1
|
Lu Z, Zhu L, Yi C, Su B, Wang R. C5a/C5aR regulates Th1/Th2 imbalance in sepsis-associated lung injury by promoting neutrophil activation to increase PAD4 expression. Ann Med 2025; 57:2447406. [PMID: 39831526 PMCID: PMC11749016 DOI: 10.1080/07853890.2024.2447406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes. Therefore, this study investigated the effect of C5a/C5a receptor (C5aR)/Peptidylarginine deiminase 4 (PAD4) on the Th1/Th2 ratio in sepsis-induced lung injury. METHODS ELISA was used to detect the expression of PAD4, HBP, MPO, IL-1β, IL-10, IL-6, IL-4, syndecan-1, endocan and H3Cit. An LPS-induced septic lung injury mouse model was constructed, with HE and PAS stains evaluating lung damage. BCA kit quantified BALF total protein, Western blot examined C5aR, syndecan-1, endocan, PAD4 levels, while TUNEL and flow cytometry assessed tissue cellular apoptosis. Furthermore, flow cytometry was used to detect the +Th1 and Th2 cells proportion in peripheral blood, and CCK-8 was used to detect BEAS-2B activity. RESULTS The results indicated that PAD4 and inflammatory factors were increased in lesion samples compared with controls. In sepsis-induced lung injury mice, addition of GSK484, a PAD4 inhibitor, effectively alleviated sepsis-induced lung edema and inflammatory responses. GSK484 was found to inhibit C5a/C5aR expression and suppress apoptosis and lung injury. Furthermore, GSK484 markedly inhibited Th1 cell phenotypes in vitro. Additionally, GSK484 intervention on Th1 cell phenotype further affected lung epithelial cell injury. CONCLUSION In summary, we revealed the mechanism of C5a/C5aR-induced PAD4 upregulation via neutrophil activation in sepsis-associated lung injury, causing a Th1/Th2 imbalance and lung injury, providing a novel approach for sepsis-associated lung injuries treatment.
Collapse
Affiliation(s)
- Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changlin Yi
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bi Su
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Melzer YF, Fergen NL, Mess C, Stadler JC, Geidel G, Schwietzer YA, Kött J, Pantel K, Schneider SW, Utikal J, Wladykowski E, Vidal-Y-Sy S, Bauer AT, Gebhardt C. Evaluation of S100A8/A9 and neutrophils as prognostic markers in metastatic melanoma patients under immune-checkpoint inhibition. Transl Oncol 2025; 52:102224. [PMID: 39700646 PMCID: PMC11718343 DOI: 10.1016/j.tranon.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized melanoma treatment, yet approximately half of patients do not respond to these therapies. Identifying prognostic biomarkers is crucial for treatment decisions. Our retrospective study assessed liquid biopsies and tumor tissue analyses for two potential biomarkers: danger-associated molecular pattern (DAMP) S100A8/A9 and its source, neutrophils. In 43 metastatic unresected stage III/IV melanoma patients, elevated serum levels of S100A8/A9 and neutrophils before and during ICI treatment correlated with worse outcomes. Furthermore, in 113 melanoma patients, neutrophil expression in the tumor microenvironment (TME) was associated with relapse and reduced survival. Measuring S100A8/A9 and neutrophils could enhance immunotherapy monitoring by predicting impaired clinical outcomes and non-response to ICIs. Serum S100A8/A9 levels and neutrophil counts at baseline (T0) and during treatment (T3) correlated with reduced progression-free survival (PFS). Elevated S100A8/A9 levels at T0 and T3 negatively impacted overall survival (OS). Notably, neutrophil infiltration was more prevalent in primary melanomas than in nevi and metastases, and its presence in primary melanomas was linked to poorer survival. S100A8/A9 serum levels, neutrophil counts, and tumor-associated neutrophil infiltration represent promising biomarkers for predicting treatment response and clinical outcomes in melanoma patients receiving ICIs. SIGNIFICANCE: These findings underscore the critical need for reliable biomarkers in melanoma research, particularly for predicting responses to immune-checkpoint inhibitors (ICIs). Identifying S100A8/A9 levels and neutrophil infiltration as potential indicators of treatment outcomes offers valuable insights for personalized therapy decisions. By enhancing monitoring and prognosis assessment, these biomarkers contribute to refining treatment strategies, ultimately improving patient care and outcomes. This research bridges gaps in understanding melanoma response mechanisms and highlights avenues for further investigation into immune-related markers, fostering advancements in precision medicine for melanoma patients.
Collapse
Affiliation(s)
- Yasmin F Melzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Nadine L Fergen
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julia-Christina Stadler
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Ysabel A Schwietzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Klaus Pantel
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Ewa Wladykowski
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
3
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Yang C, Qu J, Wu J, Cai S, Liu W, Deng Y, Meng Y, Zheng L, Zhang L, Wang L, Guo X. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clin Transl Med 2024; 14:e70091. [PMID: 39601163 PMCID: PMC11600049 DOI: 10.1002/ctm2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The increasing prevalence of multiple primarylung cancers (MPLCs) presents challenges to current diagnostic and clinicalmanagement approaches. However, the molecular mechanisms driving MPLCdevelopment and distinguishing it from solitary primary lung cancers (SPLCs)remain largely unexplored. METHODS We performed a comparative single-cell RNAsequencing (scRNA-seq) analysis on tumour and adjacent para-tumour tissues fromMPLC and SPLC patients to comparatively evaluate their immunological landscapes.Additionally, multiplex immunofluorescence (mIF) staining and independentvalidation datasets were used to confirm findings. RESULTS MPLCs and SPLCs share significant similarities in genetic, transcriptomic and immune profiles, suggesting common therapeutic strategies such as EGFR-TKIs andICIs. Notably, an immunosuppressive macrophage subtype, F13A1+ Macrophage (Mϕ), is specifically enriched in MPLCs. This subtype overexpresses M2 macrophagemarkers and exhibits up-regulation of SPP1-CD44/CCL13-ACKR1 interactions, indicatingits role in shaping the immunosuppressive tumour microenvironment and promotingtumour growth in MPLCs. CONCLUSIONS This study unveils shared molecular mechanismsbetween MPLCs and SPLCs, while identifying MPLC-specific cellular and molecularfeatures, such as the role of F13A1+ macrophages. The findings provide novelinsights into MPLC pathogenesis, supporting the development of targetedtherapeutic strategies. KEY POINTS Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs. Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression. SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chenglin Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Jiahao Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
- Southern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Jingting Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Wenyi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Youjun Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yiran Meng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Liuqing Zheng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Lishen Zhang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Li Wang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Xiaotong Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
5
