1
|
Devesa I, Fernández-Ballester G, Fernandez-Carvajal A, Ferrer-Montiel A. A review of the patent literature surrounding TRPV1 modulators. Expert Opin Ther Pat 2025:1-15. [PMID: 39952645 DOI: 10.1080/13543776.2025.2467698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION TRPV1, a pivotal therapeutic target for chronic pain and pruritus, has been validated in the pathogenesis of several pathologies from diabetes to cancer. Despite the constellation of chemical structures and strategies, none of these molecules has yet been clinically developed as a new drug application due to safety concerns, particularly in thermoregulation. Thus, clinical development of TRPV1 modulators remains a challenge. AREAS COVERED This review covers the patent literature on TRPV1 modulators (2019-2024, PubMed, Google Patents, and Espacenet), from orthosteric ligands to innovative compounds of biotechnological origin such as interfering RNAs or antibodies, and dual modulators that can act on TRPV1 and associated proteins in different tissues. EXPERT OPINION Therapeutic strategies that preferentially act on dysfunctional TRPV1 channels appear essential, along with a superior understanding of the underlying mechanisms affecting changes in core body temperature (CBT). Recent findings describing differential receptor interactions of antagonists that do not affect CBT may pave the way to the next generation of orally active TRPV1 inhibitors. Although we have thus far experienced a bitter feeling in TRPV1 drug development, the recent progress in different disciplines, including human-based preclinical models, will set an interdisciplinary approach to design and develop clinically relevant TRPV1 modulators.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
2
|
LI S, WANG S, YIN Y, DE G, LI C, WANG Z, CAO W. Electroacupuncture alleviates zymosan-induced colorectal hypersensitivity. J TRADIT CHIN MED 2025; 45:32-38. [PMID: 39957156 PMCID: PMC11764946 DOI: 10.19852/j.cnki.jtcm.20220425.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 02/18/2025]
Abstract
OBJECTIVE this study to investigate the mechanism underlying the electroacupuncture (EA) alleviates colorectal hypersensitivity, a feature of irritable bowel syndrome (IBS). METHODS The colorectal hypersensitivity model was established by treating mice with zymosan. Electrophysiological techniques, Western blotting and immunofluorescence staining were used to detect the changes of the sensitive state of the colorectum and the response in spinal ganglion and spinal cord after acupuncture intervention. RESULTS colorectal distension studies revealed that repetitive applied electroacupuncture treatment on mice could significant alleviates colorectal intensity. Western blotting studies with nerve growth factor (NGF) in the colorectum, substance P (SP) in the spinal ganglion, protein kinase C gamma (PKCγ) in the spinal cord, and transient receptor potential vanilloid 1 (TRPV1) showed that electroacupuncture suppressed zymosan-induced expression of TRPV1, NGF and SP in multiple tissues. Immunofluorescence labeling results showed that EA attenuated the expression of NGF in the colorectum, SP in the spinal ganglion, PKCγ in the spinal cord, and TRPV1 in all three tissues in zymosan-treated mice. Moreover, the number of neurons double-positive for TRPV1/Isolectin B4 (IB4) and TRPV1/Neurofilament (NF) 200 was increased in the spinal ganglion. CONCLUSION these results provide molecular-level evidence that EA alleviates zymosan-induced colorectal hypersensitivity by altering the expression of pain-associated proteins in the colorectum and spinal cord. EA has a potential to be therapeutic intervention option for IBS treatment.
Collapse
Affiliation(s)
- Siting LI
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaojun WANG
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yehui YIN
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Gejing DE
- 2 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caicai LI
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziyan WANG
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenjie CAO
- 1 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Jiang Q, Jiang P, Guo M, Xie C, Ling Q, Zhao G, Tu W, Li X. Inhibition of Dorsal Root Ganglia Transient Receptor Potential Ankyrin 1 Upregulation Contributes to the Protective Effect of Morphine Against Gastric Mucosal Damage Induced by Water-Immersion Restraint Stress. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:453-464. [PMID: 39114901 PMCID: PMC11232040 DOI: 10.5152/tjg.2024.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/31/2023] [Indexed: 08/11/2024]
Abstract
The pathogenesis mechanism of acute gastric mucosal lesions (AGML) is still unclear; further exploration is urgently needed to find a new therapeutic target. This study aimed to investigate whether morphine might regulate the expression and function of transient receptor potential ankyrin 1 (TRPA1) through a cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)-dependent pathway, thereby alleviating gastric mucosal lesions caused by water-immersion restraint stress (WIRS). Rats were administered with intrathecal morphine, TRPA1 antagonist (HC-030031), µ-opioid receptor antagonist, or protein kinase A inhibitor (H-89), respectively, before WIRS. After 6 hours of WIRS, microscopic lesions, hematoxylin and eosin staining, and transmission electron microscopy were applied to assess the damage of the gastric mucosa. Real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were conducted to detect the levels of TRPA1 and substance P (SP) in the dorsal root ganglia (DRG) and gastric tissues. In addition, immunofluorescence was used to explore the possible co-expression of TRPA1 and µ-opioid receptors in the DRG. The results indicated that WIRS upregulated TRPA1 and SP in gastric mucosa, and HC-030031 or H-89 could alleviate gastric mucosal lesions caused by WIRS (P < .0001). Morphine was found to suppress both WIRS-induced gastric mucosal lesions (P < .0001) and the upregulation of TRPA1 (P = .0086) and SP (P = .0013). Both TRPA1 and SP play important roles in the pathogenesis of WIRS-induced AGML. Exogenous gastroprotective strategies reduce elevated levels of TRPA1 via the cAMP/PKA-dependent pathway. Inhibition of TRPA1 upregulation in the DRG is critical for intrathecal morphine preconditioning-induced gastric protection.
