1
|
Csepregi L, Hoehn K, Neumeier D, Taft JM, Friedensohn S, Weber CR, Kummer A, Sesterhenn F, Correia BE, Reddy ST. The physiological landscape and specificity of antibody repertoires are consolidated by multiple immunizations. eLife 2024; 13:e92718. [PMID: 39693231 DOI: 10.7554/elife.92718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kenneth Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Arkadij Kummer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
2
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
3
|
Szkodny AC, Lee KH. A systemic approach to identifying sequence frameworks that decrease mAb production in a transient Chinese hamster ovary cell expression system. Biotechnol Prog 2024; 40:e3466. [PMID: 38607316 PMCID: PMC11470104 DOI: 10.1002/btpr.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Monoclonal antibodies (mAbs) are often engineered at the sequence level for improved clinical performance yet are rarely evaluated prior to candidate selection for their "developability" characteristics, namely expression, which can necessitate additional resource investments to improve the manufacturing processes for problematic mAbs. A strong relationship between primary sequence and expression has emerged, with slight differences in amino acid sequence resulting in titers differing by up to an order of magnitude. Previous work on these "difficult-to-express" (DTE) mAbs has shown that these phenotypes are driven by post-translational bottlenecks in antibody folding, assembly, and secretion processes. However, it has been difficult to translate these findings across cell lines and products. This work presents a systematic approach to study the impact of sequence variation on mAb expression at a larger scale and under more industrially relevant conditions. The analysis found 91 mutations that decreased transient expression of an IgG1κ in Chinese hamster ovary (CHO) cells and revealed that mutations at inaccessible residues, especially those leading to decreases in residue hydrophobicity, are not favorable for high expression. This workflow can be used to better understand sequence determinants of mAb expression to improve candidate selection procedures and reduce process development timelines.
Collapse
Affiliation(s)
- Alana C Szkodny
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
6
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Gaa R, Kumari K, Mayer HM, Yanakieva D, Tsai SP, Joshi S, Guenther R, Doerner A. An integrated mammalian library approach for optimization and enhanced microfluidics-assisted antibody hit discovery. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:74-82. [PMID: 36762883 DOI: 10.1080/21691401.2023.2173219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Recent years have seen the development of a variety of mammalian library approaches for display and secretion mode. Advantages include library approaches for engineering, preservation of precious immune repertoires and their repeated interrogation, as well as screening in final therapeutic format and host. Mammalian display approaches for antibody optimization exploit these advantages, necessitating the generation of large libraries but in turn enabling early screening for both manufacturability and target specificity. For suitable libraries, high antibody integration rates and resulting monoclonality need to be balanced - we present a solution for sufficient transmutability and acceptable monoclonality by applying an optimized ratio of coding to non-coding lentivirus. The recent advent of microfluidic-assisted hit discovery represents a perfect match to mammalian libraries in secretion mode, as the lower throughput fits well with the facile generation of libraries comprising a few million functional clones. In the presented work, Chinese Hamster Ovary cells were engineered to both express the target of interest and secrete antibodies in relevant formats, and specific clones were strongly enriched by high throughput screening for autocrine cellular binding. The powerful combination of mammalian secretion libraries and microfluidics-assisted hit discovery could reduce attrition rates and increase the probability to identify the best possible therapeutic antibody hits faster.
Collapse
Affiliation(s)
- Ramona Gaa
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Kavita Kumari
- Discovery Biology, Syngene International, Phase-IV, Bangalore, India
| | - Hannah Melina Mayer
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Shang-Pu Tsai
- Protein Engineering and Antibody Technologies, EMD Serono, Billerica, MA, USA
| | - Saurabh Joshi
- Discovery Biology, Syngene International, Phase-IV, Bangalore, India
| | - Ralf Guenther
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
8
|
Hu D, Irving AT. Massively-multiplexed epitope mapping techniques for viral antigen discovery. Front Immunol 2023; 14:1192385. [PMID: 37818363 PMCID: PMC10561112 DOI: 10.3389/fimmu.2023.1192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.
Collapse
Affiliation(s)
- Diya Hu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aaron T. Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Biomedical and Health Translational Research Centre of Zhejiang Province (BIMET), Haining, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen specificity. iScience 2023; 26:106055. [PMID: 36852274 PMCID: PMC9958373 DOI: 10.1016/j.isci.2023.106055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.
