1
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2025; 74:652-668. [PMID: 39266053 PMCID: PMC11885054 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Zhang R, Ding N, Feng X, Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front Immunol 2025; 16:1529958. [PMID: 39911400 PMCID: PMC11794507 DOI: 10.3389/fimmu.2025.1529958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The gut microbiome has emerged as a pivotal area of research due to its significant influence on the immune system and cognitive functions. Cognitive disorders, including dementia and Parkinson's disease, represent substantial global health challenges. This review explores the relationship between gut microbiota, immune modulation, and cognitive decline, with a particular focus on the gut-brain axis. Research indicates that gut bacteria produce metabolites, including short-chain fatty acids (SCFAs), which affect mucosal immunity, antigen presentation, and immune responses, thereby influencing cognitive functions. A noteworthy correlation has been identified between imbalances in the gut microbiome and cognitive impairments, suggesting novel pathways for the treatment of cognitive disorders. Additionally, factors such as diet, environment, and pharmaceuticals play a role in shaping the composition of the gut microbiome, subsequently impacting both immune and cognitive health. This article aims to clarify the complex interactions among gut microbiota, immune regulation, and cognitive disorders, evaluating their potential as therapeutic targets. The goal is to promote microbiome-based treatments and lay the groundwork for future research in this field.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Ning Ding
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Xicui Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Bai X, Fu R, Liu Y, Deng J, Fei Q, Duan Z, Zhu C, Fan D. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis. J Pharm Anal 2024; 14:259-275. [PMID: 38464791 PMCID: PMC10921328 DOI: 10.1016/j.jpha.2023.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xue Bai
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
4
|
Valle-Noguera A, Sancho-Temiño L, Castillo-González R, Villa-Gómez C, Gomez-Sánchez MJ, Ochoa-Ramos A, Yagüe-Fernández P, Soler Palacios B, Zorita V, Raposo-Ponce B, González-Granado JM, Aragonés J, Cruz-Adalia A. IL-18-induced HIF-1α in ILC3s ameliorates the inflammation of C. rodentium-induced colitis. Cell Rep 2023; 42:113508. [PMID: 38019650 DOI: 10.1016/j.celrep.2023.113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Lucía Sancho-Temiño
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Raquel Castillo-González
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villa-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Anne Ochoa-Ramos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Blanca Soler Palacios
- Department of Immunology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José María González-Granado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Aragonés
- Hospital Santa Cristina, Fundación de Investigación Hospital de la Princesa, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
5
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
6
|
Ma L, Terrell M, Brown J, Castellanos Garcia A, Elshikha A, Morel L. TLR7/TLR8 activation and susceptibility genes synergize to breach gut barrier in a mouse model of lupus. Front Immunol 2023; 14:1187145. [PMID: 37483626 PMCID: PMC10358848 DOI: 10.3389/fimmu.2023.1187145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Mounting evidence suggests that increased gut permeability, or leaky gut, and the resulting translocation of pathobionts or their metabolites contributes to the pathogenesis of Systemic Lupus Erythematosus. However, the mechanisms underlying the induction of gut leakage remain unclear. In this study, we examined the effect of a treatment with a TLR7/8 agonist in the B6.Sle1.Sle2.Sle3 triple congenic (TC) mouse, a spontaneous mouse model of lupus without gut leakage. Materials and methods Lupus-prone mice (TC), TC.Rag1-/- mice that lack B and T cells, and congenic B6 healthy controls were treated with R848. Gut barrier integrity was assessed by measuring FITC-dextran in the serum following oral gavage. Claudin-1 and PECAM1 expression as well as the extent of CD45+ immune cells, B220+ B cells, CD3+ T cells and CD11b+ myeloid cells were measured in the ileum by immunofluorescence. NKp46+ cells were measured in the ileum and colon by immunofluorescence. Immune cells in the ileum were also analyzed by flow cytometry. Results R848 decreased gut barrier integrity in TC but not in congenic control B6 mice. Immunofluorescence staining of the ileum showed a reduced expression of the tight junction protein Claudin-1, endothelial cell tight junction PECAM1, as well as an increased infiltration of immune cells, including B cells and CD11b+ cells, in R848-treated TC as compared to untreated control mice. However, NKp46+ cells which play critical role in maintaining gut barrier integrity, had a lower frequency in treated TC mice. Flow cytometry showed an increased frequency of plasma cells, dendritic cells and macrophages along with a decreased frequency of NK cells in R848 treated TC mice lamina propria. In addition, we showed that the R848 treatment did not induce gut leakage in TC.Rag1-/- mice that lack mature T and B cells. Conclusions These results demonstrate that TLR7/8 activation induces a leaky gut in lupus-prone mice, which is mediated by adaptive immune responses. TLR7/8 activation is however not sufficient to breach gut barrier integrity in non-autoimmune mice.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Abigail Castellanos Garcia