Collapse
Affiliation(s)
- Qun Jiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Jiang
- Department of Anesthesiology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Mingyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangbo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng Tu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Center of Anesthesiology and Perioperative Medicine, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Gao Z, Ding P, Xu R. IUPHAR review - Data-driven computational drug repurposing approaches for opioid use disorder. Pharmacol Res 2024; 199:106960. [PMID: 37832859 DOI: 10.1016/j.phrs.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Opioid Use Disorder (OUD) is a chronic and relapsing condition characterized by the misuse of opioid drugs, causing significant morbidity and mortality in the United States. Existing medications for OUD are limited, and there is an immediate need to discover treatments with enhanced safety and efficacy. Drug repurposing aims to find new indications for existing medications, offering a time-saving and cost-efficient alternative strategy to traditional drug discovery. Computational approaches have been developed to further facilitate the drug repurposing process. In this paper, we reviewed state-of-the-art data-driven computational drug repurposing approaches for OUD and discussed their advantages and potential challenges. We also highlighted promising repurposed candidate drugs for OUD that were identified by computational drug repurposing techniques and reviewed studies supporting their potential mechanisms of action in treating OUD.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Wang J, Li Z, Tu Y, Gao F. The Dopaminergic System in the Ventral Tegmental Area Contributes to Morphine Analgesia and Tolerance. Neuroscience 2023; 527:74-83. [PMID: 37286162 DOI: 10.1016/j.neuroscience.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. Recent studies reveal the signaling at the cellular and molecular levels as well as neural circuits contributing to morphine analgesia and tolerance in the ventral tegmental area (VTA), which is traditionally considered a critical center of opioid reward and addiction. Existing studies show that dopamine receptors and μ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Déciga-Campos M, Jaramillo-Morales OA, Espinosa-Juárez JV, Aguilera-Martínez ME, Ventura-Martínez R, López-Muñoz FJ. N-palmitoylethanolamide synergizes the antinociception of morphine and gabapentin in the formalin test in mice. J Pharm Pharmacol 2023; 75:1154-1162. [PMID: 36905375 DOI: 10.1093/jpp/rgad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The antinociceptive pharmacological interaction between N-palmitoylethanolamide (PEA) and morphine (MOR), as well as gabapentin (GBP), was investigated to obtain synergistic antinociception at doses where side effects were minimal. In addition, the possible antinociceptive mechanism of PEA + MOR or PEA + GBP combinations was explored. METHODS Individual dose-response curves (DRCs) of PEA, MOR and GBP were evaluated in female mice in which intraplantar nociception was induced with 2% formalin. Isobolographic method was used to detect the pharmacological interaction in the combination of PEA + MOR or PEA + GBP. KEY FINDINGS The ED50 was calculated from the DRC; the order of potency was MOR > PEA > GBP. The isobolographic analysis was obtained at a 1:1 ratio to determine the pharmacological interaction. The experimental values of flinching (PEA + MOR, Zexp = 2.72 ± 0.2 μg/paw and PEA + GBP Zexp = 2.77 ± 0.19 μg/paw) were significantly lower than those calculated theoretically (PEA + MOR Zadd = 7.78 ± 1.07 and PEA + GBP Zadd = 24.05 ± 1.91 μg/paw), resulting in synergistic antinociception. Pretreatment with GW6471 and naloxone demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) and opioid receptors are involved in both interactions. CONCLUSIONS These results suggest that MOR and GBP synergistically enhance PEA-induced antinociception through PPARα and opioid receptor mechanisms. Furthermore, the results suggest that combinations containing PEA with MOR or GBP could be of interest in aiding the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - María Elena Aguilera-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Delegación Coyoacán, México, México
| | | |
Collapse
|
8
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Gao M, Zhang Y, Wang B, Guo N, Shao L, Zhai W, Jiang L, Wang Q, Qian H, Yan L. Novel dual-target μ‑opioid and TRPV1 ligands as potential pharmacotherapeutics for pain management. Bioorg Chem 2023; 131:106335. [PMID: 36603243 DOI: 10.1016/j.bioorg.2022.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Currently, the development of effective analgesic drugs with few side effects remains a great challenge. Studies have suggested that multi-target drug treatments show high efficacy and reduced side effects compared to single-target drug therapies. In this work, we designed and synthesized two series of novel MOR/TRPV1 dual active ligands in which the phenylpiperidine group or the N-phenyl-N-(piperidin-4-yl) propionamide group as the MOR pharmacophore was fused to the benzylpiperazinyl urea-based TRPV1 pharmacophore. In particular, compound 5a exhibited promising dual pharmacological activity for MOR (EC50 = 53.7 nM) and TRPV1 (IC50 = 32.9 nM) in vitro. In formalin tests, compound 5a showed potent, dose-dependent in vivo analgesic activity in both the 1st and 2nd phases. Gratifyingly, compound 5a did not cause the side effects of hyperthermia and analgesic tolerance. Consistent with its in vitro activity, compound 5a also simultaneously agonized MOR and antagonized TRPV1 in vivo. Further studies on compound 5a showed acceptable pharmacokinetic properties and brain permeability. Furthermore, molecular docking studies showed that compound 5a tightly bound to the active pockets of hMOR and hTRPV1, respectively. Overall, this work shows the promise in discovering new analgesic treatments through the strategy of simultaneously targeting MOR and TRPV1 with a single molecule.
Collapse
Affiliation(s)
- Mengkang Gao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China; State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Yang Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China; Department of Life Sciences, Changzhi University, 73 East Chengbei Street, Changzhi, Shanxi 046011, China
| | - Bingxin Wang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Ning Guo
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Lulian Shao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Weibin Zhai
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Lei Jiang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Minyuan road, Wuhan, Hubei 430074, China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| | - Lin Yan
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| |
Collapse
|
10
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
11
|
Jesus CHA, Ferreira MV, Gasparin AT, Rosa ES, Genaro K, Crippa JADS, Chichorro JG, Cunha JMD. Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res 2022; 435:114076. [PMID: 36028000 DOI: 10.1016/j.bbr.2022.114076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Neuropathic pain (NP) is a complex health problem that includes sensorial manifestations such as evoked and ongoing pain. Cannabidiol (CBD) has shown potential in the treatment of NP and the combination between opioids and cannabinoids has provided promising results on pain relief. Thus, our study aimed to investigate the effect of treatment combination between CBD and morphine on evoked and ongoing pain, and the effect of CBD on morphine-induced tolerance in the model of chronic constriction injury (CCI) of the sciatic nerve in rats. Mechanical thresholds (i.e., evoked pain) were evaluated before and 7 days after surgery. We also employed a 4-day conditioned place preference (CPP) protocol, to evaluate relief of ongoing pain (6-9 days after surgery). Treatment with morphine (2 and 4 mg/kg) or CBD (30 mg/kg) induced a significant antinociceptive effect on evoked pain. The combination of CBD (30 mg/kg) and morphine (1 mg/kg) produced an enhanced antinociceptive effect, when compared to morphine alone (1 mg/Kg). Treatment with morphine (1 and 2 mg/kg) or CBD (30 mg/kg) alone failed to induce significant scores in the CPP test. However, combined treatment of CBD (30 mg/kg) and morphine (1 mg/kg) provided significant positive scores, increased the number of entrances in the drug-paired chamber in the CPP test and did not alter locomotor activity in rats. Lastly, treatment with CBD partially attenuated morphine-induced tolerance. In summary, our results support the indication of CBD as an adjuvant to opioid therapy for the attenuation of NP and opioid-induced analgesic tolerance.
Collapse
Affiliation(s)
- Carlos Henrique Alves Jesus
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Aléxia Thamara Gasparin
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Evelize Stacoviaki Rosa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Nguyen TL, Nam YS, Lee SY, Jang CG. Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway. Biomol Ther (Seoul) 2022; 30:328-333. [PMID: 35616070 PMCID: PMC9252876 DOI: 10.4062/biomolther.2022.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.
