1
|
Paszti S, Gualdi S, Torres M, Augusto L, Harrison F, Eberl L. Unraveling Burkholderia cenocepacia H111 fitness determinants using two animal models. mSystems 2025; 10:e0135424. [PMID: 40105327 PMCID: PMC12013268 DOI: 10.1128/msystems.01354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that has been associated with nosocomial outbreaks in hospitals and can cause severe respiratory infections among immunocompromised patients and individuals suffering from cystic fibrosis. The transmissibility and intrinsic antibiotic resistance of B. cenocepacia pose a significant challenge in healthcare settings. In this study, with the aim to identify novel drug targets to fight B. cenocepacia infections, we employed a genome-wide transposon sequencing (Tn-seq) approach to unravel fitness determinants required for survival in Galleria mellonella (in vivo infection model) and pig lung tissue (ex vivo organ model). A total of 698 and 117 fitness genes were identified for each of the models, respectively, and 62 genes were found to be important for both. To confirm our results, we constructed individual mutants in selected genes and validated their fitness in the two models. Among the various determinants identified was a rare genomic island (I35_RS03700-I35_RS03770) involved in O-antigen and lipopolysaccharide synthesis. We demonstrate that this gene cluster is required for virulence in the G. mellonella infection model but, by contrast, counteracts efficient colonization of pig lung tissue. Our results highlight the power of the Tn-seq approach to unravel fitness determinants that could be used as therapeutic targets in the future and show that the choice of the infection model for mutant selection is paramount. IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia has been associated with nosocomial infections in healthcare facilities, where it can cause outbreaks involving infections of the bloodstream, respiratory tract, and urinary tract as well as severe complications in immunocompromised patients. With the aim to identify novel targets to fight B. cenocepacia infections, we have used a genome-wide approach to unravel fitness genes required for host colonization in a clinical strain, B. cenocepacia H111. Among the various determinants that we identified is a rare genomic island that modifies the bacterial lipopolysaccharide. Our results highlight the power of the transposon sequencing approach to identify new targets for infection treatment and show the importance of using different infection models.
Collapse
Affiliation(s)
- Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Luis Augusto
- Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
Opris RV, Baciu AM, Filip GA, Florea A, Costache C. The use of Galleria mellonella in metal nanoparticle development: A systematic review. Chem Biol Interact 2025; 415:111511. [PMID: 40246051 DOI: 10.1016/j.cbi.2025.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Research on metal nanoparticles is crucial for their application in diverse fields, requiring detailed assessments of their effects and potential. Galleria mellonella larvae have emerged as a valuable model for studying the impacts of metal nanoparticles, offering ethical and logistical advantages over traditional models. This systematic review synthesizes evidence on the application of Galleria mellonella in evaluating the toxicity, distribution, and therapeutic potential of metal nanoparticles. Adhering to PRISMA guidelines, a comprehensive database search (MEDLINE, Embase, Cochrane, Scopus, Google Scholar, Science Citation Index Expanded) was conducted using keywords related to Galleria mellonella and metal nanoparticles. The SYRCLE's risk of bias tool (adapted for G. mellonella) was used for risk of bias assessment. Out of 1696 initially identified studies, 31 met the inclusion criteria, encompassing research from 2011 to 2024. The included studies effectively demonstrate G. mellonella's capacity to model the toxicity of metal nanoparticles, their therapeutic potential in treating infections, and the impact on the innate immune response, bridging the gap between simpler in vitro assays and more complex mammalian models. Galleria mellonella stands out as a critical model for the early-stage development and evaluation of metal nanoparticles, particularly in assessing toxicity, therapeutic efficacy in infection treatment, and interaction with immune systems. This review underscores the larvae's role in metal nanoparticle research, advocating for its broader use to streamline development processes while minimizing ethical concerns.
Collapse
Affiliation(s)
- Razvan Vlad Opris
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Alina Mihaela Baciu
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Carmen Costache
- Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Quispe-Villegas G, Alcántara-Lozano GI, Cuicapuza D, Laureano R, Ayzanoa B, Tsukayama P, Tamariz J. In vivo evaluation of phage therapy against Klebsiella pneumoniae using the Galleria mellonella model and molecular characterization of a novel Drulisvirus phage species. Microbiol Spectr 2025:e0114524. [PMID: 40202337 DOI: 10.1128/spectrum.01145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae is challenging to treat with conventional antibiotic regimens, posing a threat to healthcare systems. Phage therapy presents a promising alternative treatment strategy; however, characterization of its efficacy and safety is required. Here, we describe the microbiological and molecular characterization of a novel bacteriophage with activity against MDR K. pneumoniae using a greater wax moth (Galleria mellonella) model system. A bacteriophage was isolated from hospital wastewater. Viral kinetics and phage stability were evaluated under varied pH and temperature conditions. The therapeutic efficacy of the phage was evaluated using MDR Klebsiella-infected G. mellonella larvae as an in vivo model. Phage titers and larva survival were compared in phage-treated and control groups. Genomic sequencing (Nanopore and Illumina) was used to classify the bacteriophage and identify any resistance genes or virulence factors present in its genome. Functional characterization demonstrated effective lytic activity, favorable burst size (161 PFU/cell), and an optimal MOI of 0.1. The phage demonstrated stability across a wide range of temperatures (8°C-40°C) and pH levels (4-8). Experiments using the G. mellonella model showed improved larval survival with phage treatment. The novel bacteriophage was identified as a new species within the genus Drulisvirus with no lysogeny-associated, antimicrobial resistance, or virulence genes detected. The new Drulisvirus phage identified is a promising candidate for treatment of infections caused by MDR K. pneumoniae.IMPORTANCEThe study describes a bacteriophage with potential for use in phage therapy against Klebsiella pneumoniae, one of the most clinically significant bacterial pathogens today. Microbiological and genomic characterization of the phage revealed advantageous properties for therapeutic applications, while also identifying a novel species within the Drulisvirus genus. These findings significantly contribute to our understanding of bacteriophage diversity and their utility in combating antibiotic-resistant infections. Moreover, the authors developed an in vivo preclinical model of MDR infection using Galleria mellonella larvae and successfully applied it to study the bacteriophage's therapeutic efficacy. This model offers a robust and efficient platform for preclinical testing.
Collapse
Affiliation(s)
- Gustavo Quispe-Villegas
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriela I Alcántara-Lozano
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Cuicapuza
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Raúl Laureano
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brenda Ayzanoa
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Tamariz
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
de Castro IM, Antunes C, Valentim CC, Spoladori LFDA, Suzukawa HT, Correia GF, Silva-Rodrigues G, Borges PHG, Bartolomeu-Gonçalves G, Silva ML, Bispo MDLF, Machado RRB, Nakamura CV, Nakazato G, Pinge-Filho P, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Synergistic Antibacterial Interaction of Geraniol and Biogenic Silver Nanoparticles on Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1059. [PMID: 40219128 PMCID: PMC11991589 DOI: 10.3390/plants14071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Since ancient times, plants have been used in folk medicine to treat different diseases. Plants offer exceptional chemical diversity with a wide range of biological activities, and have therefore been the most promising sources for the discovery and development of drugs, including antimicrobial agents. This study reports the antibacterial effect of geraniol (GER), alone and in combination with biogenic silver nanoparticles (bioAgNPs), produced using the aqueous extract of Trichilia catigua bark, against planktonic and sessile cells of methicillin-resistant Staphylococcus aureus (MRSA), one of the main opportunistic and potentially fatal human pathogens. GER had a time-dependent bactericidal effect on planktonic cells, impairing the cell membrane integrity. In addition, GER inhibited the staphyloxanthin production, and molecular docking analyses supported the in silico affinity of GER to dehydrosqualene synthase (CrtM) and 4,4'-diaponeurosporen-aldehyde dehydrogenase (AldH), which are key enzymes within the pigment biosynthesis pathway in S. aureus. GER treatment increased the sensitivity of MRSA to hydrogen peroxide killing. GER displayed synergism with bioAgNPs against planktonic and sessile cells, inhibiting bacterial adhesion and the viability of biofilms formed on abiotic surfaces. MRSA planktonic and sessile cells treated with GER or GER/bioAgNPs displayed severe morphological and ultrastructural alterations. Notably, neither GER nor its combination caused in vitro and in vivo toxicity in mammalian cells and Galleria mellonella larvae, respectively. These findings suggest that the combination of GER/bioAgNPs may be a promising strategy to control MRSA infections.
Collapse
Affiliation(s)
- Isabela Madeira de Castro
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Camila Antunes
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Camila Cristina Valentim
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Laís Fernanda de Almeida Spoladori
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Helena Tiemi Suzukawa
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Guilherme Ferreira Correia
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Gislaine Silva-Rodrigues
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Paulo Henrique Guilherme Borges
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Guilherme Bartolomeu-Gonçalves
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
- Programa de Pós-graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina 86038-350, Paraná, Brazil
| | - Mariana Luiza Silva
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas e da Terra, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (M.L.S.); (M.d.L.F.B.)
