1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Barnett D, Thijs C, Mommers M, Endika M, Klostermann C, Schols H, Smidt H, Nauta A, Arts I, Penders J. Why do babies cry? Exploring the role of the gut microbiota in infantile colic, constipation, and cramps in the KOALA birth cohort study. Gut Microbes 2025; 17:2485326. [PMID: 40159147 PMCID: PMC11959906 DOI: 10.1080/19490976.2025.2485326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Gastrointestinal symptoms are common during infancy, including infantile colic. Colic can be loosely defined as prolonged and recurrent crying without obvious cause. The cause indeed remains unclear despite much research. Results on infant nutrition are inconclusive, but prior work has linked maternal mental health to infant crying. Recently, several small studies have described associations between gut microbiota and colic. We used a larger cohort to examine the role of the microbiota in infant gastrointestinal health, while also accounting for other biopsychosocial factors. Using fecal 16S rRNA gene amplicon sequencing data from 1,012 infants in the KOALA birth cohort, we examined associations between the 1-month gut microbiota and parent-reported functional gastrointestinal symptoms throughout infancy, including colic, constipation, and cramps. These analyses were adjusted for biopsychosocial factors that were associated with symptoms in a broader analysis involving 2,665 participants. In 257 infants, we also explored associations between breastmilk human milk oligosaccharides (HMOs) and gastrointestinal symptoms. Higher relative abundance of Staphylococcus at one month was associated with less constipation in the first three months of life. Conversely, Ruminococcus gnavus group abundance was associated with more colicky symptoms, particularly between four and seven months. Breastmilk concentrations of the HMOs lacto-N-hexaose (LNH) and lacto-N-neohexaose (LNnH) were associated with less constipation in the first three months. Our results support the conclusion that gut microbiota are relevant in infantile colic and constipation. However more work is needed to elucidate the underlying mechanisms, and explore their interplay with other relevant biopsychosocial factors such as maternal mental health.
Collapse
Affiliation(s)
- David Barnett
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Carel Thijs
- CAPHRI Care and Public Health Research Institute, Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Monique Mommers
- CAPHRI Care and Public Health Research Institute, Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Martha Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Cynthia Klostermann
- Department of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schols
- Department of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Arjen Nauta
- FrieslandCampina Ingredients, FrieslandCampina, Amersfoort, Netherlands
| | - Ilja Arts
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | - John Penders
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
3
|
Yang M, Jiang Z, Zhou L, Chen N, He H, Li W, Yu Z, Jiao S, Song D, Wang Y, Jin M, Lu Z. 3'-Sialyllactose and B. infantis synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis. Gut Microbes 2025; 17:2486512. [PMID: 40195063 PMCID: PMC11988227 DOI: 10.1080/19490976.2025.2486512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'-SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with Bifidobacterium infantis (B. infantis) for UC. The findings reveal that 3'-SL and B. infantis synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, B. infantis, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Mingzhi Yang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zipeng Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Lutong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Nana Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Huan He
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Wentao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zhixin Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Siming Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| |
Collapse
|
4
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Preidis GA. The neonatal gut microbiome in health and disease. Gut Microbes 2025; 17:2457499. [PMID: 39868670 PMCID: PMC11776465 DOI: 10.1080/19490976.2025.2457499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Affiliation(s)
- Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr 2025; 14. [DOI: 10.5409/wjcp.v14.i2.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND
Human milk oligosaccharides (HMOs) are bioactive components of breast milk with diverse health benefits, including shaping the gut microbiota, modulating the immune system, and protecting against infections. HMOs exhibit dynamic secretion patterns during lactation, influenced by maternal genetics and environmental factors. Their direct and indirect antimicrobial properties have garnered significant research interest. However, a comprehensive understanding of the secretion dynamics of HMOs and their correlation with antimicrobial efficacy remains underexplored.
AIM
To synthesize current evidence on the secretion dynamics of HMOs during lactation and evaluate their antimicrobial roles against bacterial, viral, and protozoal pathogens.
METHODS
A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library focused on studies investigating natural and synthetic HMOs, their secretion dynamics, and antimicrobial properties. Studies involving human, animal, and in vitro models were included. Data on HMO composition, temporal secretion patterns, and mechanisms of antimicrobial action were extracted. Quality assessment was performed using validated tools appropriate for study design.
RESULTS
A total of 44 studies were included, encompassing human, animal, and in vitro research. HMOs exhibited dynamic secretion patterns, with 2′-fucosyllactose (2′-FL) and lacto-N-tetraose peaking in early lactation and declining over time, while 3-fucosyllactose (3-FL) increased during later stages. HMOs demonstrated significant antimicrobial properties through pathogen adhesion inhibition, biofilm disruption, and enzymatic activity impairment. Synthetic HMOs, including bioengineered 2′-FL and 3-FL, were structurally and functionally comparable to natural HMOs, effectively inhibiting pathogens such as Pseudomonas aeruginosa , Escherichia coli , and Campylobacter jejuni . Additionally, HMOs exhibited synergistic effects with antibiotics, enhancing their efficacy against resistant pathogens.
CONCLUSION
HMOs are vital in antimicrobial defense, supporting infant health by targeting various pathogens. Both natural and synthetic HMOs hold significant potential for therapeutic applications, particularly in infant nutrition and as adjuncts to antibiotics. Further research, including clinical trials, is essential to address gaps in knowledge, validate findings, and explore the broader applicability of HMOs in improving maternal and neonatal health.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
7
|
Witte Castro A, Sanchez-Holgado M, Saenz de Pipaon M. Bioactive compounds in human milk. Curr Opin Clin Nutr Metab Care 2025; 28:243-249. [PMID: 39964743 DOI: 10.1097/mco.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Human milk is the optimal food choice for infants. Reviewing the latest advances in research about human milk compounds and their effect on health helps understand the benefits of breastfeeding and improves knowledge of key bioactive nutrients that can be used to improve feeding during infancy, with short and long-time effects on health. RECENT FINDINGS In the last years, it has been described how bioactive compounds such as Human milk oligosaccharides, hormones, lipids, cellular components and microbes play an important role in the infants' health, reducing the risk of infectious, metabolic and autoimmune diseases. The mechanisms of transmission from the mother to the infant of these bioactive compounds are not always well described, but there are several lines of research to understand the biological mechanisms of these beneficial effects. SUMMARY These findings may help improve research in maternal and infant interventions, the modifiable factors that are able to modulate human milk composition. They may help to improve the development of infant formulas and enhance nutritional plans. Also, human milk bioactive compounds identification and isolation may describe new ways of supplementation.
Collapse
Affiliation(s)
- Ariadna Witte Castro
- Department of Neonatology. La Paz University Hospital. Hospital La Paz. Institute for Health Research-IdIPAZ. Madrid, Spain
| | | | | |
Collapse
|
8
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Liu B, He N, Li H, Yang Z, Lin Y, Wu X, Zhang H, Zhang Z, Zhang Z, Tian Y, Wu Z, Zou Y, Peng J, Li S. 3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9637-9649. [PMID: 40230307 DOI: 10.1021/acs.jafc.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.