Collapse
Affiliation(s)
- Thi-Lien Nguyen
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Pharmacology Laboratory, National Institute of Drug Quality Control, Ha Noi 100000, Viet Nam
| | - Yun-Son Nam
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Wang X, Bao C, Li Z, Yue L, Hu L. Side Effects of Opioids Are Ameliorated by Regulating TRPV1 Receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042387. [PMID: 35206575 PMCID: PMC8872563 DOI: 10.3390/ijerph19042387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022]
Abstract
Humans have used opioids to suppress moderate to severe pain for thousands of years. However, the long-term use of opioids has several adverse effects, such as opioid tolerance, opioid-induced hyperalgesia, and addiction. In addition, the low efficiency of opioids in controlling neuropathic pain limits their clinical applications. Combining nonopioid analgesics with opioids to target multiple sites along the nociceptive pathway may alleviate the side effects of opioids. This study reviews the feasibility of reducing opioid side effects by regulating the transient receptor potential vanilloid 1 (TRPV1) receptors and summarizes the possible underlying mechanisms. Blocking and activating TRPV1 receptors can improve the therapeutic profile of opioids in different manners. TRPV1 and μ-opioid receptors are bidirectionally regulated by β-arrestin2. Thus, drug combinations or developing dual-acting drugs simultaneously targeting μ-opioid and TRPV1 receptors may mitigate opioid tolerance and opioid-induced hyperalgesia. In addition, TRPV1 receptors, especially expressed in the dorsal striatum and nucleus accumbens, participate in mediating opioid reward, and its regulation can reduce the risk of opioid-induced addiction. Finally, co-administration of TRPV1 antagonists and opioids in the primary action sites of the periphery can significantly relieve neuropathic pain. In general, the regulation of TRPV1 may potentially ameliorate the side effects of opioids and enhance their analgesic efficacy in neuropathic pain.
Collapse
Affiliation(s)
- Xiaqing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyu Bao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| |
Collapse
|
14
|
Eaton-Fitch N, Du Preez S, Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Impaired TRPM3-dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2022; 20:94. [PMID: 35172836 PMCID: PMC8848670 DOI: 10.1186/s12967-022-03297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious disorder of unknown aetiology. While the pathomechanism of ME/CFS remains elusive, reduced natural killer (NK) cell cytotoxic function is a consistent immunological feature. NK cell effector functions rely on long-term sustained calcium (Ca2+) influx. In recent years evidence of transient receptor potential melastatin 3 (TRPM3) dysfunction supports the hypothesis that ME/CFS is potentially an ion channel disorder. Specifically, reports of single nucleotide polymorphisms, low surface expression and impaired function of TRPM3 have been reported in NK cells of ME/CFS patients. It has been reported that mu (µ)-opioid receptor (µOR) agonists, known collectively as opioids, inhibit TRPM3. Naltrexone hydrochloride (NTX), a µOR antagonist, negates the inhibitory action of µOR on TRPM3 function. Importantly, it has recently been reported that NTX restores impaired TRPM3 function in NK cells of ME/CFS patients. Methods Live cell immunofluorescent imaging was used to measure TRPM3-dependent Ca2+ influx in NK cells isolated from n = 10 ME/CFS patients and n = 10 age- and sex-matched healthy controls (HC) following modulation with TRPM3-agonist, pregnenolone sulfate (PregS) and TRPM3-antaognist, ononetin. The effect of overnight (24 h) NTX in vitro treatment on TRPM3-dependent Ca2+ influx was determined. Results The amplitude (p < 0.0001) and half-time of Ca2+ response (p < 0.0001) was significantly reduced at baseline in NK cells of ME/CFS patients compared with HC. Overnight treatment of NK cells with NTX significantly improved TRPM3-dependent Ca2+ influx in ME/CFS patients. Specifically, there was no significance between HC and ME/CFS patients for half-time response, and the amplitude of Ca2+ influx was significantly increased in ME/CFS patients (p < 0.0001). Conclusion TRPM3-dependent Ca2+ influx was restored in ME/CFS patients following overnight treatment of isolated NK cells with NTX in vitro. Collectively, these findings validate that TRPM3 loss of function results in altered Ca2+ influx supporting the growing evidence that ME/CFS is a TRP ion channel disorder and that NTX provides a potential therapeutic intervention for ME/CFS. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03297-8.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Stanley Du Preez
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Hélène Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
15
|
Heles M, Mrozkova P, Sulcova D, Adamek P, Spicarova D, Palecek J. Chemokine CCL2 prevents opioid-induced inhibition of nociceptive synaptic transmission in spinal cord dorsal horn. J Neuroinflammation 2021; 18:279. [PMID: 34857006 PMCID: PMC8638248 DOI: 10.1186/s12974-021-02335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/28/2021] [Indexed: 01/25/2023] Open
Abstract
Background Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C–C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. Methods Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. Results Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. Conclusions Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.
Collapse
Affiliation(s)
- Mario Heles
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Petra Mrozkova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Dominika Sulcova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Pavel Adamek
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic.
| |
Collapse
|
16
|
Jaquins-Gerstl A, Nesbitt KM, Michael AC. In vivo evidence for the unique kinetics of evoked dopamine release in the patch and matrix compartments of the striatum. Anal Bioanal Chem 2021; 413:6703-6713. [PMID: 33843017 PMCID: PMC8551084 DOI: 10.1007/s00216-021-03300-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
The neurochemical transmitter dopamine (DA) is implicated in a number of diseases states, including Parkinson's disease, schizophrenia, and drug abuse. DA terminal fields in the dorsal striatum and core region of the nucleus accumbens in the rat brain are organized as heterogeneous domains exhibiting fast and slow kinetic of DA release. The rates of dopamine release are significantly and substantially faster in the fast domains relative to the slow domains. The striatum is composed of a mosaic of spatial compartments known as the striosomes (patches) and the matrix. Extensive literature exists on the spatial organization of the patch and matrix compartments and their functions. However, little is known about these compartments as they relate to fast and slow kinetic DA domains observed by fast scan cyclic voltammetry (FSCV). Thus, we combined high spatial resolution of FSCV with detailed immunohistochemical analysis of these architectural compartments (patch and matrix) using fluorescence microscopy. Our findings demonstrated a direct correlation between patch compartments with fast domain DA kinetics and matrix compartments to slow domain DA kinetics. We also investigated the kinetic domains in two very distinct sub-regions in the striatum, the lateral dorsal striatum (LDS) and the medial dorsal striatum (MDS). The lateral dorsal striatum as opposed to the medial dorsal striatum is mainly governed by fast kinetic DA domains. These finding are highly relevant as they may hold key promise in unraveling the fast and slow kinetic DA domains and their physiological significance.
Collapse
Affiliation(s)
- Andrea Jaquins-Gerstl
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA.
| | - Kathryn M Nesbitt
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| | - Adrian C Michael
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
17
|
Wu LX, Dong YP, Zhu QM, Zhang B, Ai BL, Yan T, Zhang GH, Sun L. Effects of dezocine on morphine tolerance and opioid receptor expression in a rat model of bone cancer pain. BMC Cancer 2021; 21:1128. [PMID: 34670518 PMCID: PMC8529774 DOI: 10.1186/s12885-021-08850-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Clinically, the coadministration of opioids to enhance antinociception and decrease tolerance has attracted increasing research attention. We investigated the effects of dezocine, a mu- and kappa-opioid receptor agonist/antagonist, on morphine tolerance and explored the involvement of opioid receptor expression in a rat model of bone cancer pain. METHODS Thermal nociceptive thresholds were measured after the subcutaneous injection of morphine (10 mg/kg) alone or combined with dezocine (10 or 1 mg/kg) for 7 consecutive days. Real-time PCR and western blot analysis were used to examine opioid receptor expression in the periaqueductal gray (PAG) and spinal cord. RESULTS The analgesic effect was significantly decreased after 4 days of morphine administration. We observed that low-dose dezocine significantly attenuated morphine tolerance without reducing the analgesic effect of morphine. Low-dose dezocine coadministration significantly reversed the downregulated expression of mu (MOR) and delta (DOR) opioid receptors in the PAG and the upregulated expression of kappa (KOR) and DOR in the spinal cord induced by morphine. Moreover, low-dose dezocine coadministered with morphine significantly inhibited KOR expression in both the PAG and spinal cord. CONCLUSIONS The combination of low-dose dezocine with morphine may prevent or delay the development of morphine tolerance in a rat model of bone cancer pain. The regulation of opioid receptor expression in the PAG and spinal cord may be part of the mechanism.