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas e da Terra, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (M.L.S.); (M.d.L.F.B.)
| | - Rayanne Regina Beltrame Machado
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá 87020-900, Paraná, Brazil;
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá 87020-900, Paraná, Brazil;
| | - Gerson Nakazato
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
| | - Phileno Pinge-Filho
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Imunopatologia Experimental, Departmento of Imunologia, Parasitologia e Patologia Geral, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
- Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Londrina 86067-000, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (I.M.d.C.); (L.F.d.A.S.); (H.T.S.); (G.F.C.); (G.S.-R.); (P.H.G.B.); (C.V.N.); (G.N.); (P.P.-F.); (E.R.T.); (L.M.Y.)
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina 86055-900, Paraná, Brazil; (C.A.); (C.C.V.); (G.B.-G.)
- Programa de Pós-graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina 86038-350, Paraná, Brazil
| |
Collapse
|
5
|
Guembe M, Hafian R, Díaz-Navarro M, Visedo A, De Maio F, Pimpinelli F, Cavallo I, Truglio M, Sivori F, Di Domenico EG. Virulence profile of carbapenem-resistant Klebsiella pneumoniae strains by an in vivo model of Galleria mellonella. Microbiol Spectr 2025; 13:e0221524. [PMID: 39804075 PMCID: PMC11792541 DOI: 10.1128/spectrum.02215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 02/05/2025] Open
Abstract
Klebsiella pneumoniae is a significant healthcare-associated pathogen, notable for its diverse virulence and antibiotic resistance profiles. This study aimed to characterize the genotypic and phenotypic diversity of K. pneumoniae isolates and evaluate their virulence using the Galleria mellonella model. Biomass production, metabolic activity, capsule formation, and siderophore production were assessed in 27 K. pneumoniae isolates from hospital-associated infections. Lethality curves were generated using the G. mellonella model, with survival monitored hourly from 16 to 48 hours. The most common sequence types (ST) identified were the high-risk clones ST307 (N = 10), ST512 (N = 8), ST101 (N = 7), and ST661 (N = 2). These STs were associated with distinct K-locus, including KL102, KL107, KL17, and KL39. Most isolates belonged to the O2afg locus (N = 18), with the K. pneumoniae carbapenemase genotype detected in 96.3% of strains. None of the isolates were classified as hypervirulent. Phenotypically, ST661 exhibited the highest biomass production despite showing similar metabolic activity to other STs. A positive correlation was observed between biomass and siderophore production, while capsule production was inversely correlated with biomass. In the G. mellonella model, ST661 demonstrated the highest virulence, resulting in 100% mortality by 48 hours, compared to survival rates of 21.4% for ST101, 38.0% for ST307, and 31.2% for ST512. These findings underscore the pathogenic potential of ST661 isolates with enhanced biofilm production. The G. mellonella model may serve as an effective in vivo system for evaluating the virulence of emerging K. pneumoniae lineages.IMPORTANCEWe demonstrate that the Galleria mellonella model is a useful tool to analyze the virulence of carbapenem-resistant Klebsiella pneumoniae strains. Our findings highlight the pathogenicity of carbapenem-resistant K pneumoniae isolates, particularly the role of the ST661 that, despite being a rare lineage, harbors the blaVIM gene and is associated with high biofilm production and the highest mortality rates.
Collapse
Affiliation(s)
- María Guembe
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | | | - Marta Díaz-Navarro
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | - Andrés Visedo
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Nogueira A, Brango-Vanegas J, Vasconcelos AG, Coleone AP, Barbosa ÉA, Moreira DC, da Silva MDG, Cabral WF, Nascimento JD, Vinícius de Sousa França J, Arcanjo DDR, Lima FCDA, Batagin-Neto A, Kückelhaus SAS, Brand GD, Plácido A, Leite JRSA. Novel tryptophyllin peptides from Physalaemus centralis inhibit oxidative stress-induced endothelial dysfunction in rat aorta preparation. Toxicon 2025; 255:108234. [PMID: 39800077 DOI: 10.1016/j.toxicon.2025.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Amphibian skin is a rich source of molecules with biotechnological potential, including the tryptophyllin family of peptides. Here, we report the identification and characterization of two tryptophyllin peptides, FPPEWISR and FPWLLS-NH2, from the skin of the Central Dwarf Frog, Physalaemus centralis. These peptides were identified through cDNA cloning and sequence comparison. FPWLLS-NH2 shares its primary structure with a previously identified peptide from the skin of Pelophylax perezi, named PpT-2. Another peptide, FPPEWISR, is novel and was named PcT-1. After solid-phase peptide synthesis, both peptides exhibited significant antioxidant activity, with PcT-1 and PpT-2 demonstrating ABTS radical scavenging capacities of 0.305 and 0.269 mg Trolox equivalents/mg peptide, respectively, and ORAC values of 0.319 and 0.248 mg Trolox equivalents/mg peptide. Additionally, PcT-1 and PpT-2 inhibited AAPH-induced hemolysis in human red blood cells, achieving a protection level comparable to Trolox at 0.2 mg/mL. In rat aorta preparations, both peptides partially restored acetylcholine-induced vasorelaxation following pyrogallol-induced oxidative stress, with a greater protective effect of PpT-2. Hemolytic activity assay indicated no cytotoxicity in human red blood cells, and tests on Galleria mellonella larvae confirmed their low toxicity in vivo. These findings highlight the biotechnological potential of PcT-1 and PpT-2 as antioxidant agents, paving the way for new therapeutic applications in combating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ariane Nogueira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - José Brango-Vanegas
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Andreanne G Vasconcelos
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Alex P Coleone
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil
| | - Éder A Barbosa
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil; Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Daniel C Moreira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Maria da Gloria da Silva
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Wanessa F Cabral
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Jhones D Nascimento
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Biomedicine Course, Federal University of Delta do Parnaíba, UFDPar, Parnaíba, Brazil
| | - José Vinícius de Sousa França
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil; São Paulo State University (UNESP), Institute of Sciences and Engineering, Itapeva, SP, Brazil
| | - Selma A S Kückelhaus
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Guilherme D Brand
- Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - José Roberto S A Leite
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
7
|
Yan H, Xu B, Gao B, Xu Y, Xia X, Ma Y, Qin X, Dong Q, Hirata T, Li Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms 2025; 13:191. [PMID: 39858959 PMCID: PMC11767709 DOI: 10.3390/microorganisms13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in Galleria mellonella, cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes. Compared with other STs, both the ST121 (food source) and ST1930 (clinic source) strains exhibited higher G. mellonella mortality. The 48 h mortality in G. mellonella of lineage II strains was significantly higher than that in lineage I. Compared with other STs, ST1930, ST3, ST5, and ST1032 exhibited higher cytotoxicity to JEG-3 cells. Based on the classification of sources (food and clinical strains) and serogroups (II a, II b, and II c), there were no significant differences observed in terms of G. mellonella mortality, cytotoxicity, and hemolytic activity. In addition, ST121 exhibited significantly higher hly, inlA, inlB, prfA, plcA, and plcB gene expression compared with other STs. A gray relation analysis showed a high correlation between the toxicity of G. mellonella and the expression of the hly and inlB genes; in addition, L. monocytogenes may have a consistent virulence mechanism involving hemolysis activity and cytotoxicity. Through the integration of in vivo and in vitro infection models with information on the expression of virulence factor genes, the differences in virulence between strains or subtypes can be better understood.
Collapse
Affiliation(s)
- Hui Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Binru Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yunyan Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka 574-0011, Japan
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| |
Collapse
|
8
|
Albogami B, Darwish H, Alghamdi A, Darwish AB, Al-Otaibi WM, A. Osman M, M. Al Dhafar Z, Alkhaibari AM, Mashlawi AM, Baakdah F, Noureldeen A. Acaricidal and insecticidal activities of entomopathogenic nematodes combined with rosemary essential oil and bacterium-synthesized silver nanoparticles against camel tick, Hyalomma dromedarii and wax moth, Galleria mellonella. PeerJ 2025; 13:e18782. [PMID: 39830955 PMCID: PMC11740739 DOI: 10.7717/peerj.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance. The present investigation was carried out to determine for the first time the in vitro acaricidal and insecticidal efficacies of endogenous two entomopathogenic nematodes (EPNs), Heterorhabditis indica and Steinernema sp. combined with either Proteus mirabilis-synthesized silver nanoparticles or Rosmarinus officinalis essential oil against the camel tick, Hyalomma dromedarii larvae and females, and greater wax moth, Galleria mellonella larvae as well. We also determined the potential effects of these treatments on the biological characteristics of H. dromedarii's engorged females. We further investigated R. officinalis essential oil (EO) profiling and nanoparticle (AgNPs) characterization. All the evaluated combinations demonstrated synergistic effects on the larvae of G. mellonella and H. dromedarii, as well as on engorged females. When H. indica was mixed with EO or AgNPs, it worked well than when Steinernema sp. was mixed with EO or AgNPs. This was shown by the highest number of tick and insect mortalities and the lowest lethal concentration (LC50) values. One day after G. mellonella was exposed to H. indica (1,000 infective juveniles (IJs)) together with EO at 60 or 40 mg/mL, all tested individuals died. We obtained the same results when H. dromedarii females exposed to the same level of EPN with 60 mg/mL EO, and when H. dromedarii larvae treated with H. indica at 500 IJs + EO at 25 mg/mL. Treatments altered all biological parameters of engorged females, revealing extremely noticeable differences between the treated and untreated groups. Gas chromatography-mass spectrometry (GC-MS) analysis identified a total of 28 compounds in the R. officinalis EO. Visual observation showed a color change from yellow to dark brown for AgNPs biosynthesized from P. mirabilis; the transmission electron microscopy (TEM) image and ultraviolet-visible (UV-Vis) spectrum showed well-dispersed particles with a diameter of 5-45 nm; and the greatest surface plasmon peaked at 320 nm. The results demonstrated the high efficacy of combining EPN, H. indica, with EO to control tick and insect pests. This is due to its acaricidal activity on different stages of H. dromedarii, including larvae and engorged females, and its larvicidal effect on G. mellonella.
