1
|
Arifin MZ, Leitner J, Egan D, Waidhofer-Söllner P, Kolch W, Zhernovkov V, Steinberger P. BTLA and PD-1 signals attenuate TCR-mediated transcriptomic changes. iScience 2024; 27:110253. [PMID: 39021788 PMCID: PMC11253514 DOI: 10.1016/j.isci.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
T cell co-inhibitory immune checkpoints, such as PD-1 or BTLA, are bona fide targets in cancer therapy. We used a human T cell reporter line to measure transcriptomic changes mediated by PD-1- and BTLA-induced signaling. T cell receptor (TCR)-complex stimulation resulted in the upregulation of a large number of genes but also in repression of a similar number of genes. PD-1 and BTLA signals attenuated transcriptomic changes mediated by TCR-complex signaling: upregulated genes tended to be suppressed and the expression of a significant number of downregulated genes was higher during PD-1 or BTLA signaling. BTLA was a significantly stronger attenuator of TCR-complex-induced transcriptome changes than PD-1. A strong overlap between genes that were regulated indicated quantitative rather than qualitative differences between these receptors. In line with their function as attenuators of TCR-complex-mediated changes, we found strongly regulated genes to be prime targets of PD-1 and BTLA signaling.
Collapse
Affiliation(s)
- Muhammad Zainul Arifin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Donagh Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
3
|
Guruprasad P, Carturan A, Zhang Y, Cho JH, Kumashie KG, Patel RP, Kim KH, Lee JS, Lee Y, Kim JH, Chung J, Joshi A, Cohen I, Shestov M, Ghilardi G, Harris J, Pajarillo R, Angelos M, Lee YG, Liu S, Rodriguez J, Wang M, Ballard HJ, Gupta A, Ugwuanyi OH, Hong SJA, Bochi-Layec AC, Sauter CT, Chen L, Paruzzo L, Kammerman S, Shestova O, Liu D, Vella LA, Schuster SJ, Svoboda J, Porazzi P, Ruella M. The BTLA-HVEM axis restricts CAR T cell efficacy in cancer. Nat Immunol 2024; 25:1020-1032. [PMID: 38831106 DOI: 10.1038/s41590-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Mice, Knockout
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Puneeth Guruprasad
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki-Hyun Kim
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Jong-Seo Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Yoon Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | | | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Akshita Joshi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Shan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Albert Hong
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey C Bochi-Layec
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher T Sauter
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Kammerman
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Laura A Vella
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Basingab FS, Alzahrani RA, Alrofaidi AA, Barefah AS, Hammad RM, Alahdal HM, Alrahimi JS, Zaher KA, Algiraigri AH, El-Daly MM, Alkarim SA, Aldahlawi AM. Herpesvirus Entry Mediator as an Immune Checkpoint Target and a Potential Prognostic Biomarker in Myeloid and Lymphoid Leukemia. Biomolecules 2024; 14:523. [PMID: 38785930 PMCID: PMC11117912 DOI: 10.3390/biom14050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.
Collapse
Affiliation(s)
- Fatemah S. Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Reem A. Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Aisha A. Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ahmed S. Barefah
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rawan M. Hammad
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Hadil M. Alahdal
- Department of Biology, Faculty of Science, Princes Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Jehan S. Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther A. Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ali H. Algiraigri
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Saleh A. Alkarim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Embryonic Stem Cells Research Unit and Embryonic and Cancer Stem Cells Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Alia M. Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
5
|
Wojciechowicz K, Spodzieja M, Wardowska A. The BTLA-HVEM complex - The future of cancer immunotherapy. Eur J Med Chem 2024; 268:116231. [PMID: 38387336 DOI: 10.1016/j.ejmech.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
6
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
7
|
Lee A, Lim J, Lim JS. Emerging roles of MITF as a crucial regulator of immunity. Exp Mol Med 2024; 56:311-318. [PMID: 38351314 PMCID: PMC10907664 DOI: 10.1038/s12276-024-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 02/19/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells. Therefore, this review is focused on recent advances in elucidating novel functions of MITF in cancer progression and immune responses to cancer. In particular, we highlight the role of MITF as a central modulator in the regulation of immune responses, as elucidated in recent studies.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
9
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Granda-Díaz R, Martínez-Pérez A, Aguilar-García C, Rodrigo JP, García-Pedrero JM, Gonzalez S. Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy. Mol Cancer 2023; 22:142. [PMID: 37649037 PMCID: PMC10466776 DOI: 10.1186/s12943-023-01845-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
10
|
Aldahlawi A, Basingab F, Alrahimi J, Zaher K, Pushparaj PN, Hassan MA, Al-Sakkaf K. Herpesvirus entry mediator as a potential biomarker in breast cancer compared with conventional cytotoxic T‑lymphocyte‑associated antigen 4. Biomed Rep 2023; 19:56. [PMID: 37560313 PMCID: PMC10407466 DOI: 10.3892/br.2023.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 08/11/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with 2.3 million cases recorded in 2020. Despite improvements in cancer treatment, patients with BC still succumb to the disease, due to regional and distant metastases when diagnosed at later stages. Several immune checkpoint inhibitors have been approved for BC treatment, based on their expression and role in maintaining immunosurveillance against tumors. The present study aimed to evaluate the expression of 12 immune checkpoints in patients with BC, and assess their role as diagnostic and therapeutic markers. Expression levels were measured using reverse transcription-quantitative polymerase chain reaction. Among the 12 immune markers, herpesvirus entry mediator (HVEM) was found to be significantly upregulated in patients with malignant BC compared to non-malignant controls, with a relative fold change (FC) of 1.46 and P=0.012. A similar finding was observed for cytotoxic T-lymphocyte-associated antigen 4 (CTLA4; FC=1.47 and P=0.035). In addition, receiver operating characteristic curve analysis revealed that HVEM expression allowed significant differentiation between groups, with an area under the curve of 0.74 (P=0.013). Upregulation in both HVEM and CTLA4 was revealed to be significantly associated with the human epidermal growth factor receptor-2 (HER2)-enriched phenotype (FC=3.53, P=0.009 and FC=5.98, P=0.002, respectively), while only HVEM was significantly associated with the triple-negative phenotype (FC=2.07, P=0.016). Furthermore, HVEM was significantly higher in patients with grade III tumors (FC=1.88, P=0.025) and negative vascular invasion (FC=1.67, P=0.046) compared with non-malignant controls. Serum protein levels were assessed by multiplex immunoassay, and a significant increase in HVEM was detected in patients with malignant BC compared with that in non-malignant controls (P=0.035). These data indicated that HVEM may serve as a potential biomarker and target for immunotherapy, especially for certain types of BC.
Collapse
Affiliation(s)
- Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kawther Zaher
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammed A. Hassan
- Department of Medical Basic Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Republic of Yemen
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaltoom Al-Sakkaf
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
12
|
Wu Z, Yoshikawa T, Inoue S, Ito Y, Kasuya H, Nakashima T, Zhang H, Kotaka S, Hosoda W, Suzuki S, Kagoya Y. CD83 expression characterizes precursor exhausted T cell population. Commun Biol 2023; 6:258. [PMID: 36906640 PMCID: PMC10008643 DOI: 10.1038/s42003-023-04631-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
T cell exhaustion is a main obstacle against effective cancer immunotherapy. Exhausted T cells include a subpopulation that maintains proliferative capacity, referred to as precursor exhausted T cells (TPEX). While functionally distinct and important for antitumor immunity, TPEX possess some overlapping phenotypic features with the other T-cell subsets within the heterogeneous tumor-infiltrating T-lymphocytes (TIL). Here we explore surface marker profiles unique to TPEX using the tumor models treated by chimeric antigen receptor (CAR)-engineered T cells. We find that CD83 is predominantly expressed in the CCR7+PD1+ intratumoral CAR-T cells compared with the CCR7-PD1+ (terminally differentiated) and CAR-negative (bystander) T cells. The CD83+CCR7+ CAR-T cells exhibit superior antigen-induced proliferation and IL-2 production compared with the CD83- T cells. Moreover, we confirm selective expression of CD83 in the CCR7+PD1+ T-cell population in primary TIL samples. Our findings identify CD83 as a marker to discriminate TPEX from terminally exhausted and bystander TIL.