Collapse
MESH Headings
- Animals
- Female
- Rats
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Bone Neoplasms/complications
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cancer Pain/drug therapy
- Cancer Pain/metabolism
- Cell Line, Tumor
- Down-Regulation/drug effects
- Drug Interactions
- Drug Therapy, Combination/methods
- Drug Tolerance
- Hot Temperature
- Hyperalgesia/physiopathology
- Morphine/administration & dosage
- Morphine/pharmacology
- Pain Measurement/drug effects
- Pain Threshold
- Periaqueductal Gray/metabolism
- Rats, Wistar
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Spinal Cord/metabolism
- Tetrahydronaphthalenes/administration & dosage
- Tetrahydronaphthalenes/pharmacology
- Up-Regulation/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan-Peng Dong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian-Mei Zhu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo-Lun Ai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guo-Hua Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518100, China.
| |
Collapse
|
18
|
Fang J, Wang S, Zhou J, Shao X, Sun H, Liang Y, He X, Jiang Y, Liu B, Jin X, Fang J, Du J. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front Neurosci 2021; 15:685715. [PMID: 34354561 PMCID: PMC8329384 DOI: 10.3389/fnins.2021.685715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Zhou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Barragan-Iglesias P, Kunder N, Wanghzou A, Black B, Ray PR, Lou TF, de la Peña JB, Atmaramani R, Shukla T, Pancrazio JJ, Price TJ, Campbell ZT. A peptide encoded within a 5' untranslated region promotes pain sensitization in mice. Pain 2021; 162:1864-1875. [PMID: 33449506 PMCID: PMC8119312 DOI: 10.1097/j.pain.0000000000002191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
ABSTRACT Translational regulation permeates neuronal function. Nociceptors are sensory neurons responsible for the detection of harmful stimuli. Changes in their activity, termed plasticity, are intimately linked to the persistence of pain. Although inhibitors of protein synthesis robustly attenuate pain-associated behavior, the underlying targets that support plasticity are largely unknown. Here, we examine the contribution of protein synthesis in regions of RNA annotated as noncoding. Based on analyses of previously reported ribosome profiling data, we provide evidence for widespread translation in noncoding transcripts and regulatory regions of mRNAs. We identify an increase in ribosome occupancy in the 5' untranslated regions of the calcitonin gene-related peptide (CGRP/Calca). We validate the existence of an upstream open reading frame (uORF) using a series of reporter assays. Fusion of the uORF to a luciferase reporter revealed active translation in dorsal root ganglion neurons after nucleofection. Injection of the peptide corresponding to the calcitonin gene-related peptide-encoded uORF resulted in pain-associated behavioral responses in vivo and nociceptor sensitization in vitro. An inhibitor of heterotrimeric G protein signaling blocks both effects. Collectively, the data suggest pervasive translation in regions of the transcriptome annotated as noncoding in dorsal root ganglion neurons and identify a specific uORF-encoded peptide that promotes pain sensitization through GPCR signaling.
Collapse
Affiliation(s)
- Paulino Barragan-Iglesias
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Department of Physiology and Pharmacology, Center for Basic
Sciences, Autonomous University of Aguascalientes, Aguascalientes, 20130,
Mexico
| | - Nikesh Kunder
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Bryan Black
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Pradipta R. Ray
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - June Bryan de la Peña
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Rahul Atmaramani
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Tarjani Shukla
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Joseph J. Pancrazio
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Zachary T. Campbell
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
20
|
Hassan A, Iftinca M, Young D, Flynn R, Agosti F, Abdullah N, Defaye M, Scott MGH, Dufour A, Altier C. TRPV1 Activation Promotes β-arrestin2 Interaction with the Ribosomal Biogenesis Machinery in the Nucleolus:Implications for p53 Regulation and Neurite Outgrowth. Int J Mol Sci 2021; 22:2280. [PMID: 33668926 PMCID: PMC7956682 DOI: 10.3390/ijms22052280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of β-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions.
Collapse
Affiliation(s)
- Ahmed Hassan
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Daniel Young
- Department of Physiology and Pharmacology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada; (D.Y.); (A.D.)
| | - Robyn Flynn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Francina Agosti
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Mark G. H. Scott
- INSERM-CNRS, Team: Receptor Signalling & Molecular Scaffolds, Institut Cochin, 75014 Paris, France;
| | - Antoine Dufour
- Department of Physiology and Pharmacology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada; (D.Y.); (A.D.)
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| |
Collapse
|
21
|
A Conantokin Peptide Con-T[M8Q] Inhibits Morphine Dependence with High Potency and Low Side Effects. Mar Drugs 2021; 19:md19010044. [PMID: 33478061 PMCID: PMC7835912 DOI: 10.3390/md19010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-β, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage.
Collapse
|
22
|
Melkes B, Markova V, Hejnova L, Marek A, Novotny J. Naloxone Is a Potential Binding Ligand and Activator of the Capsaicin Receptor TRPV1. Biol Pharm Bull 2021; 43:908-912. [PMID: 32378567 DOI: 10.1248/bpb.b19-00806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor channel transient receptor potential vanilloid 1 (TRPV1) functions as a sensor of noxious heat and various chemicals. There is increasing evidence for a crosstalk between TRPV1 and opioid receptors. Here we investigated the effect of the prototypical TRPV1 agonist capsaicin and selected opioid ligands on TRPV1 movement in the plasma membrane and intracellular calcium levels in HEK293 cells expressing TRPV1 tagged with cyan fluorescent protein (CFP). We observed that lateral mobility of TRPV1 increased after treatment of cells with capsaicin or naloxone (a nonselective opioid receptor antagonist) but not with DAMGO (a μ-opioid receptor agonist). Interestingly, both capsaicin and naloxone, unlike DAMGO, elicited intracellular calcium responses. The increased TRPV1 movement and calcium influx induced by capsaicin and naloxone were blocked by the TRPV1 antagonist capsazepine. The ability of naloxone to directly interact with TRPV1 was further corroborated by [3H]-naloxone binding. In conclusion, our data suggest that besides acting as an opioid receptor antagonist, naloxone may function as a potential TRPV1 agonist.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University
| | - Vendula Markova
- Department of Physiology, Faculty of Science, Charles University
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University
| |
Collapse
|
23
|
Mehrabadi S, Karimiyan SM, Ashabi G, Moradbeygi K, Hoseini M. Repeated Administration of Baclofen Modulates TRPV-1 Channel Expression by PKC Pathway in Dorsal Root Ganglia of Spinal Cord in a Morphine Tolerance Model of Rats. IRANIAN BIOMEDICAL JOURNAL 2020; 24:379-85. [PMID: 32660223 PMCID: PMC7601548 DOI: 10.29252/ibj.24.6.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background: Tolerance and dependence to anti-nociceptive effect of morphine restricted its use. Nowadays co-administration of morphine and other drugs suggests diminishing this tolerance. Baclofen is one of the drugs that may be beneficial in the attenuation of tolerance to morphine. Studies have shown that changes in TRPV-1 expression during administration of morphine have a pivotal role in developing morphine tolerance. Therefore, the effect of baclofen on TRPV-1 expression during chronic administration of morphine was investigated in this study. Methods: A total of 48 rats were divided into four groups of control, morphine single injection, morphine tolerance, and morphine tolerance + baclofen. To induce morphine tolerance in rats, animals received 10 mg/kg of i.p. morphine sulfate once a day for 10 days. In the treatment group, baclofen (0.5 mg/kg) was injected for 10 days, before morphine injection. Finally, to evaluate baclofen treatment on morphine analgesia and hyperalgesia, thermal hyperalgesia and formalin test were used. TRPV-1 and PKC expression and protein production in DRG of spinal cord were then evaluated by real-time PCR and Western blot. Results: In baclofen treatment group, thermal hyperalgesia and formalin test improved in comparison with morphine tolerance group. In morphine tolerance group, both TRPV-1/PKC gene expression and protein levels increased in comparison with the control group. However, following the baclofen treatment, the TRPV-1 and PKC levels decreased. Conclusion: Baclofen can enhance anti-nociceptive effect of morphine by modulating TRPV-1 channel and PKC activity.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimiyan
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Moradbeygi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Marjan Hoseini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane. Int J Mol Sci 2020; 21:ijms21134626. [PMID: 32610605 PMCID: PMC7370190 DOI: 10.3390/ijms21134626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other’s functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor’s lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane β-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of β-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that β-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that β-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other’s behavior and β-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.