Collapse
Affiliation(s)
- Bander Albogami
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Akram Alghamdi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | | | | | - Mohamed A. Osman
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zamzam M. Al Dhafar
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abadi M. Mashlawi
- Department of Biology, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Fadi Baakdah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
9
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
10
|
Mattos LMM, Silva RN, Santos LG, Giovanini L, Cruz VS, Barreto NMB, Perrone D, Santos ALS, Pereira MD. Harnessing H 2O 2-induced susceptibility in Galleria mellonella larvae: A robust model for exploring oxidative stress and biomarkers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104596. [PMID: 39608595 DOI: 10.1016/j.etap.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Oxidative stress plays a crucial role in various pathological conditions. This study introduces an enhanced model using hydrogen peroxide (H2O2)-induced stress in Galleria mellonella larvae, offering a cost-effective and ethically sound alternative for oxidative stress research. The model bridges in vitro and in vivo studies to identify biomarkers like lipid peroxidation, protein carbonylation, hemocyte count, and antioxidant enzyme activities. Our results show that while G. mellonella larvae tolerated high doses of H2O2, increased susceptibility occurred with prolonged toxicosis and higher concentrations. Acute H2O2 exposure (5.0 M/1st day) led to elevated lipid and protein oxidation and decreased superoxide dismutase activity and hemocyte count, while catalase activity and total antioxidant capacity increased. Despite these defenses, the larvae's antioxidant capacity was insufficient under severe oxidative stress, reducing survival. This study highlights G. mellonella larvae as a promising model for examining reactive oxygen species (ROS)-induced oxidative stress.
Collapse
Affiliation(s)
- L M M Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rede de Micologia RJ - FAPERJ, Brazil.
| | - R N Silva
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L G Santos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L Giovanini
- Rede de Micologia RJ - FAPERJ, Brazil; Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - V S Cruz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - N M B Barreto
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - D Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - A L S Santos
- Rede de Micologia RJ - FAPERJ, Brazil; Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rede de Micologia RJ - FAPERJ, Brazil.
| |
Collapse
|
11
|
Marinacci B, D'Agostino I, Angeli A, Carradori S, Melfi F, Grande R, Corsiani M, Ferraroni M, Agamennone M, Tondo AR, Zara S, Puca V, Pellegrini B, Vagaggini C, Dreassi E, Patrauchan MA, Capasso C, Nicolotti O, Carta F, Supuran CT. Inhibition of Pseudomonas aeruginosa Carbonic Anhydrases, Exploring Ciprofloxacin Functionalization Toward New Antibacterial Agents: An In-Depth Multidisciplinary Study. J Med Chem 2024; 67:19077-19102. [PMID: 39453626 DOI: 10.1021/acs.jmedchem.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ciprofloxacin (CPX) is one of the most employed antibiotics in clinics to date. However, the rise of drug-resistant bacteria is dramatically impairing its efficacy, especially against life-threatening pathogens, such as Pseudomonas aeruginosa. This Gram-negative bacterium is an opportunistic pathogen, often infecting immuno-compromised patients with severe or fatal outcomes. The evidence of the possibility of exploiting Carbonic Anhydrase (CA, EC: 4.2.1.1) enzymes as pharmacological targets along with their role in P. aeruginosa virulence inspired the derivatization of CPX with peculiar CA-inhibiting chemotypes. Thus, a large library of CPX derivatives was synthesized and tested on a panel of bacterial CAs and human isoenzymes I and II. Selected derivatives were evaluated for antibacterial activity, revealing bactericidal and antibiofilm properties for some compounds. Importantly, promising preliminary absorption, distribution, metabolism, and excretion (ADME) properties in vitro were found and no cytotoxicity was detected for some representative compounds when tested in Galleria mellonella larvae.
Collapse
Affiliation(s)
- Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Angeli
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Micol Corsiani
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry ″Ugo Schiff″, University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Mariangela Agamennone
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Susi Zara
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, 80131 Napoli, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Eiamthaworn K, Holthaus D, Suriyaprom S, Rickerts V, Tragoolpua Y. Immunomodulation and Protective Effects of Cordyceps militaris Extract Against Candida albicans Infection in Galleria mellonella Larvae. INSECTS 2024; 15:882. [PMID: 39590481 PMCID: PMC11595007 DOI: 10.3390/insects15110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Cordyceps militaris-derived formulations are currently used for multiple purposes because of their medical properties, especially immune system modulation. This study analyzes the inhibitory effects of C. militaris aqueous extract on Candida albicans infections and the immune response in larvae of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Larvae exhibited melanization within 1 h of being infected with C. albicans inoculum at a concentration of 106 cells/larvae, and died within 24 h from a lethal dose. Aqueous extract of C. militaris proved to be nontoxic at concentrations of 0.25 and 0.125 mg/larvae, and had the greatest ability to prolong the survival of larvae infected with a sublethal dose of C. albicans at a concentration of 105 cells/larvae. Moreover, the number of hemocytes in the hemolymph of G. mellonella increased after infection with C. albicans and treatment with the aqueous extract of C. militaris at 1, 24, and 48 h by 1.21 × 107, 1.23 × 107, and 1.4 × 107 cells/100 µL, respectively. The highest number of hemocytes was recorded after treatment of infected G. mellonella with the extract for 48 h. Transcriptional upregulation of the immune system was observed in certain antimicrobial peptides (AMPs), showing that the relative expression of galiomicin, gallerimycin, and lysozyme genes were upregulated as early as 1 h after infection. Therefore, we conclude that C. militaris aqueous extract can modulate the immune system of G. mellonella and protect against infection from C. albicans.
Collapse
Affiliation(s)
- Kiratiya Eiamthaworn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- Robert Koch Institute, 13353 Berlin, Germany;
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Guarnieri A, Venditti N, Cutuli MA, Brancazio N, Salvatore G, Magnifico I, Pietrangelo L, Falcone M, Vergalito F, Nicolosi D, Scarsella F, Davinelli S, Scapagnini G, Petronio Petronio G, Di Marco R. Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. Front Cell Infect Microbiol 2024; 14:1428525. [PMID: 39310784 PMCID: PMC11412949 DOI: 10.3389/fcimb.2024.1428525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. Methods The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. Results and discussion In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model.
Collapse
Affiliation(s)
- Antonio Guarnieri
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Noemi Venditti
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- Unità Operativa (UO) Laboratorio Analisi, Responsible Research Hospital, Campobasso, Italy
| | - Marco Alfio Cutuli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Natasha Brancazio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanna Salvatore
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Irene Magnifico
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Laura Pietrangelo
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Marilina Falcone
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Franca Vergalito
- Università degli Studi del Molise Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy
| | - Daria Nicolosi
- Università degli Studi di Catania Department of Drug and Health Sciences, Catania, Italy
| | - Franco Scarsella
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- ASReM-Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Sergio Davinelli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanni Scapagnini
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giulio Petronio Petronio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Roberto Di Marco
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| |
Collapse
|
14
|
Costabile G, Baldassi D, Müller C, Groß B, Ungaro F, Schubert S, Firestine SM, Merkel OM. Antibiotic-loaded nanoparticles for the treatment of intracellular methicillin-resistant Staphylococcus Aureus infections: In vitro and in vivo efficacy of a novel antibiotic. J Control Release 2024; 374:454-465. [PMID: 39181163 DOI: 10.1016/j.jconrel.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance is considered one of the biggest threats to public health worldwide. Methicillin-resistant S. aureus is the causative agent of a number of infections and lung colonization in people suffering from cystic fibrosis. Moreover, a growing body of evidence links the microbiome to the development of cancer, as well as to the success of the treatment. In this view, the development of novel antibiotics is of critical importance, and SV7, a novel antibiotic active against MRSA at low concentrations, represents a promising candidate. However, the low aqueous solubility of SV7 hampers its therapeutic translation. In this study, SV7 was encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to improve the solubility profile, to ensure sustained release and eventually support deposition in the airways. Furthermore, PLGA NPs were formulated as dry powder to extend their shelf-life and were shown to efficiently target intracellular infections. After identifying a formulation with suitable physico-chemical characteristics, SV7-loaded NPs were investigated in vitro in terms of inhibitory activity against MRSA, and their safety profile in lung epithelial cells. Subsequently, the activity against MRSA intracellular infections was investigated in a co-culture model of MRSA and macrophages. To test the translatability of our findings, SV7-loaded NPs were tested in vivo in a Galleria mellonella infection model. In conclusion, SV7-loaded NPs showed a safe profile and efficient inhibitory activity against MRSA at low concentrations. Furthermore, their activity against intracellular infections was confirmed, and was retained in vivo, rendering them a promising candidate for treatment of MRSA lung infections.