Collapse
Affiliation(s)
- Zhiwen Wu
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Toshiaki Yoshikawa
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yusuke Ito
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Nakashima
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haosong Zhang
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Saki Kotaka
- Department of Gynecologic Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Shiro Suzuki
- Department of Gynecologic Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yuki Kagoya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan.
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Cheng TY, Liu YJ, Yan H, Xi YB, Duan LQ, Wang Y, Zhang TT, Gu YM, Wang XD, Wu CX, Gao S. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2. Cells 2022; 11:cells11244021. [PMID: 36552785 PMCID: PMC9777428 DOI: 10.3390/cells11244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.
Collapse
Affiliation(s)
- Tian-You Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ya-Juan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yi-Bo Xi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Li-Qiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tian-Tian Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yin-Min Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiao-Dong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chang-Xin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- Correspondence:
| |
Collapse
|
14
|
Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr Treat Options Oncol 2022; 23:1405-1427. [PMID: 36125617 PMCID: PMC9526689 DOI: 10.1007/s11864-022-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Melanoma is one of the deadliest malignancies. Its incidence has been significantly increasing in most countries in recent decades. Acral melanoma (AM), a peculiar subgroup of melanoma occurring on the palms, soles, and nails, is the main subtype of melanoma in people of color and is extremely rare in Caucasians. Although great progress has been made in melanoma treatment in recent years, patients with AM have shown limited benefit from current therapies and thus consequently have worse overall survival rates. Achieving durable therapeutic responses in this high-risk melanoma subtype represents one of the greatest challenges in the field. The frequency of BRAF mutations in AM is much lower than that in cutaneous melanoma, which prevents most AM patients from receiving treatment with BRAF inhibitors. However, AM has more frequent mutations such as KIT and CDK4/6, so targeted therapy may still improve the survival of some AM patients in the future. AM may be less susceptible to immune checkpoint inhibitors because of the poor immunogenicity. Therefore, how to enhance the immune response to the tumor cells may be the key to the application of immune checkpoint inhibitors in advanced AM. Anti-angiogenic drugs, albumin paclitaxel, or interferons are thought to enhance the effectiveness of immune checkpoint inhibitors. Combination therapies based on the backbone of PD-1 are more likely to provide greater clinical benefits. Understanding the molecular landscapes and immune microenvironment of AM will help optimize our combinatory strategies.
Collapse
|
15
|
Battin C, Leitner J, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Olive D, Steinberger P. BTLA inhibition has a dominant role in the cis-complex of BTLA and HVEM. Front Immunol 2022; 13:956694. [PMID: 36081508 PMCID: PMC9446882 DOI: 10.3389/fimmu.2022.956694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068; Centre National de la Recherche Scientifique (CNRS), UMR7258; Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
17
|
Murase W, Kamakura Y, Kawakami S, Yasuda A, Wagatsuma M, Kubota A, Kojima H, Ohta T, Takahashi M, Mutoh M, Tanaka T, Maeda H, Miyashita K, Terasaki M. Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells. Int J Mol Sci 2021; 22:13620. [PMID: 34948416 PMCID: PMC8707761 DOI: 10.3390/ijms222413620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J mice that received allogenic and orthotopic transplantations of cancer cells (KMPC44) derived from a pancreatic cancer murine model (Ptf1aCre/+; LSL-krasG12D/+). Using microarray, immunofluorescence, western blot, and siRNA analyses, alterations in cancer-related genes and protein expression were evaluated in pancreatic tumors of Fx-administered mice. Fx administration prevented the adenocarcinoma (ADC) development of pancreatic and parietal peritoneum tissues in a pancreatic cancer murine model, but not the incidence of ADC. Gene and protein expressions showed that the suppression of chemokine (C-C motif) ligand 21 (CCL21)/chemokine receptor 7 (CCR7) axis, its downstream of Rho A, B- and T-lymphocyte attenuator (BTLA), N-cadherin, αSMA, pFAK(Tyr397), and pPaxillin(Tyr31) were significantly suppressed in the pancreatic tumors of mice treated with Fx. In addition, Ccr7 knockdown significantly attenuated the growth of KMPC44 cells. These results suggest that Fx is a promising candidate for pancreatic cancer chemoprevention that mediates the suppression of the CCL21/CCR7 axis, BTLA, tumor microenvironment, epithelial mesenchymal transition, and adhesion.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Momoka Wagatsuma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan;
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| |
Collapse
|
18
|
Maniyar RR, Chakraborty S, Jarboe T, Suriano R, Wallack M, Geliebter J, Tiwari RK. Interacting Genetic Lesions of Melanoma in the Tumor Microenvironment: Defining a Viable Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:123-143. [PMID: 34888847 DOI: 10.1007/978-3-030-83282-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanoma is the most aggressive form of skin cancer with an estimated 106,110 newly diagnosed cases in the United States of America in 2021 leading to an approximated 7180 melanoma-induced deaths. Cancer typically arises from an accumulation of somatic mutations and can be associated with mutagenic or carcinogenic exposure. A key characteristic of melanoma is the extensive somatic mutation rate of 16.8 mutations/Mb, which is largely attributed to UV exposure. Bearing the highest mutational load, many of them occur in key driver pathways, most commonly the BRAFV600E in the mitogen-activated protein kinase (MAPK) pathway. This driver mutation is targeted clinically with FDA-approved therapies using small molecule inhibitors of oncogenic BRAFV600E and MEK, which has greatly expanded therapeutic intervention following a melanoma diagnosis. Up until 2011, therapeutic options for metastatic melanoma were limited, and treatment typically fell under the spectrum of surgery, radiotherapy, and chemotherapy.Attributed to the extensive mutation rate, as well as having the highest number of neoepitopes, melanoma is deemed to be extremely immunogenic. However, despite this highly immunogenic nature, melanoma is notorious for inducing an immunosuppressive microenvironment which can be relieved by checkpoint inhibitor therapy. The two molecules currently approved clinically are ipilimumab and nivolumab, which target the molecules CTLA-4 and PD-1, respectively.A plethora of immunomodulatory molecules exist, many with redundant functions. Additionally, these molecules are expressed not only by immune cells but also by tumor cells within the tumor microenvironment. Tumor profiling of these cell surface checkpoint molecules is necessary to optimize a clinical response. The presence of immunomodulatory molecules in melanoma, using data from The Cancer Genome Atlas and validation of expression in two model systems, human melanoma tissues and patient-derived melanoma cells, revealed that the expression levels of B and T lymphocyte attenuator (BTLA), TIM1, and CD226, concurrently with the BRAFV600E mutation status, significantly dictated overall survival in melanoma patients. These molecules, along with herpesvirus entry mediator (HVEM) and CD160, two molecules that are a part of the HVEM/BTLA/CD160 axis, had a higher expression in human melanoma tissues when compared to normal skin melanocytes and have unique roles to play in T cell activation. New links are being uncovered between the expression of immunomodulatory molecules and the BRAFV600E genetic lesion in melanoma. Small molecule inhibitors of the MAPK pathway regulate the surface expression of this multifaceted molecule, making BTLA a promising target for immuno-oncology to be targeted in combination with small molecule inhibitors, potentially alleviating T regulatory cell activation and improving patient prognosis.