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Huang X, Yi N, Zhu P, Gao J, Lv J. Sorafenib-induced macrophage extracellular traps via ARHGDIG/IL4/PADI4 axis confer drug resistance through inhibiting ferroptosis in hepatocellular carcinoma. Biol Direct 2024; 19:110. [PMID: 39529192 PMCID: PMC11555812 DOI: 10.1186/s13062-024-00560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common as well as leading causes of mortality worldwide, and sorafenib is the first-line treatment in HCC patients. Unfortunately, drug resistance to sorafenib often develops. However, the underlying mechanism remains unclear. Here, we reveal the important role of macrophage extracellular traps (METs)-mediated crosstalk between macrophages and tumor cells in sorafenib resistance. METHODS METs in HCC tumor tissues were detected using immunofluorescence. The concentrations of MPO-DNA, elastase and cytokines were measured using ELISA. The mRNA expression levels of genes were confirmed by qRT-PCR. The siRNAs were conducted to knock ARHGDIG in Hepa1-6 and Hep3B cells. Western Blot assay was performed to determine protein expression of Rho GDP dissociation inhibitor gamma (ARHGDIG, or RHOGDI-3), PADI2, and PADI4. Cell viability and migration were evaluated by CCK-8 assay and transwell assay, respectively. Cell ferroptosis was assessed by measurement of Fe2+ concentration, flow cytometry assay of lipid ROS, and western blot assay of GPX4. The functions of sorafenib, DNase I, IL4 neutralization antibody and GPX4 in tumor growth were explored through in vivo experiments. RESULTS Sorafenib induced MET formation in M2 macrophages rather than M1 macrophages derived from both human and mice. In Hepa1-6 HCC mice, METs clearance by DNase I improved response to sorafenib therapy, detected by tumor weight, tumor growth curve, tumor volume, and survival. By screening candidate cytokines that affect macrophage function, we found that sorafenib-promoting IL4 secretion by HCC cells plays a crucial role in sorafenib-induced MET formation. Understanding the critical role of IL4 in sorafenib-induced MET formation led us to find that IL4 neutralization significantly improved the efficiency of sorafenib in HCC models. Mechanistically, we discovered that sorafenib increased the expression of ARHGDIG in HCC cells, which led to the release of IL4. In M2 macrophages, IL4 triggered MET formation by elevating the mRNA and protein expression of peptidyl arginine deiminase 4 (PADI4) rather than PADI2. In HCC models, GSK484 inhibition of PADI4 could consistently weaken sorafenib resistance and improve sorafenib efficiency. Importantly, we discovered that METs contribute to sorafenib resistance by inhibiting the ferroptosis of HCC cells. Meanwhile, PADI4 inhibition or DNase I could reverse the sorafenib resistance caused by METs-inhibiting ferroptosis of HCC cells. CONCLUSION Our study concludes that sorafenib-induced METs inhibit the ferroptosis of tumor cells, suggesting that targeting the IL4/PADI4/METs axis in HCC could reduce or prevent sorafenib resistance.
Collapse
Affiliation(s)
- Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Pengfei Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China.
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
7
|
Zhang Q, Zhang J, Gu H, Yang Y, Zhang H, Miao C. Perioperative NETosis and Cancer Progression: Current Evidence and Future Perspectives. Curr Oncol Rep 2024; 26:1169-1175. [PMID: 39012468 DOI: 10.1007/s11912-024-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, an ongoing and exaggerated NETs formation may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between NETosis and cancer progression. RECENT FINDINGS NETs exhibits cancer-promoting effects by causing cancer metastaisis and tumor-associated thrombosis. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although NETs may have anti-bacteria effects, it is necessary to inhibit an excessive NETs formation, mostly showing cancer-promoting effects. The contribution of NETs to cancer progression has gained a growing appreciation and the approaches to targeting NETs deposition exhibited beneficial effects both in primary and metastatic tumors, which, however, has been challenged by a recent finding demonstrating an opposite effect of NETs to suppress tumor growth via the activation of immune response against tumor. This seeming discrepancy reflects we are in the early stage of NETs study facing fundamental questions and a better understanding of the underlying mechanism is urgently needed.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Haiyun Gu
- Department of Anesthesiology, Rizhao People's Hospital, Shandong, China
| | - Yan Yang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
8
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
9
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
10
|
Li Z, Li L, Yue M, Peng Q, Pu X, Zhou Y. Tracing Immunological Interaction in Trimethylamine N-Oxide Hydrogel-Derived Zwitterionic Microenvironment During Promoted Diabetic Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402738. [PMID: 38885961 DOI: 10.1002/adma.202402738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing. It is found that polyzwitterionic hydrogel can upregulate Ccl3+ macrophages and downregulate S100a9+ neutrophils and facilitate their interactions compared with polyanionic and polycationic hydrogels, validating the underlying effect of zwitterionic microenvironment on the activation of adaptive immune system. Moreover, zwitterionic hydrogel inhibits the formation of neutrophil extracellular traps (NETs) and promotes angiogenesis, thus improving diabetic wound healing. These findings expand the horizons of the sophisticated orchestration of immune systems in zwitterion-directed diabetic wound repair and uncover new strategies of novel immunoregulatory biomaterials.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Qingyu Peng
- School of Mechanical and Material Engineering, North China University of Technology, Beijing, 100144, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Pitter MR, Kryczek I, Zhang H, Nagarsheth N, Xia H, Wu Z, Tian Y, Okla K, Liao P, Wang W, Zhou J, Li G, Lin H, Vatan L, Grove S, Wei S, Li Y, Zou W. PAD4 controls tumor immunity via restraining the MHC class II machinery in macrophages. Cell Rep 2024; 43:113942. [PMID: 38489266 PMCID: PMC11022165 DOI: 10.1016/j.celrep.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.
Collapse
Affiliation(s)
- Michael R Pitter
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Molecular and Cellular Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Hongjuan Zhang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Nisha Nagarsheth
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhenyu Wu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuzi Tian
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karolina Okla
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Engström J, Koozi H, Didriksson I, Larsson A, Friberg H, Frigyesi A, Spångfors M. Plasma neutrophil gelatinase-associated lipocalin independently predicts dialysis need and mortality in critical COVID-19. Sci Rep 2024; 14:6695. [PMID: 38509165 PMCID: PMC10954663 DOI: 10.1038/s41598-024-57409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a novel kidney injury and inflammation biomarker. We investigated whether NGAL could be used to predict continuous renal replacement therapy (CRRT) and mortality in critical coronavirus disease 2019 (COVID-19). This prospective multicenter cohort study included adult COVID-19 patients in six intensive care units (ICUs) in Sweden between May 11, 2020 and May 10, 2021. Blood was sampled at admission, days two and seven in the ICU. The samples were batch analyzed for NGAL, creatinine, and cystatin c after the end of the study period. Initiation of CRRT and 90-day survival were used as dependent variables in regression models. Of 498 included patients, 494 were analyzed regarding CRRT and 399 were analyzed regarding survival. Seventy patients received CRRT and 154 patients did not survive past 90 days. NGAL, in combination with creatinine and cystatin c, predicted the subsequent initiation of CRRT with an area under the curve (AUC) of 0.95. For mortality, NGAL, in combination with age and sex, had an AUC of 0.83. In conclusion, NGAL is a valuable biomarker for predicting subsequent initiation of CRRT and 90-day mortality in critical COVID-19. NGAL should be considered when developing future clinical scoring systems.
Collapse
Affiliation(s)
- Jonas Engström
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden.