Collapse
Affiliation(s)
- Bei Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hui Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yichen Lin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Haoyan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zishuai Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yu Tian
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Zhinan Wu
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen 518083, China
| | - Jixing Peng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Liu H, Zeng Q, Zhu C, Zhang S, Chen X, Xu C, Yang R, Lyu X. High-Throughput Screening and Directed Evolution of β-1,3- N-Acetylglucosaminyltransferase for Enhanced LNnT Production in Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7966-7974. [PMID: 40108129 DOI: 10.1021/acs.jafc.5c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lacto-N-triose II (LNTII), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) are key neutral human milk oligosaccharides (HMOs) with significant physiological functions. In cell factory-based synthesis, glycosyltransferases are rate-limiting enzymes, enhancing the activity of which is, therefore, crucial for efficient synthesis of HMOs. To address this issue, we developed a high-throughput screening method based on a UDP-glucose regeneration-coupled colorimetric reaction. As a case study, we applied this screening method for the directed evolution of β-1,3-N-acetylglucosamine transferase in Saccharomyces cerevisiae (S. cerevisiae), resulting in a mutant strain that doubled LNnT production. Additionally, by enhancing the metabolic flux of the heterologous pathway, we further elevated the total LNnT titer to 1.29 g/L, setting a new record for LNnT production in S. cerevisiae. Our study demonstrates the effectiveness of the high-throughput screening method based on UDP-glucose regeneration-coupled disaccharide transferase colorimetric assay and provides a new strategy for improving the biosynthetic efficiency of HMOs that release UDP during the synthesis process.
Collapse
Affiliation(s)
- Han Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuqian Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chenlu Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Shiqi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xinqi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chenyu Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology, Wuxi 214200, China
| |
Collapse
|
11
|
Hojsak I, Dinleyici EC, van den Akker CHP, Domellöf M, Haiden N, Szajewska H, Vandenplas Y. Technical review by the ESPGHAN special interest group on gut microbiota and modifications on the health outcomes of infant formula supplemented with manufactured human milk oligosaccharides. J Pediatr Gastroenterol Nutr 2025. [PMID: 40123480 DOI: 10.1002/jpn3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025]
Abstract
This technical review, one of five developed by the European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) special interest group (SIG) on gut microbiota and modifications (GMM), supports the creation of a position paper on the use of biotic-supplemented formulas, including those containing human milk oligosaccharides (HMOs) produced through chemical synthesis or microbial biotechnology. Though these oligosaccharides are identical to the HMOs found in human milk, they do not originate from it. Therefore, we used human-identical milk oligosaccharides (HiMOs). This review focuses on the clinical outcomes related to the supplementation of infant formulas with these HiMOs. The ESPGHAN SIG-GMM conducted a systematic review to evaluate the clinical outcomes of HiMO-supplemented infant formulas in healthy infants (0-12 months) published before 2024. Six RCTs and two mechanistic substudies met the inclusion criteria and investigated different combinations of HiMOs added to the formula. The HiMOs studied so far show no difference compared to the control formula in outcomes such as: anthropometric data, regurgitation-related symptoms, crying, fussiness, or colic. A specific combination of five HMO-analogues (2'fucosyllactose [FL], 3-FL, lacto-N-tetraose [LNT], 3'-sialyllactose [SL], and 6'-SL) suggest a softer stool consistency and more frequent defecation in presumable healthy infants, but these studies also used the highest amount of HiMOs; however, the clinical relevance of this finding remains uncertain. Regarding infection prevention, no clear conclusion can be drawn. There was no difference in tolerability and no safety concerns were raised with the HiMO studied so far. This technical report serves as the background for formulating recommendations on the use of HiMOs-supplemented infant formula in healthy infants studied so far.
Collapse
Affiliation(s)
- Iva Hojsak
- Children's Hospital Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ener C Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkiye
| | - Chris H P van den Akker
- Department of Pediatrics - Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Magnus Domellöf
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | - Nadja Haiden
- Department of Neonatology, Kepler University Hospital, Linz, Austria
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Gonsalves J, Bauzá-Martinez J, Stahl B, Dingess KA, Mank M. Robust and High-Resolution All-Ion Fragmentation LC-ESI-IM-MS Analysis for In-Depth Characterization or Profiling of Up to 200 Human Milk Oligosaccharides. Anal Chem 2025; 97:5563-5574. [PMID: 40047520 PMCID: PMC11923967 DOI: 10.1021/acs.analchem.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Human milk oligosaccharides (HMOs) represent the third most abundant fraction of biomolecules in human milk (HM) and play a crucial role in infant health and development. The unique contributions of HMOs to healthy development of breast-fed infants are assumed to rely on the extraordinary complexity and diversity of HMO isomeric structures, which in turn still cause a huge analytical challenge. Many contemporary analytical methods aiming for more detailed HMO characterization combine ion mobility (IM) with LC-MS for enhanced structural resolution but are typically lacking the robustness necessary for application to HM cohorts with hundreds of samples. To overcome these challenges, we introduce a novel, robust all-ion fragmentation (AIF) LC-ESI-IM-MS method integrating four analytical dimensions: high-resolution LC separation, IM drift time, accurate mass precursor, and fragment ion measurements. This four-dimensional (4D) analytical characterization is sufficient for resolving various HMO structural isomers in an efficient way. Thereby, up to 200 HMO compounds with a maximum degree of polymerization of 13 could be simultaneously identified and relatively quantified. We devised two methods using this 4D analytical approach. One intended for in-depth characterization of multiple known but also novel HMO structures and the second is designed for robust, increased-throughput analyses. With the first approach, five trifucosyl-lacto-N-tetraose isomers (TF-LNTs), four of which were never detected before in HM, as well as additional difucosyl-lacto-N-heaose isomers (DF-LNHs), were revealed and structures fully elucidated by AIF and IM. This exemplifies the potential of our method for in-depth characterization of novel complex HMO structures. Furthermore, the increased-throughput method featuring a shorter LC gradient was applied to real-world HM samples. Here, we could differentiate the HM types I-IV based on a broader range of partly new marker HMOs. We could also derive valuable new insights into variations of multiple and rare HMOs up to DP 11 across lactational stages. Overall, our AIF LC-ESI-IM-MS approach facilitates in-depth monitoring and confident identification of a broad array of distinct and simple to very complex HMOs. We envision this robust AIF LC-ESI-IM-MS approach to advance HMO research by facilitating the characterization of a broad range of HMOs in high numbers of HM samples. This may help to further extend our understanding about HMOs structure-function relationships relevant for infants' healthy development.
Collapse
Affiliation(s)
- John Gonsalves
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | | | - Bernd Stahl
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology & Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelly A Dingess
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Marko Mank
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
13
|
Leong A, Pillidge C, Gill H. Antioxidant and Inflammation-Attenuating Ability of Human Milk, Infant Formulas and Their Oligosaccharides. Foods 2025; 14:960. [PMID: 40231981 PMCID: PMC11940991 DOI: 10.3390/foods14060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Human milk (HM) provides maximum health benefits for infants. This is due in part to the activity of its minor components, including HM proteins and oligosaccharides (HMOs). Where HM is unavailable, infant formulas (IFs) are normally used, the two most common types being cow milk- and goat milk-based formulas (CIF and GIF). The aim of this study was to compare the antioxidant properties of HM, CIF and GIF, together with those of their respective oligosaccharides (HMOs, CMOs and GMOs), using in vitro model systems. The ability of these oligosaccharides to attenuate inflammation (expression of IL-1α, TNFα, IL-6 and IL-8) was also assessed using a U937 cell culture model. Results showed that GIF and GMOs exhibited the highest antioxidant potential. The iron-reducing and iron-chelating properties of both IFs were comparable to those for HM, while the iron-chelating ability of the CMOs was lowest. None of the oligosaccharides significantly reduced U937 cytokine expression following induction of inflammation; however, GMOs consistently reduced expression of IL-1α, TNFα and IL-6 to a greater extent than the other oligosaccharides, presumably by competitive binding to immune receptors. In conclusion, GMOs have a greater antioxidant potential than CMOs and may have some inflammation-attenuating ability as well.