Collapse
Affiliation(s)
- R R Maniyar
- Human Oncology and Pathogenesis Program, Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Chakraborty
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - T Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - R Suriano
- Division of Natural Sciences, College of Mount Saint Vincent, Bronx, NY, USA
| | - M Wallack
- Department Surgery, Metropolitan Hospital, New York, NY, USA
| | - J Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - R K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
19
|
Lapuente-Santana Ó, van Genderen M, Hilbers PA, Finotello F, Eduati F. Interpretable systems biomarkers predict response to immune-checkpoint inhibitors. PATTERNS (NEW YORK, N.Y.) 2021; 2:100293. [PMID: 34430923 PMCID: PMC8369166 DOI: 10.1016/j.patter.2021.100293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells can leverage several cell-intrinsic and -extrinsic mechanisms to escape immune system recognition. The inherent complexity of the tumor microenvironment, with its multicellular and dynamic nature, poses great challenges for the extraction of biomarkers of immune response and immunotherapy efficacy. Here, we use RNA-sequencing (RNA-seq) data combined with different sources of prior knowledge to derive system-based signatures of the tumor microenvironment, quantifying immune-cell composition and intra- and intercellular communications. We applied multi-task learning to these signatures to predict different hallmarks of immune responses and derive cancer-type-specific models based on interpretable systems biomarkers. By applying our models to independent RNA-seq data from cancer patients treated with PD-1/PD-L1 inhibitors, we demonstrated that our method to Estimate Systems Immune Response (EaSIeR) accurately predicts therapeutic outcome. We anticipate that EaSIeR will be a valuable tool to provide a holistic description of immune responses in complex and dynamic systems such as tumors using available RNA-seq data.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Maisa van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Peter A.J. Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| |
Collapse
|
20
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol 2021; 12:654960. [PMID: 33859648 PMCID: PMC8043046 DOI: 10.3389/fimmu.2021.654960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is one of the most important cosignaling molecules. It belongs to the CD28 superfamily and is similar to programmed cell death-1 (PD-1) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) in terms of its structure and function. BTLA can be detected in most lymphocytes and induces immunosuppression by inhibiting B and T cell activation and proliferation. The BTLA ligand, herpesvirus entry mediator (HVEM), does not belong to the classic B7 family. Instead, it is a member of the tumor necrosis factor receptor (TNFR) superfamily. The association of BTLA with HVEM directly bridges the CD28 and TNFR families and mediates broad and powerful immune effects. Recently, a large number of studies have found that BTLA participates in numerous physiopathological processes, such as tumor, inflammatory diseases, autoimmune diseases, infectious diseases, and transplantation rejection. Therefore, the present work aimed to review the existing knowledge about BTLA in immunity and summarize the diverse functions of BTLA in various immune disorders.
Collapse
Affiliation(s)
- Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
22
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|
23
|
Yi Y, Ni XC, Liu G, Yin YR, Huang JL, Gan W, Zhou PY, Guan RY, Zhou C, Sun BY, Qiu SJ. Clinical significance of herpes virus entry mediator expression in hepatitis B virus-related hepatocellular carcinoma. Oncol Lett 2020; 20:19. [PMID: 32774492 DOI: 10.3892/ol.2020.11880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Herpes virus entry mediator (HVEM) is overexpressed in several malignancies, including hepatocellular carcinoma (HCC). However, to the best of our knowledge, the clinical significance of HVEM in hepatitis B virus (HBV)-related HCC remains unclear. Thus, the present study aimed to explore the clinical significance of HVEM in HBV-related HCC. In the present study, HVEM expression was evaluated in HCC cell lines and HCC frozen samples. The prognostic value of HVEM was assessed in a cohort of 221 patients with HBV-related HCC, following radical resection. B- and T-lymphocyte attenuator (BTLA) expression in subsets of CD8+ T cells was determined via flow cytometry analysis. The results demonstrated high HVEM expression in HCC cell lines, and in HCC tissues compared with paired non-cancerous liver tissues. HVEM expression was demonstrated to be significantly associated with tumor encapsulation and vascular invasion. Furthermore, tumor HVEM status was significantly associated with infiltration of regulatory T cells, but not with CD8+ T cells. Notably, high HVEM expression in HCC was determined to be an independent predictor of an unfavorable outcome of patients with HCC following radical resection. Higher BTLA expression (the receptor of HVEM) was observed in both HCC-infiltrating CD8+ effector memory (CCR7- CD45RA-) and CD45RA+ effector memory (CCR7- CD45RA+) T cells in HCC tissues and blood compared with those in paired peritumor tissues or peripheral blood. Taken together, the results of the present study suggest that HVEM may serve a critical role in HBV-related HCC, most likely by promoting tumor progression and tumor immune evasion, thus the HVEM/BLTA signaling pathway may be a potential target in tumor immunotherapy.
Collapse
Affiliation(s)
- Yong Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Chun Ni
- Department of General Surgery, Shanghai Ninth People's Hospital of Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Gao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yi-Rui Yin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jing-Long Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Gan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Pei-Yun Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ruo-Yu Guan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Cheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bao-Ye Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shuang-Jian Qiu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery and Transplantation, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
24
|
Araujo B de Lima V, Borch A, Hansen M, Draghi A, Spanggaard I, Rohrberg K, Reker Hadrup S, Lassen U, Svane IM. Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Cytotherapy 2020; 22:204-213. [PMID: 32201034 DOI: 10.1016/j.jcyt.2020.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the cancer therapeutic landscape and our perception of interactions between the immune system and tumor cells. Despite remarkable progress, disease relapse and primary resistance are not uncommon. Understanding the biological processes that tumor-infiltrating lymphocytes (TILs) undergo during ICI, how this affects the tumor microenvironment (TME) and, ultimately, clinical outcome is, therefore, necessary to further improve treatment efficacy. AIM In the current study, we sought to characterize TILs from patients with metastatic solid tumors undergoing ICI correlating flowcytometric findings with clinical outcome. METHODS In total, 20 patients with 10 different metastatic solid tumors treated with ICIs targeting programmed-cell death-1 (PD-1)/PD-L1 axis were included in this study. The phenotype of T cells deriving from biopsies obtained prior to treatment initiation and on-treatment was investigaded. Analyses were focused on T cells' degree of differentiation and activity and how they correlate with transcriptomic changes in the TME. RESULTS Data indicate that patients benefitting from ICIs accumulate CD8+central memory T cells. TILs developed an effector-like phenotype over time, which was also associated with a cytolytic gene signature. In terms of modulation of T-cell responses, we observed that high expression of checkpoint molecules pre-treatment (i.e., PD-1, lymphocyte activation gene-3 [LAG-3], B and T-lymphocyte attenuator [BTLA] and T-cell immunoglobulin and mucin domain containing-3 [TIM-3]) was associated with similar gene signature and correlated to treatment benefit. Increasing expression of LAG-3 and BTLA in the CD8 compartment and their co-expression with PD-1 during treatment were, however, a common feature for patients who failed to respond to ICIs. CONCLUSIONS Besides identifying immune profiles suggestive of response to ICI, our results provide a more nuanced picture regarding expression of checkpoint molecules that goes beyond T-cell anergy.
