1
|
Huang Y, Abdelgawad A, Gololobova O, Liao Z, Cong X, Batish M, Zheng L, Witwer KW. Enhanced packaging of U6 small nuclear RNA and splicing-related proteins into extracellular vesicles during HIV infection. SCIENCE ADVANCES 2025; 11:eadq6557. [PMID: 40073117 PMCID: PMC11900857 DOI: 10.1126/sciadv.adq6557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
U6 small nuclear RNA (U6 snRNA), a critical spliceosome component primarily found in the nucleus, plays a vital role in RNA splicing. Our previous study, using the simian immunodeficiency virus (SIV) macaque model, revealed an increase of U6 snRNA in plasma extracellular vesicles (EVs) in acute retroviral infection. Given the limited understanding of U6 snRNA dynamics across cells and EVs, particularly in SIV infection, this research explores U6 snRNA trafficking and its association with splicing proteins in the nucleus, cytoplasm, and EVs. We observed a redistribution of U6 snRNA from the nucleus to EVs post-infection, accompanied by distinct protein profile changes and alterations in nucleic acid metabolism and spliceosome pathways. In addition, U6 machinery proteins changed in cells and EVs in a contrasting manner. The redistribution of U6 and related proteins we observed could be part of a viral strategy to redirect host splicing machinery, suggesting that U6 may have regulatory roles and be part of retroviral infection signature.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Abdelgawad
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyu Cong
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Collazo BJ, Ortiz-Valentín L, Negrón-Rodríguez CG, Medina-Colón JC, Cantres-Rosario YM, Rodríguez E, Wojna V, Gerena Y. Influence of plasma exosomes from women living with HIV Stratified by HAND on monocyte subpopulations from healthy women without HIV. J Neurovirol 2025; 31:95-107. [PMID: 39885101 PMCID: PMC11971220 DOI: 10.1007/s13365-024-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
The role of plasma exosomes from people living with HIV (PLWH) with HAND in the phenotypic profile of uninfected monocytes remains unknown. We hypothesized that these exosomes influence the CD14/CD16 phenotypical profile of uninfected monocytes in a time-dependent manner. Exosomes were collected via ultracentrifugation from the plasma of women living with HIV (WLWH) and healthy controls stratified according to their cognition into normal cognition (NC) or symptomatic neurocognitive impairment (SNI) groups. Monocyte subsets were identified via flow cytometry by using anti-CD14 and anti-CD16 fluorescent antibodies. Exosome uptake and changes in the percentages of monocyte subpopulations were analyzed from 1 to 24 h. The following results were obtained. (1) The uptake of HIV-negative exosomes by total uninfected monocytes was observed at 24 h, whereas the uptake of HIV-positive exosomes was observed at an earlier time point at 6 h. (2) HIV-positive exosomes significantly decreased the percentage of classical monocytes and increased intermediate and nonclassical monocytes at 24 h. (3) The uptake of NC exosomes was observed at an early time point at 6 h compared with SNI in all of the monocyte subsets. (4) Higher percentages of monocyte subsets were observed when cells were exposed to NC exosomes at 1 h, 6 h, or 24 h than when monocytes were exposed to exosomes from SNI patients. Our findings may help to identify new targets and molecular mechanisms that are involved in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Bryan Jael Collazo
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Lorivette Ortiz-Valentín
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Cristhian G Negrón-Rodríguez
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Juan Carlos Medina-Colón
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Yisel M Cantres-Rosario
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Elaine Rodríguez
- Neurology Division, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Valerie Wojna
- Neurology Division, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
3
|
Figueroa-Valdés AI, Luz-Crawford P, Herrera-Luna Y, Georges-Calderón N, García C, Tobar HE, Araya MJ, Matas J, Donoso-Meneses D, de la Fuente C, Cuenca J, Parra E, Lillo F, Varela C, Cádiz MI, Vernal R, Ortloff A, Nardocci G, Castañeda V, Adasme-Vidal C, Kunze-Küllmer M, Hidalgo Y, Espinoza F, Khoury M, Alcayaga-Miranda F. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. J Nanobiotechnology 2025; 23:13. [PMID: 39806427 PMCID: PMC11730155 DOI: 10.1186/s12951-024-03088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge. This study aims to develop fully characterized, reproducible, clinical-grade batches of sEV derived from umbilical cord (UC)-MSC for the treatment of OA while assessing its efficacy and safety. Initially, a standardized, research-grade manufacturing protocol was established to ensure consistent sEV production. UC-MSC-sEV characterization under non-cGMP conditions showed consistent miRNA and protein profiles, suggesting their potential for standardized manufacturing. In vitro studies evaluated the efficacy, safety, and potency of sEV; animal studies confirmed their effectiveness and safety. In vitro, UC-MSC-sEV polarized macrophages to an anti-inflammatory M2b-like phenotype, through STAT1 modulation, indicating their potential to create an anti-inflammatory environment in the affected joints. In silico studies confirmed sEV's immunosuppressive signature through miRNA and proteome analysis. In an OA mouse model, sEV injected intra-articularly (IA) induced hyaline cartilage regeneration, validated by histological and μCT analyses. The unique detection of sEV signals within the knee joint over time highlights its safety profile by confirming the retention of sEV in the joint. The product development of UC-MSC-sEV involved refining, standardizing, and validating processes in compliance with GMP standards. The initial assessment of the safety of the clinical-grade product via IA administration in a first-in-human study showed no adverse effects after a 12 month follow-up period. These results support the progress of this sEV-based therapy in an early-phase clinical trial, the details of which are presented and discussed in this work. This study provides data on using UC-MSC-sEV as local therapy for OA, highlighting their regenerative and anti-inflammatory properties and safety in preclinical and a proof-of-principle clinical application.
Collapse
Affiliation(s)
- Aliosha I Figueroa-Valdés
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Nicolás Georges-Calderón
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Hugo E Tobar
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - José Matas
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Cirugía Ortopédica, Clínica Universidad de los Andes, Santiago, Chile
| | - Darío Donoso-Meneses
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Jimena Cuenca
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Eliseo Parra
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fernando Lillo
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cristóbal Varela
- Departmento de Radiología, Clínica Universidad de los Andes, Santiago, Chile
| | - María Ignacia Cádiz
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Rolando Vernal
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Gino Nardocci
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Verónica Castañeda
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Catalina Adasme-Vidal
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maximiliano Kunze-Küllmer
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
- EVast Bio, Miami, FL, USA
| | - Yessia Hidalgo
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Francisco Espinoza
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Reumatología, Clínica Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
- EVast Bio, Miami, FL, USA.
| | - Francisca Alcayaga-Miranda
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
| |
Collapse
|
4
|
Ren M, Wang X, Ouyang XK, Ling J, Wang N. Protocatechuic acid grafted chitosan/oxidized glucomannan hydrogel with antimicrobial and anti-inflammatory effects for enhancing wound repair. Int J Biol Macromol 2024; 281:136514. [PMID: 39414221 DOI: 10.1016/j.ijbiomac.2024.136514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Oxidative stress, inflammation, and bacterial infection are critical barriers to wound healing. In this work, a composite wound dressing was designed to promote wound healing and reduce complications. A hydrogel with antibacterial, anti-inflammatory, and antioxidant properties was prepared by crosslinking chitosan (CS) and oxidized konjac glucomannan with Mg2+. We named the prepared hydrogel CPO/Mg2+. The proposed hydrogel demonstrated a significant capacity for promoting wound healing. Experimental results indicate that the CPO/Mg2+ composite hydrogel exhibits a bacteriostatic rate of over 95 % against S. aureus and P. aeruginosa. Furthermore, CPO/Mg2+ reduced oxidative damage to L929 cells in an H2O2-induced ROS microenvironment and promoted the polarization of macrophage M2. In vivo full-thickness skin defect experiments revealed that the CPO/Mg2+ composite hydrogel enhances collagen deposition and angiogenesis, achieving a closure rate of over 95 % for infected wounds within 14 days. This novel composite hydrogel offers an effective strategy for the repair of infected wounds.