Collapse
|
25
|
Zhu C, Wang K, Chen Z, Han Y, Chen H, Li Q, Liu Z, Qian L, Tang J, Shen H. Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain. J Neuroinflammation 2020; 17:85. [PMID: 32178691 PMCID: PMC7075036 DOI: 10.1186/s12974-020-01765-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background A growing body of studies have indicated that bone marrow mesenchymal stem cells (BMSCs) have powerful analgesic effects in animal models of bone cancer pain. Here, we explored the molecular mechanisms underlying how BMSCs alleviate pain sensation in a mouse model of bone cancer pain. Methods C3H/HeN adult male mice were used to generate a bone cancer pain model. BMSCs were isolated from mouse bone marrow, modified by transfection with microRNA-9-5p (miR-9-5p), and infused into the spinal cord. Spontaneous flinches, paw withdrawal latency, limb-use score, and weight-bearing score were used to assess pain-related behaviors. ELISA, RT-PCR, western blot, and luciferase assay were used to assess gene expressions. Results Our results show that miR-9-5p regulated the expression of both repressor element silencing transcription factor (REST) and μ-opioid receptors (MOR) by targeting REST in primary mouse BMSCs. Overexpression of miR-9-5p reversed the activation of inflammatory pathway in TNF-α- and IL-6-treated BMSCs. In addition, miR-9-5p modified BMSCs alleviated cancer pain in the sarcoma-inoculated mouse model. MiR-9-5p modified BMSCs suppressed cytokine expression in the spinal cord of sarcoma-inoculated mice by suppressing REST gene expression. Conclusions Our results indicate that miR-9-5p modified BMSCs can relieve bone cancer pain via modulating neuroinflammation in the central nervous system, suggesting genetically modified BMSCs could be a promising cell therapy in pain management.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Department of Orthopaedics, 987 Hospital of PLA, Xi'an, 721000, Shaanxi Province, China
| | - Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Quan Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
26
|
Mazeto TK, Picada JN, Correa ÁP, Rebelo IN, Ribeiro MT, Gomez MV, de Souza AH. Antinociceptive and genotoxic assessments of the antagonist TRPV1 receptor SB-366791 on morphine-induced tolerance in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:481-490. [PMID: 31655852 DOI: 10.1007/s00210-019-01748-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Chronic pain is mainly treated with opioid analgesics such as morphine. However, the use of these substances can cause adverse effects, including dependence and tolerance, necessitating the discovery of a new approach to analgesic therapies. The transient receptor potential vanilloid 1 (TRPV1) is linked to thermal sensibility and has been considered as a new therapeutic option for pain treatment. This study aims to investigate the antinociceptive effect and toxicity of SB-366791, a TRPV1 antagonist. Morphine-tolerant and morphine non-tolerant Swiss mice were submitted to the hot plate and thermal tail flick tests. Toxicological evaluations of the genotoxic and mutagenic activities of SB-366791 were assessed using a comet assay and micronucleus test, and the Salmonella/microsome mutagenicity assay. In the hot plate test, intrathecal injection of SB-366791 or morphine resulted in significantly increased antinociception in non-tolerant mice. SB-366791 also led to an analgesic effect in the tail flick test. Tolerant mice that received SB-366791 demonstrated a central antinociceptive effect in both thermal tests. No genotoxic effects were observed in the comet assay and no mutagenic effects were detected in the micronucleus test or in the Salmonella/microsome assay. Behavioral results of the thermal nociception tests show that SB-366791 has antinociceptive potential in both morphine-tolerant and non-tolerant mice and does not cause genotoxic or mutagenic effects. Nevertheless, new studies should be performed to clarify the activity and participation of vanilloid channels in the antinociception of SB-366791.
Collapse
Affiliation(s)
- Thiago Kastell Mazeto
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Jaqueline Nascimento Picada
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil.
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil.
| | - Áurea Pandolfo Correa
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Isadora Nunes Rebelo
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Magali Terra Ribeiro
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Marcus Vinícius Gomez
- Department of Neurotransmitters, Institute for Education and Research, Hospital Santa Casa, Domingos Vieira Street, 590, Belo Horizonte, MG, CEP 30150-240, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| |
Collapse
|
27
|
Noh ASM, Ismail CAN. A Review on Chronic Pain in Rheumatoid Arthritis: A Focus on Activation of NR2B Subunit of N-Methyl-D-Aspartate Receptors. Malays J Med Sci 2020; 27:6-21. [PMID: 32158341 PMCID: PMC7053548 DOI: 10.21315/mjms2020.27.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a debilitating condition that occurs after tissue damage, which substantially affects the patient's emotional state and physical activity. The chronic pain in rheumatoid arthritis (RA) is the result of various autoimmune-induced inflammatory reactions in the joints. Both types of peripheral and central pain processing can lead to sensitisation. Non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs) can result in potent anti-inflammatory effect. However, these drugs are not able to suppress the pain from RA for a prolonged period. For years, researchers have examined the role of the N-methyl-D-aspartic acid receptor 2B (NR2B) subunit of N-methyl-D-aspartate receptors (NMDAR) in chronic and neuropathic pain models. This NMDAR subtype can be found in at the peripheral and central nervous system and it represents an effective therapy for RA pain management. This review focuses on the NR2B subunit of NMDAR and the different pathways leading to its activation. Furthermore, specific attention is given to the possible involvement of NR2B subunit in the peripheral and central pathogenesis of RA.