Collapse
Affiliation(s)
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Iben Spanggaard
- Rigshospitalet, Department of Oncology, Phase 1 Unit, Copenhagen, Denmark
| | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ulrik Lassen
- Rigshospitalet, Department of Oncology, Phase 1 Unit, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| |
Collapse
|
25
|
Li X, Xu Z, Cui G, Yu L, Zhang X. BTLA Expression in Stage I-III Non-Small-Cell Lung Cancer and Its Correlation with PD-1/PD-L1 and Clinical Outcomes. Onco Targets Ther 2020; 13:215-224. [PMID: 32021268 PMCID: PMC6957103 DOI: 10.2147/ott.s232234] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background B and T lymphocyte attenuator (BTLA) is a novel immune checkpoint with an unclear role in non–small-cell lung cancer (NSCLC). In contrast, the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint is a potentially curative immunotherapy target in NSCLC. Our study investigated BTLA expression and its relationship with PD-1/PD-L1, tumor-infiltrating lymphocytes (TILs), and clinicopathological features. Methods The protein expressions of BTLA, PD-1, and PD-L1 were evaluated by immunohistochemistry (IHC) and TIL abundance was scored in paraffin-embedded tissues from surgically resected specimens from 87 patients with stage I–III NSCLC. Results BTLA was expressed in tumor cells in 35 patients with NSCLC (40.2%). In addition, 42 patients (48.3%) were positive for PD-1 in TILs and 31 (35.6%) were positive for PD-L1 in tumor cells. BTLA was overexpressed in patients with lymphatic invasion (P=0.045) and an advanced tumor stage (P=0.034). High expression of BTLA was positively correlated with a high level of PD-L1 (P=0.011). Patients with positive BTLA expression had a shorter relapse-free survival (RFS) than those with negative BTLA expression (P=0.029). Moreover, patients negative for both BTLA and PD-L1 had a longer RFS than patients who were positive for BTLA or PD-L1 or for both checkpoints (P=0.012). The same pattern was shown for overall survival (P=0.031). Conclusion High BTLA expression may predict poor prognosis in patients with NSCLC and may represent a new immunotherapy target.
Collapse
Affiliation(s)
- Xiangmin Li
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhaoguo Xu
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Guoyuan Cui
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Li Yu
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiaoye Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| |
Collapse
|
26
|
Abstract
Tumor development is characterized by the accumulation of mutational and epigenetic changes that transform normal cells and survival pathways into self-sustaining cells capable of untrammeled growth. Although multiple modalities including surgery, radiation, and chemotherapy are available for the treatment of cancer, the benefits conferred are often limited. The immune system is capable of specific, durable, and adaptable responses. However, cancers hijack immune mechanisms such as negative regulatory checkpoints that have evolved to limit inflammatory and immune responses to thwart effective antitumor immunity. The development of monoclonal antibodies against inhibitory receptors expressed by immune cells has produced durable responses in a broad array of advanced malignancies and heralded a new dawn in the cancer armamentarium. However, these remarkable responses are limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Preclinical and clinical studies with immune checkpoint blockade are exploring the therapeutic potential antibody-based therapy targeting multiple inhibitory receptors. In this chapter, we discuss the current understanding of the structure, ligand specificities, function, and signaling activities of various inhibitory receptors. Additionally, we discuss the current development status of various immune checkpoint inhibitors targeting these negative immune receptors and highlight conceptual gaps in knowledge.
Collapse
|
27
|
Liu M, Li Z, Yao W, Zeng X, Wang L, Cheng J, Ma B, Zhang R, Min W, Wang H. IDO inhibitor synergized with radiotherapy to delay tumor growth by reversing T cell exhaustion. Mol Med Rep 2019; 21:445-453. [PMID: 31746428 DOI: 10.3892/mmr.2019.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 11/05/2022] Open
Abstract
Previous studies suggest that radiotherapy (RT) can induce immune activation, which not only reduces the progression of tumors, but also causes the release of tumor antigens. The combination of RT and immune checkpoint blockade, such as the inhibition of programmed cell death 1 (PD‑1) and programmed cell death ligand 1 (PD‑L1), has been demonstrated to yield impressive response rates. However, a substantial proportion of patients develop resistance such therapies. Previous studies have shown that indoleamine 2,3‑dioxygenase (IDO) causes T cell exhaustion and increased formation of regulatory T cells (Tregs), upregulating the expression of inhibitory receptors and ligands. Therefore, the application of IDO inhibitors combined with RT may have a synergistic effect by relieving immunosuppression. Lewis lung cancer cell‑bearing mice were treated with the IDO inhibitor 1‑methyl‑tryptophan (1MT) and/or 10 Gy RT. Tumor size was measured every day, flow cytometry was performed to measure the expression of dendritic cell (DC) maturation markers, inhibitory receptors, ligands, cytotoxic T cells and Treg phenotypic markers. Reverse transcription‑quantitative PCR was used to evaluate the mRNA expression levels of IDO, PD‑L1, PD‑1, T cell immunoglobulin domain and mucin domain 3 (TIM‑3), B‑ and T‑lymphocyte attenuator (BTLA) and galectin‑9. Compared with the control group, treatment with 1MT or RT reduced tumor growth, however, the combination therapy was more effective than either treatment alone. Flow cytometry showed the upregulation of CD80, CD86 and the major histocompatibility complex II in spleen DCs and the concurrent downregulation of CD4, CD25 and forkhead box protein P3 in lymphocytes in the treatment groups. Compared with the control group, inhibitory receptors and ligands that affect DCs and T cells were observed, expression levels of PD‑L1, PD‑1, TIM‑3, BTLA and galectin‑9 are decreased in treatment group compared with control. IDO inhibition synergized with RT to downregulate Tregs, inhibitory receptors and ligands to prevent T cell exhaustion. By activating DCs and T cells, this combination therapy may strongly enhance antitumor immunity and inhibit tumor progression.
Collapse
Affiliation(s)
- Meng Liu
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziyang Li
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoping Zeng
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyun Wang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Cheng
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bingyu Ma
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ruiqian Zhang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weiping Min
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongmei Wang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Sakellariou-Thompson D, Forget MA, Hinchcliff E, Celestino J, Hwu P, Jazaeri AA, Haymaker C, Bernatchez C. Potential clinical application of tumor-infiltrating lymphocyte therapy for ovarian epithelial cancer prior or post-resistance to chemotherapy. Cancer Immunol Immunother 2019; 68:1747-1757. [PMID: 31602489 DOI: 10.1007/s00262-019-02402-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunotherapy has become a powerful treatment option for several solid tumor types. The presence of tumor-infiltrating lymphocytes (TIL) is correlated with better prognosis in ovarian cancer, pointing at the possibility to benefit from harnessing their anti-tumor activity. This preclinical study explores the feasibility of adoptive cell therapy (ACT) with TIL using an improved culture method. METHODS TIL from high-grade serous ovarian cancer were cultured using a combination of IL-2 with agonistic antibodies targeting 4-1BB and CD3. The cells were phenotyped using flow cytometry in the fresh tissue and after expansion. Tumor reactivity was assessed against HLA-matched ovarian cancer cell lines via IFN-γ ELISPOT. RESULTS Ovarian cancer is highly infiltrated with CD8+ TIL that are preferentially and robustly expanded with the addition of the agonistic antibodies. With a 95% success rate, the TIL are grown to ≥ 100 × 106 cells in 2-3 weeks without over differentiation. In addition, the CD8+ TIL grown with this method showed HLA-restricted tumor recognition. CONCLUSIONS These results indicate the viability of TIL ACT for refractory ovarian cancer by allowing for the large expansion of anti-tumor TIL in a short time and consistent manner.