- Department of Anesthesia and Intensive Care, Kristianstad Hospital, Kristianstad, 291 85, Sweden.
| | - Hazem Koozi
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden
- Department of Anesthesia and Intensive Care, Kristianstad Hospital, Kristianstad, 291 85, Sweden
| | - Ingrid Didriksson
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, 205 02, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, 751 05, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, 205 02, Sweden
| | - Attila Frigyesi
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, 221 85, Sweden
| | - Martin Spångfors
- Department of Clinical Sciences, Lund University, Anesthesiology and Intensive Care, Lund, 221 00, Sweden
- Department of Anesthesia and Intensive Care, Kristianstad Hospital, Kristianstad, 291 85, Sweden
| |
Collapse
|
13
|
Ye H, Yang Q, Guo H, Wang X, Cheng L, Han B, Hong M, Ma F, Li M, Wu X, Chen F, Zhu J, Chen S, Zheng S, Li J. Internalisation of neutrophils extracellular traps by macrophages aggravate rheumatoid arthritis via Rab5a. RMD Open 2024; 10:e003847. [PMID: 38485453 PMCID: PMC10941157 DOI: 10.1136/rmdopen-2023-003847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES Although elevated levels of neutrophil extracellular traps (NETs) have been reported in patients with rheumatoid arthritis (RA), the role of NETs in RA and the relationship between NETs and macrophages in the pathogenesis of RA requires further research. Here, we sought to determine the role of NETs in RA pathogenesis and reveal the potential mechanism. METHODS Neutrophil elastase (NE) and myeloperoxidase (MPO)-DNA were measured in human serum and synovium. NETs inhibitor GSK484 was used to examine whether NETs involved with RA progression. We stimulated macrophages with NETs and detected internalisation-related proteins to investigate whether NETs entry into macrophages and induced inflammatory cytokines secretion through internalisation. To reveal mechanisms mediating NETs-induced inflammation aggravation, we silenced GTPases involved in internalisation and inflammatory pathways in vivo and in vitro and detected downstream inflammatory pathways. RESULTS Serum and synovium from patients with RA showed a significant increase in NE and MPO, which positively correlated to disease activity. Inhibiting NETs formation alleviated the collagen-induced arthritis severity. In vitro, NETs are internalised by macrophages and located in early endosomes. Rab 5a was identified as the key mediator of the NETs internalisation and inflammatory cytokines secretion. Rab 5a knockout mice exhibited arthritis alleviation. Moreover, we found that NE contained in NETs activated the Rab5a-nuclear factor kappa B (NF-κB) signal pathway and promoted the inflammatory cytokines secretion in macrophages. CONCLUSIONS This study demonstrated that NETs-induced macrophages inflammation to aggravate RA in Rab 5a dependent manner. Mechanically, Rab5a mediated internalisation of NETs by macrophages and NE contained in NETs promoted macrophages inflammatory cytokines secretion through NF-κB-light-chain-enhancer of activated B cells signal pathway. Therapeutic targeting Rab 5a or NE might extend novel strategies to minimise inflammation in RA.
Collapse
Affiliation(s)
- Haixin Ye
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Yang
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Huaxia Guo
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing Wang
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Lifang Cheng
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Bingqi Han
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mukeng Hong
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fopei Ma
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Li
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Chen
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junqing Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Shixian Chen
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Songyuan Zheng
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Li
- Department of Rheumatology and Immunology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Du C, Xu C, Jia P, Cai N, Zhang Z, Meng W, Chen L, Zhou Z, Wang Q, Feng R, Li J, Meng X, Huang C, Ma T. PSTPIP2 ameliorates aristolochic acid nephropathy by suppressing interleukin-19-mediated neutrophil extracellular trap formation. eLife 2024; 13:e89740. [PMID: 38314821 PMCID: PMC10906995 DOI: 10.7554/elife.89740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by herbal medicines. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) and neutrophil extracellular traps (NETs) play important roles in kidney injury and immune defense, respectively, but the mechanism underlying AAN regulation by PSTPIP2 and NETs remains unclear. We found that renal tubular epithelial cell (RTEC) apoptosis, neutrophil infiltration, inflammatory factor, and NET production were increased in a mouse model of AAN, while PSTPIP2 expression was low. Conditional knock-in of Pstpip2 in mouse kidneys inhibited cell apoptosis, reduced neutrophil infiltration, suppressed the production of inflammatory factors and NETs, and ameliorated renal dysfunction. Conversely, downregulation of Pstpip2 expression promoted kidney injury. In vivo, the use of Ly6G-neutralizing antibody to remove neutrophils and peptidyl arginine deiminase 4 (PAD4) inhibitors to prevent NET formation reduced apoptosis, alleviating kidney injury. In vitro, damaged RTECs released interleukin-19 (IL-19) via the PSTPIP2/nuclear factor (NF)-κB pathway and induced NET formation via the IL-20Rβ receptor. Concurrently, NETs promoted apoptosis of damaged RTECs. PSTPIP2 affected NET formation by regulating IL-19 expression via inhibition of NF-κB pathway activation in RTECs, inhibiting RTEC apoptosis, and reducing kidney damage. Our findings indicated that neutrophils and NETs play a key role in AAN and therapeutic targeting of PSTPIP2/NF-κB/IL-19/IL-20Rβ might extend novel strategies to minimize Aristolochic acid I-mediated acute kidney injury and apoptosis.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Wenna Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Lu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Zhongnan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical UniversityHefeiChina
| |
Collapse
|
15
|
Salzmann M, Gibler P, Haider P, Brekalo M, Plasenzotti R, Filip T, Nistelberger R, Hartmann B, Wojta J, Hengstenberg C, Podesser BK, Kral-Pointner JB, Hohensinner PJ. Neutrophil extracellular traps induce persistent lung tissue damage via thromboinflammation without altering virus resolution in a mouse coronavirus model. J Thromb Haemost 2024; 22:188-198. [PMID: 37748582 DOI: 10.1016/j.jtha.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND During infection, neutrophil extracellular traps (NETs) are associated with severity of pulmonary diseases such as acute respiratory disease syndrome. NETs induce subsequent immune responses, are directly cytotoxic to pulmonary cells, and are highly procoagulant. Anticoagulation treatment was shown to reduce in-hospital mortality, indicating thromboinflammatory complications. However, data are sparsely available on the involvement of NETs in secondary events after virus clearance, which can lead to persistent lung damage and postacute sequelae with chronic fatigue and dyspnea. OBJECTIVES This study focuses on late-phase events using a murine model of viral lung infection with postacute sequelae after virus resolution. METHODS C57BL/6JRj mice were infected intranasally with the betacoronavirus murine coronavirus (MCoV, strain MHV-A95), and tissue samples were collected after 2, 4, and 10 days. For NET modulation, mice were pretreated with OM-85 or GSK484 and DNase I were administered intraperitoneally between days 2 to 5 and days 4 to 7, respectively. RESULTS Rapid, platelet-attributed thrombus formation was followed by a second, late phase of thromboinflammation. This phase was characterized by negligible virus titers but pronounced tissue damage, apoptosis, oxidative DNA damage, and presence of NETs. Inhibition of NETs during the acute phase did not impact virus burden but decreased lung cell apoptosis by 67% and oxidative stress by 94%. Prevention of neutrophil activation by immune training before virus infection reduced damage by 75%, NETs by 31%, and pulmonary thrombi by 93%. CONCLUSION NETs are detrimental inducers of tissue damage during respiratory virus infection but do not contribute to virus clearance.
