage in the intestinal tract. Helminth infection reduces autoimmune disease symptoms through regulation of inflammatory responses based on hygiene theory. However, the underlying mechanisms remain unclear. Methods BALB/c mice were infected with microcysts of E. granulosus sensu stricto and drank water containing 3.5% dextran sodium sulfate (DSS) at the 100th day post-infection. After 7 days of drinking DSS, the mouse body weight change and disease activity index (DAI) were recorded every day, and colon length and histological score were evaluated after sacrifice. After injection with antigen B (AgB), inducible nitric oxide synthase (iNOS) and Fizz1 expression and F4/80+CD11c+ M1 and F4/80+CD206+ M2 in the peritoneal cells and colon tissues were analysed by qPCR and flow cytometry, respectively. Gut microbiota were profiled by 16S rRNA sequencing of the mouse faecal samples. For in vitro assay, RAW264.7 macrophages were cultured in medium containing AgB before induction by lipopolysaccharide (LPS). Then, NO in the supernatant was measured, and the expression of cytokine genes associated with macrophages were determined by qRT-PCR. Results Echinococcus granulosus s.s. infection and AgB significantly reduced the symptoms and histological scores of IBD induced by DSS (P < 0.05). Flow cytometry showed that AgB inoculation increased F4/80+ and CD206+ in peritoneal cells. The results of qPCR showed that AgB significantly decreased iNOS and increased Fizz1 expression in the colon of mice inoculated by DSS (P < 0.05). Furthermore, AgB injection led to significant changes in the profiles of five genera (Paraprevotella, Odoribacter, Clostridium cluster XlVa, Oscillibacter, and Flavonifractor) in faecal samples. In vitro analysis showed that AgB reduced NO levels (P < 0.01), with a significant decrease in iNOS expression (P < 0.05) in RAW264.7 cells induced by LPS. Conclusions Echinococcus granulosus infection and AgB may improve IBD conditions by inducing an M2-predominant cellular (F4/80+ CD206+) profile and decreasing type 1 macrophages (F4/80+CD11c+) in the intestinal lamina propria. In addition, AgB intervention induced changes in the microbiota condition of the gastrointestinal duct and reversed NO expression. Thus, AgB may be a drug candidate for IBD treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05498-y.
Collapse
Affiliation(s)
- Jianling Bao
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Wenjing Qi
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Chang Sun
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Mengxiao Tian
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China ,grid.13394.3c0000 0004 1799 3993Basic Medicine College, Xinjiang Medical University, Urumqi, 830011 Xinjiang China
| | - Hongjie Jiao
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Gang Guo
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Baoping Guo
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Yuan Ren
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032 China ,grid.464306.30000 0004 0410 5707Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203 China
| | - Yuezhu Wang
- grid.464306.30000 0004 0410 5707Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203 China
| | - Mei Yan
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Zhaoxia Zhang
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Donald P. McManus
- grid.1049.c0000 0001 2294 1395Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Jun Li
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China
| | - Wenbao Zhang
- grid.13394.3c0000 0004 1799 3993State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, 830054 Xinjiang China ,grid.13394.3c0000 0004 1799 3993Basic Medicine College, Xinjiang Medical University, Urumqi, 830011 Xinjiang China
| |
Collapse
|
38
|
Kofla-Dłubacz A, Pytrus T, Akutko K, Sputa-Grzegrzółka P, Piotrowska A, Dzięgiel P. Etiology of IBD-Is It Still a Mystery? Int J Mol Sci 2022; 23:12445. [PMID: 36293300 PMCID: PMC9604112 DOI: 10.3390/ijms232012445] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including colitis ulcerosa and Crohn's disease, are chronic diseases of the gastrointestinal tract for which the cause has not been fully understood. However, it is known that the etiology is multifactorial. The multidirectional network of interactions of environmental, microbiological and genetic factors in predisposed persons lead to an excessive and insufficiently inhibited reaction of the immune system, leading to the development of chronic inflammation of the gastrointestinal walls, the consequence of which is the loss of the function that the intestine performs, inter alia, through the process of fibrosis. Detailed knowledge of the pathways leading to chronic inflammation makes it possible to pharmacologically modulate disorders and effectively treatthese diseases. In this review, we described the primary and adaptive immune system response in the gut and the known immune pathogenetic pathways leading to the development of IBD. We also described the process leading to intestinal tissue fibrosis, which is an irreversible consequence of untreated IBD.