Collapse
Affiliation(s)
- Donastas Sakellariou-Thompson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA. .,Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Malissen N, Macagno N, Granjeaud S, Granier C, Moutardier V, Gaudy-Marqueste C, Habel N, Mandavit M, Guillot B, Pasero C, Tartour E, Ballotti R, Grob JJ, Olive D. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncoimmunology 2019; 8:e1665976. [PMID: 31741766 PMCID: PMC6844309 DOI: 10.1080/2162402x.2019.1665976] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/27/2022] Open
Abstract
HVEM (Herpes Virus Entry Mediator) engagement of BTLA (B and T Lymphocyte Attenuator) triggers inhibitory signals in T cells and could play a role in evading antitumor immunity. Here, HVEM expression levels in melanoma metastases were analyzed by immunohistochemistry, correlated with overall survival (OS) in 116 patients, and validated by TCGA transcriptomic data. Coincident expression of HVEM and its ligand BTLA was studied in tumor cells and tumor-infiltrating lymphocytes (TILs) by flow cytometry (n = 21) and immunofluorescence (n = 5). Candidate genes controlling HVEM expression in melanoma were defined by bioinformatics studies and validated by siRNA gene silencing. We found that in patients with AJCC stage III and IV melanoma, OS was poorer in those with high HVEM expression on melanoma cells, than in those with a low expression, by immunohistochemistry (p = .0160) or TCGA transcriptomics (p = .0282). We showed a coincident expression of HVEM at the surface of melanoma cells and of BTLA on TILs. HVEM was more widely expressed than PD-L1 in melanoma cells. From a mechanistic perspective, in contrast to PDL1, HVEM expression did not correlate with an IFNγ signature but with an aggressive gene signature. Interestingly, this signature contained MITF, a key player in melanoma biology, whose expression correlated strongly with HVEM. Finally, siRNA gene silencing validated MITF control of HVEM expression. In conclusion, HVEM expression seems to be a prognosis marker and targeting this axis by checkpoint-inhibitors may be of interest in metastatic melanoma.
Collapse
Affiliation(s)
- Nausicaa Malissen
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, APHM, CHU Timone, Department of Pathology, Aix Marseille University, Marseille, France
| | - Samuel Granjeaud
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Granier
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Vincent Moutardier
- APHM, CHU Nord, Department of Digestive surgery, Aix Marseille University, Marseille, France
| | - Caroline Gaudy-Marqueste
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Nadia Habel
- INSERM U 1065, Team 1 Nice, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marion Mandavit
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Bernard Guillot
- Department of Dermatology, CHU Montpellier, Montpellier, France
| | - Christine Pasero
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Eric Tartour
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Robert Ballotti
- INSERM U 1065, Team 1 Nice, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Jean-Jacques Grob
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
30
|
Utilizing T-cell Activation Signals 1, 2, and 3 for Tumor-infiltrating Lymphocytes (TIL) Expansion: The Advantage Over the Sole Use of Interleukin-2 in Cutaneous and Uveal Melanoma. J Immunother 2019; 41:399-405. [PMID: 29757889 DOI: 10.1097/cji.0000000000000230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we address one of the major critiques for tumor-infiltrating lymphocyte (TIL) therapy-the time needed for proper expansion of a suitable product. We postulated that T-cell receptor activation in the first phase of expansion combined with an agonistic stimulation of CD137/4-1BB and interleukin-2 would favor preferential expansion of CD8 TIL. Indeed, this novel 3-signal approach for optimal T-cell activation resulted in faster and more consistent expansion of CD8CD3 TIL. This new method allowed for successful expansion of TIL from cutaneous and uveal melanoma tumors in 100% of the cultures in <3 weeks. Finally, providing the 3 signals attributed to optimal T-cell activation led to expansion of TIL capable of recognizing their tumor counterpart in cutaneous and uveal melanoma. This new methodology for the initial phase of TIL expansion brings a new opportunity for translation of TIL therapy in challenging malignancies such as uveal melanoma.
Collapse
|
31
|
Monette A, Bergeron D, Ben Amor A, Meunier L, Caron C, Mes-Masson AM, Kchir N, Hamzaoui K, Jurisica I, Lapointe R. Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification. J Immunother Cancer 2019; 7:86. [PMID: 30922393 PMCID: PMC6437930 DOI: 10.1186/s40425-019-0544-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Permanence of front-line management of lung cancer by immunotherapies requires predictive companion diagnostics identifying immune-checkpoints at baseline, challenged by the size and heterogeneity of biopsy specimens. Methods An innovative, tumor heterogeneity reducing, immune-enriched tissue microarray was constructed from baseline biopsies, and multiplex immunofluorescence was used to profile 25 immune-checkpoints and immune-antigens. Results Multiple immune-checkpoints were ranked, correlated with antigen presenting and cytotoxic effector lymphocyte activity, and were reduced with advancing disease. Immune-checkpoint combinations on TILs were associated with a marked survival advantage. Conserved combinations validated on more than 11,000 lung, breast, gastric and ovarian cancer patients demonstrate the feasibility of pan-cancer companion diagnostics. Conclusions In this hypothesis-generating study, deepening our understanding of immune-checkpoint biology, comprehensive protein-protein interaction and pathway mapping revealed that redundant immune-checkpoint interactors associate with positive outcomes, providing new avenues for the deciphering of molecular mechanisms behind effects of immunotherapeutic agents targeting immune-checkpoints analyzed. Electronic supplementary material The online version of this article (10.1186/s40425-019-0544-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Monette
- Institut du cancer de Montréal, Montréal, Québec, Canada. .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St-Denis, Tour Viger, Room R10-432, Montréal, Québec, H2X 0A9, Canada. .,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| | - Derek Bergeron
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Amira Ben Amor
- Medicine Faculty of Tunis, Department of Immunology and Histology, Tunis El Manar University, Tunis, Tunisia
| | - Liliane Meunier
- Institut du cancer de Montréal, Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St-Denis, Tour Viger, Room R10-432, Montréal, Québec, H2X 0A9, Canada
| | - Christine Caron
- Institut du cancer de Montréal, Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St-Denis, Tour Viger, Room R10-432, Montréal, Québec, H2X 0A9, Canada
| | - Anne-Marie Mes-Masson
- Institut du cancer de Montréal, Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St-Denis, Tour Viger, Room R10-432, Montréal, Québec, H2X 0A9, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | | | - Kamel Hamzaoui
- Medicine Faculty of Tunis, Department of Immunology and Histology, Tunis El Manar University, Tunis, Tunisia.,Abderrahmen Mami Hospital, Homeostasis and cell immune dysfunction Research Unit, Ariana, Tunisia
| | - Igor Jurisica
- Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Réjean Lapointe
- Institut du cancer de Montréal, Montréal, Québec, Canada. .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St-Denis, Tour Viger, Room R10-432, Montréal, Québec, H2X 0A9, Canada. .,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
32
|
Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. J Dent Sci 2019; 14:255-262. [PMID: 31528253 PMCID: PMC6739295 DOI: 10.1016/j.jds.2019.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background/purpose Dysregulation of cell cycle checkpoint control may lead to the independence of growth regulating signals. Checkpoint protein such as the PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. Acting at a cell surface receptor on plasma membrane integrin αvβ3, thyroxine stimulates intracellular accumulation of PD-L1 in cancer cells. Although resveratrol also binds to integrin αvβ3, it reduces PD-L1 expression. Materials and methods In current studies, we investigated the roles of resveratrol and thyroxine in regulating expression of proliferation-related genes and checkpoint genes, PD-L1, BTLA in two oral cancer cell lines. Results Thyroxine suppressed the expression of pro-apoptotic BAD but induced proliferative CCND1 expression in SSC-25 cells and OEC-M1 cells. It activated expression of PD-L1 and BTLA in both cell lines. On the other hand, resveratrol suppressed the expression of all. Alternatively, it activated BAD expression. Thus thyroxine induces checkpoint gene expression which may promote proliferation in cancer cells. Alternatively, resveratrol reverses the stimulatory effects of thyroid hormone to induce anti-proliferation. Conclusion These findings provide new insights into the antagonizing effect of resveratrol on the thyroxine-induced expression of checkpoint genes and proliferative genes in oral cancers.
