1
|
ZHANG HENG, YANG XIAO, GUO YUJIN, ZHAO HAIBO, JIANG PEI, YU QINGQING. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture. Oncol Res 2025; 33:837-849. [PMID: 40191723 PMCID: PMC11964869 DOI: 10.32604/or.2024.053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - XIAO YANG
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - YUJIN GUO
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| | - HAIBO ZHAO
- Department of Oncology, Jining No.1 People’s Hospital, Jining, 272002, China
| | - PEI JIANG
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, 272002, China
| | - QING-QING YU
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| |
Collapse
|
2
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek IT, Oztop I, Aktas S, Sagol O. Inflammation-Associated Long Non-Coding RNAs (lncRNAs) in Chronic Viral Hepatitis- Associated Hepatocellular Carcinoma. Turk Patoloji Derg 2025; 41:1-8. [PMID: 39397388 PMCID: PMC11826398 DOI: 10.5146/tjpath.2024.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE This study aimed to identify the expression profile and prognostic significance of inflammation-associated lncRNAs in chronic viral hepatitis (CVH) and CVH-associated hepatocellular carcinoma (CVH-HCC). MATERIAL AND METHODS In the first step, lncRNA expression analysis was performed by real-time polymerase chain reaction (RT-PCR) using an array panel of 84 inflammation-associated lncRNAs in 48 formalin-fixed paraffin-embedded (FFPE) tissue samples (12 CVH-HCC, 12 peritumoral cirrhotic parenchyma, 12 nontumoral cirrhotic CVH parenchyma, 12 normal liver samples). In the second step, 7 lncRNAs (DLEU2, HOTAIR, LINC00635, LINC00662, RP11-549J18.1, SNHG16 and XIST) were chosen for RT-PCR assay testing in 72 samples (24 CVH-HCC, 24 peritumoral cirrhotic parenchyma, 24 nontumoral cirrhotic CVH parenchyma samples). RESULTS Fifty-six inflammation-associated lncRNAs were significantly up-regulated in the peritumoral cirrhotic parenchyma compared to the normal liver. Expression of 71 lncRNAs was significantly higher in peritumoral cirrhotic parenchyma compared to cirrhotic CVH parenchyma. DLEU2 and SNHG16 were up-regulated both in the tumor and peritumoral cirrhotic parenchyma compared to cirrhotic CVH parenchyma. Expression of LINC00662 was significantly higher in CVH-HCC than in cirrhotic CVH parenchyma. Expression of XIST was also increased in both tumor and peritumoral parenchyma samples, albeit without statistical significance. No significant association was found between lncRNA expressions and survival. CONCLUSION Inflammation-associated lncRNAs DLEU2, SNHG16, LINC00662, and XIST are candidate diagnostic biomarkers in CVH-HCC. More evidence is needed to prove their utility as prognostic markers.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, İzmir, Türkiye; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Anil Aysal
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, İzmir, Türkiye; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Cihan Agalar
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Tufan Egeli
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Mucahit Ozbilgin
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Tarkan Unek
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Ilkay Tugba Unek
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Ilhan Oztop
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| | - Safiye Aktas
- Department of Basic Oncology, Dokuz Eylul University, Institute of Oncology, İzmir, Türkiye
| | - Ozgul Sagol
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, İzmir, Türkiye; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, İzmir, Türkiye
| |
Collapse
|
3
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Fan Z, Yin B, Chen X, Yang G, Zhang W, Ye X, Han H, Li M, Shu M, Liu R. Comprehensive analysis of paraspeckle-associated gene modules unveils prognostic signatures and immunological relevance in multi-cancers. Discov Oncol 2024; 15:345. [PMID: 39133261 PMCID: PMC11319543 DOI: 10.1007/s12672-024-01188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, characterized by high rates of angiogenesis and immune evasion. Paraspeckle genes, involved in gene regulation and RNA metabolism, have recently been linked to tumor progression. This study aims to elucidate the relationship between paraspeckle genes and HCC prognosis, focusing on SFPQ, DDX39B, and UBAP2. METHODS We analyzed HCC (LIHC) and prostate cancer (PRAD) samples from the TCGA database to explore the correlation between paraspeckle genes and angiogenesis. We conducted unsupervised