Collapse
Affiliation(s)
- Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany; Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany
| | - Birgit Groß
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, IT, Italy
| | - Sören Schubert
- Max von Pettenkofer-Institut Munich für Hygiene und Medizinische Mikrobiologie, Elisabeth-Winterhalter-Weg 6, 81377 Munich, DE, Germany
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Detroit, MI 48201, USA
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, DE, Germany.
| |
Collapse
|
15
|
Banfi D, Bianchi T, Mastore M, Brivio MF. Optimization of Experimental Infection of the Animal Model Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) with the Gram-Positive Bacterium Micrococcus luteus. INSECTS 2024; 15:618. [PMID: 39194822 DOI: 10.3390/insects15080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The aim of this work was to develop an experimental protocol for the infection of Galleria mellonella with Gram-positive bacteria. Some physiological characteristics of these insects are comparable to those of vertebrates, therefore allowing the replacement of mammals in the preclinical phases of drug development. G. mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is accepted as an alternative model for the study of infectious diseases. Since data on infection procedures with different bacterial strains are scarce and sometimes conflicting, also due to different and non-uniform protocols, we developed an experimental protocol that would allow for controlled and repeatable infections, using the Gram-positive bacterium GRAS (Generally Regarded As Safe) Micrococcus luteus. After analyzing the morphology and defining the growth rate of M. luteus, doses of between 101 and 106 CFU/larvae were administered to late-stage larvae. The survival rate of the larvae was monitored up to 7 days and the LD50 determined. The bacterial clearance capacity of the larvae after injection with 103 and 105 CFU/larvae was assessed by hemolymph bacterial load analysis. The results made it possible to define the growth curve of M. luteus correlated with the CFU count; based on the LD50 (103.8 CFU/larvae) calculated on the survival of G. mellonella, infections were carried out to evaluate the immune efficiency of the larvae in bacterial clearance. This protocol, standardized on G. mellonella larvae, could provide a functional tool to study the course of bacterial infections.
Collapse
Affiliation(s)
- Davide Banfi
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Tommaso Bianchi
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Maristella Mastore
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
16
|
Tran KD, Le-Thi L, Vo HH, Dinh-Thi TV, Nguyen-Thi T, Phan NH, Nguyen KU. Probiotic Properties and Safety Evaluation in the Invertebrate Model Host Galleria mellonella of the Pichia kudriavzevii YGM091 Strain Isolated from Fermented Goat Milk. Probiotics Antimicrob Proteins 2024; 16:1288-1303. [PMID: 37368223 DOI: 10.1007/s12602-023-10114-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Potential probiotic yeast strains isolated from fermented food need to meet safe and beneficial conditions for the host's health. The Pichia kudriavzevii YGM091 strain isolated from fermented goat milk has outstanding probiotic characteristics, including: the high survival percentage in digestive system conditions (reaching up 247.13 ± 0.12 and 145.03 ± 0.06% at pH 3.0 and bile salt 0.5%, respectively); good tolerance to temperature, salt, phenol, ethanol; good surface properties such as high hydrophobicity percentage (> 60%), the high auto-aggregation percentage rate (66.56 ± 1.45% after 45 min of incubation) and the high co-aggregation percentage rate with pathogenic bacteria in a short time (> 40% after 2 h of incubation); biofilm forming after 24 h of incubation on abiotic surfaces; antioxidant activity reached excellent level after only 24 h of incubation (The percentage free radical scavenging and the Trolox equivalent reaching up 79.86 ± 0.70% and 92.09 ± 0.75 µg/mL after 72 h of incubation); extracellular enzymes production protease and cellulase with high activity, amylase and pectinase with moderate activity and non-lipase activity. Simultaneously, the YGM091 strain is the in vitro safety yeast: insensitive to antibiotics and fluconazole, negative for gelatinase, phospholipase, coagulase, and non-hemolysis activities. Furthermore, this strain is in vivo safety yeast with the dosages below 106 CFU/larva in the Galleria mellonella model with over 90% survival larvae and the yeast density reduced to just 102-103 CFU/larva after 72 h post-injection. Research results have demonstrated that the Pichia kudriavzevii YGM091 strain is a safe potential probiotic yeast and could become a candidate probiotic food to be used in the future.
Collapse
Affiliation(s)
- Kim-Diep Tran
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam.
- Yersin University, Da Lat, Vietnam.
| | | | | | | | | | - Nha-Hoa Phan
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam
| | - Khanh-Uyen Nguyen
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam
| |
Collapse
|
17
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
18
|
Gestels Z, Baranchyk Y, Van den Bossche D, Laumen J, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. Microbiol Spectr 2024; 12:e0359523. [PMID: 38687060 PMCID: PMC11237748 DOI: 10.1128/spectrum.03595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
We hypothesized that the residual concentrations of fluoroquinolones allowed in food (acceptable daily intake-ADIs) could select for ciprofloxacin resistance in our resident microbiota. We developed models of chronic Escherichia coli and Klebsiella pneumoniae infection in Galleria mellonella larvae and exposed them to ADI doses of ciprofloxacin via single dosing and daily dosing regimens. The emergence of ciprofloxacin resistance was assessed via isolation of the target bacteria in selective agar plates. Exposure to as low as one-tenth of the ADI dose of the single and daily dosing regimens of ciprofloxacin resulted in the selection of ciprofloxacin resistance in K. pneumoniae but not E. coli. This resistance was associated with cross-resistance to doxycycline and ceftriaxone. Whole genome sequencing revealed inactivating mutations in the transcription repressors, ramR and rrf2, as well as mutations in gyrA and gyrB. We found that ciprofloxacin doses 10-fold lower than those classified as acceptable for daily intake could induce resistance to ciprofloxacin in K. pneumoniae. These results suggest that it would be prudent to include the induction of antimicrobial resistance as a significant criterion for determining ADIs and the associated maximum residue limits in food.IMPORTANCEThis study found that the concentrations of ciprofloxacin/enrofloxacin allowed in food can induce de novo ciprofloxacin resistance in Klebsiella pneumoniae. This suggests that it would be prudent to reconsider the criteria used to determine "safe" upper concentration limits in food.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yuliia Baranchyk
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team—HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Baranchyk Y, Gestels Z, Van den Bossche D, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Effect of erythromycin residuals in food on the development of resistance in Streptococcus pneumoniae: an in vivo study in Galleria mellonella. PeerJ 2024; 12:e17463. [PMID: 38827315 PMCID: PMC11141549 DOI: 10.7717/peerj.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Background The use of antimicrobials to treat food animals may result in antimicrobial residues in foodstuffs of animal origin. The European Medicines Association (EMA) and World Health Organization (WHO) define safe antimicrobial concentrations in food based on acceptable daily intakes (ADIs). It is unknown if ADI doses of antimicrobials in food could influence the antimicrobial susceptibility of human-associated bacteria. Objectives This aim of this study was to evaluate if the consumption of ADI doses of erythromycin could select for erythromycin resistance in a Galleria mellonella model of Streptococcus pneumoniae infection. Methods A chronic model of S. pneumoniae infection in G. mellonella larvae was used for the experiment. Inoculation of larvae with S. pneumoniae was followed by injections of erythromycin ADI doses (0.0875 and 0.012 μg/ml according to EMA and WHO, respectively). Isolation of S. pneumoniae colonies was then performed on selective agar plates. Minimum inhibitory concentrations (MICs) of resistant colonies were measured, and whole genome sequencing (WGS) was performed followed by variant calling to determine the genetic modifications. Results Exposure to single doses of both EMA and WHO ADI doses of erythromycin resulted in the emergence of erythromycin resistance in S. pneumoniae. Emergent resistance to erythromycin was associated with a mutation in rplA, which codes for the L1 ribosomal protein and has been linked to macrolide resistance in previous studies. Conclusion In our in vivo model, even single doses of erythromycin that are classified as acceptable by the WHO and EMA induced significant increases in erythromycin MICs in S. pneumoniae. These results suggest the need to include the induction of antimicrobial resistance (AMR) as a significant criterion for determining ADIs.
Collapse
Affiliation(s)
- Yuliia Baranchyk
- UnivLyon, Université Claude Bernard Lyon 1, Lyon, France
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Noakes F, Smitten KL, Maple LEC, Bernardino de la Serna J, Robertson CC, Pritchard D, Fairbanks SD, Weinstein JA, Smythe CGW, Thomas JA. Phenazine Cations as Anticancer Theranostics †. J Am Chem Soc 2024; 146:12836-12849. [PMID: 38683943 PMCID: PMC11082890 DOI: 10.1021/jacs.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.