Collapse
Affiliation(s)
- Ain' Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | |
Collapse
|
28
|
Chen X, Zhang B, Liu T, Feng M, Zhang Y, Zhang C, Yao W, Wan L. Liproxstatin-1 Attenuates Morphine Tolerance through Inhibiting Spinal Ferroptosis-like Cell Death. ACS Chem Neurosci 2019; 10:4824-4833. [PMID: 31682397 DOI: 10.1021/acschemneuro.9b00539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Morphine tolerance is a classic, challenging clinical issue. However, the mechanism underlying this phenomenon remains poorly understood. Recently, studies have shown that ferroptosis correlates with drug resistance. Therefore, this study investigated whether spinal cord ferroptosis contributes to morphine tolerance. C57BL/6 mice were continuously subcutaneously injected with morphine, with or without the ferroptosis inhibitor liproxstatin-1. We found that chronic morphine exposure led to morphine antinociception tolerance, accompanied by loss of spinal cord neurons, increase in the levels of iron, malondialdehyde, and reactive oxygen species, and decreases in the levels of superoxide dismutase. Additionally, inflammatory response and mitochondrial shrinkage, processes that are involved in ferroptosis, were observed. Simultaneously, we found that 10 mg/kg of liproxstatin-1 could alleviate iron overload by balancing transferrin receptor protein 1/ferroportin expression and attenuate morphine tolerance by increasing glutathione peroxidase 4 levels, while reducing the levels of malondialdehyde and reactive oxygen species. It also downregulated the expression of extracellularly regulated protein kinases that had been induced by chronic morphine exposure. Our results indicate that spinal cord ferroptosis contributes to morphine tolerance, while liproxstatin-1 attenuates the development of morphine tolerance. These findings suggest that ferroptosis may be a potential therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Miaomiao Feng
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| |
Collapse
|
29
|
Abstract
Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
30
|
Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem Int 2019; 131:104545. [PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
Collapse
|
31
|
Sakakibara S, Imamachi N, Sakakihara M, Katsube Y, Hattori M, Saito Y. Effects of an intrathecal TRPV1 antagonist, SB366791, on morphine-induced itch, body temperature, and antinociception in mice. J Pain Res 2019; 12:2629-2636. [PMID: 31695478 PMCID: PMC6718059 DOI: 10.2147/jpr.s217439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Transient receptor potential vanilloid 1 (TRPV1) not only is activated by multiple stimuli but also is involved with histamine-induced itch. The effects of TRPV1 on morphine-induced itch are unknown. We examined the effects of intrathecal administration of TRPV1 antagonist on morphine-induced itch, body temperature, and antinociception for mice. Methods Each C57/BL6j mouse was intrathecally administered with one of the following solutions: morphine, SB366791 (as the TRPV1 antagonist), morphine + SB366791, saline, or vehicle. For each mouse, each instance of observed scratching behavior was counted, the body temperature was measured, and the nociceptive threshold was determined using the tail-immersion test. Results SB366791 dose-dependently reduced the scratching behavior induced by the administration of morphine. SB366791 and the morphine + SB366791 groups did not manifest an increase in body temperature. Antinociceptive effects were observed to occur dose-dependently for morphine but not for SB366791. Compared with morphine alone, the administration of morphine + SB366791 did not reduce significant antinociceptive effects. Conclusion We propose that an intrathecal TRPV1 antagonist, SB366791, reduced morphine-induced itch without causing hyperthermia and did not suppress morphine-induced antinociception for mice.
Collapse
Affiliation(s)
- Satoshi Sakakibara
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Noritaka Imamachi
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Manabu Sakakihara
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yukiko Katsube
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mai Hattori
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yoji Saito
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
32
|
Cleymaet AM, Gallagher SK, Tooker RE, Lipin MY, Renna JM, Sodhi P, Berg D, Hartwick ATE, Berson DM, Vigh J. μ-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells. Neuroscience 2019; 408:400-417. [PMID: 30981862 PMCID: PMC6604633 DOI: 10.1016/j.neuroscience.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) encode light intensity and trigger reflexive responses to changes in environmental illumination. In addition to functioning as photoreceptors, ipRGCs are post-synaptic neurons in the inner retina, and there is increasing evidence that their output can be influenced by retinal neuromodulators. Here we show that opioids can modulate light-evoked ipRGC signaling, and we demonstrate that the M1, M2 and M3 types of ipRGCs are immunoreactive for μ-opioid receptors (MORs) in both mouse and rat. In the rat retina, application of the MOR-selective agonist DAMGO attenuated light-evoked firing ipRGCs in a dose-dependent manner (IC50 < 40 nM), and this effect was reversed or prevented by co-application of the MOR-selective antagonists CTOP or CTAP. Recordings from solitary ipRGCs, enzymatically dissociated from retinas obtained from melanopsin-driven fluorescent reporter mice, confirmed that DAMGO exerts its effect directly through MORs expressed by ipRGCs. Reduced ipRGC excitability occurred via modulation of voltage-gated potassium and calcium currents. These findings suggest a potential new role for endogenous opioids in the mammalian retina and identify a novel site of action-MORs on ipRGCs-through which opioids might exert effects on reflexive responses to environmental light.
Collapse
Affiliation(s)
- Allison M Cleymaet
- Dept. of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523; Dept. of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Shannon K Gallagher
- Dept. of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Ryan E Tooker
- Dept. of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Mikhail Y Lipin
- Dept. of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Jordan M Renna
- Dept. of Neuroscience, Brown University, Providence, RI 02912, United States of America
| | - Puneet Sodhi
- College of Optometry, Ohio State University, Columbus, OH 43210, United States of America
| | - Daniel Berg
- Dept. of Neuroscience, Brown University, Providence, RI 02912, United States of America
| | - Andrew T E Hartwick
- College of Optometry, Ohio State University, Columbus, OH 43210, United States of America
| | - David M Berson
- Dept. of Neuroscience, Brown University, Providence, RI 02912, United States of America
| | - Jozsef Vigh
- Dept. of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523.
| |
Collapse
|
33
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
34
|
Aberoumandi SM, Vousooghi N, Tabrizi BA, Karimi P. Heroin-based crack induces hyperalgesia through β-arrestin 2 redistribution and phosphorylation of Erk1/2 and JNK in the periaqueductal gray area. Neurosci Lett 2019; 698:133-139. [PMID: 30641110 DOI: 10.1016/j.neulet.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Continuous use of crack induces hyperalgesia which is related to drug tolerance. Despite cumulative evidence based on the growth rate of crack abuse, no serious study has been focused on the mechanisms of crack-induced hyperalgesia. This study aimed to elucidate whether extracellular signal-regulated kinases (Erk1/2)/β-arrestin pathways are involved in the crack-induced hyperalgesia. Fifty adult male Wistar rats were randomly divided into five groups: normal saline (NS), crack (0.9 mg/kg/day), heroin (1 mg/kg/day), crack + barbadin (100 μM), and heroin + barbadin groups, which received their intraperitoneal (i.p) treatments for four weeks. The thermal sensitivity was assessed using the hot-plate test. Moreover, phosphorylation of the Erk1/2 and JNK, as well as expression of protein kinase C-alpha (PKC-α), Mu-receptor (MOR), and β-arrestin 2 were determined in the whole lysate and membrane fraction using immunoblotting assay in the periaqueductal gray (PAG) area. The results demonstrated that chronic administration of crack and heroin significantly decreased hind-paw withdrawal latency compared to the NS group. Furthermore, crack as well as heroin administration increased phosphorylated Erk1/2 and JNK in the PAG. In addition, membrane β-arrestin 2 and PKC-α were significantly increased in the crack and heroin-received groups, while membrane MOR expression was decreased in the PAG. Nevertheless, co-administration of barbadin, an inhibitor of β-arrestin, and crack or heroin reversed all these changes. Our findings may partially confirm the role of β-arrestin 2 and PKC rearrangements, Erk1/2 and JNK phosphorylation in crack-induced hyperalgesia and provide potential therapeutic targets to attenuate crack-induced hyperalgesia.