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Winner H, Friesenhahn A, Wang Y, Stanbury N, Wang J, He C, Zhong G. Regulation of chlamydial colonization by IFNγ delivered via distinct cells. Trends Microbiol 2023; 31:270-279. [PMID: 36175276 PMCID: PMC9974551 DOI: 10.1016/j.tim.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
The mouse-adapted pathogen Chlamydia muridarum (CM) induces pathology in the mouse genital tract but fails to do so in the gastrointestinal tract. CM is cleared from both the genital tract and small intestine by IFNγ delivered by antigen-specific CD4+ T cells but persists for a long period in the large intestine. The long-lasting colonization of CM in the large intestine is regulated by IFNγ delivered by group 3 innate lymphoid cells (ILC3s). Interestingly, the ILC3-delivered IFNγ can inhibit the human pathogen Chlamydia trachomatis (CT) in the mouse endometrium. Thus, IFNγ produced/delivered by different cells may selectively restrict chlamydial colonization in different tissues. Revealing the underlying mechanisms of chlamydial interactions with IFNγ produced by different cells may yield new insights into both chlamydial pathogenicity and mucosal immunity.
Collapse
Affiliation(s)
- Halah Winner
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Ann Friesenhahn
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA; College of Veterinary Medicine, China Agricultural University, Two Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Nicholas Stanbury
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Cheng He
- College of Veterinary Medicine, China Agricultural University, Two Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA.
| |
Collapse
|
8
|
M'Koma AE. Inflammatory Bowel Disease: Clinical Diagnosis and Pharmaceutical Management. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i1.3135. [PMID: 37089816 PMCID: PMC10118064 DOI: 10.18103/mra.v11i1.3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease has an enormous impact on public health, medical systems, economies, and social conditions. Biologic therapy has ameliorated the treatment and clinical course of patients with inflammatory bowel disease. The efficacy and safety profiles of currently available therapies are still less that optimal in numerous ways, highlighting the requirement for new therapeutic targets. A bunch of new drug studies are underway in inflammatory bowel disease with promising results. This is an outlined guideline of clinical diagnosis and pharmaceutical therapy of inflammatory bowel disease. Outline delineates the overall recommendations on the modern principles of desirable practice to bolster the adoption of best implementations and exploration as well as inflammatory bowel disease patient, gastroenterologist, and other healthcare provider education. Inflammatory bowel disease encompasses Crohn's disease and ulcerative colitis, the two unsolved medical inflammatory bowel disease-subtypes condition with no drug for cure. The signs and symptoms on first presentation relate to the anatomical localization and severity of the disease and less with the resulting diagnosis that can clinically and histologically be non-definitive to interpret and establish criteria, specifically in colonic inflammatory bowel disease when the establishment is inconclusive is classified as indeterminate colitis. Conservative pharmaceuticals and accessible avenues do not depend on the disease phenotype. The first line management is to manage symptoms and stabilize active disease; at the same time maintenance therapy is indicated. Nutrition and diet do not play a primary therapeutic role but is warranted as supportive care. There is need of special guideline that explore solution of groundwork gap in terms of access limitations to inflammatory bowel disease care, particularly in developing countries and the irregular representation of socioeconomic stratification with a strategic plan, for the unanswered questions and perspective for the future, especially during the surfaced global COVID-19 pandemic caused by coronavirus SARS-CoV2 impacting on both the patient's psychological functioning and endoscopy services. Establishment of a global registry system and accumulated experiences have led to consensus for inflammatory bowel disease management under the COVID-19 pandemic. Painstakingly, the pandemic has influenced medical care systems for these patients. I briefly herein viewpoint summarize among other updates the telemedicine roles during the pandemic and how operationally inflammatory bowel disease centers managed patients and ensured quality of care. In conclusion: inflammatory bowel disease has become a global emergent disease. Serious medical errors are public health problem observed in developing nations i.e., to distinguish inflammatory bowel disease and infectious and parasitic diseases. Refractory inflammatory bowel disease is a still significant challenge in the management of patients with Crohn's disease and ulcerative colitis. There are gaps in knowledge and future research directions on the recent newly registered pharmaceuticals. The main clinical outcomes for inflammatory bowel disease were maintained during the COVID-19 pandemic period.