Collapse
Affiliation(s)
- Felicity
F. Noakes
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Laura E. C. Maple
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Central
Laser
Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, U.K.
| | - Craig C. Robertson
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Dylan Pritchard
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Simon D. Fairbanks
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Julia A. Weinstein
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Carl G. W. Smythe
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| |
Collapse
|
21
|
Lobo CB, Molina RDI, Moreno Mochi P, Vargas JM, Jure MÁ, Juárez Tomás MS. Safety attributes of Pseudomonas sp. P26, an environmental microorganism with potential application in contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123818. [PMID: 38508367 DOI: 10.1016/j.envpol.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Currently, the selection of non-pathogenic microorganisms that lack clinically relevant antimicrobial resistance is crucial to bioaugmentation strategies. Pseudomonas sp. P26 (P26) is an environmental bacterium of interest due to its ability to remove aromatic compounds from petroleum, but its safety characteristics are still unknown. The study aimed to: a) determine P26 sensitivity to antimicrobials, b) investigate the presence of quinolone and β-lactam resistance genes, c) determine the presence of virulence factors, and d) evaluate the effect of P26 on the viability of Galleria mellonella (an invertebrate animal model). P26 antimicrobial sensitivity was determined in vitro using the Kirby-Bauer agar diffusion method and the VITEK 2 automated system (BioMerieux®). Polymerase Chain Reaction was employed for the investigation of genes associated with quinolone resistance, extended-spectrum β-lactamases, and carbapenemases. Hemolysin and protease production was determined in human blood agar and skimmed-milk agar, respectively. In the in vivo assay, different doses of P26 were injected into Galleria mellonella larvae and their survival was monitored daily. Control larvae injected with Pseudomonas putida KT2440 (a strain considered as safe) and Pseudomonas aeruginosa PA14 (a pathogenic strain) were included. Pseudomonas sp. P26 was susceptible to most evaluated antimicrobials, except for trimethoprim-sulfamethoxazole. No epidemiologically relevant genes associated with quinolone and β-lactam resistance were identified. Hemolysin and protease production was only evidenced in the virulent strain (PA14). Furthermore, the results obtained in the in vivo experiment demonstrated that inocula less than 108 CFU/mL of P26 and P. putida KT2440 did not significantly affect larval survival, whereas larvae injected with the lowest dose of the pathogenic strain P. aeruginosa PA14 experienced instant mortality. The results suggest that Pseudomonas sp. P26 is a safe strain for its application in environmental bioremediation processes. Additional studies will be conducted to ensure the safety of this bacterium against other organisms.
Collapse
Affiliation(s)
- Constanza Belén Lobo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | - Rocío Daniela Inés Molina
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | - Paula Moreno Mochi
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - Juan Martín Vargas
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Ángela Jure
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Silvina Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
22
|
Genç TT, Kaya S, Günay M, Çakaloğlu Ç. Humoral immune response of Galleria mellonella after mono- and co-injection with Hypericum perforatum extract and Candida albicans. APMIS 2024; 132:358-370. [PMID: 38344892 DOI: 10.1111/apm.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
Galleria mellonella is used as a model organism to study the innate immune response of insects. In this study, the humoral immune response was assessed by examining phenoloxidase activity, fungal burden, and the expression of phenoloxidase and antimicrobial peptide genes at different time point following separate and combined injections of Hypericum perforatum extract and a nonlethal dose of Candida albicans. The administration of a plant extract at low doses increased phenoloxidase activity, while higher doses had no effect. Similarly, co-injection of a low dose of the extract with the pathogen allowed half of the yeast cells to survive after 24 h. Co-injection of plant extract with the pathogen decreased the phenoloxidase activity at the end of 4 h compared to C. albicans mono-injection. The phenoloxidase gene expressions was reduced in all experimental conditions with respect to the control. When plant extracts and the pathogen were administered together, gallerimycin and hemolin gene expressions were considerably higher compared to mono-injections of plant extracts and the pathogen. The results of this study reveal that gene activation and regulatory mechanisms may change for each immune gene, and that recognition and signaling pathways may differ depending on the involved immunoregulator.
Collapse
Affiliation(s)
- Tülay Turgut Genç
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serhat Kaya
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Melih Günay
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Çağla Çakaloğlu
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
23
|
Rudhra O, Gnanam H, Sivaperumal S, Namperumalsamy V, Prajna L, Kuppamuthu D. Melanin depletion affects Aspergillus flavus conidial surface proteins, architecture, and virulence. Appl Microbiol Biotechnol 2024; 108:291. [PMID: 38592509 PMCID: PMC11004046 DOI: 10.1007/s00253-024-13107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.
Collapse
Affiliation(s)
- Ondippili Rudhra
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Hariharan Gnanam
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | |
Collapse
|
24
|
Ramírez-Sotelo U, García-Carnero LC, Martínez-Álvarez JA, Gómez-Gaviria M, Mora-Montes HM. An ELISA-based method for Galleria mellonella apolipophorin-III quantification. PeerJ 2024; 12:e17117. [PMID: 38500532 PMCID: PMC10946395 DOI: 10.7717/peerj.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.
Collapse
|
25
|
Giammarino A, Bellucci N, Angiolella L. Galleria mellonella as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages. Pathogens 2024; 13:233. [PMID: 38535576 PMCID: PMC10976154 DOI: 10.3390/pathogens13030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as Galleria mellonella (Lepidoptera), Drosophila melanogaster (Diptera) and Bombyx mori (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of G. mellonella represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with G. mellonella as an in vivo study model for preclinical experimentation.
Collapse
Affiliation(s)
| | | | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy; (A.G.); (N.B.)
| |
Collapse
|
26
|
Herculano RD, Mussagy CU, Guerra NB, Sant'Ana Pegorin Brasil G, Floriano JF, Burd BS, Su Y, da Silva Sasaki JC, Marques PAC, Scontri M, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, He S, Forster S, Ma C, de Lima Lopes Filho PE, Dos Santos LS, Silva GR, Crotti AEM, de Barros NR, Li B, de Mendonça RJ. Recent advances and perspectives on natural latex serum and its fractions for biomedical applications. BIOMATERIALS ADVANCES 2024; 157:213739. [PMID: 38154400 DOI: 10.1016/j.bioadv.2023.213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Siqi He
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | | | - Lindomar Soares Dos Santos
- Department of Physics, Faculty of Philosophy, Sciences and Languages at Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Yue C, Yuan Z, Xu G, Guan XN, Wei B, Yao H, Yang CG, Zhang T. Structure-Guided Design, Synthesis, and Antivirulence Assessment of Covalent Staphylococcus aureus Sortase A Inhibitors. J Med Chem 2024; 67:1127-1146. [PMID: 38170998 DOI: 10.1021/acs.jmedchem.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sortase A (SrtA) is a membrane-associated cysteine transpeptidase required for bacterial virulence regulation and anchors surface proteins to cell wall, thereby assisting biofilm formation. SrtA is targeted in antivirulence treatments against Gram-positive bacterial infections. However, the development of potent small-molecule SrtA inhibitors is constrained owing to the limited understanding of the mode of action of inhibitors in the SrtA binding pocket. Herein, we designed and synthesized a novel class of covalent SrtA inhibitors based on the binding mode detailed in the X-ray crystal structure of the ML346/Streptococcus pyogenes SrtA complex. ML346 analog Y40 exhibited 2-fold increased inhibitory activity on Staphylococcus aureus SrtA and showed superior inhibitory effects on biofilm formation in vitro. Y40 protected Galleria mellonella larvae fromS. aureusinfections in vivo while minimally attenuating staphylococcal growth in vitro. Our study indicates that the covalent SrtA inhibitor Y40 is an antivirulence agent that is effective againstS. aureusinfections.
Collapse
Affiliation(s)
- Chuan Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guobin Xu
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyan Wei
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Guang Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
28
|
Wang S, Yin Y, Zai X, Gu Y, Guo F, Shao F, Zhang Y, Li Y, Li R, Zhang J, Xu J, Chen W. A novel Galleria mellonella experimental model for zoonotic pathogen Brucella. Virulence 2023; 14:2268496. [PMID: 37817444 PMCID: PMC10599192 DOI: 10.1080/21505594.2023.2268496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
Brucellosis is a major threat to public health and animal husbandry. Several in vivo vertebrate models, such as mice, guinea pigs, and nonhuman primates, have been used to study Brucella pathogenesis, bacteria-host interactions, and vaccine efficacy. However, these models have limitations whereas the invertebrate Galleria mellonella model is a cost-effective and ethical alternative. The aim of the present study was to examine the invertebrate G. mellonella as an in vivo infection model for Brucella. Infection assays were employed to validate the fitness of the larval model for Brucella infection and virulence evaluation. The protective efficacy of immune sera was evaluated by pre-incubated with a lethal dose of bacteria before infection. The consistency between the mouse model and the larval model was confirmed by assessing the protective efficacy of two Brucella vaccine strains. The results show that G. mellonella could be infected by Brucella strains, in a dose- and temperature-dependent way. Moreover, this larval model can effectively evaluate the virulence of Brucella strains in a manner consistent with that of mammalian infection models. Importantly, this model can assess the protective efficacy of vaccine immune sera within a day. Further investigation implied that haemolymph played a crucial role in the protective efficacy of immune sera. In conclusion, G. mellonella could serve as a quick, efficient, and reliable model for evaluating the virulence of Brucella strains and efficacy of immune sera in an ethical manner.