Collapse
Affiliation(s)
- Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrizia Gibler
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Rebecca Nistelberger
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Boris Hartmann
- Institute of Veterinary Disease Control, AGES, Mödling, Austria
| | - Johann Wojta
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature 2023; 624:425-432. [PMID: 38057665 DOI: 10.1038/s41586-023-06833-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
18
|
Liu Y, Ma YH, Yang JW, Man JW, Wang HB, Li Y, Liang C, Cao JL, Chen SY, Li KP, Yang L. Rethinking neutrophil extracellular traps. Int Immunopharmacol 2023; 124:110834. [PMID: 37625368 DOI: 10.1016/j.intimp.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Neutrophils are a major subset of leukocytes in human circulating blood. In some circumstances, neutrophils release neutrophil extracellular traps (NETs). lnitially, NETs were considered to have a strong antibacterial capacity. However, currently, NETs have been shown to have a pivotal impact on various diseases. Different stimulators induce the production of different types of NETs, and their biological functions and modes of clearance do not appear to be the same. In this review, we will discuss several important issues related to NETs in order to better understand the relationship between NETs and diseases, as well as how to utilize the characteristics of NETs for disease treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yu-Hua Ma
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jian-Wei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jiang-Wei Man
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Hua-Bin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yi Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Cheng Liang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China.
| |
Collapse
|
19
|
Hu Z, Hua X, Mo X, Chang Y, Chen X, Xu Z, Tao M, Hu G, Song J. Inhibition of NETosis via PAD4 alleviated inflammation in giant cell myocarditis. iScience 2023; 26:107162. [PMID: 37534129 PMCID: PMC10391931 DOI: 10.1016/j.isci.2023.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Giant cell myocarditis (GCM) is a rare, usually rapidly progressive, and potentially fatal disease. Detailed inflammatory responses remain unknown, in particular the formation of multinucleate giant cells. We performed single-cell RNA sequencing analysis on 15,714 Cd45+ cells extracted from the hearts of GCM rats and normal rats. NETosis has been found to contribute to the GCM process. An inhibitor of NETosis, GSK484, alleviated GCM inflammation in vivo. MPO (a marker of neutrophils) and H3cit (a marker of NETosis) were expressed at higher levels in patients with GCM than in patients with DCM and healthy controls. Imaging mass cytometry analysis revealed that immune cell types within multinucleate giant cells included CD4+ T cells, CD8+ T cells, neutrophils, and macrophages but not B cells. We elucidated the role of NETosis in GCM pathogenesis, which may serve as a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Zhan Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Xiuxue Mo
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Zhenyu Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Pathology Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mengtao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, Tianjin 300071, China
| |
Collapse
|
20
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Zhong W, Wang Q, Shen X, Du J. The emerging role of neutrophil extracellular traps in cancer: from lab to ward. Front Oncol 2023; 13:1163802. [PMID: 37188184 PMCID: PMC10175598 DOI: 10.3389/fonc.2023.1163802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures derived from neutrophils, which typically consist of DNA, released from the nucleus or mitochondria, and decorated with histones and granule proteins. They are well known as an important structure in innate immunity to eliminate pathogenic bacteria, similar to neutrophils. Initially, NETs are reported to take part in the progression of inflammatory diseases; now, they have also been implicated in the progression of sterile inflammation such as autoimmune disease, diabetes, and cancer. In this review, we will describe the recent studies which have investigated the role of NETs in the development of cancer, especially metastasis. We also prescribe the strategies for targeting NETs in the multiple cancer types, which suggest that NETs are a promising treatment for cancer patients.
Collapse
Affiliation(s)
- Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qianyu Wang
- The Second School of Clinical Medical, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| | - Junfeng Du
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| |
Collapse
|
22
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|
24
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
25
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
26
|
Rosell A, Martinod K, Mackman N, Thålin C. Neutrophil extracellular traps and cancer-associated thrombosis. Thromb Res 2022; 213 Suppl 1:S35-S41. [DOI: 10.1016/j.thromres.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
27
|
Ronchetti L, Terrenato I, Ferretti M, Corrado G, Goeman F, Donzelli S, Mandoj C, Merola R, Zampa A, Carosi M, Blandino G, Conti L, Lobascio AM, Iacobelli M, Vizza E, Piaggio G, Gurtner A. Circulating cell free DNA and citrullinated histone H3 as useful biomarkers of NETosis in endometrial cancer. J Exp Clin Cancer Res 2022; 41:151. [PMID: 35449078 PMCID: PMC9027343 DOI: 10.1186/s13046-022-02359-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer mortality is mainly caused by organ failure and thrombotic events. It has been demonstrated that NETosis, a chromatin release mechanism implemented by neutrophils, may contribute to these lethal systemic effects. Our aim was to investigate NETosis biomarkers in endometrial cancer (EC). METHODS The experiments were conducted on 21 healthy subjects (HS) with no gynecological conditions, and on 63 EC patients. To assess the presence of NETosis features, IHC and IF was performed using antibodies against citrullinated histone H3 (citH3), neutrophil elastase (NE) and histone 2B. Serum levels of cell free DNA (cfDNA), cell free mitochondrial DNA (cfmtDNA) and citH3 were measured by qPCR using one microliter of deactivated serum, and by ELISA assay respectively. Fragmentation pattern of serum cfDNA was analyzed using the Agilent 2100 Bioanalyzer and High Sensitivity DNA Chips. Receiver operating characteristic (ROC) analysis was used to identify a cut off for cfDNA and cfmtDNA values able to discriminate between ECs and HSs. Correlation analysis and multiple correspondence analysis (MCA) between cfDNA, mtcfDNA, citH3 and blood parameters were used to identify the potential association among serum parameters in EC grades. RESULTS We demonstrated the presence of NETosis features in tissues from all EC grades. Serum cfDNA and cfmtDNA levels discriminate ECs from HSs and a direct correlation between citH3 and cfDNA content and an inverse correlation between cfmtDNA and citH3 in EC sera was observed, not detectable in HSs. MCA indicates cfDNA, cfmtDNA and citH3 as features associated to G1 and G2 grades. A correlation between increased levels of cfDNA, citH3 and inflammation features was found. Finally, serum nucleosomal cfDNA fragmentation pattern varies in EC sera and correlates with increased levels of cfDNA, citH3, lymphocytes and fibrinogen. CONCLUSION Our data highlight the occurrence of NETosis in EC and indicate serum cfDNA and citH3 as noninvasive biomarkers of tumor-induced systemic effects in endometrial cancer.