Collapse
Affiliation(s)
- Miaoyan Ren
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
5
|
Suades R, Greco MF, Prieto P, Padró T, Devaux Y, Domingo P, Badimon L. CD66b +/CD68 + circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity during and after infection. J Extracell Vesicles 2024; 13:e12456. [PMID: 39007437 PMCID: PMC11247396 DOI: 10.1002/jev2.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
| | | | - Paula Prieto
- Infectious Diseases Unit, Department of Internal MedicineHospital de la Santa Creu i Sant Pau – IR SANT PAUBarcelonaSpain
| | - Teresa Padró
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | - Pere Domingo
- Infectious Diseases Unit, Department of Internal MedicineHospital de la Santa Creu i Sant Pau – IR SANT PAUBarcelonaSpain
- Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Lina Badimon
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
- Cardiovascular Research Chair, UABBarcelonaSpain
| |
Collapse
|
6
|
Molnar SM, Kim Y, Wieczorek L, Williams A, Patil KA, Khatkar P, Santos MF, Mensah G, Lorico A, Polonis VR, Kashanchi F. Extracellular vesicle isolation methods identify distinct HIV-1 particles released from chronically infected T-cells. J Extracell Vesicles 2024; 13:e12476. [PMID: 38978287 PMCID: PMC11231049 DOI: 10.1002/jev2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.
Collapse
Affiliation(s)
- Sebastian M. Molnar
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lindsay Wieczorek
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Kajal Ashok Patil
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Victoria R. Polonis
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
7
|
Zhu S, Zhang F, Xie X, Zhu W, Tang H, Zhao D, Ruan L, Li D. Association between long-term exposure to fine particulate matter and its chemical constituents and premature death in individuals living with HIV/AIDS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124052. [PMID: 38703976 DOI: 10.1016/j.envpol.2024.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) is associated with an increased total mortality. However, the association of PM2.5 with mortality in people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS, PLWHA) and the relationship between its constituents and adverse outcomes remain unknown. In this cohort study, 28,140 PLWHA were recruited from the HIV/AIDS Comprehensive Response Information Management System of the Hubei Provincial Centre for Disease Control and Prevention in China between 2001 and 2020. The annual PM2.5 chemical composition data, including sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC), and organic matter (OM), was extracted from the Tracking Air Pollution (TAP) dataset in China. A Cox proportional hazard model with time-varying exposure and time-to-event quantile-based generalized (g) computation was used to assess the associations between PM2.5 chemical constituents, and mortality in PLWHA. A multivariate Cox proportional hazard model estimated an excess hazard ratio (eHR) of 0.32% [95% confidence interval (CI): (0.01%, 0.64%)] for AIDS-related death (ARD), associated with 1 μg/m3 rise in PM2.5 exposure. An increase of 1 μg/m3 in NH4+ was associated with 5.13% [95% CI: (2.89%, 7.43%)] and 2.97% [95% CI: (1.52%, 4.44%)] increase in the risk of ARD and all-cause deaths (ACD), respectively. When estimated using survival-based quantile g-computation, the eHR for ARD with a joint change in a decile increase in all five components was 6.10% [95% CI: 3.77%, 8.48%)]. Long-term exposure to PM2.5 chemical composition, particularly NH4+ increased the risk of death in PLWHA. This study provides epidemiological evidence that SO42- and NH4+ increased the risk of ARD and that NH4+ increased the risk of ACD in PLWHA. Multi-constituent analyses further suggested that NH4+ may be a key component in increasing the risk of premature death in patients with HIV/AIDS. Individuals aged ≥65 with HIV/AIDS are more vulnerable to SO42-, and consequent ACD.
Collapse
Affiliation(s)
- Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaoxin Xie
- Guiyang Public Health Treatment Center, Guiyang, 550004, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Heng Tang
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Dingyuan Zhao
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Lianguo Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Kirian RD, Steinman D, Jewell CM, Zierden HC. Extracellular vesicles as carriers of mRNA: Opportunities and challenges in diagnosis and treatment. Theranostics 2024; 14:2265-2289. [PMID: 38505610 PMCID: PMC10945352 DOI: 10.7150/thno.93115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all cells in the body. These biological nanoparticles facilitate cellular communication through the transport of diverse cargoes, including small molecules, proteins, and nucleic acids. mRNA cargoes have gained particular interest given their role in the translation of functional proteins. As a biomarker platform, EVs can be found in nearly all biofluids-blood, mucus, urine, cerebrospinal fluid, and saliva-providing real-time insight into parent cell and tissue function. mRNAs carried by EVs are protected from degradation, resulting in improved detection compared to free mRNA, and recent work demonstrates promising results in using these mRNA cargoes as biomarkers for cancer, neurological diseases, infectious diseases, and gynecologic and obstetric outcomes. Furthermore, given the innate cargo carrying, targeting, and barrier crossing abilities of EVs, these structures have been proposed as therapeutic carriers of mRNA. Recent advances demonstrate methods for loading mRNAs into EVs for a range of disease indications. Here, we review recent studies using EVs and their mRNA cargoes as diagnostics and therapeutics. We discuss challenges associated with EVs in diagnostic and therapeutic applications and highlight opportunities for future development.