Collapse
Affiliation(s)
- Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanfei Gu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fengyu Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fangze Shao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yue Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
29
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Nicolosi RM, Bonincontro G, Imperia E, Badiali C, De Vita D, Sciubba F, Dugo L, Guarino MPL, Altomare A, Simonetti G, Pasqua G. Protective Effect of Procyanidin-Rich Grape Seed Extract against Gram-Negative Virulence Factors. Antibiotics (Basel) 2023; 12:1615. [PMID: 37998817 PMCID: PMC10668874 DOI: 10.3390/antibiotics12111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Biofilm formation and lipopolysaccharide (LPS) are implicated in the pathogenesis of gastrointestinal (GI) diseases caused by Gram-negative bacteria. Grape seeds, wine industry by-products, have antioxidant and antimicrobial activity. In the present study, the protective effect of procyanidin-rich grape seed extract (prGSE), from unfermented pomace of Vitis vinifera L. cv Bellone, on bacterial LPS-induced oxidative stress and epithelial barrier integrity damage has been studied in a model of Caco-2 cells. The prGSE was characterized at the molecular level using HPLC and NMR. The in vitro activity of prGSE against formation of biofilm of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli was investigated. In vivo, prGSE activity using infected Galleria mellonella larvae has been evaluated. The results show that the prGSE, if administered with LPS, can significantly reduce the LPS-induced permeability alteration. Moreover, the ability of the extract to prevent Reactive Oxygen Species (ROS) production induced by the LPS treatment of Caco-2 cells was demonstrated. prGSE inhibited the biofilm formation of E. coli and S. Typhimurium. In terms of in vivo activity, an increase in survival of infected G. mellonella larvae after treatment with prGSE was demonstrated. In conclusion, grape seed extracts could be used to reduce GI damage caused by bacterial endotoxin and biofilms of Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Elena Imperia
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Gastroenterology, University Policlinico Foundation Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Annamaria Altomare
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| |
Collapse
|
31
|
Eskin A, Nurullahoğlu ZU. Influence of zinc oxide nanoparticles (ZnO NPs) on the hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). Drug Chem Toxicol 2023; 46:1176-1186. [PMID: 36330702 DOI: 10.1080/01480545.2022.2139842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
In this study, we examined the effects of different doses (100, 500, 1000, 3000, and 5000 ppm) of zinc oxide nanoparticles (ZnO NPs) on the total hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). The results showed that NPs caused a decrease in hemocyte count at 1000, 3000, and 5000 ppm doses. To investigate the effects of ZnO NPs on the encapsulation and melanization response of G. mellonella, the pre-dyed Sephadex chromatography beads were injected into the hemolymph of each last-instar larva. Larvae were dissected in the 4th and 24th hours after the injection. The level of the encapsulation response and melanization status around the beads were determined under microscopy. The analyses of the beads injected into the insects as encapsulation targets revealed that the number of weakly encapsulated beads increased significantly at 100, 1000, 3000, and 5000 ppm doses when compared to the control group after a short (4-h) post-injection. The number of melanized beads increased significantly at 100, 1000, and 3000 ppm doses in comparison to the control group after the short (4-h) post-injection. Finally, the number of melanized beads decreased significantly at 1000 and 5000 ppm doses when compared to the control group after the long-term (24-h) post-injection.
Collapse
Affiliation(s)
- Ata Eskin
- Crop and Animal Production Department, Avanos Vocational School of Fine Arts, Nevşehir Hacı Bektaş Veli University, Avanos, Turkey
| | | |
Collapse
|
32
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Iwański B, Andrejko M. Changes in the apolipophorin III in Galleria mellonella larvae treated with Pseudomonas aeruginosa exotoxin A. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104536. [PMID: 37414244 DOI: 10.1016/j.jinsphys.2023.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In the present study, we have demonstrated a correlation in time between changes in the amount of apolipophorin III (apoLp-III) in the fat body and hemocytes of Galleria mellonella larvae challenged with Pseudomonas aeruginosa exotoxin A (exoA). An increase in the amount of apoLp-III was detected 1-8 h after the challenge; then, a temporary decrease was observed after 15 h followed by an increase in the level of apoLp-III, however to a different extent. The profile of apoLp-III forms in the hemolymph, hemocytes, and fat body of the exoA-challenged larvae was analyzed using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies. Two apoLp-III forms differing in isoelectric point values estimated at ∼ 6.5 and ∼ 6.1 in the hemolymph and ∼ 6.5 and ∼ 5.9 in the hemocytes as well as one isoform with pI ∼ 6.5 in the fat body with an additional apoLp-III-derived polypeptide with estimated pI ∼ 6.9 were detected in the control insects. The injection of exoA caused a significant decrease in the abundance of both apoLp-III isoforms in the insect hemolymph. In the hemocytes, a decrease in the amount of the pI ∼ 5.9 isoform was detected, while the major apoLp-III isoform (pI ∼ 6.5) remained unchanged. In addition, appearance of an additional apoLp-III-derived polypeptide with an estimated pI ∼ 5.2 was observed. Interestingly, there were no statistically significant differences in the amount of the main isoform in the fat body between the control and exoA-challenged insects, but the polypeptide with pI ∼ 6.9 disappeared completely. It should be noted that the decrease in the amount of apoLp-III and other proteins was especially noticeable at the time points when exoA was detected in the studied tissues.
Collapse
Affiliation(s)
- Bartłomiej Iwański
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
34
|
Schindler Y, Rahav G, Nissan I, Valenci G, Ravins M, Hanski E, Ment D, Tekes-Manova D, Maor Y. Type VII secretion system and its effect on group B Streptococcus virulence in isolates obtained from newborns with early onset disease and colonized pregnant women. Front Cell Infect Microbiol 2023; 13:1168530. [PMID: 37545859 PMCID: PMC10400891 DOI: 10.3389/fcimb.2023.1168530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios. Methods GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS. Results Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC. Conclusions We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
Collapse
Affiliation(s)
- Yulia Schindler
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Gal Valenci
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorit Tekes-Manova
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
| | - Yasmin Maor
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
35
|
Ikeda R, Laforêt F, Antoine C, Adachi M, Nakamura K, Habets A, Kler C, De Rauw K, Hayashi T, Mainil JG, Thiry D. Virulence of Shigatoxigenic and Enteropathogenic Escherichia coli O80:H2 in Galleria mellonella Larvae: Comparison of the Roles of the pS88 Plasmids and STX2d Phage. Vet Sci 2023; 10:420. [PMID: 37505826 PMCID: PMC10385740 DOI: 10.3390/vetsci10070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
The invasiveness properties of Shigatoxigenic and enteropathogenic Escherichia coli (STEC and EPEC) O80:H2 in humans and calves are encoded by genes located on a pS88-like ColV conjugative plasmid. The main objectives of this study in larvae of the Galleria mellonella moth were therefore to compare the virulence of eight bovine STEC and EPEC O80:H2, of two E. coli pS88 plasmid transconjugant and STX2d phage transductant K12 DH10B, of four E. coli O80:non-H2, and of the laboratory E. coli K12 DH10B strains. Thirty larvae per strain were inoculated in the last proleg with 10 μL of tenfold dilutions of each bacterial culture corresponding to 10 to 106 colony-forming units (CFUs). The larvae were kept at 37 °C and their mortality rate was followed daily for four days. The main results were that: (i) not only the STEC and EPEC O80:H2, but also different E. coli O80:non-H2 were lethal for the larvae at high concentrations (from 104 to 106 CFU) with some variation according to the strain; (ii) the Stx2d toxin and partially the pS88 plasmid were responsible for the lethality caused by the E. coli O80:H2; (iii) the virulence factors of E. coli O80:non-H2 were not identified. The general conclusions are that, although the Galleria mellonella larvae represent a useful first-line model to study the virulence of bacterial pathogens, they are more limited in identifying their actual virulence properties.