Collapse
Affiliation(s)
- Livia Ronchetti
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Clinical Trial Center - Biostatistics & Bioinformatics, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Margherita Ferretti
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Giacomo Corrado
- Department of Women and Children Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Frauke Goeman
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Mandoj
- Clinical Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Merola
- Clinical Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Ashanti Zampa
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Anatomy Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Maria Lobascio
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Iacobelli
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Aymone Gurtner
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
28
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
29
|
Yau ACY, Globisch MA, Onyeogaziri FC, Conze LL, Smith R, Jauhiainen S, Corada M, Orsenigo F, Huang H, Herre M, Olsson AK, Malinverno M, Sundell V, Rezai Jahromi B, Niemelä M, Laakso A, Garlanda C, Mantovani A, Lampugnani MG, Dejana E, Magnusson PU. Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci 2022; 79:206. [PMID: 35333979 PMCID: PMC8949649 DOI: 10.1007/s00018-022-04224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Maria Ascencion Globisch
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Favour Chinyere Onyeogaziri
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Lei L Conze
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Monica Corada
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Melanie Herre
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria Grazia Lampugnani
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20157, Milan, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.,Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
30
|
Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thålin C, Rosell A, Hjalmar V, Wallén H, Lindman H, Pejler G, Hagström E, Hultström M, Larsson A, Olsson AK. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 2022; 11:2049487. [PMID: 35309730 PMCID: PMC8928831 DOI: 10.1080/2162402x.2022.2049487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer is associated with systemic pathologies that contribute to mortality, such as thrombosis and distant organ failure. The aim of this study was to investigate the potential role of neutrophil extracellular traps (NETs) in myocardial inflammation and tissue damage in treatment-naïve individuals with cancer. Mice with mammary carcinoma (MMTV-PyMT) had increased plasma levels of NETs measured as H3Cit-DNA complexes, paralleled with elevated coagulation, compared to healthy littermates. MMTV-PyMT mice displayed upregulation of pro-inflammatory markers in the heart, myocardial hypertrophy and elevated cardiac disease biomarkers in the blood, but not echocardiographic heart failure. Moreover, increased endothelial proliferation was observed in hearts from tumor-bearing mice. Removal of NETs by DNase I treatment suppressed the myocardial inflammation, expression of cardiac disease biomarkers and endothelial proliferation. Compared to a healthy control group, treatment-naïve cancer patients with different malignant disorders had increased NET formation, which correlated to plasma levels of the inflammatory marker CRP and the cardiac disease biomarkers NT-proBNP and sTNFR1, in agreement with the mouse data. Altogether, our data indicate that NETs contribute to inflammation and myocardial stress during malignancy. These findings suggest NETs as potential therapeutic targets to prevent cardiac inflammation and dysfunction in cancer patients.
Collapse
Affiliation(s)
- J. Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - M. Herre
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Dragomir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - F. Rabelo-Melo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Svensson
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - C. Thålin
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A. Rosell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - V. Hjalmar
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Diagnostic Centre, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - H. Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - H. Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - G. Pejler
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - E. Hagström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M. Hultström
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - A. Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - AK. Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
31
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Molinaro R, Yu M, Sausen G, Bichsel CA, Corbo C, Folco EJ, Lee GY, Liu Y, Tesmenitsky Y, Shvartz E, Sukhova GK, Kloss F, Croce KJ, Farokhzad OC, Shi J, Libby P. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc Res 2021; 117:2652-2663. [PMID: 33751034 PMCID: PMC8783386 DOI: 10.1093/cvr/cvab074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Recent evidence suggests that 'vulnerable plaques', which have received intense attention as underlying mechanism of acute coronary syndromes over the decades, actually rarely rupture and cause clinical events. Superficial plaque erosion has emerged as a growing cause of residual thrombotic complications of atherosclerosis in an era of increased preventive measures including lipid lowering, antihypertensive therapy, and smoking cessation. The mechanisms of plaque erosion remain poorly understood, and we currently lack validated effective diagnostics or therapeutics for superficial erosion. Eroded plaques have a rich extracellular matrix, an intact fibrous cap, sparse lipid, and few mononuclear cells, but do harbour neutrophil extracellular traps (NETs). We recently reported that NETs amplify and propagate the endothelial damage at the site of arterial lesions that recapitulate superficial erosion in mice. We showed that genetic loss of protein arginine deiminase (PAD)-4 function inhibited NETosis and preserved endothelial integrity. The current study used systemic administration of targeted nanoparticles to deliver an agent that limits NETs formation to probe mechanisms of and demonstrate a novel therapeutic approach to plaque erosion that limits endothelial damage. METHODS AND RESULTS We developed Collagen IV-targeted nanoparticles (Col IV NP) to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure. We assessed the binding capability of the targeting ligand in vitro and evaluated Col IV NP targeting to areas of denuded endothelium in vivo in a mouse preparation that recapitulates features of superficial erosion. Delivery of the PAD4 inhibitor GSK484 reduced NET accumulation at sites of intimal injury and preserved endothelial continuity. CONCLUSIONS NPs directed to Col IV show selective uptake and delivery of their payload to experimentally eroded regions, illustrating their translational potential. Our results further support the role of PAD4 and NETs in superficial erosion.
Collapse
Affiliation(s)
- Roberto Molinaro
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Business Development of Research, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Grasiele Sausen
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Colette A Bichsel
- Department of Surgery, Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia Corbo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy
| | - Eduardo J Folco
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yevgenia Tesmenitsky
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Eugenia Shvartz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Galina K Sukhova
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Frederik Kloss
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kevin J Croce
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
33
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021; 79:91-104. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Beyond their well-known functions in the acute phases of the immune response, neutrophils play important roles in the various phases of tumor initiation and progression, through the release of their stored or newly synthesized mediators. In addition to reactive oxygen species, cytokines, chemokines, granule proteins and lipid mediators, neutrophil extracellular traps (NETs) can also be released upon neutrophil activation. NET formation can be achieved through a cell-death process or in association with the release of mitochondrial DNA from viable neutrophils. NETs are described as extracellular fibers of DNA and decorating proteins responsible for trapping and killing extracellular pathogens, playing a protective role in the antimicrobial defense. There is increasing evidence, however, that NETs play multiple roles in the scenario of cancer-related inflammation. For instance, NETs directly or indirectly promote tumor growth and progression, fostering tumor spread at distant sites and shielding cancer cells thus preventing the effects of cytotoxic lymphocytes. NETs can also promote tumor angiogenesis and cancer-associated thrombosis. On the other hand, there is some evidence that NETs may play anti-inflammatory and anti-tumorigenic roles. In this review, we focus on the main mechanisms underlying the emerging effects of NETs in cancer initiation and progression.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
34
|
Ronchetti L, Boubaker NS, Barba M, Vici P, Gurtner A, Piaggio G. Neutrophil extracellular traps in cancer: not only catching microbes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:231. [PMID: 34261496 PMCID: PMC8281578 DOI: 10.1186/s13046-021-02036-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Neutrophils are the most abundant type of white blood cells circulating throughout the bloodstream and are often considered the frontline defenders in innate immunity. However, neutrophils are increasingly being recognized as having an important role in tumorigenesis and carcinogenesis due to their aberrant activation by molecules released into the tumor microenvironment. One defensive response of neutrophils that is aberrantly triggered during the neoplastic process is called NETosis, where activated neutrophils expel their DNA and intracellular contents in a web-like structure known as a neutrophil extracellular trap (NET). In cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET structures released by neutrophils can also serve as a scaffold for clot formation, shining new light on the role of neutrophils and NETosis in coagulation-mediated diseases. Here, we review current available knowledge regarding NET and the related NETosis process in cancer patients, with an emphasis on pre-clinical and clinical data fostering the identification and validation of biomarkers of NET with a predictive/prognostic role in cancer patients treated with immunotherapy agents. NETosis biomarkers, e.g., citH3, may integrate correlates of immunogenicity currently available (e.g., PD-L1 expression, TMB, TILs) and help select the subsets of patients who may most benefit from the use of the therapeutic weapons under discussion.