Collapse
Affiliation(s)
- Amosy Ephreim M'Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Affiliated Scientist Investigator, The American Society of Colon, and Rectal Surgeons (ASCRS), Arlington Heights, IL 60005, Unite States
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, United States
| |
Collapse
|
9
|
Yang Y, Xu L, Qiao Y, Wang T, Zheng Q. Construction of a neural network diagnostic model and investigation of immune infiltration characteristics for Crohn’s disease. Front Genet 2022; 13:976578. [PMID: 36186439 PMCID: PMC9520627 DOI: 10.3389/fgene.2022.976578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Crohn’s disease (CD), a chronic recurrent illness, is a type of inflammatory bowel disease whose incidence and prevalence rates are gradually increasing. However, there is no universally accepted criterion for CD diagnosis. The aim of this study was to create a diagnostic prediction model for CD and identify immune cell infiltration features in CD. Methods: In this study, gene expression microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. Then, we identified differentially expressed genes (DEGs) between 178 CD and 38 control cases. Enrichment analysis of DEGs was also performed to explore the biological role of DEGs. Moreover, the “randomForest” package was applied to select core genes that were used to create a neural network model. Finally, in the training cohort, we used CIBERSORT to evaluate the immune landscape between the CD and normal groups. Results: The results of enrichment analysis revealed that these DEGs may be involved in biological processes associated with immunity and inflammatory responses. Moreover, the top 3 hub genes in the protein-protein interaction network were IL-1β, CCL2, and CXCR2. The diagnostic model allowed significant discrimination with an area under the ROC curve of 0.984 [95% confidence interval: 0.971–0.993]. A validation cohort (GSE36807) was utilized to ensure the reliability and applicability of the model. In addition, the immune infiltration analysis indicated nine different immune cell types were significantly different between the CD and healthy control groups. Conclusion: In summary, this study offers a novel insight into the diagnosis of CD and provides potential biomarkers for the precise treatment of CD.
Collapse
|
10
|
Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front Immunol 2022; 13:934617. [PMID: 36105802 PMCID: PMC9464604 DOI: 10.3389/fimmu.2022.934617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.