Collapse
Affiliation(s)
- Rie Ikeda
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Fanny Laforêt
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Céline Antoine
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Mare Adachi
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Keiji Nakamura
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Audrey Habets
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Cassandra Kler
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Klara De Rauw
- Belgium National Reference Center of STEC (NRC STEC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jacques G Mainil
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| |
Collapse
|
36
|
Marena GD, Ruiz-Gaitán A, Garcia-Bustos V, Tormo-Mas MÁ, Pérez-Royo JM, López A, Bernarbe P, Pérez Ruiz MD, Zaragoza Macian L, Vicente Saez C, Avalos Mansilla A, Gómez EV, Carvalho GC, Bauab TM, Chorilli M, Pemán J. Nanoemulsion Increases the Antifungal Activity of Amphotericin B against Four Candida auris Clades: In Vitro and In Vivo Assays. Microorganisms 2023; 11:1626. [PMID: 37512799 PMCID: PMC10386465 DOI: 10.3390/microorganisms11071626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Victor Garcia-Bustos
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | | | | | - Alejandro López
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Patricia Bernarbe
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | | | | | | | | | - Eulogio Valentín Gómez
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
37
|
Maslova E, Osman S, McCarthy RR. Using the Galleria mellonella burn wound and infection model to identify and characterize potential wound probiotics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001350. [PMID: 37350463 PMCID: PMC10333784 DOI: 10.1099/mic.0.001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Burn wound infection is the leading cause of mortality among burn wound patients. One of the most commonly isolated bacterial burn wound pathogens is Pseudomonas aeruginosa, a notorious nosocomial multidrug-resistant pathogen. As a consequence of its recalcitrance to frontline antibiotic therapy, there is an urgent need to develop alternative treatment avenues to tackle this pathogen. One potential alternative infection prevention measure is to seed the wound bed with probiotic bacteria. Several species of Lactobacillus, a common commensal bacterium, have been previously reported to display growth inhibition activity against wound pathogens. Various species of this genus have also been shown to augment the wound healing process, which makes it a promising potential therapeutic agent. Due to the complexity of the burn wound trauma and burn wound infection, an in vivo model is required for the development of novel therapeutics. There are multiple in vivo models that are currently available, the most common among them being the murine model. However, mammalian burn wound infection models are logistically challenging, do not lend themselves to screening approaches and come with significant concerns around ethics and animal welfare. Recently, an invertebrate burn wound and infection model using G. mellonella has been established. This model addresses several of the challenges of more advanced animal models, such as affordability, maintenance and reduced ethical concerns. This study validates the capacity of this model to screen for potential wound probiotics by demonstrating that a variety of Lactobacillus spp. can limit P. aeruginosa burn wound infection and improve survival.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Shanga Osman
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
38
|
Navez M, Antoine C, Laforêt F, Goya-Jorge E, Douny C, Scippo ML, Vermeersch M, Duprez JN, Daube G, Mainil J, Taminiau B, Delcenserie V, Thiry D. In Vitro Effect on Piglet Gut Microbiota and In Vivo Assessment of Newly Isolated Bacteriophages against F18 Enterotoxigenic Escherichia coli (ETEC). Viruses 2023; 15:v15051053. [PMID: 37243139 DOI: 10.3390/v15051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhea (PWD) in piglets have a detrimental impact on animal health and economy in pig production. ETEC strains can adhere to the host's small intestinal epithelial cells using fimbriae such as F4 and F18. Phage therapy could represent an interesting alternative to antimicrobial resistance against ETEC infections. In this study, four bacteriophages, named vB_EcoS_ULIM2, vB_EcoM_ULIM3, vB_EcoM_ULIM8 and vB_EcoM_ULIM9, were isolated against an O8:F18 E. coli strain (A-I-210) and selected based on their host range. These phages were characterized in vitro, showing a lytic activity over a pH (4-10) and temperature (25-45 °C) range. According to genomic analysis, these bacteriophages belong to the Caudoviricetes class. No gene related to lysogeny was identified. The in vivo Galleria mellonella larvae model suggested the therapeutic potential of one selected phage, vB_EcoS_ULIM2, with a statistically significant increase in survival compared to non-treated larvae. To assess the effect of this phage on the piglet gut microbiota, vB_EcoS_ULIM2 was inoculated in a static model simulating the piglet intestinal microbial ecosystem for 72 h. This study shows that this phage replicates efficiently both in vitro and in vivo in a Galleria mellonella model and reveals the safety of the phage-based treatment on the piglet microbiota.
Collapse
Affiliation(s)
- Margaux Navez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Unit of Cardiovascular Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, 4000 Liege, Belgium
| | - Céline Antoine
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Fanny Laforêt
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Electron Microscopy Laboratory, ULB, 6041 Gosselies, Belgium
| | - Jean-Noël Duprez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Jacques Mainil
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Damien Thiry
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
39
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
40
|
Ribeiro FDOS, Oliveira FDCED, Pessoa C, Dias JDN, Albuquerque P, Sousa EDS, Lima SGD, Lima LRMD, Sombra VG, Paula RCMD, Alves EHP, Vasconcelos DFP, Fontenele DD, Iles B, Medeiros JVR, Araújo ARD, da Silva DA, Leite JRDSDA. Lemon gum: Non-toxic arabinogalactan isolated from Citrus × latifolia with antiproliferative property against human prostate adenocarcinoma cells. Int J Biol Macromol 2023; 232:123058. [PMID: 36669633 DOI: 10.1016/j.ijbiomac.2022.12.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/19/2023]
Abstract
Lemon gum (LG) obtained from Citrus × latifolia in Brazil was isolated and characterized. In addition, gum biocompatibility was evaluated in vitro and in vivo by Galleria mellonella and mice model. The cytotoxicity against tumor cells was also evaluated. The ratio of arabinose:galactose: rhamnose:4-OMe-glucuronic acid was 1:0.65:0.06:0.15. Small traces of protein were detected, emphasizing the isolate purity. Molar mass was 8.08 × 105 g/mol, with three different degradation events. LG showed antiproliferative activity against human prostate adenocarcinoma cancer cells, with percentage superior to 50 %. In vivo toxicity models demonstrated that LG is biocompatible polymer, with little difference in the parameters compared to control group. These results demonstrate advance in the study of LG composition and toxicity, indicating a potential for several biomedical and biotechnological future applications.
Collapse
Affiliation(s)
- Fábio de Oliveira Silva Ribeiro
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil; Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, IB, University of Brasília, UnB, Darcy Ribeiro University Campus, Asa Norte, Brasília, Federal District, DF, Brazil
| | - Patrícia Albuquerque
- Department of Cell Biology, Institute of Biological Sciences, IB, University of Brasília, UnB, Darcy Ribeiro University Campus, Asa Norte, Brasília, Federal District, DF, Brazil
| | - Edymilaís da Silva Sousa
- Laboratory of Organic Geochemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, Brazil
| | - Sidney Gonçalo de Lima
- Laboratory of Organic Geochemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, Brazil
| | | | - Venicios G Sombra
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | - Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis), Parnaíba Delta Federal University, UFDPar, Parnaiba, PI, Brazil
| | | | - Darllan Damasceno Fontenele
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Bruno Iles
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jand Venes Rolim Medeiros
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil.
| | | |
Collapse
|
41
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
42
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
43
|
Bellavita R, Maione A, Braccia S, Sinoca M, Galdiero S, Galdiero E, Falanga A. Myxinidin-Derived Peptide against Biofilms Caused by Cystic Fibrosis Emerging Pathogens. Int J Mol Sci 2023; 24:ijms24043092. [PMID: 36834512 PMCID: PMC9964602 DOI: 10.3390/ijms24043092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) patients are triggered by multidrug-resistant bacteria such as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. The CF airways are considered ideal sites for the colonization and growth of bacteria and fungi that favor the formation of mixed biofilms that are difficult to treat. The inefficacy of traditional antibiotics reinforces the need to find novel molecules able to fight these chronic infections. Antimicrobial peptides (AMPs) represent a promising alternative for their antimicrobial, anti-inflammatory, and immunomodulatory activities. We developed a more serum-stable version of the peptide WMR (WMR-4) and investigated its ability to inhibit and eradicate C. albicans, S. maltophilia, and A. xylosoxidans biofilms in both in vitro and in vivo studies. Our results suggest that the peptide is able better to inhibit than to eradicate both mono and dual-species biofilms, which is further confirmed by the downregulation of some genes involved in biofilm formation or in quorum-sensing signaling. Biophysical data help to elucidate its mode of action, showing a strong interaction of WMR-4 with lipopolysaccharide (LPS) and its insertion in liposomes mimicking Gram-negative and Candida membranes. Our results support the promising therapeutic application of AMPs in the treatment of mono- and dual-species biofilms during chronic infections in CF patients.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marica Sinoca
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Portici, Italy
- Correspondence: ; Tel.: +39-081-253-4525
| |
Collapse
|
44
|
Ribeiro ACDS, Chikhani YCDSA, Valiatti TB, Valêncio A, Kurihara MNL, Santos FF, Minarini LADR, Gales AC. In Vitro and In Vivo Synergism of Fosfomycin in Combination with Meropenem or Polymyxin B against KPC-2-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2023; 12:237. [PMID: 36830148 PMCID: PMC9952190 DOI: 10.3390/antibiotics12020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.