Collapse
Affiliation(s)
- Robert D. Kirian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Darby Steinman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, 20742
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD 20742, USA
| | - Hannah C. Zierden
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, 20742
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD 20742, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201
| |
Collapse
|
10
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
11
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
12
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
13
|
Osna NA, Poluektova LY. Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 2023; 17:701-708. [PMID: 37378531 PMCID: PMC10528210 DOI: 10.1080/17474124.2023.2230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Liver disease is known as one of the leading co-morbidities in HIV infection, with 18% of non-AIDS-related mortality. There is constant crosstalk between liver parenchymal (hepatocytes) and non-parenchymal cells (macrophages, hepatic stellate cells, endothelial cells), and extracellular vesicles (EVs) are one of the most important ways of cell-to-cell communication. AREAS COVERED We briefly cover the role of EVs in liver disease as well as what is known about the role of small EVs, exosomes, in HIV-induced liver disease potentiated by alcohol as one of the second hits. We also touch large EVs, apoptotic bodies (ABs), in HIV-induced liver injury, the mechanisms of their formation and potentiation by second hits, and their role in the progression of liver disease. EXPERT OPINION/COMMENTARY Liver cells are an important source of EVs, which may provide the connection between different organs via secretion into the circulating blood (exosomes) or serve for the communication between the cells within the organ (ABs). Understanding the role of liver EVs in HIV infection and the involvement of second hits in EV generation would provide a new angle for the analysis of HIV-related liver disease pathogenesis and progression to end-stage liver disease.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, the University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
14
|
Pirisinu M. The Long Journey of Extracellular Vesicles towards Global Scientific Acclamation. Adv Pharm Bull 2023; 13:489-501. [PMID: 37646064 PMCID: PMC10460810 DOI: 10.34172/apb.2023.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived vesicles that are responsible for eliciting a wide array of biological processes. After decades of intense investigation, the therapeutic potential of EVs will be finally explored in a series of upcoming clinical trials. EVs are rapidly changing the understanding of human physiology and will undoubtedly transform the field of medicine. The applicability of EVs as diagnostic biomarkers and treatment vectors has captured the attention of the scientific community and investors, facilitating the rapid progression of numerous EVs-based platforms. This mini-review provides an outline of the pioneering discoveries, and their respective significances, on progressing EVs toward clinical use. We focus the attention of the readers on several promising classes of EVs that hold major opportunities to translate in clinical practice. Market analysis and future challenges facing EVs-based therapies are also discussed.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City, University of Hong Kong, Hong Kong
- Jotbody HK Limited, New Territories, Hong Kong
| |
Collapse
|
15
|
Adamczyk AM, Leicaj ML, Fabiano MP, Cabrerizo G, Bannoud N, Croci DO, Witwer KW, Remes Lenicov F, Ostrowski M, Pérez PS. Extracellular vesicles from human plasma dampen inflammation and promote tissue repair functions in macrophages. J Extracell Vesicles 2023; 12:e12331. [PMID: 37272889 PMCID: PMC10241174 DOI: 10.1002/jev2.12331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Although inflammation is a vital defence response to infection, if left uncontrolled, it can lead to pathology. Macrophages are critical players both in driving the inflammatory response and in the subsequent events required for restoring tissue homeostasis. Extracellular vesicles (EVs) are membrane-enclosed structures released by cells that mediate intercellular communication and are present in all biological fluids, including blood. Herein, we show that extracellular vesicles from plasma (pEVs) play a relevant role in the control of inflammation by counteracting PAMP-induced macrophage activation. Indeed, pEV-treatment of macrophages simultaneously with or prior to PAMP exposure reduced the secretion of pro-inflammatory IL-6 and TNF-α and increased IL-10 response. This anti-inflammatory activity was associated with the promotion of tissue-repair functions in macrophages, characterized by augmented efferocytosis and pro-angiogenic capacity, and increased expression of VEGFa, CD300e, RGS2 and CD93, genes involved in cell growth and tissue remodelling. We also show that simultaneous stimulation of macrophages with a PAMP and pEVs promoted COX2 expression and CREB phosphorylation as well as the accumulation of higher concentrations of PGE2 in cell culture supernatants. Remarkably, the anti-inflammatory activity of pEVs was abolished if cells were treated with a pharmacological inhibitor of COX2, indicating that pEV-mediated induction of COX2 is critical for the pEV-mediated inhibition of inflammation. Finally, we show that pEVs added to monocytes prior to their M-CSF-induced differentiation to macrophages increased efferocytosis and diminished pro-inflammatory cytokine responses to PAMP stimulation. In conclusion, our results suggest that pEVs are endogenous homeostatic modulators of macrophages, activating the PGE2/CREB pathway, decreasing the production of inflammatory cytokines and promoting tissue repair functions.
Collapse
Affiliation(s)
- Alan M. Adamczyk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - María Luz Leicaj
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Martina Paula Fabiano
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Gonzalo Cabrerizo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Diego O. Croci
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Paula Soledad Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| |
Collapse
|
16
|
Raposo G, Stahl PD. Extracellular vesicles - on the cusp of a new language in the biological sciences. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:240-254. [PMID: 38288044 PMCID: PMC10824536 DOI: 10.20517/evcna.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Extracellular vesicles (EVs) play a key role both in physiological balance and homeostasis and in disease processes through their ability to participate in intercellular signaling and communication. An ever-expanding knowledge pool and a myriad of functional properties ascribed to EVs point to a new language of communication in biological systems that has opened a path for the discovery and implementation of novel diagnostic applications. EVs originate in the endosomal network and via non-random shedding from the plasma membrane by mechanisms that allow the packaging of functional cargoes, including proteins, lipids, and genetic materials. Deciphering the molecular mechanisms that govern packaging, secretion and targeted delivery of extracellular vesicle-borne cargo will be required to establish EVs as important signaling entities, especially when ascribing functional properties to a heterogeneous population of vesicles. Several molecular cascades operate within the endosomal network and at the plasma membrane that recognize and segregate cargos as a prelude to vesicle budding and release. EVs are transferred between cells and operate as vehicles in biological fluids within tissues and within the microenvironment where they are responsible for short- and long-range targeted information. In this review, we focus on the remarkable capacity of EVs to establish a dialogue between cells and within tissues, often operating in parallel to the endocrine system, we highlight selected examples of past and recent studies on the functions of EVs in health and disease.
Collapse
Affiliation(s)
- Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris 75005, France
| | - Philip D Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
17
|
Giannotta G, Murrone A, Giannotta N. COVID-19 mRNA Vaccines: The Molecular Basis of Some Adverse Events. Vaccines (Basel) 2023; 11:747. [PMID: 37112659 PMCID: PMC10145134 DOI: 10.3390/vaccines11040747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Each injection of any known vaccine results in a strong expression of pro-inflammatory cytokines. This is the result of the innate immune system activation, without which no adaptive response to the injection of vaccines is possible. Unfortunately, the degree of inflammation produced by COVID-19 mRNA vaccines is variable, probably depending on genetic background and previous immune experiences, which through epigenetic modifications could have made the innate immune system of each individual tolerant or reactive to subsequent immune stimulations.We hypothesize that we can move from a limited pro-inflammatory condition to conditions of increasing expression of pro-inflammatory cytokines that can culminate in multisystem hyperinflammatory syndromes following COVID-19 mRNA vaccines (MIS-V). We have graphically represented this idea in a hypothetical inflammatory pyramid (IP) and we have correlated the time factor to the degree of inflammation produced after the injection of vaccines. Furthermore, we have placed the clinical manifestations within this hypothetical IP, correlating them to the degree of inflammation produced. Surprisingly, excluding the possible presence of an early MIS-V, the time factor and the complexity of clinical manifestations are correlated to the increasing degree of inflammation: symptoms, heart disease and syndromes (MIS-V).
Collapse
Affiliation(s)
| | - Antonio Murrone
- Oncologia Territoriale, Hospice Cure Palliative ASUFC, 33030 Udine, Italy;
| | - Nicola Giannotta
- Medical and Surgery Sciences, Faculty of Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| |
Collapse
|
18
|
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement. EMBO J 2023; 42:e112096. [PMID: 36734074 PMCID: PMC10015360 DOI: 10.15252/embj.2022112096] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions.