Collapse
|
11
|
Einenkel R, Ehrhardt J, Zygmunt M, Muzzio DO. Oxygen regulates ILC3 antigen presentation potential and pregnancy-related hormone actions. Reprod Biol Endocrinol 2022; 20:109. [PMID: 35906658 PMCID: PMC9336067 DOI: 10.1186/s12958-022-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Early pregnancy is marked by placentation and embryogenesis, which take place under physiological low oxygen concentrations. This oxygen condition is crucial for many aspects of placentation, trophoblast function, vascularization and immune function. Recently, a new family of innate lymphoid cells has been found to be expressed at the fetomaternal interface. Among these, type 3 innate lymphoid cells (ILC3) are important antigen presenting cells in the context of MHC-II. The expression of MHC-II on ILC3s during pregnancy is reduced. We tested the hypothesis that low oxygen concentrations reduce the potential of ILC3s to present antigens promoting fetal tolerance.Using an in vitro approach, NCR+ ILC3s generated from cord blood stem cell precursors were incubated under different O2 concentrations in the presence or absence of the pregnancy-related hormones hCG and TGF-β1. The expression of MHC-II, accessory molecules and an activation marker were assessed by flow cytometry. We observed that 1% O2 reduced the expression of the MHC-II molecule HLA-DR as compared to 21% O2 and modulated the relative effects of hCG and TGF-β1.Our data indicate that low oxygen concentrations reduce the antigen presentation potential of NCR+ ILC3s and suggest that it may promote fetal tolerance during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
- Present address: Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Gupta B, Rai R, Oertel M, Raeman R. Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Semin Liver Dis 2022; 42:122-137. [PMID: 35738255 PMCID: PMC9307091 DOI: 10.1055/s-0042-1748037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ravi Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Barichello T. The role of innate lymphoid cells (ILCs) in mental health. DISCOVER MENTAL HEALTH 2022; 2:2. [PMID: 35224555 PMCID: PMC8855986 DOI: 10.1007/s44192-022-00006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
One hundred and thirty years after lymphoid and myeloid cells were discovered, in 2008, the researchers presented to the scientific community the population of innate lymphoid cells (ILCs) identified in humans and mice. Human ILC subsets were first identified in secondary lymphoid tissues and subsequently reported in the intestine, lung, liver, skin, and meninges. ILCs (ILC1, ILC2, ILC3, and ILCreg) subgroups present plastic properties concerning cytokines, chemokines, and other mediators present in the microenvironment. ILC1s were characterized by their ability to produce interferon (IFN)-γ. ILC2s have a function in innate and adaptive type 2 inflammation by producing effector cytokines such as interleukin (IL)-5 and IL-13. Meningeal ILC2s were activated in an IL-33-dependent mechanism releasing type-2 cytokines and demonstrating that ILC2s proliferate in reaction to IL-33 activation. ILC3s have been discovered as a significant contribution to the homeostasis of the gut barrier and as a source of IL-22. IL-22 presents a pleiotropic activity reinforcing the gut barrier immunity by stimulating anti-microbial peptide synthesis and promoting microbial regulation. Additionally, ILCs can have a pathogenic or protective effect on many disorders, and further research is needed to determine what elements influence the nature of their actions in diverse situations. The narrative review summarizes the role of the ILCs in mental health.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense (UNESC), Criciúma, SC Brazil
| |
Collapse
|
14
|
Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, Cao X, Wang B, Jiang K, Cao H. Bile Acid-Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. Nutrients 2021; 13:nu13093143. [PMID: 34579027 PMCID: PMC8467364 DOI: 10.3390/nu13093143] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract, with increasing prevalence, and its pathogenesis remains unclear. Accumulating evidence suggested that gut microbiota and bile acids play pivotal roles in intestinal homeostasis and inflammation. Patients with IBD exhibit decreased microbial diversity and abnormal microbial composition marked by the depletion of phylum Firmicutes (including bacteria involved in bile acid metabolism) and the enrichment of phylum Proteobacteria. Dysbiosis leads to blocked bile acid transformation. Thus, the concentration of primary and conjugated bile acids is elevated at the expense of secondary bile acids in IBD. In turn, bile acids could modulate the microbial community. Gut dysbiosis and disturbed bile acids impair the gut barrier and immunity. Several therapies, such as diets, probiotics, prebiotics, engineered bacteria, fecal microbiota transplantation and ursodeoxycholic acid, may alleviate IBD by restoring gut microbiota and bile acids. Thus, the bile acid–gut microbiota axis is closely connected with IBD pathogenesis. Regulation of this axis may be a novel option for treating IBD.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Yue Sun
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
| | - Kui Jiang
- Graduate School of Tianjin Medical University, Tianjin 300070, China
- Correspondence: (K.J.); (H.C.)
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.Y.); (Y.G.); (L.L.); (T.L.); (X.S.); (Y.S.); (X.C.); (B.W.)