Collapse
Affiliation(s)
| | - Christopher Pillidge
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (A.L.); (H.G.)
| | | |
Collapse
|
14
|
Sawane K, Takahashi I, Ishikuro M, Takumi H, Orui M, Noda A, Shinoda G, Ohseto H, Onuma T, Ueno F, Murakami K, Higuchi N, Tanaka T, Furuyashiki T, Nakamura T, Koshiba S, Ohneda K, Kumada K, Ogishima S, Hozawa A, Sugawara J, Kuriyama S, Obara T. Association Between Human Milk Oligosaccharides and Early Adiposity Rebound in Children: A Case-Control Study of the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. J Nutr 2025:S0022-3166(25)00150-6. [PMID: 40058699 DOI: 10.1016/j.tjnut.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Adiposity rebound (AR) is the point when the BMI begins to rise again during early childhood. Early AR (before age 5) is associated with higher risk of lifelong obesity and metabolic disorders and may be influenced by breastfeeding. Although human milk oligosaccharides (HMOs) in breast milk are crucial for child growth, their association with AR status has not been studied. OBJECTIVES This study aimed to explore the association between breast milk HMOs and AR status in children. METHODS In this case-control study, we included 184 mother-child pairs from the Tohoku Medical Megabank Project Birth and Three-Generation (TMM BirThree) Cohort Study (93 AR cases, 91 controls). Breast milk was collected 1 mo postpartum, and the concentration of 15 HMO molecules and α-diversity index (Inverse Simpson index) were quantified. Wilcoxon rank-sum test and partial least squares-discriminant analysis identified candidate HMOs, and multivariable logistic regression analysis evaluated associations between candidate HMOs and AR status. Analyses were stratified by maternal secretor status (secretor or nonsecretor). RESULTS In secretor mothers, multivariable logistic regression showed that the inverse Simpson index [odds ratio (OR): 0.54; 95% CI: 0.36, 0.82), the sum of sialic acid-bound HMOs (OR: 0.61; 95% CI: 0.41, 0.91), and 3'-sialyllactose (OR: 0.67; 95% CI: 0.46, 0.98) were inversely associated with early AR in the fully adjusted model. A trend of interaction between sialyl-lacto-N-tetraose-a (LSTa) and maternal secretor status regarding AR was observed in the fully adjusted model (P-interaction = 0.051). CONCLUSIONS α-Diversity, sialic acid-bound HMOs, and 3'-sialyllactose may involved in inhibiting AR in children of secretor mothers, and a trend of interactive effect between LSTa and maternal secretor status regarding AR is indicated. These findings offer novel perspectives on the associations between breastfeeding and a childhood adiposity as well as potential metabolic disorders later in life. This trial is registered at https://www.umin.ac.jp/ as UMIN000047160.
Collapse
Affiliation(s)
| | - Ippei Takahashi
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Masatsugu Orui
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Aoi Noda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Genki Shinoda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hisashi Ohseto
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomomi Onuma
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihiko Ueno
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | | | | | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Faculty of Data Science, Kyoto Women's University, Kyoto, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Kinuko Ohneda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuki Kumada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Personalized Prevention and Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Disaster Public Health, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
15
|
Ghith A, Maleki R, Grzeskowiak LE, Amir LH, Ingman WV. Challenges and Opportunities in Quantifying Bioactive Compounds in Human Breastmilk. Biomolecules 2025; 15:325. [PMID: 40149861 PMCID: PMC11940641 DOI: 10.3390/biom15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Breastmilk is a complex biological fluid containing over a thousand bioactive proteins, lipids, cells and small molecules that provide nutrition and immunological protection for infants and children. The composition of breastmilk is unique to each individual and can also vary within individuals according to breastfeeding duration, maternal health, time of day, and other factors. As such, the composition of breastmilk can be considered a "fingerprint" that could be interrogated to identify biomarkers of breast health and disease. However, accurate quantification of bioactive components in breastmilk remains a significant challenge. Approaches such as immunoassays and mass spectrometry have been largely applied to study blood or other biological fluids and require validation and optimisation before these techniques can be used to accurately quantify bioactive compounds in breastmilk. Development of protocols specific to breastmilk should be carried out with high precision, confidence, and sensitivity. This review explores the challenges and opportunities associated with different techniques for quantification of breastmilk bioactive components.
Collapse
Affiliation(s)
- Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Reza Maleki
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Luke E. Grzeskowiak
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia;
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Lisa H. Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, VIC 3086, Australia;
- Breastfeeding Service, The Royal Women’s Hospital, Parkville, VIC 3050, Australia
| | - Wendy V. Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
16
|
Li N, Yan S, Xia H, Fang Y, Niu K, Li G, Xu Z, Sun Y, Xu H, Xu X. Metabolic Engineering of Escherichia coli BL21(DE3) for 2'-Fucosyllactose Synthesis in a Higher Productivity. ACS Synth Biol 2025; 14:441-452. [PMID: 39815725 DOI: 10.1021/acssynbio.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL. Here, we aimed to construct a recombinant E. coli BL21(DE3) strain for the hyperproduction of 2'-FL. Initially, multicopy genomic integration and expression of the lactose permease gene lacY reduced the formation of byproducts. Furthermore, a more efficient Shine-Dalgarno sequence was used to replace the wild-type sequence in the manC-manB and gmd-wcaG gene clusters, which significantly increased the 2'-FL titer. Based on these results, we overexpressed the sugar efflux transporter SetA and knocked out the pgi gene. This further improved 2'-FL synthesis when glycerol was used as the sole carbon source. Finally, a new α-1,2-fucosyltransferase was identified in Neisseria sp., which exhibited a higher capacity for 2'-FL production. Fed-batch fermentation produced 141.27 g/L 2'-FL in 45 h with a productivity of 3.14 g/L × h. This productivity rate achieved the highest recorded 2'-FL levels, indicating the potential of engineered E. coli BL21 (DE3) strains for use in the industrial production of 2'-FL.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Saifeng Yan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongzhi Xia
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Yin Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kun Niu
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Guyue Li
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Zheng Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2025; 64:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
18
|
Cai R, Zhang J, Song Y, Liu X, Xu H. Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria. Nutrients 2025; 17:519. [PMID: 39940377 PMCID: PMC11820314 DOI: 10.3390/nu17030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of this study was to investigate the degradation mechanism of Bifidobacterium on breast milk oligosaccharides (HMOs) and its application in infant nutrition. The composition and characteristics of HMOs were introduced, and the degradation mechanism of HMOs by Bifidobacterium was described, including intracellular and extracellular digestion and species-specific differences. The interaction between Bifidobacterium and Bacteroides in the process of degrading HMOs and its effect on intestinal microecology were analyzed. The effects of HMO formula milk powder on the intestinal microbiota of infants were discussed, including simulating breast milk composition, regulating intestinal flora and immune function, infection prevention, and brain development. Finally, the research results are summarized, and future research directions are proposed to provide directions for research in the field of infant nutrition.
Collapse
Affiliation(s)
| | | | | | - Xiaoyong Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (R.C.); (J.Z.); (Y.S.)