Collapse
Affiliation(s)
- Fanfan Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Na Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
| | - Dawei Lv
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yujie Chen
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Mingbing Xiao
- Department of Gastroenterology and Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- German Center for Infectious Diseases, Heidelberg Partner SiteHeidelbergGermany
| | - Gang Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
19
|
Adhikari R, Witwer KW, Wiberg KJ, Chen YC. The interplay among HIV, monocytes/macrophages, and extracellular vesicles: a systematic review. J Leukoc Biol 2023; 113:255-287. [PMID: 36802000 DOI: 10.1093/jleuko/qiac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Despite effective antiretroviral therapies, chronic inflammation and spontaneous viral "blips" occur in HIV-infected patients. Given the roles for monocytes/macrophages in HIV pathogenesis and extracellular vesicles in intercellular communication, we performed this systematic review to delineate the triad of HIV, monocytes/macrophages, and extracellular vesicles in the modulation of immune activation and HIV activities. We searched PubMed, Web of Science, and EBSCO databases for published articles, up to 18 August 2022, relevant to this triad. The search identified 11,836 publications, and 36 studies were deemed eligible and included in this systematic review. Data were extracted for the characteristics of HIV, monocytes/macrophages, and extracellular vesicles used for experiments and the immunologic and virologic outcomes in extracellular vesicle recipient cells. Evidence for the effects on outcomes was synthesized by stratifying the characteristics by outcomes. In this triad, monocytes/macrophages were potential producers and recipients of extracellular vesicles, whose cargo repertoires and functionalities were regulated by HIV infection and cellular stimulation. Extracellular vesicles derived from HIV-infected monocytes/macrophages or the biofluid of HIV-infected patients enhanced innate immune activation and HIV dissemination, cellular entry, replication, and latency reactivation in bystander or infected target cells. These extracellular vesicles could be synthesized in the presence of antiretroviral agents and elicit pathogenic effects in a wide range of nontarget cells. At least eight functional types of extracellular vesicles could be classified based on the diverse extracellular vesicle effects, which were linked to specific virus- and/or host-derived cargos. Thus, the monocyte/macrophage-centered multidirectional crosstalk through extracellular vesicles may help sustain persistent immune activation and residual viral activities during suppressed HIV infection.
Collapse
Affiliation(s)
- Romin Adhikari
- Laboratory of Biomedical Sciences and Epidemiology and Immune Knowledge of Infectious Diseases, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA.,Department of Biology, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287, USA
| | - Kjell J Wiberg
- Division of Infectious Diseases and HIV Clinic, Department of Medicine, Sinai Hospital, 2401 W Belvedere Ave, Baltimore, MD 21215, USA
| | - Yun-Chi Chen
- Laboratory of Biomedical Sciences and Epidemiology and Immune Knowledge of Infectious Diseases, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA.,Department of Biology, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA.,RCMI@Morgan Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA
| |
Collapse
|
20
|
Ou-Yang H, Fu HY, Luo Y, Xu ZY, Liu J, Gao R, Duan JY, Mao YC, Li HJ, Du YR. Inflammation markers and the risk of hypertension in people living with HIV. Front Immunol 2023; 14:1133640. [PMID: 37025998 PMCID: PMC10071023 DOI: 10.3389/fimmu.2023.1133640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background The incidence of hypertension is high in people living with HIV (PLWH). High-sensitivity C-reactive protein (hsCRP), systemic inflammation response index (SIRI), and neutrophil-to-monocyte ratio (NMR) are considered economic and convenient parameters that reflect the levels of inflammation in patients. Our aim was to explore whether indirect inflammation markers are associated with hypertension in PLWH. Methods This was a case-control study. The case group (hypertension) comprised PLWH with hypertension, and the control group (non-hypertension) comprised sex- and age-(± 3 years)-matched PLWH without hypertension. Demographic parameters, hsCRP, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune- inflammation index (SII), SIRI, lymphocyte-to-monocyte ratio (LMR), platelet-to-neutrophil ratio (PNR), platelet-to-monocyte ratio (PMR), NMR, time to HIV diagnosis, antiretroviral therapy (ART) duration, recent CD4+ and CD8+ cell counts, recent CD4+/CD8+ ratio, recent HIV viral load (HIV-RNA),and recent ART regimen were obtained from the patients' electronic medical records. A t-test or Wilcoxon rank-sum test was performed to compare differences between the two groups, and conditional logistic regression was used to analyze the risk factors of hypertension. Correlations between inflammation markers and CD4+ cell counts, CD8+ cell counts, and CD4+/CD8+ ratio were analyzed using Spearman's correlation. Results In the hypertension group, body mass index (BMI), hsCRP, NLR, SII, SIRI, NMR, time to HIV diagnosis, ART duration, CD4+ and CD8+ cell counts, and CD4+/CD8+ ratio, the ratio of HIV-RNA < 100 copies/mL were all higher than those in the non-hypertension group, while the PNR was lower than that in the non-hypertension group. ART duration, CD4+ cell counts, HIV-RNA < 100 copies/mL, hsCRP, SIRI, and NMR were positively associated with hypertensive risk in PLWH. CD8+ cell counts and CD4+/CD8+ ratio was negatively associated with hypertensive risk in PLWH. SIRI was negatively correlated with CD4+ cell counts and CD8+ cell counts, but positively correlated with CD4+/CD8+ ratio. Conclusions We identified positive associations between inflammation markers hsCRP, SIRI, NMR and hypertensive risk in PLWH. Alleviating inflammation may help control or delay the occurrence of hypertension in PLWH.
Collapse
Affiliation(s)
- Hui Ou-Yang
- Department of Cardiovascular Medicine, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Hai-Yan Fu
- Department of Hospice Care, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Yu Luo
- Department of Hospice Care, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Zhao-Yuan Xu
- Department of Cardiovascular Medicine, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Jun Liu
- Department of Infectious Diseases, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Rui Gao
- Department of Infectious Diseases, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Jin-Yu Duan
- Department of Infectious Diseases, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Ya-Chao Mao
- Department of Cardiovascular Medicine, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
| | - Hong-Juan Li
- Department of Hospice Care, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
- *Correspondence: Ying-Rong Du, ; Hong-Juan Li,
| | - Ying-Rong Du
- Department of Cardiovascular Medicine, The Third People’s Hospital of Kunming, Yunnan Clinical Medicine Center for Infectious Diseases, Kunming, China
- *Correspondence: Ying-Rong Du, ; Hong-Juan Li,
| |
Collapse
|
21
|
Sil S, Thangaraj A, Oladapo A, Hu G, Kutchy NA, Liao K, Buch S, Periyasamy P. Role of Autophagy in HIV-1 and Drug Abuse-Mediated Neuroinflammaging. Viruses 2022; 15:44. [PMID: 36680084 PMCID: PMC9866731 DOI: 10.3390/v15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Centre for Excellence in Nanobio Translational Research, Anna University, BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA 90048, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
23
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
24
|
A Dynamic Interplay of Circulating Extracellular Vesicles and Galectin-1 Reprograms Viral Latency during HIV-1 Infection. mBio 2022; 13:e0061122. [PMID: 35943163 PMCID: PMC9426495 DOI: 10.1128/mbio.00611-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of β-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)–glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals.