- Correspondence: (K.J.); (H.C.)
| |
Collapse
|
15
|
Wang L, Liao Y, Yang R, Zhu Z, Zhang L, Wu Z, Sun X. An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis. Bioeng Transl Med 2021; 6:e10219. [PMID: 34589596 PMCID: PMC8459592 DOI: 10.1002/btm2.10219] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Most inflammatory bowel disease (IBD) patients are unable to maintain a lifelong remission. Developing a novel therapeutic strategy is urgently needed. In this study, we adopt a new strategy to attenuate colitis using the Escherichia coli Nissle 1917 probiotic strain to express a schistosome immunoregulatory protein (Sj16) in the gastrointestinal tract. The genetically engineered Nissle 1917 (EcN-Sj16) highly expressed Sj16 in the gastrointestinal tracts of dextran sulfate sodium-induced colitis mice and significantly attenuated the clinical activity of colitis mice. Mechanistically, EcN-Sj16 increased the intestinal microbiota diversity and selectively promoted the growth of Ruminococcaceae and therefore enhanced the butyrate production. Butyrate induced the expression of retinoic acid, which further attenuated the clinical activity of colitis mice by increasing Treg cells and decreasing Th17. Strikingly, retinoic acid inhibitor inhibited the therapeutic effects of EcN-Sj16 in colitis mice. These findings suggest that EcN-Sj16 represents a novel engineered probiotic that may be used to treat IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Yao Liao
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Ruibing Yang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Xi Sun
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| |
Collapse
|
16
|
Yu Y, Jiang P, Sun P, Su N, Lin F. Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Exp Ther Med 2021; 22:693. [PMID: 33986858 PMCID: PMC8111866 DOI: 10.3892/etm.2021.10125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Death receptor 3 (DR3) and its corresponding ligand, tumor necrosis factor-like ligand 1A (TL1A), belong to the tumor necrosis factor superfamily. Signaling via this receptor-ligand pair results in pro-inflammatory and anti-inflammatory effects. Effector lymphocytes can be activated to exert pro-inflammatory activity by triggering the DR3/TL1A pathway. By contrast, DR3/TL1A signaling also induces expansion of the suppressive function of regulatory T cells, which serve an important role in exerting anti-inflammatory functions and maintaining immune homeostasis. Preclinical evidence indicates that neutralizing and agonistic antibodies, as well as ligand-based approaches targeting the DR3/TL1A pathway, may be used to treat diseases, including inflammatory and immune-mediated diseases. Accumulating evidence has suggested that modulating the DR3/TL1A pathway is a promising therapeutic approach for patients with these diseases. This review discusses preclinical models to gauge the progress of therapeutic strategies for diseases involving the DR3/TL1A pathway to aid in drug development.
Collapse
Affiliation(s)
- Yunhong Yu
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
17
|
Yu G, Ji X, Huang J, Liao A, Pan L, Hou Y, Hui M, Guo W. Immunity improvement and gut microbiota remodeling of mice by wheat germ globulin. World J Microbiol Biotechnol 2021; 37:64. [PMID: 33733383 DOI: 10.1007/s11274-021-03034-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
The wheat germ protein (WG) and it's proteolytic peptide have a variety of biological activities. Our previous work showed that WG could improve immunity of the immunosuppressive mice established by cyclophosphamide. However, in the healthy condition and normal diet, as a supplementary food, the effects of immunity improvement and gut microbiota remodeling by the wheat germ globulin has not been studied yet. Here, we reported that WG could improve the immunity and remodel the gut microbiota of the mice, as a potentially safe functional supplementary food for the first time. The increase of interleukin-6 (IL-6) and the decrease of tumor necrosis factor α (TNF-α) and interleukin-10 (IL-10) indicated that WG could enhance the levels of activated T cells and monocytes and anti-inflammatory ability, meanwhile, the significant increase of immunoglobin G (lgG) and the notable decrease of the immunoglobin M (lgM) and immunoglobin A (lgA) illustrated that WG could improve immunity by promoting the differentiation and maturation process of B cells, compared with the NC group (normal control group). 16S rRNA sequencing showed WG could remodel the gut microbiota. At the phylum level, the Bacteroidetes were reduced and Firmicutes were increased in WG group, compared with NC group. At the genus level, the SCFA producing genera of unclassified_f_Lachnospiraceae, Blautia and especially the Roseburia (increased more than threefold) increased notably. Further, the level changes of cytokines and immunoglobulins were associated with the gut microbiota. This work showed that WG could improve immunity and has potential application value as an immune-enhancing functional food.