Collapse
Affiliation(s)
- Livia Ronchetti
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Nouha Setti Boubaker
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Laboratory of proteins engineering and bioactive molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Carthage, Tunis, Tunisia
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy. .,Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| | - Giulia Piaggio
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
35
|
Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications. Cancers (Basel) 2021; 13:cancers13112832. [PMID: 34204148 PMCID: PMC8200981 DOI: 10.3390/cancers13112832] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Tumor-associated neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment. One of the abilities of neutrophils is forming neutrophil extracellular traps. Recent studies on tumor-associated neutrophils have drawn increasing attention to the role of neutrophil extracellular traps in the tumor microenvironment. There were also some reviews summarize the pro-tumorigenic activity of NETs in tumors. The specific novelty of this article is the specific summarization on the pivotal roles of NETs in tumor invasion-metastasis cascade and the recapitulation on the potential of NETs in clinical applications. Abstract Neutrophil extracellular trap (NET) formation is an ability of neutrophils to capture and kill pathogens by releasing chromatin scaffolds, along with associated cytotoxic enzymes and proteases, into the extracellular space. NETs are usually stimulated by pathogenic microorganisms and their products, surgical pressure or hypoxia. Interestingly, a number of recent studies suggest that tumor cells can induce NET formation, which in turn confers tumor cell malignancy. Notably, emerging studies indicate that NETs are involved in enhancing local invasion, increasing vascular permeability and facilitating immune escape and colonization, thus promoting tumor metastasis. In this article, we review the pivotal roles of NETs in the tumor metastasis cascade. We also recapitulate the potential of NETs as a cancer prognostic biomarker and therapeutic target.
Collapse
|
36
|
Mahajan A, Hasíková L, Hampel U, Grüneboom A, Shan X, Herrmann I, Garreis F, Bock F, Knopf J, Singh J, Schauer C, Mahajan S, Leppkes M, Paulsen F, Schlötzer-Schrehardt U, Krenn V, Jünemann A, Hohberger B, Schett G, Herrmann M, Muñoz LE. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. Ocul Surf 2021; 20:1-12. [DOI: 10.1016/j.jtos.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 12/27/2020] [Indexed: 12/23/2022]
|
37
|
Rosell A, Aguilera K, Hisada Y, Schmedes C, Mackman N, Wallén H, Lundström S, Thålin C. Prognostic value of circulating markers of neutrophil activation, neutrophil extracellular traps, coagulation and fibrinolysis in patients with terminal cancer. Sci Rep 2021; 11:5074. [PMID: 33658563 PMCID: PMC7930088 DOI: 10.1038/s41598-021-84476-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Predicting survival accurately in patients with advanced cancer is important in guiding interventions and planning future care. Objective tools are therefore needed. Blood biomarkers are appealing due to their rapid measurement and objective nature. Thrombosis is a common complication in cancer. Recent data indicate that tumor-induced neutrophil extracellular traps (NETs) are pro-thrombotic. We therefore performed a comprehensive investigation of circulating markers of neutrophil activation, NET formation, coagulation and fibrinolysis in 106 patients with terminal cancer. We found that neutrophil activation and NET markers were prognostic in terminal cancer patients. Interestingly, markers of coagulation and fibrinolysis did not have a prognostic value in this patient group, and there were weak or no correlations between these markers and markers of neutrophil activation and NETs. This suggest that NETs are linked to a poor prognosis through pathways independent of coagulation. Additional studies are needed to determine the utility of circulating neutrophil activation and NET markers, alone or in concert with established clinical parameters, as objective and reliable prognostic tools in advanced cancer.
Collapse
Affiliation(s)
- Axel Rosell
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden.
| | - Katherina Aguilera
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Schmedes
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Lundström
- Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| |
Collapse
|
38
|
Dragoni G, De Hertogh G, Vermeire S. The Role of Citrullination in Inflammatory Bowel Disease: A Neglected Player in Triggering Inflammation and Fibrosis? Inflamm Bowel Dis 2021; 27:134-144. [PMID: 32426830 DOI: 10.1093/ibd/izaa095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Citrullination is a posttranslational modification of proteins mediated by a specific family of enzymes called peptidylarginine deiminases (PAD). Dysregulation of these enzymes is involved in the etiology of various diseases, from cancer to autoimmune disorders. In inflammatory bowel disease (IBD), data for a role of citrullination in the disease process are starting to accumulate at different experimental levels including gene expression analyses, RNA, and protein quantifications. Most data have been generated in ulcerative colitis, but data in Crohn disease are lacking so far. In addition, the citrullination of histones is the fundamental process promoting inflammation through the formation of neutrophil extracellular traps (NETs). Interestingly, NETs have also been shown to activate fibroblasts into myofibroblasts in fibrotic interstitial lung disease. Therefore, citrullination merits more thorough study in the bowel to determine its role in driving disease complications such as fibrosis. In this review we describe the process of citrullination and the different players in this pathway, the role of citrullination in autoimmunity with a special focus on IBD, the emerging role for citrullination and NETs in triggering fibrosis, and, finally, how this process could be therapeutically targeted.
Collapse
Affiliation(s)
- Gabriele Dragoni
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Italy
| | - Gert De Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Inhibition of Peptidyl Arginine Deiminase-4 Prevents Renal Ischemia-Reperfusion-Induced Remote Lung Injury. Mediators Inflamm 2020; 2020:1724206. [PMID: 33456369 PMCID: PMC7787741 DOI: 10.1155/2020/1724206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemia reperfusion (IR) can lead to acute kidney injury and can be complicated by acute lung injury, which is one of the leading causes of acute kidney injury-related death. Peptidyl arginine deiminase-4 (PAD4) is a member of the PAD enzyme family and plays a critical role in inflammatory reactions and neutrophil extracellular trap formation in a variety of pathological conditions. It has been reported that PAD4 inhibition can protect certain organs from ischemic injury. In this study, we aimed to understand the mode of action of PAD4 in renal ischemia-reperfusion-mediated acute lung injury. Bilateral renal pedicle occlusion was induced for 30 min followed by reperfusion for 24 h. A specific inhibitor of PAD4, GSK484, was delivered via intraperitoneal injection to alter the PAD4 activity. The pulmonary PAD4 expression, pulmonary impairment, neutrophil infiltration, Cit-H3 expression, neutrophil extracellular trap formation, inflammatory cytokine secretion, and pulmonary apoptosis were analyzed. We found that renal ischemia reperfusion was associated with pulmonary pathological changes and increases in neutrophil infiltration, neutrophil extracellular trap formation, and inflammatory cytokine secretion in the lungs of the recipient animals. Suppression of PAD4 by GSK484 reduced remote lung injury by mitigating neutrophil infiltration, neutrophil extracellular trap formation, apoptosis, and inflammatory factor secretion. Our findings demonstrate that specific PAD4 inhibition by GSK484 may be an effective strategy to attenuate distant lung injury complicating renal ischemia-reperfusion injury.