Collapse
|
25
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:1989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
26
|
Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients 2022; 14:nu14051002. [PMID: 35267977 PMCID: PMC8912428 DOI: 10.3390/nu14051002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) have been identified as active components in cellular communication, which are easily altered both morphologically and chemically by the cellular environment and metabolic state of the body. Due to this sensitivity to the conditions of the cellular microenvironment, EVs have been found to be associated with disease conditions, including those associated with obesity and undernutrition. The sensitivity that EVs show to changes in the cellular microenvironment could be a reflection of early cellular alterations related to conditions of malnutrition, which could eventually be used in the routine monitoring and control of diseases or complications associated with it. However, little is known about the influence of malnutrition alone; that is, without the influence of additional diseases on the heterogeneity and specific content of EVs. To date, studies in “apparently healthy” obese patients show that there are changes in the size, quantity, and content of EVs, as well as correlations with some metabolic parameters (glucose, insulin, and serum lipids) in comparison with non-obese individuals. In light of these changes, a direct participation of EVs in the development of metabolic and cardiovascular complications in obese subjects is thought to exist. However, the mechanisms through which this process might occur are not yet fully understood. The evidence on EVs in conditions of undernutrition is limited, but it suggests that EVs play a role in the maintenance of homeostasis and muscle repair. A better understanding of how EVs participate in or promote cellular signaling in malnutrition conditions could help in the development of new strategies to treat them and their comorbidities.
Collapse
|
27
|
Dantas-Pereira L, Menna-Barreto R, Lannes-Vieira J. Extracellular Vesicles: Potential Role in Remote Signaling and Inflammation in Trypanosoma cruzi-Triggered Disease. Front Cell Dev Biol 2022; 9:798054. [PMID: 34988085 PMCID: PMC8721122 DOI: 10.3389/fcell.2021.798054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) act as cell communicators and immune response modulators and may be employed as disease biomarkers and drug delivery systems. In infectious diseases, EVs can be released by the pathogen itself or by the host cells (infected or uninfected), potentially impacting the outcome of the immune response and pathological processes. Chagas disease (CD) is caused by infection by the protozoan Trypanosoma cruzi and is the main cause of heart failure in endemic areas. This illness attracted worldwide attention due to the presence of symptomatic seropositive subjects in North America, Asia, Oceania, and Europe. In the acute phase of infection, nonspecific signs, and symptoms contribute to miss diagnosis and early etiological treatment. In this phase, the immune response is crucial for parasite control; however, parasite persistence, dysregulated immune response, and intrinsic tissue factors may contribute to the pathogenesis of chronic CD. Most seropositive subjects remain in the indeterminate chronic form, and from 30 to 40% of the subjects develop cardiac, digestive, or cardio-digestive manifestations. Identification of EVs containing T. cruzi antigens suggests that these vesicles may target host cells and regulate cellular processes and the immune response by molecular mechanisms that remain to be determined. Parasite-released EVs modulate the host-parasite interplay, stimulate intracellular parasite differentiation and survival, and promote a regulatory cytokine profile in experimental models of CD. EVs derived from the parasite-cell interaction inhibit complement-mediated parasite lysis, allowing evasion. EVs released by T. cruzi-infected cells also regulate surrounding cells, maintaining a proinflammatory profile. After a brief review of the basic features of EVs, the present study focuses on potential participation of T. cruzi-secreted EVs in cell infection and persistence of low-grade parasite load in the chronic phase of infection. We also discuss the role of EVs in shaping the host immune response and in pathogenesis and progression of CD.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Yang S, Liu Q, Chen S, Zhang F, Li Y, Fan W, Mai L, He H, Huang F. Extracellular vesicles delivering nuclear factor I/C for hard tissue engineering: Treatment of apical periodontitis and dentin regeneration. J Tissue Eng 2022; 13:20417314221084095. [PMID: 35321254 PMCID: PMC8935403 DOI: 10.1177/20417314221084095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Apical periodontitis (AP) causes arrest of tooth root development, which is associated with impaired odontoblastic differentiation of stem cells from apical papilla (SCAPs), but the underlying mechanism remains unclear. Here, we investigated roles of extracellular vesicle (EV) in AP and odontoblastic differentiation of SCAPs, moreover, a novel nuclear factor I/C (NFIC)-encapsulated EV was developed to promote dentin regeneration. We detected a higher expression of EV marker CD63 in inflamed apical papilla, and found that EVs from LPS-stimulated dental pulp cells suppressed odontoblastic differentiation of SCAPs through downregulating NFIC. Furthermore, we successfully constructed the NFIC-encapsulated EV by overexpressing NFIC in HEK293FT cells, which could upregulate cellular NFIC level in SCAPs, promoting the proliferation and migration of SCAPs, as well as dentinogenesis both in vitro and in vivo. Collectively, based on pathological roles of EV in AP, our study provides a novel strategy for dentin regeneration by exploiting EV to deliver NFIC.
Collapse
Affiliation(s)
- Shengyan Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shijing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
HIV-1 Nef Protein Affects Cytokine and Extracellular Vesicles Production in the GEN2.2 Plasmacytoid Dendritic Cell Line. Viruses 2021; 14:v14010074. [PMID: 35062278 PMCID: PMC8780779 DOI: 10.3390/v14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset specialized in type I interferon production, whose role in Human Immunodeficiency Virus (HIV) infection and pathogenesis is complex and not yet well defined. Considering the crucial role of the accessory protein Nef in HIV pathogenicity, possible alterations in intracellular signalling and extracellular vesicle (EV) release induced by exogenous Nef on uninfected pDCs have been investigated. As an experimental model system, a human plasmacytoid dendritic cell line, GEN2.2, stimulated with a myristoylated recombinant NefSF2 protein was employed. In GEN2.2 cells, Nef treatment induced the tyrosine phosphorylation of STAT-1 and STAT-2 and the production of a set of cytokines, chemokines and growth factors including IP-10, MIP-1β, MCP-1, IL-8, TNF-α and G-CSF. The released factors differed both in type and amount from those released by macrophages treated with the same viral protein. Moreover, Nef treatment slightly reduces the production of small EVs, and the protein was found associated with the small (size < 200 nm) but not the medium/large vesicles (size > 200 nm) collected from GEN2.2 cells. These results add new information on the interactions between this virulence factor and uninfected pDCs, and may provide the basis for further studies on the interactions of Nef protein with primary pDCs.
Collapse
|
30
|
Ipinmoroti AO, Crenshaw BJ, Pandit R, Kumar S, Sims B, Matthews QL. Human Adenovirus Serotype 3 Infection Modulates the Biogenesis and Composition of Lung Cell-Derived Extracellular Vesicles. J Immunol Res 2021; 2021:2958394. [PMID: 34926703 PMCID: PMC8677401 DOI: 10.1155/2021/2958394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Adenovirus (Ad) is a major causal agent of acute respiratory infections. However, they are a powerful delivery system for gene therapy and vaccines. Some Ad serotypes antagonize the immune system leading to meningitis, conjunctivitis, gastroenteritis, and/or acute hemorrhagic cystitis. Studies have shown that the release of small, membrane-derived extracellular vesicles (EVs) may offer a mechanism by which viruses can enter cells via receptor-independent entry and how they influence disease pathogenesis and/or host protection considering their existence in almost all bodily fluids. We proposed that Ad3 could alter EV biogenesis, composition, and trafficking and may stimulate various immune responses in vitro. In the present study, we evaluated the impact of in vitro infection with Ad3 vector on EV biogenesis and composition in the human adenocarcinoma lung epithelial cell line A549. Cells were infected in an exosome-free media at different multiplicity of infections (MOIs) and time points. The cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorometric calcein-AM. EVs were isolated via ultracentrifugation. Isolated EV proteins were quantified and evaluated via nanoparticle tracking, transmission electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting assays. The cell viability significantly decreased with an increase in MOI and incubation time. A significant increase in particle mean sizes, concentrations, and total EV protein content was detected at higher MOIs when compared to uninfected cells (control group). A549 cell-derived EVs revealed the presence of TSG101, tetraspanins CD9 and CD63, and heat shock proteins 70 and 100 with significantly elevated levels of Rab5, 7, and 35 at higher MOIs (300, 750, and 1500) when compared to the controls. Our findings suggested Ad3 could modulate EV biogenesis, composition, and trafficking which could impact infection pathogenesis and disease progression. This study might suggest EVs could be diagnostic and therapeutic advancement to Ad infections and other related viral infections. However, further investigation is warranted to explore the underlying mechanism(s).