Collapse
Affiliation(s)
- Anna Kofla-Dłubacz
- 2nd Department of Paediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Pytrus
- 2nd Department of Paediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Akutko
- 2nd Department of Paediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Patrycja Sputa-Grzegrzółka
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
39
|
Caetano MAF, Castelucci P. Role of short chain fatty acids in gut health and possible therapeutic approaches in inflammatory bowel diseases. World J Clin Cases 2022; 10:9985-10003. [PMID: 36246826 PMCID: PMC9561599 DOI: 10.12998/wjcc.v10.i28.9985] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by inflammation in the gastrointestinal tract and include Ulcerative Colitis and Crohn's Disease. These diseases are costly to health services, substantially reduce patients' quality of life, and can lead to complications such as cancer and even death. Symptoms include abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these diseases is symptomatic, seeking disease remission. The intestine is colonized by several microorganisms, such as fungi, viruses, and bacteria, which constitute the intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and produces short-chain fatty acids (SCFAs) that exert several beneficial effects on intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. However, the mechanisms involved in these beneficial effects of SCFAs remain poorly understood. Therefore, this paper aims to provide a review addressing the main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main effects on different aspects of the intestine with an emphasis on IBDs.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508900, SP, Brazil
| |
Collapse
|
40
|
Meisinger C, Freuer D. Causal Association Between Atopic Dermatitis and Inflammatory Bowel Disease: A 2-Sample Bidirectional Mendelian Randomization Study. Inflamm Bowel Dis 2022; 28:1543-1548. [PMID: 34964870 DOI: 10.1093/ibd/izab329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Observational studies postulated an association between atopic dermatitis (AD) and inflammatory bowel disease (IBD). However, it remains unclear whether this relationship is causal. METHODS To determine whether AD is causally related to IBD and vice versa, a 2-sample Mendelian randomization study was conducted. Independent genetic instruments from the largest available genome-wide association study for AD (EAGLE eczema consortium without the 23andMe study including 10,788 cases and 30,047 controls) were used to investigate the association with IBD in the UK Biobank study (7045 cases, 456,327 controls) and a second European IBD sample (12,882 cases, 21,770 controls). RESULTS Atopic dermatitis was strongly associated with higher risk of IBD as a whole (odds ratio [OR], 1.107; 95% confidence interval [CI], 1.035; 1.183; P = .003) in the UK Biobank study. The positive association was not significant in the other IBD study (OR, 1.114; 95% CI, 0.956; 1.298), but in meta-analyses of results from the 2 studies, the strong association could be confirmed (OR, 1.11; 95% CI, 1.04; 1.18). When evaluating the causal relationship in the other direction, IBD as a whole did not show an association with AD. Subtype analyses revealed that AD was suggestively associated with ulcerative colitis (UC; OR, 1.149; 95% CI, 1.018; 1.297) but not Crohn's disease (CD). However, there was a suggestive association between CD and AD (OR, 1.034; 95% CI, 1.004; 1.064) but not UC and AD. CONCLUSIONS This study supports a causal effect between AD and IBD-but not between IBD and AD. There seems to be considerable differences between UC and CD regarding their specific associations with AD. These findings have implications for the management of IBD and AD in clinical practice.
Collapse
Affiliation(s)
- Christa Meisinger
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Dennis Freuer
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
41
|
Mărginean CO, Meliț LE, Borka Balas R, Văsieșiu AM, Fleșeriu T. The Crosstalk between Vitamin D and Pediatric Digestive Disorders. Diagnostics (Basel) 2022; 12:diagnostics12102328. [PMID: 36292016 PMCID: PMC9600444 DOI: 10.3390/diagnostics12102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin D is a cyclopentane polyhydrophenanthrene compound involved mainly in bone health and calcium metabolism but also autophagy, modulation of the gut microbiota, cell proliferation, immune functions and intestinal barrier integrity. The sources of vitamin D include sunlight, diet and vitamin D supplements. Vitamin D3, the most effective vitamin D isoform is produced in the human epidermis as a result of sunlight exposure. Vitamin D undergoes two hydroxylation reactions in the liver and kidney to reach its active form, 1,25-dihydroxyvitamin D. Recent studies highlighted a complex spectrum of roles regarding the wellbeing of the gastrointestinal tract. Based on its antimicrobial effect, it was recently indicated that vitamin D supplementation in addition to standard eradication therapy might enhance H. pylori eradication rates. Moreover, it was suggested that low levels of vitamin D might also be involved in the acquisition of H. pylori infection. In terms of celiac disease, the negative effects of vitamin D deficiency might begin even during intrauterine life in the setting of maternal deficiency. Moreover, vitamin D is strongly related to the integrity of the gut barrier, which represents the core of the pathophysiology of celiac disease onset, in addition to being correlated with the histological findings of disease severity. The relationship between vitamin D and cystic fibrosis is supported by the involvement of this micronutrient in preserving lung function by clearing airway inflammation and preventing pathogen airway colonization. Moreover, this micronutrient might exert anticatabolic effects in CF patients. Inflammatory bowel disease patients also experience major benefits if they have a sufficient level of circulating vitamin D, proving its involvement in both induction and remission in these patients. The findings regarding the relationship between vitamin D, food allergies, diarrhea and constipation remain controversial, but vitamin D levels should be monitored in these patients in order to avoid hypo- and hypervitaminosis. Further studies are required to fill the remaining gaps in term of the complex impact of vitamin D on gastrointestinal homeostasis.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania
- Correspondence:
| | - Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania
| | - Anca Meda Văsieșiu
- Department of Infectious Disease, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania
| | - Tudor Fleșeriu
- Department of Infectious Disease, County Clinical Hospital Târgu Mureș, Gheorghe Doja Street No 89, 540394 Târgu Mureș, Romania
| |
Collapse
|
42
|
Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediators Inflamm 2022; 2022:5665778. [PMID: 35915741 PMCID: PMC9338876 DOI: 10.1155/2022/5665778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disorder stemming from unrestrained immune activation and subsequent destruction of colon tissue. Genetic susceptibility, microbiota remodeling, and environmental cues are involved in IBD pathogenesis. Up to now, there are limited treatment options for IBD, so better therapies for IBD are eagerly needed. The therapeutic effects of naturally occurring compounds have been extensively investigated, among which quercetin becomes an attractive candidate owing to its unique biochemical properties. To facilitate the clinical translation of quercetin, we aimed to get a comprehensive understanding of the cellular and molecular mechanisms underlying the anti-IBD role of quercetin. We summarized that quercetin exerts the anti-IBD effect through consolidating the intestinal mucosal barrier, enhancing the diversity of colonic microbiota, restoring local immune homeostasis, and restraining the oxidative stress response. We also delineated the effect of quercetin on gut microbiome and discussed the potential side effects of quercetin administration. Besides, quercetin could serve as a prodrug, and the bioavailability of quercetin is improved through chemical modifications or the utilization of effective drug delivery systems. Altogether, these lines of evidence hint the feasibility of quercetin as a candidate compound for IBD treatment.
Collapse
|
43
|
Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, Rogalla SR, Nielsen OH. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms 2022; 10:1371. [PMID: 35889090 PMCID: PMC9316834 DOI: 10.3390/microorganisms10071371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome has increasingly been recognized as a critical and central factor in inflammatory bowel disease (IBD). Here, we review specific microorganisms that have been suggested to play a role in the pathogenesis of IBD and the current state of fecal microbial transplants as a therapeutic strategy in IBD. We discuss specific nutritional and dietary interventions in IBD and their effects on gut microbiota composition. Finally, we examine the role and mechanisms of the gut microbiome in mediating colitis-associated colon cancer.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Theresa Louise Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Raoul S. Sojwal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Stephan R. Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| |
Collapse
|
44
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
45
|
M’Koma AE. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:567. [PMID: 35629984 PMCID: PMC9144337 DOI: 10.3390/medicina58050567] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
Abstract
This article is an overview of guidelines for the clinical diagnosis and surgical treatment of predominantly colonic inflammatory bowel diseases (IBD). This overview describes the systematically and comprehensively multidisciplinary recommendations based on the updated principles of evidence-based literature to promote the adoption of best surgical practices and research as well as patient and specialized healthcare provider education. Colonic IBD represents idiopathic, chronic, inflammatory disorders encompassing Crohn's colitis (CC) and ulcerative colitis (UC), the two unsolved medical subtypes of this condition, which present similarity in their clinical and histopathological characteristics. The standard state-of-the-art classification diagnostic steps are disease evaluation and assessment according to the Montreal classification to enable explicit communication with professionals. The signs and symptoms on first presentation are mainly connected with the anatomical localization and severity of the disease and less with the resulting diagnosis "CC" or "UC". This can clinically and histologically be non-definitive to interpret to establish criteria and is classified as indeterminate colitis (IC). Conservative surgical intervention varies depending on the disease phenotype and accessible avenues. The World Gastroenterology Organizations has, for this reason, recommended guidelines for clinical diagnosis and management. Surgical intervention is indicated when conservative treatment is ineffective (refractory), during intractable gastrointestinal hemorrhage, in obstructive gastrointestinal luminal stenosis (due to fibrotic scar tissue), or in the case of abscesses, peritonitis, or complicated fistula formation. The risk of colitis-associated colorectal cancer is realizable in IBD patients before and after restorative proctocolectomy with ileal pouch-anal anastomosis. Therefore, endoscopic surveillance strategies, aimed at the early detection of dysplasia, are recommended. During the COVID-19 pandemic, IBD patients continued to be admitted for IBD-related surgical interventions. Virtual and phone call follow-ups reinforcing the continuity of care are recommended. There is a need for special guidelines that explore solutions to the groundwork gap in terms of access limitations to IBD care in developing countries, and the irregular representation of socioeconomic stratification needs a strategic plan for how to address this serious emerging challenge in the global pandemic.