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (R.C.); (J.Z.); (Y.S.)
| |
Collapse
|
19
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
20
|
Deflorin N, Ehlert U, Amiel Castro RT. Associations of Maternal Salivary Cortisol and Psychological Symptoms With Human Milk's Microbiome Composition. BIOPSYCHOSOCIAL SCIENCE AND MEDICINE 2025; 87:33-45. [PMID: 39701568 DOI: 10.1097/psy.0000000000001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Human milk (HM) is considered the best source of infant nutrition with many benefits for the infant. However, pregnancy changes can lead to increased stress in some women, which might affect HM composition. Although studies have demonstrated a link between maternal psychopathology and child development, it remains unclear how maternal psychobiological changes can be intergenerationally transmitted. We aimed to investigate the associations of maternal stress, depressive symptoms, and anxiety symptoms with the HM microbiome; to analyze these parameters in relation to HM glucocorticoid concentrations; and to explore the influence of HM glucocorticoids on HM bacterial composition. METHODS One hundred women completed psychological questionnaires (e.g., EPDS, STAI, GAS) at 34-36 weeks' gestation and in the early postpartum period and provided saliva at 34-36 and 38 weeks' gestation. HM samples were collected in the early postpartum. Microbiota were analyzed using 16S rRNA amplicon sequencing. RESULTS Birth anxiety was negatively correlated with Alphaproteobacteria (τ = -0.20, FDR = 0.01), whereas in the postpartum period, anxiety symptoms were negatively correlated with different taxa. The sum of postpartum-related symptoms was linked to lower Propionibacteriales. Salivary cortisol AUCg at 34-36 weeks was negatively correlated with Stenotrophomonas (τ = -0.24, FDR = 0.05), whereas HM cortisol was positively correlated with Streptococcus mitis (τ = 0.26, FDR = 0.03) and Gemella haemolysans (τ = 0.24, FDR = 0.02). No associations emerged between psychobiological parameters and HM glucocorticoids. CONCLUSIONS Higher perinatal psychological symptoms and prenatal salivary cortisol AUCg were associated with lower relative abundances of different bacteria, whereas higher HM cortisol was linked to higher Gemella and Streptococcus. These findings suggest a negative association between high maternal psychobiological symptoms and relative abundances of the milk microbiota.
Collapse
Affiliation(s)
- Nadia Deflorin
- From the Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
21
|
Chen G, Chen L, Wang H, Zhang J, Sun X, Chen X, Fan J, Jia Z, Huang Y. 1H Nuclear Magnetic Resonance-Based Metabolomic Profiling and Comparison of Human Milk across Different Lactation Stages in Secretors and Nonsecretors: A Study of Chinese Lactating Women. J Nutr 2025; 155:78-86. [PMID: 39491676 DOI: 10.1016/j.tjnut.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and other milk-derived metabolites are crucial for infant health, influencing gut microbiota and overall development. OBJECTIVE This study aimed to uncover insights into the variations of HMOs and non-HMO metabolites based on secretor (Se) status, lactation time, mode of delivery, and infant sex. METHODS An exploratory cross-sectional study was designed to compare the concentrations of HMOs and non-HMOs metabolites in milk samples from 129 lactating Chinese women within 1 y postpartum. Nuclear magnetic resonance analysis was employed for the identification and quantification of the metabolites. The metabolites measured were grouped into sugars, free amino acids, fatty acids, and metabolites related to energy metabolism. The influences of delivery mode and infant sex on milk metabolite composition were explored. RESULTS Uniform Manifold Approximation and Projection analysis of HMOs profiles revealed distinct clustering based on Se status, with significant differences in 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) concentrations observed between Se+ and Se- groups. A decreasing trend for 2'-FL and 6'-sialyllactose concentrations, along with an increase in 3-FL concentrations, was observed with increasing lactating period within 12 mo postpartum. Non-HMOs metabolite analysis indicated that Se status only affected glutamate concentrations. An increase in glutamine concentrations was observed 3-9 mo postpartum. A continuous increase in o-phosphocholine concentrations was noted in 12 mo postpartum, along with reductions in citrate and sn-glycero-phosphocholine concentrations. Delivery mode and infant sex did not affect both HMOs and non-HMOs concentrations. CONCLUSIONS Metabolomic analysis of human milk reveals significant variation of HMOs, but not in non-HMOs, based on Se status. Changes in certain HMOs and non-HMOs concentrations were also observed over the 1 y of lactation. Understanding how these metabolites change over time may influence recommendations for maternal diet, supplementation, and the timing of breastfeeding to ensure optimal nutrient delivery to the infant.
Collapse
Affiliation(s)
- Guixia Chen
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Lifeng Chen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Huiya Wang
- Department of Clinic, Department of Pediatrics, Women and Children's Hospital, School of Mecicine, Xiamen University, Xiamen, China
| | - Jiyong Zhang
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoling Sun
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Jianxia Fan
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiwei Jia
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yinying Huang
- Department of Nursing, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
23
|
Pu P, Zheng J, Qiao M, Yang L, Tong A, Zhu X, Zhang X. Engineered β1-3- N-Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28019-28027. [PMID: 39641599 DOI: 10.1021/acs.jafc.4c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.
Collapse
Affiliation(s)
- Pei Pu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anqi Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
25
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
26
|
Zhang P, Yue X, Yan E, He L, Wan B, Zhang X, Yin J. Maternal Intake of Laminarin Improves Infant Growth and Health by Fortifying Metabolite Profiles of Colostrum and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26178-26188. [PMID: 39542438 PMCID: PMC11613986 DOI: 10.1021/acs.jafc.4c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Laminarin mainly consists of fucoidan, a unique, naturally active sulfate polysaccharide. Laminarin is known for its outstanding multiple bioactives, but its role in lactation remains largely unknown. Therefore, this study aimed to explore the influence of maternal intake of laminarin on lactation and infant health in a porcine model. A total of 20 sows of parity 6.85 ± 0.88 with similar comprehensive scores were randomly allocated to two dietary treatments to receive a basal diet with/without supplementary laminarin. We showed that maternal intake of laminarin improved the antioxidant capacity and intestinal barrier function of the offspring, alleviated the inflammatory response, and facilitated infant growth and health. Mechanistically, maternal consumption of laminarin significantly modified the metabolite profiles of colostrum and milk. We also demonstrated in a vitro study that coniferyl aldehyde, a representative differential milk metabolite, enhanced antioxidant capacity and tight junction protein expression levels in intestinal epithelial cells. In summary, maternal intake of laminarin facilitated offspring health and growth by fortifying milk metabolites.
Collapse
Affiliation(s)
| | | | - Enfa Yan
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Bencivenni S, Brigidi P, Zannoni A, Ventrella D, Elmi A, Bacci ML, Forni M, D'Amico F, Turroni S. Göttingen Minipigs as a Model for Assessing the Impact of Drugs on the Gut and Milk Microbiota-A Preliminary Study. Nutrients 2024; 16:4060. [PMID: 39683454 DOI: 10.3390/nu16234060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Early gut microbiota (GM) dysbiosis can affect a child's health and has been linked to the onset of pathologies later in life. Breast milk is recognized as a major driver of the structure and dynamics of an infant's GM. In addition to nutritious and prebiotic compounds, milk contains a microbiota that is shaped by several maternal factors, including gut microorganisms and medications. However, the impact of the latter on the milk microbiota is still largely unknown. Here, we investigated the effects of amoxicillin on the milk microbiota and GM of lactating Göttingen Minipigs sows, a promising model for studying medication transfer during lactation. METHODS Three sows were given amoxicillin (7 mg/kg/day) for three weeks starting from the second week after farrowing. Fecal and milk samples were collected before and after treatment and profiled by 16S rRNA amplicon sequencing. RESULTS Göttingen Minipigs' milk microbiota showed similarities to that of humans and conventional sows, with minor compositional shifts after treatment. At the genus level, we observed a decrease in Staphylococcus and o_Bacteroidales;Other;Other, and an increasing trend in the abundance of Streptococcus, Stenotrophomonas, f_Rhodobacteraceae;Other, Proteiniclasticum, f_Propionibacteriaceae;Other and Gemella. In contrast, as expected, the GM was strongly affected by amoxicillin, even at the phylum level. CONCLUSIONS In addition to demonstrating the relevance of Göttingen Minipigs as a valid model for studying the impact of medications on maternal milk and GM, our findings suggest that the milk microbiota may be more stable during antibiotic treatment than the GM.