Collapse
Affiliation(s)
- Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
31
|
Ashcroft J, Leighton P, Elliott TR, Hosgood SA, Nicholson ML, Kosmoliaptsis V. Extracellular vesicles in kidney transplantation: a state-of-the-art review. Kidney Int 2021; 101:485-497. [PMID: 34838864 DOI: 10.1016/j.kint.2021.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Kidney transplantation is the optimal treatment for patients with kidney failure; however, early detection and timely treatment of graft injury remain a challenge. Precise and noninvasive techniques of graft assessment and innovative therapeutics are required to improve kidney transplantation outcomes. Extracellular vesicles (EVs) are lipid bilayer-delimited particles with unique biosignatures and immunomodulatory potential, functioning as intermediaries of cell signalling. Promising evidence exists for the potential of EVs to develop precision diagnostics of graft dysfunction, and prognostic biomarkers for clinician decision making. The inherent targeting characteristics of EVs and their low immunogenic and toxicity profiles combined with their potential as vehicles for drug delivery make them ideal targets for development of therapeutics to improve kidney transplant outcomes. In this review, we summarize the current evidence for EVs in kidney transplantation, discuss common methodological principles of EV isolation and characterization, explore upcoming innovative approaches in EV research, and discuss challenges and opportunities to enable translation of research findings into clinical practice.
Collapse
Affiliation(s)
- James Ashcroft
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Philippa Leighton
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Tegwen R Elliott
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Vestad B, Nyman TA, Hove-Skovsgaard M, Stensland M, Hoel H, Trøseid AMS, Aspelin T, Aass HCD, Puhka M, Hov JR, Nielsen SD, Øvstebø R, Trøseid M. Plasma extracellular vesicles in people living with HIV and type 2 diabetes are related to microbial translocation and cardiovascular risk. Sci Rep 2021; 11:21936. [PMID: 34754007 PMCID: PMC8578564 DOI: 10.1038/s41598-021-01334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Malene Hove-Skovsgaard
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Maria Stensland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Medical Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Trude Aspelin
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Hans Christian D Aass
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Cores, University of Helsinki, Helsinki, Finland
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center and Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Reidun Øvstebø
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
33
|
Arteaga-Blanco LA, Bou-Habib DC. The Role of Extracellular Vesicles from Human Macrophages on Host-Pathogen Interaction. Int J Mol Sci 2021; 22:ijms221910262. [PMID: 34638604 PMCID: PMC8508751 DOI: 10.3390/ijms221910262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Luis A. Arteaga-Blanco
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The exosomes play a critical role in HIV infection, which constitute a pathway to release intracellular material and exchange material and information between cells. Exosomes have become a hotspot in the field of AIDS research. This review introduces the formation process of HIV particles and exosomes, and summarizes the role of exosomes in the progression of HIV disease from multiple aspects. RECENT FINDINGS Many components of the exosomes involved in HIV transfer and replication affect the occurrence, development, and outcome of AIDS, and are closely related to HIV infection. Exosomes can have a dual impact on HIV infection, and play an important role in activating the latent reservoir of HIV and affecting the chronic inflammation of HIV. The biological information carried by exosomes is also of great significance for the prediction of HIV disease. SUMMARY The present review summarizes the role of exosomes in HIV disease progression in various aspects in order to further understand the underlying mechanism affecting the infection and providing a new idea for the clinical diagnosis and treatment of AIDS.
Collapse
Affiliation(s)
| | - Chuanyun Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rong Li
- Beijing Institute of Hepatology
| | | | | | | |
Collapse
|
35
|
Okoye I, Xu L, Oyegbami O, Shahbaz S, Pink D, Gao P, Sun X, Elahi S. Plasma Extracellular Vesicles Enhance HIV-1 Infection of Activated CD4 + T Cells and Promote the Activation of Latently Infected J-Lat10.6 Cells via miR-139-5p Transfer. Front Immunol 2021; 12:697604. [PMID: 34249000 PMCID: PMC8264662 DOI: 10.3389/fimmu.2021.697604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
HIV latency is a challenge to the success of antiretroviral therapy (ART). Hence patients may benefit from interventions that efficiently reactivate the latent virus to be eliminated by ARTs. Here we show that plasma extracellular vesicles (pEVs) can enhance HIV infection of activated CD4+ T cells and reactivate the virus in latently infected J-Lat 10.6 cells. Evaluation of the extravesicular miRNA cargo by a PCR array revealed that pEVs from HIV patients express miR-139-5p. Furthermore, we found that increased levels of miR-139-5p in J-Lat 10.6 cells incubated with pEVs corresponded with reduced expression of the transcription factor, FOXO1. pEV treatment also corresponded with increased miR-139-5p expression in stimulated PD1+ Jurkat cells, but with concomitant upregulation of FOXO1, Fos, Jun, PD-1 and PD-L1. However, J-Lat 10.6 cells incubated with miR-139-5p inhibitor-transfected pEVs from HIV ART-naïve and on-ART patients expressed reduced levels of miR-139-5p than cells treated with pEVs from healthy controls (HC). Collectively, our results indicate that pEV miR-139-5p belongs to a network of miRNAs that can promote cell activation, including latent HIV-infected cells by regulating the expression of FOXO1 and the PD1/PD-L1 promoters, Fos and Jun.
Collapse
Affiliation(s)
- Isobel Okoye
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lai Xu
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Olaide Oyegbami
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Desmond Pink
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Priscilla Gao
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Xuejun Sun
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
37
|
Al-Harthi L, Campbell E, Schneider JA, Bennett DA. What HIV in the Brain Can Teach Us About SARS-CoV-2 Neurological Complications? AIDS Res Hum Retroviruses 2021; 37:255-265. [PMID: 32683890 PMCID: PMC8035916 DOI: 10.1089/aid.2020.0161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of COVID-19, a disease that as of July 10, 2020, has infected >12 million people and killed >500,000. COVID-19 infection leads to acute respiratory distress syndrome in a subset of patients and is a primary driver of acute morbidity in infected persons. However, it is becoming increasingly clear that SARS-CoV-2 infection drives dysfunction and pathology outside the lungs, including reports of renal, cardiac, and neurological complications. In this study, we summarize the known incidence and evidence of neurological complications associated with SARS-CoV-2 infection and other pathogenic coronaviruses. These studies describe a poorly understood spectrum of COVID-19 central nervous system symptoms, ranging from common and subclinical issues such as anosmia and headache to more concerning reports of stroke and encephalopathy. We discuss potential mechanisms of pathogenesis, including a discussion of how the understanding of neurological complications known to occur in HIV-1 patients may provide insight into SARS-CoV-2-associated neurological manifestations. Specifically, three hypotheses are discussed that are informed by decades of knowledge about HIV pathogenesis in the brain, which include a potential direct viral effect, an indirect viral effect, and/or a neuroimmune axis effect. Individually or in combination these potential effects may contribute to COVID-19 neurological complications.