Collapse
Affiliation(s)
- Guanghai Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Xiaoguo Ji
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China.
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Long Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan University of Animal Husbandry Economy, Zhengzhou, 450046, P. R. China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Weiyun Guo
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, P. R. China
| |
Collapse
|
18
|
Andersen-Civil AIS, Arora P, Williams AR. Regulation of Enteric Infection and Immunity by Dietary Proanthocyanidins. Front Immunol 2021; 12:637603. [PMID: 33717185 PMCID: PMC7943737 DOI: 10.3389/fimmu.2021.637603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
The role of dietary components in immune function has acquired considerable attention in recent years. An important focus area is to unravel the role of bioactive dietary compounds in relation to enteric disease and their impact on gut mucosal immunity. Proanthocyanidins (PAC) are among the most common and most consumed dietary polyphenols, and are characterised by their variable molecular structures and diverse bioactivities. In particular, their anti-oxidative effects and ability to modulate gut microbiota have been widely described. However, there is limited evidence on the mechanism of action of PAC on the immune system, nor is it clearly established how PAC may influence susceptibility to enteric infections. Establishing the sites of action of PAC and their metabolites within the gut environment is fundamental to determine the applicability of PAC against enteric pathogens. Some mechanistic studies have shown that PAC have direct modulatory effects on immune cell signalling, isolated pathogens, and gut mucosal barrier integrity. Boosting the recruitment of immune cells and suppressing the amount of pro-inflammatory cytokines are modulating factors regulated by PAC, and can either be beneficial or detrimental in the course of re-establishing gut homeostasis. Herein, we review how PAC may alter distinct immune responses towards enteric bacterial, viral and parasitic infections, and how the modulation of gut microbiota may act as a mediating factor. Furthermore, we discuss how future studies could help unravel the role of PAC in preventing and/or alleviating intestinal inflammation and dysbiosis caused by enteric disease.
Collapse
Affiliation(s)
- Audrey I S Andersen-Civil
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg, Denmark
| |
Collapse
|
19
|
Adoptive Transfer of Group 3-Like Innate Lymphoid Cells Restores Mouse Colon Resistance to Colonization of a Gamma Interferon-Susceptible Chlamydia muridarum Mutant. Infect Immun 2021; 89:IAI.00533-20. [PMID: 33139384 DOI: 10.1128/iai.00533-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia muridarum can colonize the mouse colon for a long period, but a gamma interferon (IFN-γ)-susceptible mutant clone fails to do so. Nevertheless, the mutant's colonization is rescued in mice deficient in interleukin-7 receptor (IL-7R) (lacking both lymphocytes and innate lymphoid cells [ILCs]) or IFN-γ but not in mice lacking recombination-activated gene 1 (Rag1-/- mice) (lacking adaptive immunity lymphocytes), indicating a critical role of ILC-derived IFN-γ in regulating chlamydial colonization. In the current study, we have used an adoptive transfer approach for further characterizing the responsible ILCs. First, intestinal ILCs isolated from Rag1-/- mice were able to rescue IL-7R-deficient mice to restrict the colonization of the IFN-γ-susceptible Chlamydia muridarum mutant. Second, the responsible ILCs were localized to the intestinal lamina propria since ILCs from the lamina propria but not the intraepithelial compartment conferred the restriction. Third, lamina propria ILCs enriched for RORγt expression but not those negative for RORγt rescued the IL-7R-deficient mice to restrict mutant colonization, indicating a critical role of group 3-like ILCs (ILC3s) since RORγt is a signature transcriptional factor of ILC3s. Fourth, a portion of the ILC3s expressed IFN-γ, thus defined as ex-ILC3s, and the transfer of the ex-ILC3s conferred colon resistance to mutant Chlamydia muridarum colonization in IFN-γ-deficient mice. Finally, genetically labeled RORγt-positive (RORγt+) ILCs were able to inhibit mutant colonization. Thus, we have demonstrated that ILC3s are sufficient for regulating chlamydial colonization, laying a foundation for further revealing the mechanisms by which an obligate intracellular bacterium activates colonic ILC3s.