Collapse
Affiliation(s)
- Amosy Ephreim M’Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN 37208-3500, USA; or ; Tel.: +1-615-327-6796; Fax: +1-615-327-6440
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, TN 37208-3599, USA
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-0260, USA
- The American Society of Colon and Rectal Surgeons (ASCRS), 2549 Waukegan Road, #210, Bannockburn, IL 600015, USA
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, USA
| |
Collapse
|
46
|
Richey Levine A, Picoraro JA, Dorfzaun S, LeLeiko NS. Emulsifiers and Intestinal Health: An Introduction. J Pediatr Gastroenterol Nutr 2022; 74:314-319. [PMID: 35226642 DOI: 10.1097/mpg.0000000000003361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Food additives in general, and emulsifiers in particular, are considered to be important dietary components with a potential to harm the intestine, in part by promoting intestinal inflammation. There is inadequate objective information about the specific nature and the magnitude of the problem.The Food and Drug Administration (FDA) has recognized approximately 450 items added to our foods as being generally regarded as safe and has placed them on a generally regarded as safe (GRAS) list. Additionally, it has also approved approximately 3000 "food additives." There is a general lack of transparency as to how either of these selections were and continue to be made. Once items are officially designated by the FDA as "food additives" or placed on the GRAS list, there is no regulatory mechanism for the ongoing monitoring of their safety.The most widely used emulsifier is "lecithin," which is biochemically identified as phosphatidylcholine (PC). Regulatory guidelines allow manufacturers to use the label "lecithin" to be applied to emulsifiers that contain PC plus other phospholipids in a variety of unspecified concentrations. The PC used in experiments cited in the literature, is unlikely to be the same thing as the "lecithin" in our diets.The objective of this introduction to emulsifiers is to raise awareness of the current state of food additives in the USA and to encourage thoughtful approaches to the study of all additives found in our diets. The overriding goal should be to assure the safety of what we eat. As examples we discuss eight widely distributed food additives; four "natural" emulsifiers that are classified as GRAS as well as an additional emulsifier-associated food additive that is also on the GRAS list, and three synthetic emulsifying agents that are FDA approved as "food additives."
Collapse
Affiliation(s)
| | - Joseph A Picoraro
- Pediatric IBD Program, Assistant Professor, Department of Pediatrics, Columbia University Irving Medical Center
| | - Sally Dorfzaun
- Pediatric IBD Program, Columbia University Irving Medical Center
| | - Neal S LeLeiko
- Pediatric IBD Program, Professor, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
47
|
Ghoshal UC, Yadav A, Fatima B, Agrahari AP, Misra A. Small intestinal bacterial overgrowth in patients with inflammatory bowel disease: A case-control study. Indian J Gastroenterol 2022; 41:96-103. [PMID: 34390471 DOI: 10.1007/s12664-021-01211-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Though small intestinal bacterial overgrowth (SIBO) is known in inflammatory bowel disease (IBD), the data on it are scanty and have limitations. METHODS Data on IBD patients undergoing glucose hydrogen breath test (GHBT) were retrospectively analyzed to evaluate the frequency and risk factors of SIBO in IBD compared to 66 healthy controls. RESULTS Patients with IBD (n=86; 45 ulcerative colitis [UC] and 41 Crohn's disease [CD]) more often had SIBO on GHBT than the healthy subjects (16/86 [18.6%] vs. 1/66 [1.5%]; p=0.002). SIBO was commoner among patients with CD than UC (14/41 [34.1%] vs. 2/45 [4.4%]; p=0.001). The frequency of SIBO among UC patients was comparable to healthy subjects (2/45 [4.4%] vs. 1/66 [1.5%]; p=not significant [NS]). Patients with CD than those with UC had higher values of maximum breath hydrogen and a greater area under the curve for breath hydrogen. Other factors associated with SIBO included female gender (11/16 [68.8%] with vs. 21/70 [30%] without SIBO; p=0.003), and having undergone surgery (8/16 [50%] vs. 6/70 [8.6%]; p=0.0002). SIBO patients had lower levels of total serum protein and albumin than those without SIBO (6.2 ± 1.5 g/dL vs. 7.0 ± 0.9 g/dL, respectively; p=0.009 and 3.5 ± 0.9 g/dL vs. 4.0 ± 0.6 g/dL, respectively; p=0.02). CD, female gender, and surgery for IBD tended to be the independent factors associated with SIBO among IBD patients on multivariate analysis. CONCLUSIONS Patients with IBD, particularly CD, female, and those having undergone surgery, have a higher risk of SIBO than the healthy controls.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India.