Collapse
|
40
|
The role of protein arginine methyltransferases in kidney diseases. Clin Sci (Lond) 2020; 134:2037-2051. [PMID: 32766778 DOI: 10.1042/cs20200680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a crucial post-translational modification for many biological processes, including DNA repair, RNA processing, and transduction of intra- and extracellular signaling. Previous studies have reported that PRMTs are extensively involved in various pathologic states, including cancer, inflammation, and oxidative stress reaction. However, the role of PRMTs has not been well described in kidney diseases. Recent studies have shown that aberrant function of PRMTs and its metabolic products-symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA)-are involved in several renal pathological processes, including renal fibrosis, acute kidney injury (AKI), diabetic nephropathy (DN), hypertension, graft rejection and renal tumors. We aim in this review to elucidate the possible roles of PRMTs in normal renal function and various kidney diseases.
Collapse
|
41
|
XU Y, YING K. [Research progress on neutrophil extracellular traps in tumor]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:107-112. [PMID: 32621421 PMCID: PMC8800663 DOI: 10.3785/j.issn.1008-9292.2020.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Neutrophil extracellular traps(NET)is neutrophil-derived extracellular fiber web-like structure, composed of DNA scaffold studded with various active proteins. In addition to its bactericidal effect, NET is closely related to various diseases including immune disease, thrombosis and tumor. Recently, lots of researches have shown that NET is highly expressed in a variety of tumors, tumor cells and microenvironment can promote NET formation, whereas NET participates in tumor progression as well, and is closely related to tumor proliferation, metastasis and thrombosis, which provides new clinical thinking in tumor diagnosis as well as treatment indeed. This review will focus on the research progress of NET and tumor, meanwhile make a prospect for its clinical application value.
Collapse
|
42
|
Li M, Lin C, Deng H, Strnad J, Bernabei L, Vogl DT, Burke JJ, Nefedova Y. A Novel Peptidylarginine Deiminase 4 (PAD4) Inhibitor BMS-P5 Blocks Formation of Neutrophil Extracellular Traps and Delays Progression of Multiple Myeloma. Mol Cancer Ther 2020; 19:1530-1538. [PMID: 32371579 DOI: 10.1158/1535-7163.mct-19-1020] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
Multiple myeloma is a plasma cell malignancy, which grows in the bone marrow (BM). The major population of cells in the BM is represented by neutrophils and they can form neutrophil extracellular traps (NET). Here, we investigated whether multiple myeloma cells induce NET formation and whether targeting this process would delay multiple myeloma progression. We demonstrated that murine and human multiple myeloma cells stimulate citrullination of histone H3 and NET formation by neutrophils and that this process is abrogated by pharmacological targeting of peptidylarginine deiminase 4 (PAD4) with a novel-specific small molecule inhibitor BMS-P5. Administration of BMS-P5 to multiple myeloma-bearing mice delays appearance of symptoms and disease progression. Taken together, our data demonstrate that targeting PAD4 may be beneficial for treatment of multiple myeloma.
Collapse
Affiliation(s)
- Marina Li
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cindy Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Hui Deng
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Luca Bernabei
- Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dan T Vogl
- Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Yulia Nefedova
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
43
|
Fawzy MS, Abu AlSel BT, Al Ageeli E, Al-Qahtani SA, Abdel-Daim MM, Toraih EA. Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem 2020; 126:172-182. [PMID: 30270667 DOI: 10.1080/13813455.2018.1499119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/08/2018] [Indexed: 01/22/2023]
Abstract
Background: Circulating non-coding RNAs (ncRNAs) have been implicated in health and disease. This study aimed to evaluate the serum expression profile of microRNA-499a (miR-499a) and its selected bioinformatically predicted partner long-ncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) in diabetes-related end-stage renal disease (ESRD) patients and to correlate the expressions with the patients' clinicolaboratory data.Subjects and methods: Real-time quantitative polymerase chain reaction was applied in diabetics with and without ESRD (n = 90 for each).Results: Serum MALAT1 expression levels were increased in the ESRD group relative to diabetics without ESRD with median (quartile) values of 10.5 (1.41-126.7) (p < .001). However, miR-499a levels were decreased in more than half of ESRD patients with a median of 0.96 (0.13-3.14). Both MALAT1 and miR-499a expression levels were inversely correlated in the ESRD patient-group.Conclusions: MALAT1 up-regulation and miR-499 down-regulation might be involved in diabetic nephropathy-related ESRD pathogenesis. Functional validation studies are warranted to confirm the MALAT1/miR-499a partnership.
Collapse
MESH Headings
- Adult
- Aged
- Base Pairing
- Base Sequence
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/therapy
- Disease Progression
- Female
- Gene Expression Regulation
- Humans
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/therapy
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Renal Dialysis
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Baraah T Abu AlSel
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Saeed Awad Al-Qahtani
- Department of Physiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
44
|
Snoderly HT, Boone BA, Bennewitz MF. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 2019; 21:145. [PMID: 31852512 PMCID: PMC6921561 DOI: 10.1186/s13058-019-1237-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The formation of neutrophil extracellular traps (NETs), known as NETosis, was first observed as a novel immune response to bacterial infection, but has since been found to occur abnormally in a variety of other inflammatory disease states including cancer. Breast cancer is the most commonly diagnosed malignancy in women. In breast cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET-targeted therapies have shown success in preclinical cancer models and may prove valuable clinical targets in slowing or halting tumor progression in breast cancer patients. We will briefly outline the mechanisms by which NETs may form in the tumor microenvironment and circulation, including the crosstalk between neutrophils, tumor cells, endothelial cells, and platelets as well as the role of cancer-associated extracellular vesicles in modulating neutrophil behavior and NET extrusion. The prognostic implications of cancer-associated NETosis will be explored in addition to development of novel therapeutics aimed at targeting NET interactions to improve outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Hunter T Snoderly
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Drive, ESB 521, Morgantown, WV, 26506, USA
| | - Brian A Boone
- Department of Surgery, West Virginia University, Morgantown, WV, 26506, USA
| | - Margaret F Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Drive, ESB 521, Morgantown, WV, 26506, USA.