Collapse
|
33
|
Monette A, Morou A, Al-Banna NA, Rousseau L, Lattouf JB, Rahmati S, Tokar T, Routy JP, Cailhier JF, Kaufmann DE, Jurisica I, Lapointe R. Failed immune responses across multiple pathologies share pan-tumor and circulating lymphocytic targets. J Clin Invest 2019; 129:2463-2479. [PMID: 30912767 DOI: 10.1172/jci125301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rationale Tumor infiltrating lymphocytes are widely associated with positive outcomes, yet carry key indicators of a systemic failed immune response against unresolved cancer. Cancer immunotherapies can reverse their tolerance phenotypes, while preserving tumor-reactivity and neoantigen-specificity shared with circulating immune cells. Objectives We performed comprehensive transcriptomic analyses to identify gene signatures common to circulating and tumor infiltrating lymphocytes in the context of clear cell renal cell carcinoma. Modulated genes also associated with disease outcome were validated in other cancer types. Findings Using bioinformatics, we identified practical diagnostic markers and actionable targets of the failed immune response. On circulating lymphocytes, three genes, LEF1, FASLG, and MMP9, could efficiently stratify patients from healthy control donors. From their associations with resistance to cancer immunotherapies and microbial infections, we uncovered not only pan-cancer, but pan-pathology failed immune response profiles. A prominent lymphocytic matrix metallopeptidase cell migration pathway, is central to a panoply of diseases and tumor immunogenicity, correlates with multi-cancer recurrence, and identifies a feasible, non-invasive approach to pan-pathology diagnoses. Conclusions The non-invasive differently expressed genes we have identified warrant future investigation towards the development of their potential in precision diagnostics and precision pan-disease immunotherapeutics.
Collapse
Affiliation(s)
- Anne Monette
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Antigoni Morou
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nadia A Al-Banna
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar
| | - Louise Rousseau
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Sara Rahmati
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jean-François Cailhier
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Nephrology Division, Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Medical Biophysics and.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Slovak Republic
| | - Réjean Lapointe
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Penter L, Dietze K, Ritter J, Lammoglia Cobo MF, Garmshausen J, Aigner F, Bullinger L, Hackstein H, Wienzek-Lischka S, Blankenstein T, Hummel M, Dornmair K, Hansmann L. Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology 2019; 8:e1586409. [PMID: 31069154 PMCID: PMC6492980 DOI: 10.1080/2162402x.2019.1586409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and TUM occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1- TIM-3-. To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Julia Ritter
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Josefin Garmshausen
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Felix Aigner
- Department of Surgery, Charité - Universitätsmedizin Berlin (CCM and CVK), Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Holger Hackstein
- Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany.,Institute for Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Berlin, Germany
| | - Michael Hummel
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the LMU, Munich, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
35
|
Bian B, Fanale D, Dusetti N, Roque J, Pastor S, Chretien AS, Incorvaia L, Russo A, Olive D, Iovanna J. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology 2019; 8:e1561120. [PMID: 30906655 PMCID: PMC6422385 DOI: 10.1080/2162402x.2018.1561120] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
PDAC is one of the most heterogeneous cancers with low chemotherapeutic sensitivity due to a dense stroma, a weak vasculature and significant biological aggressivity. In cancer, suppressive immune checkpoints are often hyper-activated to ensure an effective evasion of tumor cells from immune surveillance. These immune checkpoints include in part, the B7/butyrophilin-like receptors such as butyrophilin sub-family 3A/CD277 receptors (BTN3A), the B and T lymphocyte attenuator (BTLA) belonging to the B7-like receptors and the programmed death protein (PD-1) with its ligand PD-L1. We evaluated the plasma level of these markers in 32 PDAC patients (learning cohort) by ad hoc developed ELISA’s and showed that there are highly correlated. We used ROC curves and univariate analysis to characterize their prognostic relevance in these patients and showed that their plasma level can serve as survival predictor. Plasma level thresholds that correlate with less than six months survival were established for sPD-1 (>8.6 ng/ml), sPD-L1 (>0.36 ng/ml), sBTLA (>1.91 ng/ml), sBTN3A1 (>6.98 ng/ml) and pan-sBTN3A (>6.92 ng/ml). These thresholds were applied in independent validation cohort composed by 27 new samples and could efficiently discriminate short versus long PDAC survivors. Our study reveals that monitoring the concentration of soluble forms of inhibitory immune checkpoints in plasma can help predict survival in PDAC patients and therefore improve their treatments.
Collapse
Affiliation(s)
- Benjamin Bian
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nelson Dusetti
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Julie Roque
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Sonia Pastor
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Juan Iovanna
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
36
|
Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1 -CD8 + Tumor-Infiltrating T Cells. Immunity 2019; 50:181-194.e6. [PMID: 30635236 DOI: 10.1016/j.immuni.2018.11.014] [Citation(s) in RCA: 454] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/16/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
An improved understanding of the anti-tumor CD8+ T cell response after checkpoint blockade would enable more informed and effective therapeutic strategies. Here we examined the dynamics of the effector response of CD8+ tumor-infiltrating lymphocytes (TILs) after checkpoint blockade therapy. Bulk and single-cell RNA profiles of CD8+ TILs after combined Tim-3+PD-1 blockade in preclinical models revealed significant changes in the transcriptional profile of PD-1- TILs. These cells could be divided into subsets bearing characterstics of naive-, effector-, and memory-precursor-like cells. Effector- and memory-precursor-like TILs contained tumor-antigen-specific cells, exhibited proliferative and effector capacity, and expanded in response to different checkpoint blockade therapies across different tumor models. The memory-precursor-like subset shared features with CD8+ T cells associated with response to checkpoint blockade in patients and was compromised in the absence of Tcf7. Expression of Tcf7/Tcf1 was requisite for the efficacy of diverse immunotherapies, highlighting the importance of this transcriptional regulator in the development of effective CD8+ T cell responses upon immunotherapy.