Collapse
|
10
|
Gaa R, Mayer HM, Noack D, Kumari K, Guenther R, Tsai SP, Ji Q, Doerner A. Mammalian display to secretion switchable libraries for antibody preselection and high throughput functional screening. MAbs 2023; 15:2251190. [PMID: 37646089 PMCID: PMC10469430 DOI: 10.1080/19420862.2023.2251190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Recently, there has been a co-evolution of mammalian libraries and diverse microfluidic approaches for therapeutic antibody hit discovery. Mammalian libraries enable the preservation of full immune repertoires, produce hit candidates in final format and facilitate broad combinatorial bispecific antibody screening, while several available microfluidic methodologies offer opportunities for rapid high-content screens. Here, we report proof-of-concept studies exploring the potential of combining microfluidic technologies with mammalian libraries for antibody discovery. First, antibody secretion, target co-expression and integration of appropriate reporter cell lines enabled the selection of in-trans acting agonistic bispecific antibodies. Second, a functional screen for internalization was established and comparison of autocrine versus co-encapsulation setups highlighted the advantages of an autocrine one cell approach. Third, synchronization of antibody-secreting cells prior to microfluidic screens reduced assay variability. Furthermore, a display to secretion switchable system was developed and applied for pre-enrichment of antibody clones with high manufacturability in conjunction with subsequent screening for functional properties. These case studies demonstrate the system's feasibility and may serve as basis for further development of integrated workflows combining manufacturability sorting and functional screens for the identification of optimal therapeutic antibody candidates.
Collapse
Affiliation(s)
- Ramona Gaa
- NBE Technologies, Merck KGaA, Darmstadt, Germany
| | | | | | - Kavita Kumari
- Discovery Biology, Syngene International, Bangalore, India
| | | | | | - Qingyong Ji
- NBE Technologies, EMD Serono, Billerica, MA, USA
| | | |
Collapse
|
11
|
Mammalian Display Platform for the Maturation of Bispecific TCR-Based Molecules. Antibodies (Basel) 2022; 11:antib11020034. [PMID: 35645207 PMCID: PMC9150015 DOI: 10.3390/antib11020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Bispecific T cell receptor (TCR)-based molecules capable of redirecting and activating T cells towards tumor cells represent a novel and promising class of biotherapeutics for the treatment of cancer. Usage of TCRs allows for targeting of intracellularly expressed and highly selective cancer antigens, but also requires a complex maturation process to increase the naturally low affinity and stability of TCRs. Even though TCR domains can be matured via phage and yeast display, these techniques share the disadvantages of non-human glycosylation patterns and the need for a later reformatting into the final bispecific format. Here, we describe the development and application of a Chinese Hamster Ovary (CHO) display for affinity engineering of TCRs in the context of the final bispecific TCR format. The recombinase-mediated cassette exchange (RCME)-based system allows for stable, single-copy integration of bispecific TCR molecules with high efficiency into a defined genetic locus of CHO cells. We used the system to isolate affinity-increased variants of bispecific T cell engaging receptor (TCER) molecules from a library encoding different CDR variants of a model TCR targeting preferentially expressed antigen in melanoma (PRAME). When expressed as a soluble protein, the selected TCER molecules exhibited strong reactivity against PRAME-positive tumor cells associated with a pronounced cytokine release from activated T cells. The obtained data support the usage of the CHO display-based maturation system for TCR affinity maturation in the context of the final bispecific TCER format.
Collapse
|
12
|
Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proc Natl Acad Sci U S A 2022; 119:e2113766119. [PMID: 35486691 PMCID: PMC9170022 DOI: 10.1073/pnas.2113766119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B cell clonal selection and expansion from a genetically diverse antibody repertoire guides the immune response to a target antigen. It remains unclear if clonal selection and expansion follow any deterministic rules or are stochastic with regards to phenotypic antibody properties such as antigen-binding, affinity, and epitope specificity. We perform the in-depth genotypic and phenotypic characterization of antibody repertoires following immunization in mice. We identify the degree to which clonal expansion is driven by antibody binding, affinity, and epitope specificity and as such may provide greater insight into vaccine-induced immunity. The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.
Collapse
|
13
|
Ehling RA, Weber CR, Mason DM, Friedensohn S, Wagner B, Bieberich F, Kapetanovic E, Vazquez-Lombardi R, Di Roberto RB, Hong KL, Wagner C, Pataia M, Overath MD, Sheward DJ, Murrell B, Yermanos A, Cuny AP, Savic M, Rudolf F, Reddy ST. SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Rep 2022; 38:110242. [PMID: 34998467 PMCID: PMC8692065 DOI: 10.1016/j.celrep.2021.110242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Collapse
Affiliation(s)
- Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland
| | | | - Michele Pataia
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland; Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Andreas P Cuny
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
14
|
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021; 42:1143-1158. [PMID: 34743921 DOI: 10.1016/j.it.2021.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Monoclonal antibodies (mAbs) are often selected from antigen-specific single B cells derived from different hosts, which are notably short-lived in ex vivo culture conditions and hence, arduous to interrogate. The development of several new techniques and protocols has facilitated the isolation and retrieval of antibody-coding sequences of antigen-specific B cells by also leveraging miniaturization of reaction volumes. Alternatively, mAbs can be generated independently of antigen-specific B cells, comprising display technologies and, more recently, artificial intelligence-driven algorithms. Consequently, a considerable variety of techniques are used, raising the demand for better consolidation. In this review, we present and discuss the major techniques available to interrogate antigen-specific single B cells to isolate antigen-specific mAbs, including their main advantages and disadvantages.