Collapse
Affiliation(s)
- Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Campbell
- Department of Microbiology and Immunology, Loyola University, Chicago, Illinois, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
38
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
39
|
Martin-Jaular L, Nevo N, Schessner JP, Tkach M, Jouve M, Dingli F, Loew D, Witwer KW, Ostrowski M, Borner GHH, Théry C. Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. EMBO J 2021; 40:e105492. [PMID: 33709510 PMCID: PMC8047442 DOI: 10.15252/embj.2020105492] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV-1-infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re-routed to non-viral EVs in a Nef-dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.
Collapse
Affiliation(s)
- Lorena Martin-Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Nathalie Nevo
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Julia P Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Mabel Jouve
- CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matias Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| |
Collapse
|
40
|
The Effect of Growth Stage and Isolation Method on Properties of ClearColi™ Outer Membrane Vesicles (OMVs). Curr Microbiol 2021; 78:1602-1614. [PMID: 33687512 DOI: 10.1007/s00284-021-02414-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Outer membrane vesicles (OMVs) are nanosized spherical blebs derived from the outer membrane of gram-negative bacteria. Outer membrane vesicles (OMVs) play important roles in various physiological functions of bacteria. They can be applied as native vaccines or vaccine adjuvants. The objective of this study was to determine the appropriate growth phase and isolation method for OMV separation from ClearColi™, an endotoxin-free strain of E. coli. It was demonstrated that the yield of OMVs is increased while the bacteria are growing. Herein, although total protein concentration of OMVs isolated from the stationary phase is more than other phases; the pre-stationary phase was selected for OMV isolation due to release of smaller size of OMVs as compared to other phases. In the current study, to obtain OMVs with high yield, proper size, and homogeneity, different concentration methods including protein precipitation by ammonium sulfate (AS) and ultrafiltration (UF) were combined to ultracentrifugation (UC) or precipitation-based exosome isolation kit. Among the examined isolation methods, AS (70%) + UC resulted in the highest yield of OMVs. The TEM results demonstrated bilayer round-shaped OMVs isolated by this method. Although AS (70%) + kit resulted in more heterogeneous in size and larger OMVs as compared to AS (70%) + UC, it is applicable when high yield of OMVs is required and UC is not available. Totally, isolation of ClearColi™ OMVs from pre-stationary phase using AS (70%) + UC with enhanced yield can be applied in vaccine research studies.
Collapse
|
41
|
Pironti G, Andersson DC, Lund LH. Mechanistic and Therapeutic Implications of Extracellular Vesicles as a Potential Link Between Covid-19 and Cardiovascular Disease Manifestations. Front Cell Dev Biol 2021; 9:640723. [PMID: 33644077 PMCID: PMC7905102 DOI: 10.3389/fcell.2021.640723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), which are cell released double layered membrane particles, have been found in every circulating body fluid, and provide a tool for conveying diverse information between cells, influencing both physiological and pathological conditions. Viruses can hijack the EVs secretory pathway to exit infected cells and use EVs endocytic routes to enter uninfected cells, suggesting that EVs and viruses can share common cell entry and biogenesis mechanisms. SARS-CoV-2 is responsible of the coronavirus disease 2019 (Covid-19), which may be accompanied by severe multi-organ manifestations. EVs may contribute to virus spreading via transfer of virus docking receptors such as CD9 and ACE2. Covid-19 is known to affect the renin angiotensin system (RAS), and could promote secretion of harmful EVs. In this scenario EVs might be linked to cardiovascular manifestations of the Covid-19 disease through unbalance in RAS. In contrast EVs derived from mesenchymal stem cells or cardiosphere derived cells, may promote cardiovascular function due to their beneficial effect on angiogenesis, fibrosis, contractility and immuno-modulation. In this article we assessed the potential impact of EVs in cardiovascular manifestations of Covid-19 and highlight potential strategies to control the extracellular signaling for future therapies.
Collapse
Affiliation(s)
- Gianluigi Pironti
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Heart, Vascular and Neurology Theme, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden.,Heart, Vascular and Neurology Theme, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Forte D, Barone M, Morsiani C, Simonetti G, Fabbri F, Bruno S, Bandini E, Sollazzo D, Collura S, Deregibus MC, Auteri G, Ottaviani E, Vianelli N, Camussi G, Franceschi C, Capri M, Palandri F, Cavo M, Catani L. Distinct profile of CD34 + cells and plasma-derived extracellular vesicles from triple-negative patients with Myelofibrosis reveals potential markers of aggressive disease. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:49. [PMID: 33522952 PMCID: PMC7849077 DOI: 10.1186/s13046-020-01776-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Background Myelofibrosis (MF) is a clonal disorder of hemopoietic stem/progenitor cells (HSPCs) with high prevalence in elderly patients and mutations in three driver genes (JAK2, MPL, or CALR). Around 10–15% of patients are triple-negative (TN) for the three driver mutations and display significantly worse survival. Circulating extracellular vesicles (EVs) play a role in intercellular signaling and are increased in inflammation and cancer. To identify a biomolecular signature of TN patients, we comparatively evaluated the circulating HSPCs and their functional interplay with the microenvironment focusing on EV analysis. Methods Peripheral blood was collected from MF patients (n = 29; JAK2V617F mutation, n = 23; TN, n = 6) and healthy donors (HD, n = 10). Immunomagnetically isolated CD34+ cells were characterized by gene expression profiling analysis (GEP), survival, migration, and clonogenic ability. EVs were purified from platelet-poor plasma by ultracentrifugation, quantified using the Nanosight technology and phenotypically characterized by flow cytometry together with microRNA expression. Migration and survival of CD34+ cells from patients were also analyzed after in vitro treatments with selected inflammatory factors, i.e. (Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, IL6) or after co-culture with EVs from MF patients/HD. Results The absolute numbers of circulating CD34+ cells were massively increased in TN patients. We found that TN CD34+ cells show in vitro defective functions and are unresponsive to the inflammatory microenvironment. Of note, the plasma levels of crucial inflammatory cytokines are mostly within the normal range in TN patients. Compared to JAK2V617F-mutated patients, the GEP of TN CD34+ cells revealed distinct signatures in key pathways such as survival, cell adhesion, and inflammation. Importantly, we observed the presence of mitochondrial components within plasma EVs and a distinct phenotype in TN-derived EVs compared to the JAK2V617F-mutated MF patients and HD counterparts. Notably, TN EVs promoted the survival of TN CD34+ cells. Along with a specific microRNA signature, the circulating EVs from TN patients are enriched with miR-361-5p. Conclusions Distinct EV-driven signals from the microenvironment are capable to promote the TN malignant hemopoiesis and their further investigation paves the way toward novel therapeutic approaches for rare MF. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01776-8.