| | - Ankur Yadav
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Bushra Fatima
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Anand Prakash Agrahari
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Asha Misra
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| |
Collapse
|
48
|
Hao W, Hao C, Wu C, Xu Y, Jin C. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. CHEMOSPHERE 2022; 288:132556. [PMID: 34648793 DOI: 10.1016/j.chemosphere.2021.132556] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/18/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Aluminum is the most abundant metal element in the Earth's crust, which exists naturally in the form of aluminum compounds. Aluminum is mainly absorbed through the gastrointestinal tract, which varies with different aluminum compounds. During this process, aluminum could induce the disruption of intestinal mucosa barrier. However, its underlying mechanism has not been elucidated yet. Previous studies have reported that aluminum can firstly promote the apoptosis of intestinal epithelial cells, destroy the structure of tight-junction proteins, and increase the intestinal permeability, injuring the mechanical barrier of gut. Also, it can induce the activation of immune cells to secrete inflammatory factors, and trigger immune responses, interfering with immune barrier. Moreover, aluminum treatment can regulate intestinal composition and bio-enzyme activity, impairing the function of chemical barrier. In addition, aluminum accumulation can induce an imbalance of the intestinal flora, inhibit the growth of beneficial bacteria, and promote the proliferation of harmful bacteria, which ultimately disrupting biological barrier. Collectively, aluminum may do extensive damage to intestinal barrier function covering mechanical barrier, immune barrier, chemical barrier and biological barrier.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengrong Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuqing Xu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
49
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H, Nonomura N. Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis. Front Endocrinol (Lausanne) 2022; 13:852382. [PMID: 35370981 PMCID: PMC8965097 DOI: 10.3389/fendo.2022.852382] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men worldwide, thus developing effective prevention strategies remain a critical challenge. Insulin-like growth factor 1 (IGF-1) is produced mainly in the liver by growth hormone signaling and is necessary for normal physical growth. However, several studies have shown an association between increased levels of circulating IGF-1 and the risk of developing solid malignancies, including PCa. Because the IGF-1 receptor is overexpressed in PCa, IGF-1 can accelerate PCa growth by activating phosphoinositide 3-kinase and mitogen-activated protein kinase, or increasing sex hormone sensitivity. Short-chain fatty acids (SCFAs) are beneficial gut microbial metabolites, mainly because of their anti-inflammatory effects. However, we have demonstrated that gut microbiota-derived SCFAs increase the production of IGF-1 in the liver and prostate. This promotes the progression of PCa by the activation of IGF-1 receptor downstream signaling. In addition, the relative abundance of SCFA-producing bacteria, such as Alistipes, are increased in gut microbiomes of patients with high-grade PCa. IGF-1 production is therefore affected by the gut microbiome, dietary habits, and genetic background, and may play a central role in prostate carcinogenesis. The pro-tumor effects of bacteria and diet-derived metabolites might be potentially countered through dietary regimens and supplements. The specific diets or supplements that are effective are unclear. Further research into the "Gut-IGF-1-Prostate Axis" may help discover optimal diets and nutritional supplements that could be implemented for prevention of PCa.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- *Correspondence: Kazutoshi Fujita,
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Marco A. De Velasco
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
50
|
Padovani BN, Abrantes do Amaral M, Fénero CM, Paredes LC, Boturra de Barros GJ, Xavier IK, Hiyane MI, Ghirotto B, Feijóo CG, Saraiva Câmara NO, Takiishi T. Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:13-22. [PMID: 35496825 PMCID: PMC9040082 DOI: 10.1016/j.crimmu.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/05/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022] Open
Abstract
Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative. Strain-specific immunological profiles exist in wild-type zebrafish strains (AB and TU). AB and TU showed different responses to induced intestinal inflammation. AB strain had increased mortality and higher inflammatory profile. TU strain had better survival and higher IL-10 expression.
Collapse
|