Collapse
|
20
|
Xian Y, Lv X, Xie M, Xiao F, Kong C, Ren Y. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s). Life Sci 2020; 262:118504. [PMID: 32991877 DOI: 10.1016/j.lfs.2020.118504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Of the three groups of innate lymphoid cells, the type 3 innate lymphoid cell(s) (ILC3) include the subgroup of enteric ILC3 that participates in many physiological functions of the organism, such as promoting the repair of damaged mucosa, maintaining the homeostasis of gut symbiotic microorganisms, and presenting specific antigens. ILC3 also includes splenic and decidual ILC3. Like other physiological processes in the organism, enteric ILC3 functions are precisely regulated at the endogenous and exogenous levels. However, there has been no review on the physiological functions and regulatory signals of intestinal ILC3. In this paper, based on the current research on the physiological functions of enteric ILC3 in animals and the human, we summarize the signals that regulate cytokine secretion, antigen presentation and the quantity of ILC3 under normal intestinal conditions. We discuss for the first time the classification of the promoting mechanism of secretagogues of ILC3 into direct and indirect types. We also propose that ILC3 can promote intestinal homeostasis, and intestinal homeostasis can ensure the physiological phenotype of ILC3. If homeostasis is disturbed, ILC3 may participate in intestinal pathological changes. Therefore, regulating ILC3 and maintaining intestinal homeostasis are critical to the body.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Minjia Xie
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Fuyang Xiao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Chenyang Kong
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China.
| |
Collapse
|
21
|
Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol 2020; 11:249-272. [PMID: 32827707 PMCID: PMC7689184 DOI: 10.1016/j.jcmgh.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS TNFSF15 genetic variants leading to increased TNF superfamily member 15 (TNFSF15) expression confer risk for inflammatory bowel disease (IBD), and TNFSF15 is being explored as a therapeutic target in IBD patients. Although the focus for TNFSF15-mediated inflammatory outcomes has been predominantly on its action on T cells, TNFSF15 also promotes inflammatory outcomes in human macrophages. Given the critical role for macrophages in bacterial clearance, we hypothesized that TNFSF15 promotes antimicrobial pathways in human macrophages and that macrophages from TNFSF15 IBD risk carriers with higher TNFSF15 expression have an advantage in these antimicrobial outcomes. METHODS We analyzed protein expression, signaling, bacterial uptake, and intracellular bacterial clearance in human monocyte-derived macrophages through flow cytometry, enzyme-linked immunosorbent assay, and gentamicin protection. RESULTS Autocrine/paracrine TNFSF15 interactions with death receptor 3 (DR3) were required for optimal levels of pattern-recognition-receptor (PRR)-induced bacterial clearance in human macrophages. TNFSF15 induced pyruvate dehydrogenase kinase 1-dependent bacterial uptake and promoted intracellular bacterial clearance through reactive oxygen species, nitric oxide synthase 2, and autophagy up-regulation. The TNFSF15-initiated TNF receptor-associated factor 2/receptor-interacting protein kinase 1/RIP3 pathway was required for mitogen-activated protein kinase and nuclear factor-κB activation, and, in turn, induction of each of the antimicrobial pathways; the TNFSF15-initiated Fas-associated protein with death domain/mucosa-associated lymphoid tissue lymphoma translocation protein 1/caspase-8 pathway played a less prominent role in antimicrobial functions, despite its key role in TNFSF15-induced cytokine secretion. Complementation of signaling pathways or antimicrobial pathways restored bacterial uptake and clearance in PRR-stimulated macrophages where TNFSF15:DR3 interactions were inhibited. Monocyte-derived macrophages from high TNFSF15-expressing rs6478108 TT IBD risk carriers in the TNFSF15 region showed increased levels of the identified antimicrobial pathways. CONCLUSIONS We identify that autocrine/paracrine TNFSF15 is required for optimal PRR-enhanced antimicrobial pathways in macrophages, define mechanisms regulating TNFSF15-dependent bacterial clearance, and determine how the TNFSF15 IBD risk genotype modulates these outcomes.