Collapse
Affiliation(s)
- Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Neumeier D, Pedrioli A, Genovese A, Sandu I, Ehling R, Hong KL, Papadopoulou C, Agrafiotis A, Kuhn R, Shlesinger D, Robbiani D, Han J, Hauri L, Csepregi L, Greiff V, Merkler D, Reddy ST, Oxenius A, Yermanos A. Profiling the specificity of clonally expanded plasma cells during chronic viral infection by single-cell analysis. Eur J Immunol 2021; 52:297-311. [PMID: 34727578 PMCID: PMC9299196 DOI: 10.1002/eji.202149331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.
Collapse
Affiliation(s)
- Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Damiano Robbiani
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Laura Hauri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Schibeci Natoli Scialli N, Colitti B, Bertolotti L, Pezzoni G, Martignani E, Melega M, Brocchi E, Rosati S. Genome editing of a hybridoma cell line via the CRISPR/Cas9 system: A new approach for constitutive high-level expression of heterologous proteins in eukaryotic system. Vet Immunol Immunopathol 2021; 238:110286. [PMID: 34171554 DOI: 10.1016/j.vetimm.2021.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The power of the CRISPR/Cas9 system has revolutionized genome editing in many fields of biology. These applications have expanded exponentially over recent years, including those regarding protein expression technologies. The CRISPR/Cas9 system avoids random integration of the gene of interest and due to this characteristic can be exploited to obtain a stable cell line for the high-yield expression of recombinant proteins. Here we propose a method to edit a hybridoma cell line for the constitutive expression of proteins of interest using the CRISPR/Cas9 system. First, with the scope of optimizing the method, we replaced part of the light chain of immunoglobulin with the Green Fluorescent Protein (GFP) gene, obtaining a precise knock-in in the hybridoma genome. We confirmed the expression and secretion of GFP into the culture medium via fluorimetric analysis, as well as correct genome editing by RNA sequencing. Then, using the same approach, we included the gene encoding a protein of diagnostic interest, the Bovine Herpesvirus 1 glycoprotein E, in the donor DNA. We obtained a stable clone able to secrete gE protein in fusion with GFP into the culture medium. This result was confirmed by ELISA and Western Blot analysis. This study confirms the suitability of this cell line for the production of proteins of diagnostic interest by stable gene expression in a mammalian system. These experiments will enable the technique to be developed from its proof of concept to more specific applications in the field of infectious disease diagnostics.
Collapse
Affiliation(s)
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Luigi Bertolotti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25124, Brescia, Italy
| | - Eugenio Martignani
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Maverick Melega
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25124, Brescia, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
17
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
18
|
Aebischer-Gumy C, Moretti P, Ollier R, Ries Fecourt C, Rousseau F, Bertschinger M. SPLICELECT™: an adaptable cell surface display technology based on alternative splicing allowing the qualitative and quantitative prediction of secreted product at a single-cell level. MAbs 2021; 12:1709333. [PMID: 31955651 PMCID: PMC6973322 DOI: 10.1080/19420862.2019.1709333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a mammalian expression construct (SPLICELECT™) that allows the redirection of a proportion of a secreted protein onto the cell surface using alternative splicing: whereas the majority of the RNA is spliced into a transcript encoding a secreted protein, a weak splice donor site yields a secondary transcript encoding, in addition, a C-terminal transmembrane domain. The different sequence elements can be modified in order to modulate the level of cell surface display and of secretion in an independent manner. In this work, we demonstrated that the cell surface display of stable cell lines is correlated with the level of the secreted protein of interest, but also with the level of heterodimerization in the case of a bispecific antibody. It was also shown that this construct may be useful for rapid screening of multiple antibody candidates in binding assays following transient transfection. Thus, the correlation of product quantity and quality of the secreted and of membrane-displayed product in combination with the flexibility of the construct with regards to cell surface display/secretion levels make SPLICELECT™ a valuable tool with many potential applications, not limited to industrial cell line development or antibody engineering.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Romain Ollier
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Christelle Ries Fecourt
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - François Rousseau
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
19
|
Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, Jones TD, Seymour L, Cawood R. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem 2020; 295:18436-18448. [PMID: 33127646 PMCID: PMC7939478 DOI: 10.1074/jbc.ra120.015053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.
Collapse
Affiliation(s)
| | | | | | - Hena Khalique
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | - Tom Payne
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Tim D Jones
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Len Seymour
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ryan Cawood
- OXGENE, Medawar Centre, Oxford, United Kingdom.
| |
Collapse
|
20
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|