Collapse
Affiliation(s)
- Silvia Bencivenni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, 40126 Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, 40126 Bologna, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, 40126 Bologna, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, 40126 Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, 40126 Bologna, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
28
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
29
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
30
|
Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of Bifidobacterium spp. from breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int 2024; 196:115092. [PMID: 39614508 DOI: 10.1016/j.foodres.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Breast milk is the best source of nutrition for infants. Human milk oligosaccharides (HMOs) and the corresponding HMOs-consuming Bifidobacterium positively influence infant health. This study aims to isolate and characterize Bifidobacterium from breast milk of healthy Chinese mothers, identifying the most efficacious strains for inclusion in simulated maternal milk formulas. Nine Bifidobacterium strains (two of B. breve and seven of B. infantis) were isolated, exhibiting a broad spectrum of probiotic potential. This included tolerance to simulated infant gastrointestinal conditions, notable adhesion, antibacterial, antioxidant activities, and HMOs utilization ability. Lacto-N-Tetraose (LNT) is preferred in early growth among Bifidobacterium isolates. B. breve showed a preference for LNT, whereas B. infantis showed a preference for fucosylated HMOs, and displayed reduced utilization of sialylated HMOs. They also exhibited robust safety profiles, including no hemolytic activity, an appropriate D/L lactate-producing ratio, and non-toxicity in an acute oral toxicity assay on mice. It is noteworthy that B. breve N-90, O-147, B. infantis O-161 and R-1 exhibited anti-inflammatory effects in LPS-induced RAW 264.7 cells. Specifically, a notable reduction in TNF-α levels was observed in pre-treatment, while a decrease in IL-1β and IL-6 levels in co-treatment. B. breve N-90 and B. infantis R-1 were identified finally as promising probiotic candidates. Their whole-genome sequencing analysis confirmed presence of functional genes associated with gastrointestinal colonization, antioxidation, and glycoside hydrolase activity on HMOs. The annotation for antibiotic resistance and virulence genes concurred with phenotypes, further validating the safety. Breast milk is a good source for Bifidobacteria isolation, while Bifidobacteria utilize HMOs in a strain-dependent manner. The two selected strains, B. breve N-90 and B. infantis R-1, are potential candidates for inclusion in simulated maternal milk formulas and deserved further in vivo investigation for their health-promoting effects.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianhui Mo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Feng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiale Qin
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanghong Su
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Qiang Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Hui Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
31
|
Conboy-Stephenson R, Ross RP, Kelly AL, Stanton C. Donor human milk: the influence of processing technologies on its nutritional and microbial composition. Front Nutr 2024; 11:1468886. [PMID: 39555198 PMCID: PMC11563987 DOI: 10.3389/fnut.2024.1468886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Human milk is regarded as the gold standard nutrition for newborn infants, providing all nutrients required for adequate growth and development from birth to 6 months. In addition, human milk is host to an array of bioactive factors that confer immune protection to the newborn infant. For this reason, the supply of human milk is crucial for premature, seriously ill, or low birth weight infants (<1,500 g). When a mother's own milk is unavailable, donor human milk is the recommended alternative by the World Health Organization. Prior to consumption, donor human milk undergoes pasteurization to ensure the eradication of bacterial agents and prevent the transfer of potentially pathogenic organisms. Currently, Holder Pasteurization, a heat-based treatment, is the widely adopted pasteurization technique used by milk banks. Holder pasteurization has demonstrated degradative effects on some of milk's biologically active factors, thus depleting critical bioactive agents with known functional, protective, and beneficial properties, ultimately reducing the immunoprotective value of donor human milk. As a result, alternative strategies for the processing of donor human milk have garnered much interest. These include thermal and non-thermal techniques. In the current review, we describe the effects of Holder pasteurization and alternative milk processing technologies on the nutritional and bioactive properties of milk. In addition, the capacity of each technique to ensure microbial inactivation of milk is summarized. These include the most extensively studied, high-temperature short-time and high-pressure processing, the emerging yet promising techniques, microwave heating and UV-C irradiation, and the lesser studied technologies, thermoultrasonication, retort processing, pulsed electric field, and gamma irradiation. Herein, we collate the findings of studies, to date, to allow for greater insight into the existing gaps in scientific knowledge. It is apparent that the lack of a cohesive standardized approach to human milk processing has resulted in contrasting findings, preventing a direct comparative analysis of the research. We conclude that donor human milk is a unique and valuable resource to the health sector, and although substantial research has been completed, persistent data disparities must be overcome to ensure optimal nutrition for the vulnerable newborn preterm infant group, in particular.
Collapse
Affiliation(s)
- Ruth Conboy-Stephenson
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Sanchez-Gallardo R, Bottacini F, O’Neill IJ, Esteban-Torres M, Moore R, McAuliffe FM, Cotter PD, van Sinderen D. Selective human milk oligosaccharide utilization by members of the Bifidobacterium pseudocatenulatum taxon. Appl Environ Microbiol 2024; 90:e0064824. [PMID: 39315793 PMCID: PMC11497806 DOI: 10.1128/aem.00648-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are essentially unaffected by the digestive enzymes of the nursling and are known for their ability to enrich certain microbial species in the infant gut microbiota, in particular bifidobacteria. HMO metabolism has been studied in various bifidobacterial species such as B. breve, B. bifidum, and B. longum subsp. infantis. In the current study, we describe differential growth abilities elicited by twenty-three newly isolated Bifidobacterium pseudocatenulatum strains on particular HMOs, such as 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT). Through gene-trait matching and comparative genome analysis, we identified genes involved in the degradation of fucosylated HMOs in this strain set, while we employed a transcriptomic approach to facilitate the identification and characterization of genes and associated enzymes involved in LNT metabolism by strain B. pseudocatenulatum MM0196. A total of 252 publicly available genomes of the B. pseudocatenulatum taxon were screened for homologs of the glycosyl hydrolases (GHs) identified here as being required for selected HMO metabolism. From this analysis, it is clear that all members of this species possess homologs of the genes involved in LNT degradation, while genes required for degradation of fucosylated HMOs are variably present.IMPORTANCEOur findings allow a better understanding of the complex interaction between Bifidobacterium and its host and provide a roadmap toward future applications of B. pseudocatenulatum as a probiotic with a focus on infant health. Furthermore, our investigations have generated information on the role of HMOs in shaping the infant gut microbiota, thus also facilitating applications of HMOs in infant nutrition, with potential extension into the mature or adult gut microbiota. Supplementation of HMOs is known to result in the modulation of bacterial communities toward a higher relative abundance of bifidobacteria, which in turn enforces their ability to modulate particular immune functions and strengthen the intestinal barrier. This work may therefore inspire future studies to improve the formulation of neonatal nutritional products, aimed at facilitating the development of a healthy digestive and immune system and reducing the differences in gut microbiota composition observed between breastfed and formula-fed babies or full-term and preterm infants.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences and ADAPT, Munster Technological University, Cork, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