Collapse
Affiliation(s)
- Seyed Mohsen Aberoumandi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University Of Medical Sciences, Tabriz, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Amoughli Tabrizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University Of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Liu DQ, Zhou YQ, Gao F. Targeting Cytokines for Morphine Tolerance: A Narrative Review. Curr Neuropharmacol 2019; 17:366-376. [PMID: 29189168 PMCID: PMC6482476 DOI: 10.2174/1570159x15666171128144441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite its various side effects, morphine has been widely used in clinics for decades due to its powerful analgesic effect. Morphine tolerance is one of the major side effects, hindering its long-term usage for pain therapy. Currently, the thorough cellular and molecular mechanisms underlying morphine tolerance remain largely uncertain. METHODS We searched the PubMed database with Medical subject headings (MeSH) including 'morphine tolerance', 'cytokines', 'interleukin 1', 'interleukin 1 beta', 'interleukin 6', 'tumor necrosis factor alpha', 'interleukin 10', 'chemokines'. Manual searching was carried out by reviewing the reference lists of relevant studies obtained from the primary search. The searches covered the period from inception to November 1, 2017. RESULTS The expression levels of certain chemokines and pro-inflammatory cytokines were significantly increased in animal models of morphine tolerance. Cytokines and cytokine receptor antagonist showed potent effect of alleviating the development of morphine tolerance. CONCLUSION Cytokines play a fundamental role in the development of morphine tolerance. Therapeutics targeting cytokines may become alternative strategies for the management of morphine tolerance.
Collapse
Affiliation(s)
| | | | - Feng Gao
- Address correspondence to this author at the Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China; Tel: +86 27 83662853; E-mail:
| |
Collapse
|
36
|
Pena DA, Duarte ML, Pramio DT, Devi LA, Schechtman D. Exploring Morphine-Triggered PKC-Targets and Their Interaction with Signaling Pathways Leading to Pain via TrkA. Proteomes 2018; 6:proteomes6040039. [PMID: 30301203 PMCID: PMC6313901 DOI: 10.3390/proteomes6040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that treatment of chronic pain with morphine leads to μ opioid receptor (MOR) desensitization and the development of morphine tolerance. MOR activation by the selective peptide agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin(DAMGO), leads to robust G protein receptor kinase activation, β-arrestin recruitment, and subsequent receptor endocytosis, which does not occur in an activation by morphine. However, MOR activation by morphine induces receptor desensitization, in a Protein kinase C (PKC) dependent manner. PKC inhibitors have been reported to decrease receptor desensitization, reduce opiate tolerance, and increase analgesia. However, the exact role of PKC in these processes is not clearly delineated. The difficulties in establishing a particular role for PKC have been, in part, due to the lack of reagents that allow the selective identification of PKC targets. Recently, we generated a conformation state-specific anti-PKC antibody that preferentially recognizes the active state of this kinase. Using this antibody to selectively isolate PKC substrates and a proteomics strategy to establish the identity of the proteins, we examined the effect of morphine treatment on the PKC targets. We found an enhanced interaction of a number of proteins with active PKC, in the presence of morphine. In this article, we discuss the role of these proteins in PKC-mediated MOR desensitization and analgesia. In addition, we posit a role for some of these proteins in mediating pain by TrKA activation, via the activation of transient receptor potential cation channel subfamily V member 1 (TRPV1). Finally, we discuss how these new PKC interacting proteins and pathways could be targeted for the treatment of pain.
Collapse
Affiliation(s)
- Darlene A Pena
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| |
Collapse
|
37
|
Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 2018; 134:212-219. [DOI: 10.1016/j.phrs.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|
38
|
Montilla-García Á, Perazzoli G, Tejada MÁ, González-Cano R, Sánchez-Fernández C, Cobos EJ, Baeyens JM. Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors. Neuropharmacology 2018; 135:328-342. [PMID: 29580951 DOI: 10.1016/j.neuropharm.2018.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Hot Temperature
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Mice, Knockout
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/pathology
- Random Allocation
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- TRPV Cation Channels/metabolism
- Touch
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Gloria Perazzoli
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Cristina Sánchez-Fernández
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| |
Collapse
|
39
|
Zhai ML, Chen Y, Liu C, Wang JB, Yu YH. Spinal glucocorticoid receptor‑regulated chronic morphine tolerance may be through extracellular signal‑regulated kinase 1/2. Mol Med Rep 2018; 18:1074-1080. [PMID: 29845273 DOI: 10.3892/mmr.2018.9057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Opioid use has been limited in the treatment of chronic pain due to their side effects, including analgesic tolerance. Previous studies demonstrated that glucocorticoid receptors (GRs) may be involved in the development of chronic morphine tolerance; however, the mechanism remains unknown. It was hypothesized that the expression of spinal phosphorylated mitogen‑activated protein kinase [MAPK; phosphorylated extracellular signal‑regulated kinase (ERK)] is regulated through the spinal GRs, following chronic treatment with morphine. In the first experiment, the experimental rats were randomly divided into four groups: Control, morphine, morphine+GR antagonist mifepristone (RU38486) and morphine+GR agonist dexamethasone (Dex). Each group was treated with continuous intrathecal (IT) injection of the drugs for 6 days. The expression of GRs and MAPK 3/1 (p‑ERK 1/2) in the spinal dorsal horn was detected by western blot analysis and immunofluorescence staining. In the second experiment, the MAPK inhibitor PD98059 was added and the rats were randomly divided into four groups: Control, morphine, PD98059+morphine and PD98059+morphine+Dex. The continuous IT injection lasted for 7 days in each group. For all experiments, the tail flick test was conducted 30 min following administration every day to assess the thermal hyperalgesia of the rats. The experimental results demonstrated that there was a co‑existence of GRs and p‑ERK 1/2 in the spinal cord dorsal horn by double immunofluorescence staining. The GR antagonist RU38486 attenuated the morphine analgesia tolerance by inhibiting the expression of GR and increasing the expression of p‑ERK. The MAPK inhibitor PD98059 increased the effect of morphine tolerance and prolonged the duration of morphine tolerance. The present results suggest that spinal GRs may serve an important role in the development of morphine tolerance through the ERK signaling pathway.