Collapse
|
37
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
38
|
De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol 2018; 9:1909. [PMID: 30233564 PMCID: PMC6127213 DOI: 10.3389/fimmu.2018.01909] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Antibodies that block T cell inhibition via the immune checkpoints CTLA-4 and PD-1 have revolutionized cancer therapy during the last 15 years. T cells express additional inhibitory surface receptors that are considered to have potential as targets in cancer immunotherapy. Antibodies against LAG-3 and TIM-3 are currently clinically tested to evaluate their effectiveness in patients suffering from advanced solid tumors or hematologic malignancies. In addition, blockade of the inhibitory BTLA receptors on human T cells may have potential to unleash T cells to effectively combat cancer cells. Much research on these immune checkpoints has focused on mouse models. The analysis of animals that lack individual inhibitory receptors has shed some light on the role of these molecules in regulating T cells, but also immune responses in general. There are current intensive efforts to gauge the efficacy of antibodies targeting these molecules called immune checkpoint inhibitors alone or in different combinations in preclinical models of cancer. Differences between mouse and human immunology warrant studies on human immune cells to appreciate the potential of individual pathways in enhancing T cell responses. Results from clinical studies are not only highlighting the great benefit of immune checkpoint inhibitors for treating cancer but also yield precious information on their role in regulating T cells and other cells of the immune system. However, despite the clinical relevance of CTLA-4 and PD-1 and the high potential of the emerging immune checkpoints, there are still substantial gaps in our understanding of the biology of these molecules, which might prevent the full realization of their therapeutic potential. This review addresses PD-1, CTLA-4, BTLA, LAG-3, and TIM-3, which are considered major inhibitory immune checkpoints expressed on T cells. It provides summaries of our current conception of the role of these molecules in regulating T cell responses, and discussions about major ambiguities and gaps in our knowledge. We emphasize that each of these molecules harbors unique properties that set it apart from the others. Their distinct functional profiles should be taken into account in therapeutic strategies that aim to exploit these pathways to enhance immune responses to combat cancer.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Clinical and Experimental Immunology, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L, Chen X, Liu A. BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol 2018; 60:47-56.e1. [PMID: 29353075 DOI: 10.1016/j.exphem.2018.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
Abstract
Immunotherapy results in lymphoma have been encouraging. Preclinical and clinical trials have proven checkpoint blockade, such as PD-1 antibody, as an effective treatment for lymphoma, including diffuse large B-cell lymphoma (DLBCL). Combination of checkpoint blockades has emerged as a new way to treat lymphoma; however, the status of checkpoint expression and their function in DLBCL have not been fully elucidated yet. In this study, we examined the expression of BTLA, PD-1, TIM-3, LIGHT, and LAG-3 in tumor microenvironmental T cells of DLBCL using flow cytometry and compared the cytotoxicity and differentiation status of BTLA+ and BTLA- T-cells. We further characterized the relationship of STAT3 phosphorylation (p-STAT3) with BTLA expression. Our results suggest that BTLA+ T cells highly express other checkpoint molecules, including PD-1, TIM-3, LIGHT, and LAG-3. Moreover, high expression of BTLA is correlated with advanced stage of DLBCL. BTLA+ T cells have a less-differentiated phenotype, lower cytolytic function, and higher potential to proliferate compared with BTLA- T cells. Taken together, our data provide the first evidence that increased BTLA predicts poor prognosis in patients with DLBCL, and blockade of BTLA with other checkpoints may potentially represent a new strategy for immunotherapy of DLBCL.
Collapse
Affiliation(s)
- Lina Quan
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiuwen Lan
- Gastroenterological Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yuanyuan Meng
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiuchen Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yiwei Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Lina Zhao
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xue Chen
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| |
Collapse
|
40
|
Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ, Fox BA. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clin Cancer Res 2017; 23:6165-6177. [PMID: 28855348 DOI: 10.1158/1078-0432.ccr-16-2677] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 05/23/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Antibodies specific for inhibitory checkpoints PD-1 and CTLA-4 have shown impressive results against solid tumors. This has fueled interest in novel immunotherapy combinations to affect patients who remain refractory to checkpoint blockade monotherapy. However, how to optimally combine checkpoint blockade with agents targeting T-cell costimulatory receptors, such as OX40, remains a critical question.Experimental Design: We utilized an anti-PD-1-refractory, orthotopically transplanted MMTV-PyMT mammary cancer model to investigate the antitumor effect of an agonist anti-OX40 antibody combined with anti-PD-1. As PD-1 naturally aids in immune contraction after T-cell activation, we treated mice with concurrent combination treatment versus sequentially administering anti-OX40 followed by anti-PD-1.Results: The concurrent addition of anti-PD-1 significantly attenuated the therapeutic effect of anti-OX40 alone. Combination-treated mice had considerable increases in type I and type II serum cytokines and significantly augmented expression of inhibitory receptors or exhaustion markers CTLA-4 and TIM-3 on T cells. Combination treatment increased intratumoral CD4+ T-cell proliferation at day 13, but at day 19, both CD4+ and CD8+ T-cell proliferation was significantly reduced compared with untreated mice. In two tumor models, sequential combination of anti-OX40 followed by anti-PD-1 (but not the reverse order) resulted in significant increases in therapeutic efficacy. Against MMTV-PyMT tumors, sequential combination was dependent on both CD4+ and CD8+ T cells and completely regressed tumors in approximately 30% of treated animals.Conclusions: These results highlight the importance of timing for optimized therapeutic effect with combination immunotherapies and suggest the testing of sequencing in combination immunotherapy clinical trials. Clin Cancer Res; 23(20); 6165-77. ©2017 AACRSee related commentary by Colombo, p. 5999.
Collapse
Affiliation(s)
- David J Messenheimer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon
| | - Shawn M Jensen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Michael E Afentoulis
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Keith W Wegmann
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Zipei Feng
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon.,Cancer Biology Program, Oregon Health and Science University, Portland, Oregon
| | - David J Friedman
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Walter J Urba
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Cancer Center, Portland, Oregon. .,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon.,Cancer Biology Program, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
41
|
An X, Sendra VG, Liadi I, Ramesh B, Romain G, Haymaker C, Martinez-Paniagua M, Lu Y, Radvanyi LG, Roysam B, Varadarajan N. Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells. PLoS One 2017; 12:e0181904. [PMID: 28837583 PMCID: PMC5570329 DOI: 10.1371/journal.pone.0181904] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are a highly heterogeneous population of innate lymphocytes that constitute our first line of defense against several types of tumors and microbial infections. Understanding the heterogeneity of these lymphocytes requires the ability to integrate their underlying phenotype with dynamic functional behaviors. We have developed and validated a single-cell methodology that integrates cellular phenotyping and dynamic cytokine secretion based on nanowell arrays and bead-based molecular biosensors. We demonstrate the robust passivation of the polydimethylsiloxane (PDMS)-based nanowells arrays with polyethylene glycol (PEG) and validated our assay by comparison to enzyme-linked immunospot (ELISPOT) assays. We used numerical simulations to optimize the molecular density of antibodies on the surface of the beads as a function of the capture efficiency of cytokines within an open-well system. Analysis of hundreds of individual human peripheral blood NK cells profiled ex vivo revealed that CD56dimCD16+ NK cells are immediate secretors of interferon gamma (IFN-γ) upon activation by phorbol 12-myristate 13-acetate (PMA) and ionomycin (< 3 h), and that there was no evidence of cooperation between NK cells leading to either synergistic activation or faster IFN-γ secretion. Furthermore, we observed that both the amount and rate of IFN-γ secretion from individual NK cells were donor-dependent. Collectively, these results establish our methodology as an investigational tool for combining phenotyping and real-time protein secretion of individual cells in a high-throughput manner.
Collapse
Affiliation(s)
- Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Victor G. Sendra
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Melisa Martinez-Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Yanbin Lu
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
| | - Laszlo G. Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
The recent demonstration of the antitumor efficacy of checkpoint protein inhibition has resulted in the approval of blocking antibodies against the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway in multiple different histologic findings. Therapeutic successes with PD-1/PD-L1 antibodies in melanoma and lung cancer have been followed by approvals in bladder, renal, and head and neck cancers and Hodgkin lymphoma, with others undoubtedly to come. However, PD-1 is only one of many checkpoints and agonistic regulatory molecules expressed on T cells by which maintenance of the balance between costimulatory and coinhibitory signaling pathways is perturbed in cancer. The manipulation of many of these molecules in cancer patients might be associated with clinical benefit. The majority of the T-cell cosignaling receptors belong to either the immunoglobulin superfamily or the tumor necrosis factor receptor superfamily. A total of 29 immunoglobulin superfamily and 26 tumor necrosis factor receptor superfamily cosignaling receptors have been identified that are expressed on T cells, providing fertile ground for development of inhibitory or agonistic antibodies and small molecules as cancer therapeutics. In the current work, we focus on some of the most promising new checkpoints and agonistic or cosignaling molecules that are in early clinical development as single agents or in combinations with PD-1/PD-L1, cytotoxic T-lymphocyte-associated protein 4 blockade, or chemotherapy with an emphasis on those that have reached the clinic and on important targets that are in late preclinical development.