34
|
Ottino-González J, Adise S, Machle CJ, Mokhtari P, Holzhausen EA, Furst A, Yonemitsu C, Alderete TL, Bode L, Peterson BS, Goran MI. Consumption of different combinations of human milk oligosaccharides in the first 6 mo of infancy is positively associated with early cognition at 2 y of age in a longitudinal cohort of Latino children. Am J Clin Nutr 2024; 120:593-601. [PMID: 39059708 PMCID: PMC11393400 DOI: 10.1016/j.ajcnut.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lactation has been widely associated with optimal neurocognitive development, but the underlying mechanism remains unknown. Human milk oligosaccharides (HMOs) are complex sugars that support brain development, but previous studies examining their associations with cognition have yielded inconsistent findings. OBJECTIVES This study aimed to provide a broader understanding of how HMOs jointly influence cognition. METHODS We used data from an ongoing longitudinal cohort of Latino mother-infant dyads. Human milk samples from 1 mo (n = 157) and 6 mo (n = 107) postpartum were assessed for the 19 most abundant HMOs. Cognitive performance was assessed at 2 y using the Bayley Scale of Infant and Toddler Development. A partial least squares model identified HMO combinations predictive of cognitive scores. RESULTS At 1 mo, the combination of higher concentrations of lacto-N-neotetraose (LNnT), lacto-N-tetraose (LNT), lacto-N-fucopentaose (LNFP)-III, 6'-sialyllactose, and 2'-fucosyllactose (FL) with lower concentrations of sialyllacto-N-tetraose (LST) b, LNFP-II, fucodisialyllacto-N-hexaose, and 3-FL significantly predicted higher cognitive scores (β: 0.61; 95% confidence interval [CI]: 0.30, 0.92), explaining an additional 8% of the variance over a model with only nuisance covariates (11%). Additional analyses revealed that the combination of higher LNFP-III and lower LSTb alone explained 5% more of the variation in cognitive scores (β: 0.66; 95% CI: 0.24, 1.09). At 6 mo (n = 107), higher LNnT, LNT, and LNFP-III and lower 3FL and LSTb concentrations explained an extra 6% of the variance in cognitive scores (β: 0.43; 95% CI: 0.12, 0.75). CONCLUSIONS This study highlights specific HMO combinations in early life influencing cognitive performance at 2 y.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Pari Mokhtari
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Bradley S Peterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
35
|
Azarmi M, Seyed Toutounchi N, Hogenkamp A, Thijssen S, Overbeek SA, Garssen J, Folkerts G, Van't Land B, Braber S. Human Milk Oligosaccharides in Combination with Galacto- and Long-Chain Fructo-Oligosaccharides Enhance Vaccination Efficacy in a Murine Influenza Vaccination Model. Nutrients 2024; 16:2858. [PMID: 39275175 PMCID: PMC11397401 DOI: 10.3390/nu16172858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Early-life nutrition significantly impacts vaccination efficacy in infants, whose immune response to vaccines is weaker compared to adults. This study investigated vaccination efficacy in female C57Bl/6JOlaHsd mice (6 weeks old) fed diets with 0.7% galacto-oligosaccharides (GOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1), 0.3% human milk oligosaccharides (HMOS), or a combination (GFH) for 14 days prior to and during vaccination. Delayed-type hypersensitivity (DTH) was measured by assessing ear swelling following an intradermal challenge. Influvac-specific IgG1 and IgG2a levels were assessed using ELISAs, while splenic T and B lymphocytes were analyzed for frequency and activation via flow cytometry. Additionally, cytokine production was evaluated using murine splenocytes co-cultured with influenza-loaded dendritic cells. Mice on the GFH diet showed a significantly enhanced DTH response (p < 0.05), increased serological IgG1 levels, and a significant rise in memory B lymphocytes (CD27+ B220+ CD19+). GFH-fed mice also exhibited more activated splenic Th1 cells (CD69+ CXCR3+ CD4+) and higher IFN-γ production after ex vivo restimulation (p < 0.05). These findings suggest that GOS/lcFOS and HMOS, particularly in combination, enhance vaccine responses by improving memory B cells, IgG production, and Th1 cell activation, supporting the potential use of these prebiotics in infant formula for better early-life immune development.
Collapse
Affiliation(s)
- Mehrdad Azarmi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia A Overbeek
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Belinda Van't Land
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
- Department of Pediatric Immunology, Wilhelmina Children Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| |
Collapse
|
36
|
Herrera-Quintana L, Vázquez-Lorente H, Hinojosa-Nogueira D, Plaza-Diaz J. Relationship between Infant Feeding and the Microbiome: Implications for Allergies and Food Intolerances. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1030. [PMID: 39201963 PMCID: PMC11353207 DOI: 10.3390/children11081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Childhood is a critical period for immune system development, which is greatly influenced by the gut microbiome. Likewise, a number of factors affect the gut microbiome composition and diversity, including breastfeeding, formula feeding, and solid foods introduction. In this regard, several studies have previously demonstrated that breastfeeding promotes a favorable microbiome. In contrast, formula feeding and the early incorporation of certain solid foods may adversely affect microbiome development. Additionally, there is increasing evidence that disruptions in the early microbiome can lead to allergic conditions and food intolerances. Thus, developing strategies to promote optimal infant nutrition requires an understanding of the relationship between infant nutrition and long-term health. The present review aims to examine the relationship between infant feeding practices and the microbiome, as well as its implications on allergies and food intolerances in infants. Moreover, this study synthesizes existing evidence on how different eating habits influence the microbiome. It highlights their implications for the prevention of allergies and food intolerances. In conclusion, introducing allergenic solid foods before six months, alongside breastfeeding, may significantly reduce allergies and food intolerances risks, being also associated with variations in gut microbiome and related complications.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), 29590 Málaga, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
37
|
Du Z, Li Z, Guang C, Zhu Y, Mu W. Recent advances of 3-fucosyllactose in health effects and production. Arch Microbiol 2024; 206:378. [PMID: 39143417 DOI: 10.1007/s00203-024-04104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Human milk oligosaccharides (HMOs) have been recognized as gold standard for infant development. 3-Fucosyllactose (3-FL), being one of the Generally Recognized as Safe HMOs, represents a core trisaccharide within the realm of HMOs; however, it has received comparatively less attention in contrast to extensively studied 2'-fucosyllactose. The objective of this review is to comprehensively summarize the health effects of 3-FL, including its impact on gut microbiota proliferation, antimicrobial effects, immune regulation, antiviral protection, and brain maturation. Additionally, the discussion also covers the commercial application and regulatory approval status of 3-FL. Lastly, an organized presentation of large-scale production methods for 3-FL aims to provide a comprehensive guide that highlights current strategies and challenges in optimization.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Cagnoni AJ, Massaro M, Cutine AM, Gimeno A, Pérez-Sáez JM, Manselle Cocco MN, Maller SM, Di Lella S, Jiménez-Barbero J, Ardá A, Rabinovich GA, Mariño KV. Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand. J Biol Chem 2024; 300:107573. [PMID: 39009340 PMCID: PMC11367503 DOI: 10.1016/j.jbc.2024.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as β-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mora Massaro
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián M Maller
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Di Lella
- Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
39
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
40
|