Collapse
Affiliation(s)
- Rui Sun
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
22
|
Innate Lymphoid Cells Are Required for Endometrial Resistance to Chlamydia trachomatis Infection. Infect Immun 2020; 88:IAI.00152-20. [PMID: 32341118 DOI: 10.1128/iai.00152-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
In some women, sexually transmitted Chlamydia trachomatis may ascend to infect the endometrium, leading to pelvic inflammatory disease. To identify endometrial innate immune components that interact with Chlamydia, we introduced C. trachomatis into mouse endometrium via transcervical inoculation and compared the infectious yields in mice with and without immunodeficiency. Live C. trachomatis recovered from vaginal swabs or endometrial tissues peaked on day 3 and then declined in all mice with or without deficiency in adaptive immunity, indicating a critical role for innate immunity in endometrial control of C. trachomatis infection. Additional knockout of interleukin 2 receptor common gamma chain (IL-2Rγc) from adaptive immunity-deficient mice significantly compromised the endometrial innate immunity, demonstrating an important role for innate lymphoid cells (ILCs). Consistently, deficiency in IL-7 receptor alone, a common gamma chain-containing receptor required for ILC development, significantly reduced endometrial innate immunity. Furthermore, mice deficient in RORγt or T-bet became more susceptible to endometrial infection with C. trachomatis, suggesting a role for group 3-like ILCs in endometrial innate immunity. Furthermore, genetic deletion of gamma interferon (IFN-γ) but not IL-22 or antibody-mediated depletion of IFN-γ from adaptive immunity-deficient mice significantly compromised the endometrial innate immunity. Finally, depletion of NK1.1+ cells from adaptive immunity-deficient mice both significantly reduced IFN-γ and increased C. trachomatis burden in the endometrial tissue, confirming that mouse ILCs contribute significantly to endometrial innate immunity via an IFN-γ-dependent effector mechanism. It will be worth investigating whether IFN-γ-producing ILCs also improve endometrial resistance to sexually transmitted C. trachomatis infection in women.
Collapse
|
23
|
Evasion of Innate Lymphoid Cell-Regulated Gamma Interferon Responses by Chlamydia muridarum To Achieve Long-Lasting Colonization in Mouse Colon. Infect Immun 2020; 88:IAI.00798-19. [PMID: 31818961 DOI: 10.1128/iai.00798-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Revealing the mechanisms by which bacteria establish long-lasting colonization in the gastrointestinal tract is an area of intensive investigation. The obligate intracellular bacterium Chlamydia is known to colonize mouse colon for long periods. A colonization-deficient mutant strain of this intracellular bacterium is able to regain long-lasting colonization in gamma interferon (IFN-γ) knockout mice following intracolon inoculation. We now report that mice deficient in conventional T lymphocytes or recombination-activating gene (Rag) failed to show rescue of mutant colonization. Nevertheless, antibody depletion of IFN-γ or genetic deletion of interleukin 2 (IL-2) receptor common gamma chain in Rag-deficient mice did rescue mutant colonization. These observations suggest that colonic IFN-γ, responsible for inhibiting the intracellular bacterial mutant, is produced by innate lymphoid cells (ILCs). Consistently, depletion of NK1.1+ cells in Rag-deficient mice both prevented IFN-γ production and rescued mutant colonization. Furthermore, mice deficient in transcriptional factor RORγt, but not chemokine receptor CCR6, showed full rescue of the long-lasting colonization of the mutant, indicating a role for group 3-like ILCs. However, the inhibitory function of the responsible group 3-like ILCs was not dependent on the natural killer cell receptor (NCR1), since NCR1-deficient mice still inhibited mutant colonization. Consistently, mice deficient in the transcriptional factor T-bet only delayed the clearance of the bacterial mutant without fully rescuing the long-lasting colonization of the mutant. Thus, we have demonstrated that the obligate intracellular bacterium Chlamydia maintains its long-lasting colonization in the colon by evading IFN-γ from group 3-like ILCs.
Collapse
|