Collapse
|
43
|
Ritthipichai K, Haymaker CL, Martinez M, Aschenbrenner A, Yi X, Zhang M, Kale C, Vence LM, Roszik J, Hailemichael Y, Overwijk WW, Varadarajan N, Nurieva R, Radvanyi LG, Hwu P, Bernatchez C. Multifaceted Role of BTLA in the Control of CD8 + T-cell Fate after Antigen Encounter. Clin Cancer Res 2017; 23:6151-6164. [PMID: 28754817 DOI: 10.1158/1078-0432.ccr-16-1217] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/29/2017] [Accepted: 07/19/2017] [Indexed: 01/13/2023]
Abstract
Purpose: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%-50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8+ TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described. Here, we sought to determine the functional characteristics of the CD8+BTLA+TIL subset and define the contribution of the Grb2 motif of BTLA in T-cell costimulation.Experimental Design: We determined the functional role and downstream signal of BTLA in both human CD8+ TILs and mouse CD8+ T cells. Functional assays were used including single-cell analysis, reverse-phase protein array (RPPA), antigen-specific vaccination models with adoptively transferred TCR-transgenic T cells as well as patient-derived xenograft (PDX) model using immunodeficient NOD-scid IL2Rgammanull (NSG) tumor-bearing mice treated with autologous TILs.Results: CD8+BTLA- TILs could not control tumor growth in vivo as well as their BTLA+ counterpart and antigen-specific CD8+BTLA- T cells had impaired recall response to a vaccine. However, CD8+BTLA+ TILs displayed improved survival following the killing of a tumor target and heightened "serial killing" capacity. Using mutants of BTLA signaling motifs, we uncovered a costimulatory function mediated by Grb2 through enhancing the secretion of IL-2 and the activation of Src after TCR stimulation.Conclusions: Our data portrays BTLA as a molecule with the singular ability to provide both costimulatory and coinhibitory signals to activated CD8+ T cells, resulting in extended survival, improved tumor control, and the development of a functional recall response. Clin Cancer Res; 23(20); 6151-64. ©2017 AACR.
Collapse
Affiliation(s)
- Krit Ritthipichai
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Cara L Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melisa Martinez
- Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Texas
| | - Andrew Aschenbrenner
- Graduate Program in Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaohui Yi
- Immunology Platform, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minying Zhang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charuta Kale
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis M Vence
- Immunology Platform, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Texas
| | - Roza Nurieva
- Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
44
|
|
45
|
Lan X, Li S, Gao H, Nanding A, Quan L, Yang C, Ding S, Xue Y. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther 2017; 10:919-926. [PMID: 28243127 PMCID: PMC5317317 DOI: 10.2147/ott.s128825] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Deregulation of immune checkpoint molecules by tumor cells is related to immune escape. This study was conducted to investigate the relationship between the appearance of B- and T-lymphocyte attenuator (BTLA) and its ligand herpesvirus entry mediator (HVEM) with the prognosis in gastric cancer patients. Patients and methods A total of 136 patients with curative gastrectomy were included. The expression of BTLA and HVEM was detected by immunohistochemistry, and its correlation with the clinical significance of gastric cancer was further analyzed. Results The positivity of BTLA and HVEM was detected in 74.3% (101/136) and 89.0% (121/136) of the gastric cancer specimens, respectively. A high expression of BTLA and HVEM was detected, respectively, in 28.7% (39/136) and 44.9% (61/136) of the specimens. Characteristics analysis showed that the high expression of BTLA was significantly associated with lymph node metastasis (P=0.030). Similarly, the high expression of HVEM was also significantly correlated with lymph node metastasis (P=0.007) and depth of invasion (P=0.011). In addition, there was a positive correlation between the expression of BTLA and HVEM in gastric cancer specimens (r=0.245, P=0.004). Univariate analysis revealed that the high expression of BTLA and HVEM was associated with overall survival of patients along with tumor size, Borrmann type, depth of invasion, lymph node metastasis, and histological grade (P<0.05). Multivariate analysis established that the high expression of HVEM (P=0.010), depth of invasion (P=0.001), lymph node metastasis (P<0.001), and histological grade (P=0.027) were independent prognostic factors associated with overall survival in patients with gastric cancer. Conclusion The increased BTLA and HVEM levels correlate with the development and poor prognosis of gastric cancer. HVEM is an important prognostic indicator, and BTLA/HVEM pathway is considered to be a promising candidate for immunotherapy of gastric cancer.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Gastroenterological Surgery
| | - Sen Li
- Department of Gastroenterological Surgery
| | - Hongyu Gao
- Department of Gastroenterological Surgery
| | | | - Lina Quan
- Department of Hematology, The Affiliated Tumor Hospital
| | - Chunyan Yang
- Department of Epidemiology and Biostatistic, Public Health School, Harbin Medical University, Harbin, People's Republic of China
| | | | | |
Collapse
|
46
|
Mining the Complex Family of Protein Tyrosine Phosphatases for Checkpoint Regulators in Immunity. Curr Top Microbiol Immunol 2017; 410:191-214. [PMID: 28929190 DOI: 10.1007/82_2017_68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The family of protein tyrosine phosphatases (PTPs) includes 107 genes in humans that are diverse in their structures and expression profiles. The majority are present in immune cells and play various roles in either inhibiting or promoting the duration and amplitude of signaling cascades. Several PTPs, including TC-PTP (PTPN2) and SHP-1 (PTPN6), have been recognized as being crucial for maintaining proper immune response and self-tolerance, and have gained recognition as true immune system checkpoint modulators. This chapter details the most recent literature on PTPs and immunity by examining their known functions in regulating signaling from either established checkpoint inhibitors or by their intrinsic properties, as modulators of the immune response. Notably, we review PTP regulatory properties in macrophages, antigen-presenting dendritic cells, and T cells. Overall, we present the PTP gene family as a remarkable source of novel checkpoint inhibitors wherein lies a great number of new targets for immunotherapies.
Collapse
|
47
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
48
|
Abstract
The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient's cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.
Collapse
Affiliation(s)
| | | | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
|
50
|
Forget MA, Haymaker C, Dennison JB, Toth C, Maiti S, Fulbright OJ, Cooper LJN, Hwu P, Radvanyi LG, Bernatchez C. The beneficial effects of a gas-permeable flask for expansion of Tumor-Infiltrating lymphocytes as reflected in their mitochondrial function and respiration capacity. Oncoimmunology 2015; 5:e1057386. [PMID: 27057427 PMCID: PMC4801448 DOI: 10.1080/2162402x.2015.1057386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/25/2022] Open
Abstract
Adoptive transfer of autologous ex vivo expanded tumor-infiltrating lymphocytes (TIL) is a highly successful cell therapy approach in the treatment of late-stage melanoma. Notwithstanding the success of this therapy, only very few centers worldwide can provide it. To make this therapy broadly available, one of the major obstacles to overcome is the complexity of culturing the TIL. Recently, major efforts have been deployed to resolve this issue. The use of the Gas-permeable flask (G-Rex) during the REP has been one application that has facilitated this process. Here we show that the use of this new device is able to rescue poor TIL growth and maintain clonal diversity while supporting an improved mitochondrial function.
Collapse
Affiliation(s)
- Marie-Andrée Forget
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| | - Cara Haymaker
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| | - Jennifer B Dennison
- Department of Systems Biology; The University of Texas MDACC ; Houston, TX USA
| | - Christopher Toth
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| | - Sourindra Maiti
- Division of Pediatrics; The University of Texas MDACC ; Houston, TX USA
| | - Orenthial J Fulbright
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| | | | - Patrick Hwu
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC); Houston, TX USA; Lion Biotechnologies; Tampa, FL USA; Department of Immunology; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center (MDACC) ; Houston, TX USA
| |
Collapse
|