Collapse
Affiliation(s)
- Dorian Forte
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy. .,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy.
| | - Martina Barone
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgia Simonetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Samantha Bruno
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| | - Erika Bandini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Daria Sollazzo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Chiara Deregibus
- Department of Internal Medicine, Centre for Molecular Biotechnology and Centre for Research in Experimental Medicine, Torino, Italy
| | - Giuseppe Auteri
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| | - Emanuela Ottaviani
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy
| | - Nicola Vianelli
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy
| | - Giovanni Camussi
- Department of Internal Medicine, Centre for Molecular Biotechnology and Centre for Research in Experimental Medicine, Torino, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Palandri
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy
| | - Michele Cavo
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| | - Lucia Catani
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, Bologna, Italy
| |
Collapse
|
43
|
Rezaie J, Aslan C, Ahmadi M, Zolbanin NM, Kashanchi F, Jafari R. The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application. Cell Biosci 2021; 11:19. [PMID: 33451365 PMCID: PMC7810184 DOI: 10.1186/s13578-021-00537-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells produce extracellular vesicles (EVs) mediating intercellular communication. These vesicles encompass many bio-molecules such as proteins, nucleic acids, and lipids that are transported between cells and regulate pathophysiological actions in the recipient cell. Exosomes originate from multivesicular bodies inside cells and microvesicles shed from the plasma membrane and participate in various pathological conditions. Retroviruses such as Human Immunodeficiency Virus -type 1 (HIV-1) and Human T-cell leukemia virus (HTLV)-1 engage exosomes for spreading and infection. Exosomes from virus-infected cells transfer viral components such as miRNAs and proteins that promote infection and inflammation. Additionally, these exosomes deliver virus receptors to target cells that make them susceptible to virus entry. HIV-1 infected cells release exosomes that contribute to the pathogenesis including neurological disorders and malignancy. Exosomes can also potentially carry out as a modern approach for the development of HIV-1 and HTLV-1 vaccines. Furthermore, as exosomes are present in most biological fluids, they hold the supreme capacity for clinical usage in the early diagnosis and prognosis of viral infection and associated diseases. Our current knowledge of exosomes' role from virus-infected cells may provide an avenue for efficient retroviruses associated with disease prevention. However, the exact mechanism involved in retroviruses infection/ inflammation remains elusive and related exosomes research will shed light on the mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
44
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
45
|
Ipinmoroti AO, Matthews QL. Extracellular Vesicles: Roles in Human Viral Infections, Immune-Diagnostic, and Therapeutic Applications. Pathogens 2020; 9:pathogens9121056. [PMID: 33348699 PMCID: PMC7766181 DOI: 10.3390/pathogens9121056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound vesicles that are released from cells are increasingly being studied as a medium of intercellular communication, as these act to shuttle functional proteins, such as lipids, DNA, rRNA, and miRNA, between cells during essential physiological processes. Extracellular vesicles (EVs), most commonly exosomes, are consistently produced by virus-infected cells, and they play crucial roles in mediating communication between infected and uninfected cells. Notably, pathophysiological roles for EVs have been established in various viral infections, including human immune deficiency virus (HIV), coronavirus (CoV), and human adenovirus (HAdv). Retroviruses, such as HIV, modulate the production and composition of EVs, and critically, these viruses can exploit EV formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Consequently, EV production has been investigated as a potential tool for the development of improved viral infection diagnostics and therapeutics. This review will summarize our present knowledge of EV–virus relationships, focusing on their known roles in pathophysiological pathways, immunomodulatory mechanisms, and utility for biomarker discovery. This review will also discuss the potential for EVs to be exploited as diagnostic and treatment tools for viral infection.
Collapse
Affiliation(s)
| | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
- Correspondence: ; Tel.: +1-334-604-8443
| |
Collapse
|
46
|
Alfonso S, Jenner AL, Craig M. Translational approaches to treating dynamical diseases through in silico clinical trials. CHAOS (WOODBURY, N.Y.) 2020; 30:123128. [PMID: 33380031 DOI: 10.1063/5.0019556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The primary goal of drug developers is to establish efficient and effective therapeutic protocols. Multifactorial pathologies, including dynamical diseases and complex disorders, can be difficult to treat, given the high degree of inter- and intra-patient variability and nonlinear physiological relationships. Quantitative approaches combining mechanistic disease modeling and computational strategies are increasingly leveraged to rationalize pre-clinical and clinical studies and to establish effective treatment strategies. The development of clinical trials has led to new computational methods that allow for large clinical data sets to be combined with pharmacokinetic and pharmacodynamic models of diseases. Here, we discuss recent progress using in silico clinical trials to explore treatments for a variety of complex diseases, ultimately demonstrating the immense utility of quantitative methods in drug development and medicine.
Collapse
Affiliation(s)
- Sofia Alfonso
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Morgan Craig
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
47
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1138] [Impact Index Per Article: 227.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
49
|
Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020; 21:E6765. [PMID: 32942668 PMCID: PMC7554956 DOI: 10.3390/ijms21186765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.E.O.); (S.C.); (S.W.); (S.T.); (A.F.); (J.H.); (M.S.); (A.G.); (G.P.)
| |
Collapse
|
50
|
Soekmadji C, Li B, Huang Y, Wang H, An T, Liu C, Pan W, Chen J, Cheung L, Falcon-Perez JM, Gho YS, Holthofer HB, Le MTN, Marcilla A, O'Driscoll L, Shekari F, Shen TL, Torrecilhas AC, Yan X, Yang F, Yin H, Xiao Y, Zhao Z, Zou X, Wang Q, Zheng L. The future of Extracellular Vesicles as Theranostics - an ISEV meeting report. J Extracell Vesicles 2020; 9:1809766. [PMID: 33144926 PMCID: PMC7580849 DOI: 10.1080/20013078.2020.1809766] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The utilization of extracellular vesicles (EVs) in clinical theranostics has rapidly advanced in the past decade. In November 2018, the International Society for Extracellular Vesicles (ISEV) held a workshop on “EVs in Clinical Theranostic”. Here, we report the conclusions of roundtable discussions on the current advancement in the analysis technologies and we provide some guidelines to researchers in the field to consider the use of EVs in clinical application. The main challenges and the requirements for EV separation and characterization strategies, quality control and clinical investigation were discussed to promote the application of EVs in future clinical studies.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lesley Cheung
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Yong Song Gho
- Laboratory of Intercellular Communication, Department of Life Science, POSTECH, South Korea
| | - Harry B Holthofer
- Medical Department, University Medical Center Hamburg-Eppendorf, Germany
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Antonio Marcilla
- Àrea De Parasitologia, Departament De Farmàcia I Tecnologia Farmacèutica I Parasitologia, Universitat De València, Burjassot, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat De Valencia, Valencia, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Trinity St. James's Cancer Institute (TSJCI), Trinity College Dublin, Dublin, Ireland
| | - Faezeh Shekari
- Department of Stem Cells and Developmental BiologyCell Science, Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tang Long Shen
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Xiaomei Yan
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yu Xiao
- Laboratory of Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Laboratory of Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|