Collapse
Affiliation(s)
- Aghata Cardoso da Silva Ribeiro
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Yohanna Carvalho dos Santos Aoun Chikhani
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Tiago Barcelos Valiatti
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - André Valêncio
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Mariana Neri Lucas Kurihara
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Luciene Andrade da Rocha Minarini
- Laboratório Multidisciplinar em Saúde e Meio Ambiente, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| |
Collapse
|
45
|
Yang Z, Zhang F, Li D, Wang S, Pang Z, Chen L, Li R, Shi D. Correlation Between Drug Resistance and Virulence of Candida Isolates from Patients with Candidiasis. Infect Drug Resist 2022; 15:7459-7473. [PMID: 36544991 PMCID: PMC9762413 DOI: 10.2147/idr.s387675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose This article aims to provide a theoretical basis for new or adjuvant strategies to facilitate the early diagnosis and treatment of candidiasis and to determine if drug-resistant Candida would affect virulence. Patients and Methods Our strains were collected from patients diagnosed with candidiasis in our hospital. The strains were identified by MALDI-TOF system and ITS sequencing. Antifungal sensitivity testing in vitro was performed to evaluate susceptibility of these isolates to current widely used antifungal drugs. The Galleria mellonella larvae model infected by Candida spp. was used to compare the virulence of drug-resistant and susceptible Candida spp. Results A total of 206 Candida strains were collected from clinical specimens. Candida albicans was the most common species among them, and was predominantly isolated from male patients aged over 40 years in ICU environments suffering from pulmonary and/or cerebral conditions. The accuracy rate of MALDI TOF-MS identification was 92.72% when compared with ITS sequencing as the standard method. Most Candida species, except for C. tropicalis which showed high resistance to micafungin, showed high susceptibilities to voriconazole, itraconazole, amphotericin B and micafungin but were highly resistant to terbinafine. For each specific Candida species, the G. mellonella larvae model revealed that the virulence of drug-resistant Candida isolates did not markedly differ from that of the drug-susceptible isolates, however, the virulence was dose-dependent on inoculated fungal cells in this model. Conclusion The possibility of Candida infection should not be neglected in patients at critical care hospital settings and C. albicans is the most common causative agent. MALDI-TOF MS has the advantages of rapidity and high accuracy, and should be a preferred method for identification of Candida spp. in a clinical laboratory. Voriconazole, itraconazole, amphotericin B and micafungin can still be recommended as the first line antifungals to treat candidiasis.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Fangfang Zhang
- Department of Dermatology, Jining Dermatosis Prevention and Treatment Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057USA
| | - Sisi Wang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Zhiping Pang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Liu Chen
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Renzhe Li
- The Laboratory of Clinical Medicine, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Renzhe Li, Clinical Laboratory of Jining No.1 People’s Hospital, 272111, People’s Republic of China, Tel +86 13563704987, Email
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Department of Dermatology, Jining No.1 People’s Hospital, Jining, Shandong, 272001, People’s Republic of China,Correspondence: Dongmei Shi, The Laboratory of Medical Mycology and Dermatology Department of Jining No.1 People’s Hospital, Shandong, 272011, China, Tel +86 537-6051008, Email
| |
Collapse
|
46
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
47
|
Dos Santos Liberato SF, da Cruz Vegian MR, Abu Hasna A, de Alvarenga JA, Dos Santos JG, Tini ÍRP, Amêndola I, Junqueira JC, de Oliveira LD. Antibiofilm action of Persea americana glycolic extract over Acinetobacter baumannii and absence of toxicity in Galleria mellonella. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:905-911. [PMID: 34265885 DOI: 10.1515/jcim-2021-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This study aimed to evaluate the antibiofilm activity and toxicity of the glycolic extract of Persea americana "P. americana" over multidrug-resistant strains of Acinetobacter baumannii "A. baumannii" as alternative therapy to be investigated. METHODS A bacterial inoculum of each bacterial strain (4a, 5a, 9a, 12a, ATCC 19606) of A. baumannii was prepared and adjusted by the spectrophotometer. The microdilution broth method was performed to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). P. americana glycolic extracts were obtained of the tree stalk and leaves. The biofilm viability was tested by MTT assay after 5 min exposure. The toxicity of the extracts was tested by invertebrate model Galleria mellonella. The data were analyzed by ANOVA, Tukey test and log-rank method (α=0.05). RESULTS The extract showed an inhibitory and bactericidal action over all the tested strains with the lowest MIC value observed for the reference strain (3.12 mg/mL). The extract did not demonstrate toxicity in any of the tested concentrations (12.5, 25 and 50 mg/mL) in Galleria mellonella larvae, with a survival percentage above 80% after 168 h. CONCLUSIONS The glycolic extract of P. americana has microbicidal and antibiofilm activity on multidrug-resistant clinical strains of A. baumannii and showed low toxicity for the invertebrate model G. mellonella.
Collapse
Affiliation(s)
| | - Mariana Raquel da Cruz Vegian
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics division, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Janaína Araújo de Alvarenga
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Juliana Guimarães Dos Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Ítalo Rigotti Pereira Tini
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Isabela Amêndola
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| | - Luciane Dias de Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University - UNESP, São Paulo, Brazil
| |
Collapse
|
48
|
Quansah E, Ramoji A, Thieme L, Mirza K, Goering B, Makarewicz O, Heutelbeck A, Meyer-Zedler T, Pletz MW, Schmitt M, Popp J. Label-free multimodal imaging of infected Galleria mellonella larvae. Sci Rep 2022; 12:20416. [PMID: 36437287 PMCID: PMC9701796 DOI: 10.1038/s41598-022-24846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.
Collapse
Affiliation(s)
- Elsie Quansah
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anuradha Ramoji
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Lara Thieme
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Kamran Mirza
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Bianca Goering
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Oliwia Makarewicz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Astrid Heutelbeck
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tobias Meyer-Zedler
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mathias W. Pletz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Michael Schmitt
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
49
|
Materazzi A, Bottai D, Campobasso C, Klatt AB, Cesta N, De Masi M, Trampuz A, Tavanti A, Di Luca M. Phage-Based Control of Methicillin Resistant Staphylococcus aureus in a Galleria mellonella Model of Implant-Associated Infection. Int J Mol Sci 2022; 23:ijms232314514. [PMID: 36498843 PMCID: PMC9740198 DOI: 10.3390/ijms232314514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus implant-associated infections are difficult to treat because of the ability of bacteria to form biofilm on medical devices. Here, the efficacy of Sb-1 to control or prevent S. aureus colonization on medical foreign bodies was investigated in a Galleria mellonella larval infection model. For colonization control assays, sterile K-wires were implanted into larva prolegs. After 2 days, larvae were infected with methicillin-resistant S. aureus ATCC 43300 and incubated at 37 °C for a further 2 days, when treatments with either daptomycin (4 mg/kg), Sb-1 (107 PFUs) or a combination of them (3 x/day) were started. For biofilm prevention assays, larvae were pre-treated with either vancomycin (10 mg/kg) or Sb-1 (107 PFUs) before the S. aureus infection. In both experimental settings, K-wires were explanted for colony counting two days after treatment. In comparison to the untreated control, more than a 4 log10 CFU and 1 log10 CFU reduction was observed on K-wires recovered from larvae treated with the Sb-1/daptomycin combination and with their singular administration, respectively. Moreover, pre-infection treatment with Sb-1 was found to prevent K-wire colonization, similarly to vancomycin. Taken together, the obtained results demonstrated the strong potential of the Sb-1 antibiotic combinatory administration or the Sb-1 pretreatment to control or prevent S. aureus-associated implant infections.
Collapse
Affiliation(s)
| | - Daria Bottai
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, 56127 Pisa, Italy
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Ann-Brit Klatt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Novella Cesta
- PhD Course in Microbiology, Immunology, Infectious Diseases and Transplants (MIMIT), University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita De Masi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrej Trampuz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Arianna Tavanti
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | |
Collapse
|
50
|
Tan MF, Tan J, Zhang FF, Li HQ, Ji HY, Fang SP, Wu CC, Rao YL, Zeng YB, Yang Q. Exogenous glycogen utilization effects the transcriptome and pathogenicity of Streptococcus suis serotype 2. Front Cell Infect Microbiol 2022; 12:938286. [PMID: 36439226 PMCID: PMC9683343 DOI: 10.3389/fcimb.2022.938286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes severe infections in humans and the swine industry. Acquisition and utilization of available carbon sources from challenging host environments is necessary for bacterial pathogens to ensure growth and proliferation. Glycogen is abundant in mammalian body and may support the growth of SS2 during infection in hosts. However, limited information is known about the mechanism between the glycogen utilization and host adaptation of SS2. Here, the pleiotropic effects of exogenous glycogen on SS2 were investigated through transcriptome sequencing. Analysis of transcriptome data showed that the main basic metabolic pathways, especially the core carbon metabolism pathways and virulence-associated factors, of SS2 responded actively to glycogen induction. Glycogen induction led to the perturbation of the glycolysis pathway and citrate cycle, but promoted the pentose phosphate pathway and carbohydrate transport systems. Extracellular glycogen utilization also promoted the mixed-acid fermentation in SS2 rather than homolactic fermentation. Subsequently, apuA, a gene encoding the unique bifunctional amylopullulanase for glycogen degradation, was deleted from the wild type and generated the mutant strain ΔapuA. The pathogenicity details of the wild type and ΔapuA cultured in glucose and glycogen were investigated and compared. Results revealed that the capsule synthesis or bacterial morphology were not affected by glycogen incubation or apuA deletion. However, extracellular glycogen utilization significantly enhanced the hemolytic activity, adhesion and invasion ability, and lethality of SS2. The deletion of apuA also impaired the pathogenicity of bacteria cultured in glucose, indicating that ApuA is indeed an important virulence factor. Our results revealed that exogenous glycogen utilization extensively influenced the expression profile of the S. suis genome. Based on the transcriptome response, exogenous glycogen utilization promoted the carbon adaption and pathogenicity of SS2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan-Bin Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|