Collapse
Affiliation(s)
- Mei-Li Zhai
- Department of Anesthesiology, Tianjin Center Obstetrics and Gynecology Hospital, Central Obstetrics and Gynecology Hospital of Nankai University, Tianjin 300100, P.R. China
| | - Yi Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Chong Liu
- Department of Anesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Jian-Bo Wang
- Department of Anesthesiology, Tianjin Center Obstetrics and Gynecology Hospital, Central Obstetrics and Gynecology Hospital of Nankai University, Tianjin 300100, P.R. China
| | - Yong-Hao Yu
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| |
Collapse
|
40
|
Ahmadi S, Radahmadi M, Alaei H, Ramshini E. Effect of Aerobic Exercise on Morphine Self-administration and Pain Modulation in Rats. Adv Biomed Res 2018; 7:70. [PMID: 29862219 PMCID: PMC5952535 DOI: 10.4103/abr.abr_181_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Exercise reverses retention deficit induced by morphine. The present study investigated the effect of aerobic exercise on tolerance to morphine usage and pain modulation. Materials and Methods: Male Wistar rats were divided into four groups as follows: (1) saline group (S), (2) morphine group (M), (3) saline + exercise (S + E), and (4) morphine + exercise group (M + E). The rats were initially trained to receive small pellets of food by pressing an active lever in the self-administration apparatus. The tail-flick and hot-plate tests were used for pain assessment. To perform the experiment, the jugular vein was exposed and cannulated. After recovery, the animals were placed in the self-administration apparatus and allowed to self-administer morphine in 2 h sessions over 11 consecutive days. Results: The morphine group was found to record a higher number of active lever pressings than did the saline one while this parameter decreased in the morphine + exercise group compared with the morphine one. Moreover, the morphine + exercise exhibited lowered pain sensitivity as evidenced to have reduced morphine use in the hot plate test. Conclusion: The exercise might be suggested to reduce using of morphine and modulate pain probably through the release of endogenous opioid.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
41
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
42
|
Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG, Nuñez-Badinez P, Schwenk J, Nürnberg B, Cohen A, Philipp SE, Greffrath W, Bünemann M, Oliver D, Zakharian E, Schmidt M, Oberwinkler J. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife 2017; 6:26280. [PMID: 28826482 PMCID: PMC5593507 DOI: 10.7554/elife.26280] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gβγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy. There are very few treatments available for people suffering from strong or long-lasting pain. Currently, substances called opioids – which include the well-known drug morphine – are the strongest painkillers. However, these drugs also cause harmful side effects, which makes them less useful. Like all drugs, opioids mediate their effects by interacting with molecules in the body. In the case of opioids, these interacting molecules belong to a group of receptor proteins called G-protein coupled receptors (or GPCRs for short). These opioid receptors are widely distributed in the nerve cells and brain regions that detect and transmit pain signals. It was poorly understood how activation of opioid receptors reduces the activity of pain-sensing nerve cells, however several lines of evidence had suggested that a protein called TRPM3 might be involved. TRPM3 is a channel protein that allows sodium and calcium ions to enter into nerve cells by forming pores in cell membranes, and mice that lack this protein are less sensitive to certain kinds of pain. Dembla, Behrendt et al. now show that activating opioid receptors on nerve cells from mice, with morphine and a similar substance, rapidly reduces the flow of calcium ions through TRPM3 channels. Further experiments confirmed that activating opioid receptors in a mouse’s paw also reduced the pain caused when TRPM3 proteins are activated. GPCRs interact with a group of small proteins called G-proteins that, when activated by the receptor, split into two subunits. Based on studies with human kidney cells, Dembla, Behrendt et al. found the so-called G-beta-gamma subunit then carries the signal from the opioid receptor to TRPM3. Two independent studies by Quallo et al. and Badheka, Yudin et al. also report similar findings. These new findings show that drugs already used in the treatment of pain can indirectly alter how TRPM3 works in a dramatic way. These results might help scientists to find drugs that work in a more direct way to dial down the activity of TRPM3 and to combat pain with fewer side effects. Though first it will be important to confirm these new findings in human nerve cells.
Collapse
Affiliation(s)
- Sandeep Dembla
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Marc Behrendt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Mohr
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Goecke
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Sondermann
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | - Franziska M Schneider
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Marlene Schmidt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Stab
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Raissa Enzeroth
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Michael G Leitner
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Paulina Nuñez-Badinez
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Nürnberg
- Abteilung für Pharmakologie und Experimentelle Therapie, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Tübingen, Tübingen, Germany
| | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Moritz Bünemann
- Institut für Pharmakologie und Klinische Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik Oliver
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, United States
| | - Manuela Schmidt
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
43
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. Eur J Pharmacol 2017; 812:57-63. [PMID: 28687197 DOI: 10.1016/j.ejphar.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Recently, we reported that capsaicin, a transient receptor potential vanilloid type1 (TRPV1) agonist, protected against excitotoxicity induced by intravitreal N-methyl-D-aspartic acid (NMDA) in the rats in vivo. It has been reported that morphine, an opioid receptor agonist, ameliorated excitotoxicity induced by ischemia-reperfusion in the retina, and that capsaicin-induced neuroprotection was reduced by naloxone, an opioid receptor antagonist in the brain. The aim of the present study is to clarify whether activation of opioid receptors is involved in the capsaicin-induced neuroprotection in the retina. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal NMDA injection (200nmol/eye). Capsaicin (5.0nmol/eye), calcitonin gene-related peptide (CGRP; 0.05pmol/eye), β-endorphin (0.5 pmol/eye), substance P (5nmol/eye), and naloxone (0.5nmol/eye) were intravitreally administered simultaneously with NMDA. Morphometric evaluation 7 days after NMDA injection showed that intravitreal NMDA injection resulted in ganglion cell loss. Capsaicin, CGRP, β-endorphin, and substance P prevented this damage. Treatment with naloxone (0.5nmol/eye) almost completely negated the protective effects of capsaicin, CGRP, β-endorphin, and substance P in the NMDA-injected rats. These results suggested that activation of opioid receptors is possibly involved in the protective effect of capsaicin.
Collapse
|
45
|
Salehi F, Hosseini-Zare MS, Aghajani H, Seyedi SY, Hosseini-Zare MS, Sharifzadeh M. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam Clin Pharmacol 2017; 31:411-419. [PMID: 28267871 DOI: 10.1111/fcp.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.
Collapse
Affiliation(s)
- Forouz Salehi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | - Mahshid S Hosseini-Zare
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran.,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Haleh Aghajani
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Seyedeh Yalda Seyedi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | | | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| |
Collapse
|
46
|
Probing the Effects and Mechanisms of Electroacupuncture at Ipsilateral or Contralateral ST36-ST37 Acupoints on CFA-induced Inflammatory Pain. Sci Rep 2016; 6:22123. [PMID: 26906464 PMCID: PMC4764889 DOI: 10.1038/srep22123] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/04/2016] [Indexed: 11/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund’s adjuvant (CFA), (2.14 ± 0.1, p < 0.05, n = 8) can be alleviated after EA treatment at either ipsilateral (3.91 ± 0.21, p < 0.05, n = 8) or contralateral acupoints (3.79 ± 0.25, p < 0.05, n = 8). EA may also reduce nociceptive Nav sodium currents in dorsal root ganglion (DRG) neurons. The expression of TRPV1 and associated signaling pathways notably increased after the CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain.
Collapse
|
47
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|