Li P, Chen P, Zheng Y, Suo G, Shen F, Li H, Zhong X, Chen X, Wu Y. Enhancement of motor neuron development and function in zebrafish by sialyllacto-N-tetraose b. Transl Pediatr 2024; 13:1201-1209. [PMID: 39144427 PMCID: PMC11319995 DOI: 10.21037/tp-24-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Sialyllacto-N-tetraose b (LSTb) is a component of human milk oligosaccharides. Due to its low concentration, the impact of LSTb on neurodevelopment remains largely unexplored. It is worth studying whether LSTb should be added to infant formula to simulate breast milk. This study aimed to investigate the effect of LSTb on the development of motor neurons of the central nervous system using a transgenic zebrafish model. Methods Transgenic (Tg) zebrafish line (Hb9:GFP) was incubated with LSTb, and the axonal growth of caudal primary (CaP) neurons was assessed. Locomotor behavior was evaluated, and RNA sequencing (RNA-seq) was performed to identify the differentially expressed genes (DEGs). The expression of Slit2 and Slit3, genes involved in axon guidance, was further analyzed through real-time polymerase chain reaction (real-time PCR) and whole-mount in situ hybridization. Results There was a significant increase in the number and length of CaP axon branches, suggesting that LSTb promotes CaP development. Behavioral analysis revealed enhanced locomotor activity in LSTb-treated larvae, indicating improved motor function. RNA-seq analysis identified 5,847 DEGs related to central nervous system neuron differentiation, including Slit2 and Slit3, which are known to contribute to axon guidance. In situ hybridization confirmed increased Slit2 expression in the central nervous system of LSTb-treated larvae. Conclusions LSTb significantly influences motor neuron development, potentially through the upregulation of Slit2 and Slit3. This research provides valuable insights into the role of LSTb in neurodevelopment.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pediatrics, Rugao People’s Hospital, Rugao, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Guihai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifei Shen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiuli Zhong
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinwei Chen
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
41
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
42
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
43
|
Das D, Thimjo J, Lebena A, Guo A, Enerbäck C, Ludvigsson J. Breastfeeding decreases the risk of developing psoriasis through to early adulthood. Br J Dermatol 2024; 191:65-74. [PMID: 38305572 DOI: 10.1093/bjd/ljae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Psoriasis is a genetically determined systemic skin disease, although environmental trigger factors are required for disease manifestation. Some of these triggers, such as stress, infections and drug exposure, have been identified. OBJECTIVES To explore the role of early nutrition as a risk factor for the development of psoriasis. METHODS Parents in the All Babies in Southeast Sweden (ABIS) prospective birth cohort (n = 16 415) answered questionnaires at birth and when their children were aged 1 and 3 years. A diagnosis of psoriasis was determined from the Swedish National Patient Register and National Drug Prescription Register. Statistical analyses were conducted using custom-written R scripts. RESULTS Individuals breastfed for < 4 months and who received infant formula before 4 months of age had a higher risk of psoriasis [odds ratio (OR) 1.84 (P = 0.02) and OR 1.88 (P = 0.02), respectively]. At the 3-year follow-up, the increased consumption of fish, especially from the Baltic Sea, increased the risk of psoriasis (OR 9.61; P = 0.003). In addition, the risk of psoriasis increased following the consumption of a large volume of milk (OR 2.53; P = 0.04). CONCLUSIONS Our study underscores, for the first time, the impact of very early nutrition on the manifestation of psoriasis through early adulthood. Exclusive breastfeeding for 4 months appears to be protective.
Collapse
Affiliation(s)
| | | | | | - Annie Guo
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
Mokhtari P, Schmidt KA, Zamanian H, Babaei M, Machle CJ, Trifonova D, Alderete TL, Holzhausen EA, Ottino-González J, Chalifour BN, Jones RB, Furst A, Yonemitsu C, Bode L, Goran MI. Maternal Diet Associated with Oligosaccharide Abundances in Human Milk from Latina Mothers. Nutrients 2024; 16:1795. [PMID: 38931150 PMCID: PMC11206877 DOI: 10.3390/nu16121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Growing evidence indicates that human milk oligosaccharides (HMOs) are important bioactive compounds that enhance health and developmental outcomes in breastfed babies. Maternal dietary intake likely contributes to variation in HMO composition, but studies identifying diet-HMO relationships are few and inconsistent. This study aimed to investigate how the maternal intake of macronutrients and micronutrients-specifically proteins, fats, vitamins, and minerals-associated with HMOs at 1 month (n = 210), 6 months (n = 131), and 12 months postpartum (n = 84). Several associations between maternal dietary factors and HMO profiles were identified utilizing partial correlation analysis. For example, maternal free sugar (rho = -0.02, p < 0.01), added sugar (rho = -0.22, p < 0.01), and sugary sweetened beverage (rho = -0.22, p < 0.01) intake were negatively correlated with the most abundant HMO, 2'-fucosyllactose (2'-FL), at 1 month, suggesting that higher sugar consumption was associated with reduced levels of 2'-FL. Further, vitamins D, C, K, and the minerals zinc and potassium were positively correlated with 2'-FL at 1 month (pAll < 0.05). For the longitudinal analysis, a mixed-effects linear regression model revealed significant associations between maternal vitamin intake and HMO profiles over time. For example, for each unit increase in niacin intake, there was a 31.355 nmol/mL increase in 2'-FL concentration (p = 0.03). Overall, the results provide additional evidence supporting a role for maternal nutrition in shaping HMO profiles, which may inform future intervention strategies with the potential of improving infant growth and development through optimal HMO levels in mothers' milk.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Hashem Zamanian
- The Saban Research Institute (TSRI) Data Science, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Christopher J. Machle
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Diana Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Jonatan Ottino-González
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Roshonda B. Jones
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| |
Collapse
|
45
|
Mulinge MM, Abisi HK, Kabahweza HM, Okutoyi L, Wamalwa DC, Nduati RW. The Role of Maternal Secretor Status and Human Milk Oligosaccharides on Early Childhood Development: A Systematic Review and Meta-Analysis. Breastfeed Med 2024; 19:409-424. [PMID: 38577928 DOI: 10.1089/bfm.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Background: Breast milk is the gold standard of infant nutrition, delivering nutrients and bioactive molecules as needed to support optimal infant growth and cognitive development. Increasing evidence links human milk oligosaccharides (HMOs) to these early childhood development milestones. Aims: To summarize and synthesize the evidence relating to HMOs and infant brain development, physical growth, and cognitive development. In addition, HMO concentrations in secretor and nonsecretor mothers were compared via a meta-analysis. Study Design: A systematic review and meta-analysis were carried out in accordance with the PRISMA statement. This review used three databases (PubMed, Scopus, and Web of Science) and was limited to English-language articles published between 2000 and June 30, 2023. Results: The initial searches yielded 245 articles, 27 of which were included in the systematic review and 12 in the meta-analysis. The meta-analysis revealed a substantial between-study heterogeneity, I2 = 97.3%. The pooled effect was 0.21 (95% CI: -0.41 to 0.83; p = 0.484), indicating that secretors had higher HMO concentrations, although this difference was not statistically significant. At one month of age, 2'FL, 3FL, and 3'SL play an important role in brain maturation and thus play a critical role in cognitive development. Secretors produce higher concentrations of 2'FL and 3'SL, explaining the benefits to infants of secretor mothers. Growth velocity was correlated to fucosylated and sialylated HMO concentrations, with lower concentrations linked to stunting. Conclusions: According to evidence from the systematically reviewed articles, HMOs are essential for a child's early development, but the extent to which they have an impact depends on maternal secretor status.