| |
Collapse
|
45
|
Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol 2019; 78:106055. [PMID: 31816575 DOI: 10.1016/j.intimp.2019.106055] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Peptidyl arginine deiminase-4 (PAD4), a PAD enzyme family member, catalyzes the posttranslational conversion of arginine residues to citrulline in target proteins. Although PAD4 is believed to play a crucial role in various pathological conditions such as infectious diseases, autoimmune diseases, and ischemic conditions, the effect of PAD4 in myocardial infarction (MI)-induced cardiac injury remains to be examined. Here, we hypothesize that PAD4 contributes to cardiac ischemic injury by exacerbating the inflammatory response and promoting neutrophil extracellular trap (NET) formation after MI. Permanent left coronary artery ligation, a condition that mimics MI, was performed on male C57BL/6 mice. [(3S,4R)-3-amino-4-hydroxy-1-piperidinyl] [2-[1-(cyclopropylmethyl)-1H-indol-2-yl]-7-methoxy-1-methyl-1H-benzimidazol-5-yl]-methanone (GSK484), an inhibitor of PAD4, was delivered via intraperitoneal injection to inhibit PAD4 activity. Cardiac PAD4 expression, tissue injury scoring, neutrophil infiltration, cit-H3 expression, NET formation, inflammatory cytokine secretion, apoptosis, and cardiac function were analyzed. In the current study, we discovered the protective effect of PAD4 inhibition using the PAD4-specific inhibitor GSK484 in cardiomyocytes challenged by MI. GSK484-mediated PAD4 inhibition can moderately preserve ventricle histological structure and myocardium integrity after MI, thereby reducing the infarct size and decreasing myocardial enzyme levels in serum. PAD4 inhibition also effectively protects cardiomyocytes from MI-induced NET formation and inflammatory cytokine secretion, in turn alleviating cardiac ischemia-induced apoptosis of cardiomyocytes. Collectively, these findings demonstrate the efficacy of specific PAD4 inhibition in reducing MI-induced neutrophil infiltration, NET formation, inflammatory reaction, and cardiomyocyte apoptosis, thereby increasing overall cardiac function improvement. These results provide novel insights for the development of new strategies to treat cardiovascular dysfunction in MI patients.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wengang Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Sebastian Schmull
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jianmin Gu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
46
|
Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, Saavedra-Mayorga DE, Echavarria R. Neutrophil Extracellular Traps in the Establishment and Progression of Renal Diseases. ACTA ACUST UNITED AC 2019; 55:medicina55080431. [PMID: 31382486 PMCID: PMC6722876 DOI: 10.3390/medicina55080431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
Abstract
Uncontrolled inflammatory and immune responses are often involved in the development of acute and chronic forms of renal injury. Neutrophils are innate immune cells recruited early to sites of inflammation, where they produce pro-inflammatory cytokines and release mesh-like structures comprised of DNA and granular proteins known as neutrophil extracellular traps (NETs). NETs are potentially toxic, contribute to glomerular injury, activate autoimmune processes, induce vascular damage, and promote kidney fibrosis. Evidence from multiple studies suggests that an imbalance between production and clearance of NETs is detrimental for renal health. Hence strategies aimed at modulating NET-associated processes could have a therapeutic impact on a myriad of inflammatory diseases that target the kidney. Here, we summarize the role of NETs in the pathogenesis of renal diseases and their mechanisms of tissue damage.
Collapse
Affiliation(s)
- Hector Salazar-Gonzalez
- Decanato de Ciencia y Tecnología, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | | | - Zesergio Melo
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Mexico
| | - Diego Eduardo Saavedra-Mayorga
- Facultad de Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Raquel Echavarria
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Mexico.
| |
Collapse
|
47
|
Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:1724-1738. [PMID: 31315434 DOI: 10.1161/atvbaha.119.312463] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated a role of neutrophils in both venous and arterial thrombosis. A key prothrombotic feature of neutrophils is their ability to release web-like structures composed of DNA filaments coated with histones and granule proteins referred to as neutrophil extracellular traps (NETs). NETs were discovered over a decade ago as part of our first line of host defense against invading microorganisms. Although NETs have a protective role against pathogens, recent data suggest that an uncontrolled and excessive NET formation within the vasculature may contribute to pathological thrombotic disorders. In vitro studies suggest that NETs promote vessel occlusion by providing a scaffold for platelets, red blood cells, extracellular vesicles, and procoagulant molecules, such as von Willebrand factor and tissue factor. In addition, NET components enhance coagulation by both activating the intrinsic pathway and degrading an inhibitor of the extrinsic pathway (tissue factor pathway inhibitor). NET formation has, therefore, been proposed to contribute to thrombus formation and propagation in arterial, venous, and cancer-associated thrombosis. This review will describe animal and human studies suggesting a role of NETs in the pathogenesis of various thrombotic disorders. Targeting NETs may be a novel approach to reduce thrombosis without affecting hemostasis.
Collapse
Affiliation(s)
- Charlotte Thålin
- From the Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital (C.T.), Karolinska Institutet, Stockholm, Sweden
| | - Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Staffan Lundström
- Department of Oncology-Pathology (S.L.), Karolinska Institutet, Stockholm, Sweden.,Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Sweden (S.L.)
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Håkan Wallén
- Division of Cardiovascular Medicine (H.W.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Nakazawa D, Marschner JA, Platen L, Anders HJ. Extracellular traps in kidney disease. Kidney Int 2019; 94:1087-1098. [PMID: 30466565 DOI: 10.1016/j.kint.2018.08.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
During the past decade the formation of neutrophil extracellular traps (NETs) has been recognized as a unique modality of pathogen fixation (sticky extracellular chromatin) and pathogen killing (cytotoxic histones and proteases) during host defense, as well as collateral tissue damage. Numerous other triggers induce NET formation in multiple forms of sterile inflammation, including thrombosis, gout, obstruction of draining ducts, and trauma. Whether neutrophils always die along with NET release, and if they do die, how, remains under study and is most likely context dependent. In certain settings, neutrophils release NETs while undergoing regulated necrosis-for example, necroptosis. NETs and extracellular traps (ETs) released by macrophages also have been well documented in kidney diseases-for example, in various forms of acute kidney injury. Histones released from ETs and other sources are cytotoxic and elicit inflammation, contributing to necroinflammation of the early-injury phase of acute tubular necrosis in antineutrophil cytoplasmic antibody-related renal vasculitis, anti-glomerular basement membrane disease, lupus nephritis, and thrombotic microangiopathies. Finally, acute kidney injury-related releases of dying renal cells or ETs promote remote organ injuries-for example, acute respiratory distress syndrome. In this review, we summarize what is known about the release of ETs from neutrophils and macrophages in the kidney, the available experimental evidence, and ongoing discussions in the field.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Julian A Marschner
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Louise Platen
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany.
| |
Collapse
|
49
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
50
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Singh V, Wang Y, Vijay-Kumar M. PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol 2019; 12:761-771. [PMID: 30710097 PMCID: PMC6519124 DOI: 10.1038/s41385-019-0139-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Peptidyl arginine deiminase-4 (PAD4) is indispensable for generation of neutrophil extracellular traps (NETs), which can provide antimicrobial effects during host innate immune response; however, the role of PAD4 against gastrointestinal infection is largely unknown. Herein, we challenged PAD4-deficient (Pad4-/-) mice and wild-type (WT) littermates with Citrobacter rodentium (CR), and investigated bacteria clearance and gut pathology. Luminal colonization of CR in Pad4-/- mice peaked between 11-14 days post-infection, whereas WT mice suppressed the infection by 14 days. We demonstrated that Pad4-/- mice were unable to form NETs, whereas WT mice showed increased NETs formation in the colon during infection. Pad4-/- mice showed aggravated CR-associated inflammation as indicated by elevated systemic and colonic pro-inflammatory markers. Histological analysis revealed that transmissible colonic hyperplasia, goblet cell depletion, and apoptotic cell death were more pronounced in the colon of CR-infected Pad4-/- mice. Treating WT mice with deoxyribonuclease I, which can disrupt NETs generation, recapitulated the exacerbated CR infection and gut pathology associated with the loss of PAD4. Administration of the PAD4 inhibitor, Cl-amidine also aggravated CR infection, but to a lesser extent. Taken together, our findings highlight the importance of PAD4 in the mucosal clearance of CR and in resolving gut-associated inflammation.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, The Pennsylvania State University, University Park, Philadelphia, PA, 16802, USA
| | - Xia Xiao
- Division of Nephrology, MGH, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachel M Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Vishal Singh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yanming Wang
- College of Life Sciences & Medicine, Henan University, Kaifeng, 475004, China
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|