Collapse
Affiliation(s)
- Martin M Mulinge
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen K Abisi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen M Kabahweza
- Department of Pediatric Hematology & Oncology, Joint Clinical Research Centre, Kampala, Uganda
| | - Lydia Okutoyi
- Department of Health Care Quality, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
46
|
Mao S, Zhao A, Jiang H, Yan J, Zhong W, Xun Y, Zhang Y. Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants. Nutrients 2024; 16:1287. [PMID: 38732534 PMCID: PMC11085179 DOI: 10.3390/nu16091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother-infant dyads. Breast milk and infant faecal samples were collected and tested. With milk 2'-fucosyllactose, difucosyllactose, and lacto-N-fucopentaose-I as biomarkers, we divided the mothers into secretor and non-secretor groups. HMO patterns were extracted using principal component analysis. The majority (70.7%) of mothers were categorised as secretor and five different HMO patterns were identified. After adjustment, the infants of secretor mothers exhibited a lower relative abundance of Bifidobacterium bifidum (β = -0.245, 95%CI: -0.465~-0.025). An HMO pattern characterised by high levels of 3-fucosyllactose, lacto-N-fucopentaose-III, and lacto-N-neodifucohexaose-II was positively associated with the relative abundance of Bifidobacterium breve (p = 0.014), while the pattern characterised by lacto-N-neotetraose, 6'-sialyllactose, and sialyllacto-N-tetraose-b was negatively associated with Bifidobacterium breve (p = 0.027). The pattern characterised by high levels of monofucosyl-lacto-N-hexaose-III and monofucosyl-lacto-N-neohexaose was positively associated with Bifidobacterium dentium (p = 0.025) and Bifidobacterium bifidum (p < 0.001), respectively. This study suggests that HMO patterns from mature breast milk were associated with certain gut microbiota of breastfed infants.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
| | - Hua Jiang
- School of Nursing, Peking University, Beijing 100091, China;
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Wuxian Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
| | - Yiping Xun
- Junlebao Dairy Joint Laboratory of Breast Milk Science and Life Health, Peking University, Beijing 100191, China;
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
- Junlebao Dairy Joint Laboratory of Breast Milk Science and Life Health, Peking University, Beijing 100191, China;
| |
Collapse
|
47
|
Lugonja N, Marinković V, Pucarević M, Miletić S, Stojić N, Crnković D, Vrvić M. Human Milk-The Biofluid That Nourishes Infants from the First Day of Life. Foods 2024; 13:1298. [PMID: 38731669 PMCID: PMC11083309 DOI: 10.3390/foods13091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Human milk is a biofluid with a unique composition among mammalian milks. Besides this milk's major components, its bioactive compounds, like hormones, immune factors, and oligosaccharides, are unique and important for infant growth and development. The best form of nutrition for term and preterm infants is the mother's own milk. However, in the absence of the mother's own milk, donor milk should be made available. Milk banks support neonatal intensive care units by providing preterm infants with human milk that generally has reasonable nutritive value for this sensitive population. However, neither mother's own milk nor donor milk has sufficient energy content for the growth of preterm babies, so adequate human milk supplementation is crucial for their progress. Due to the different characteristics of human breast milk, as well as ubiquitous environmental pollutants, such as microplastics, new methods are required for monitoring the quality and characteristics of human milk, which will lay a solid foundation for the further development and progress of human milk research.
Collapse
Affiliation(s)
- Nikoleta Lugonja
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Vesna Marinković
- Institute of Neonatology, Kralja Milutina 50, 11000 Belgrade, Serbia;
| | - Mira Pucarević
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| | - Srdjan Miletić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Nataša Stojić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| | - Dragan Crnković
- City Public Health Institute of Belgrade, Blvd. Despot Stefana 54a, 11108 Belgrade, Serbia;
| | - Miroslav Vrvić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| |
Collapse
|
48
|
Cao C, Cheng Y, Zheng Y, Huang B, Guo Z, Yu L, Mulloy B, Tajadura-Ortega V, Chai W, Yan J, Liang X. Isolation of Human Milk Difucosyl Nona- and Decasaccharides by Ultrahigh-Temperature Preparative PGC-HPLC and Identification of Novel Difucosylated Heptaose and Octaose Backbones by Negative-Ion ESI-MS n. Anal Chem 2024; 96:6170-6179. [PMID: 38616610 PMCID: PMC11044106 DOI: 10.1021/acs.analchem.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Despite their many important physiological functions, past work on the diverse sequences of human milk oligosaccharides (HMOs) has been focused mainly on the highly abundant HMOs with a relatively low degree of polymerization (DP) due to the lack of efficient methods for separation/purification and high-sensitivity sequencing of large-sized HMOs with DP ≥ 10. Here we established an ultrahigh-temperature preparative HPLC based on a porous graphitized carbon column at up to 145 °C to overcome the anomeric α/β splitting problem and developed further the negative-ion ESI-CID-MS/MS into multistage MSn using a combined product-ion scanning of singly charged molecular ion and doubly charged fragment ion of the branching Gal and adjacent GlcNAc residues. The separation and sequencing method allows efficient separation of a neutral fraction with DP ≥ 10 into 70 components, among which 17 isomeric difucosylated nona- and decasaccharides were further purified and sequenced. As a result, novel branched difucosyl heptaose and octaose backbones were unambiguously identified in addition to the conventional linear and branched octaose backbones. The novel structures of difucosylated DF-novo-heptaose, DF-novo-LNO I, and DF-novo-LNnO I were corroborated by NMR. The various fucose-containing Lewis epitopes identified on different backbones were confirmed by oligosaccharide microarray analysis.
Collapse
Affiliation(s)
- Cuiyan Cao
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Yiming Cheng
- Jiangxi
Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional
Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yi Zheng
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Beibei Huang
- Jiangxi
Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional
Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Mulloy
- Glycosciences
Laboratory, Faculty of Medicine, Imperial
College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Virginia Tajadura-Ortega
- Glycosciences
Laboratory, Faculty of Medicine, Imperial
College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Wengang Chai
- Glycosciences
Laboratory, Faculty of Medicine, Imperial
College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Jingyu Yan
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Liang
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory
of Separation Science for Analytical Chemistry, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Gurung M, Schlegel BT, Rajasundaram D, Fox R, Bode L, Yao T, Lindemann SR, LeRoith T, Read QD, Simecka C, Carroll L, Andres A, Yeruva L. Microbiota from human infants consuming secretors or non-secretors mothers' milk impacts the gut and immune system in mice. mSystems 2024; 9:e0029424. [PMID: 38530054 PMCID: PMC11019842 DOI: 10.1128/msystems.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renee Fox
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tianming Yao
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Stephen R. Lindemann
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Christy Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
50
|
Wang J, Xiang Z, Liu D, Yan Q, Yang S, Jiang Z. Protein Engineering of a Novel β-Galactosidase from Thermus scotoductus for Efficient Synthesis of Lacto- N-Neotetraose from Chitin Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38613501 DOI: 10.1021/acs.jafc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A novel β-galactosidase (TsGal48) from Thermus scotoductus was cloned, and the enzyme was biochemically characterized. TsGal48 catalyzed the synthesis of lacto-N-neotetraose (LNnT) from lactose via the transglycosylation reaction with a maximal yield of 20%, which is the highest yield for the synthesis of LNnT so far. To further improve the yield of LNnT, TsGal48 was successfully engineered by directed evolution and site-saturation mutagenesis. A mutated β-galactosidase (mTsGal48) was selected and characterized. mTsGal48 produced LNnT with a yield of 27.7 g/L, which is 1.4-fold higher than that of TsGal48 (19.7 g/L). Then, a developed strategy for LNnT synthesis from chitin powder was provided in a 30 L bioreactor. The reaction process included chitin powder hydrolysis, lacto-N-triose II (LNT2) synthesis, and LNnT synthesis. The reaction time was reduced from 44 to 17 h in chitin powder hydrolysis and LNT2 synthesis. The content of LNnT was up to 25 g/L in the multienzyme system. The green and efficient route may be suitable for large-scale production of LNnT from chitin powder.
Collapse
Affiliation(s)
- Jianyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhixuan Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|