clustering, risk scoring, and survival analysis to identify distinct patient groups and their clinical outcomes. Gene expression data were used to perform differential analysis and Gene Ontology (GO) enrichment. RESULTS Our analysis identified significant correlations between paraspeckle genes and angiogenesis across multiple cancer types. Elevated expression levels of SFPQ, DDX39B, and UBAP2 were associated with poor prognosis in HCC patients, and all of them has statistical significance. Unsupervised clustering of HCC samples based on paraspeckle gene expression revealed two distinct clusters, with high-risk patients exhibiting stronger immune suppression and tumor immune evasion. GO enrichment highlighted critical pathways related to angiogenesis and immune regulation. Additionally, a risk scoring model based on these genes effectively distinguished high-risk and low-risk patient groups, providing valuable prognostic insights. CONCLUSION This study demonstrates that SFPQ, DDX39B, and UBAP2 are significantly associated with poor prognosis in HCC, likely due to their roles in promoting angiogenesis and immune suppression. These findings highlight the potential of paraspeckle genes as prognostic biomarkers and therapeutic targets, offering new avenues for personalized treatment strategies in HCC. Further research into their functional mechanisms and clinical applicability is crucial for advancing HCC treatment and improving patient outcomes.
Collapse
Affiliation(s)
- Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaochen Chen
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Ye
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Interventional Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
5
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
6
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Sun J, Chen W, Zhou Z, Chen X, Zuo Y, He J, Liu H. Tanshinone IIA Facilitates Efficient Cartilage Regeneration under Inflammatory Factors Caused Stress via Upregulating LncRNA NEAT1_2. Biomedicines 2023; 11:3291. [PMID: 38137512 PMCID: PMC10741062 DOI: 10.3390/biomedicines11123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Osteoarthritis (OA) is a crippling condition characterized by chondrocyte dedifferentiation, cartilage degradation, and subsequent cartilage defects. Unfortunately, there is a lack of effective medicines to facilitate the repair of cartilage defects in OA patients. In this study, we investigated the role of lncRNA NEAT1_2 in maintaining the chondrocyte phenotype and identified tanshinone IIA(TAN) as a natural medicine that enhances NEAT1_2 levels, resulting in efficient cartilage regeneration under inflammatory cytokines. (2) Methods: The transcriptional levels of NEAT1_2 and cartilage phenotype-related genes were identified by RT-qPCR. The siRNA interference approach was utilized to silence NEAT1_2; the Alamar Blue assay was performed to determine chondrocyte viability under inflammatory conditions. To evaluate the concentrations of collagen type II and glycosaminoglycans distributed by chondrocytes in vitro and in vivo, immunohistochemical staining and Safranin O staining were used. (3) Results: IL-1β suppresses NEAT1_2 and genes related to the chondrocytic phenotype, whereas TAN effectively upregulates them in a NEAT1_2-dependent manner. Consistently, TAN alleviated chondrocyte oxidative stress inhibited cartilage degradation by modulating the relevant genes and promoted efficient cartilage regeneration in vitro and in vivo when chondrocytes are exposed to inflammatory cytokines. (4) Conclusions: TAN enhances the expression of NEAT1_2 inhibited by IL-1β and affects the transcription of chondrocytic phenotype-related genes, which promotes cartilage regeneration in an inflammatory environment.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Wei Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| |
Collapse
|
8
|
Mitamura R, Nakano M, Isono M, Kurosawa K, Fukami T, Nakajima M. NEAT1_2 and DAZAP1, Paraspeckle Components, Interact with PXR to Negatively Regulate CYP3A4 Induction. Drug Metab Dispos 2023; 51:1230-1237. [PMID: 37349114 DOI: 10.1124/dmd.122.001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.
Collapse
Affiliation(s)
- Rei Mitamura
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Motoki Isono
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Kiamu Kurosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Liu B, Cao J, Wu B, Hao K, Wang X, Chen X, Shen Z. METTL3 and STAT3 form a positive feedback loop to promote cell metastasis in hepatocellular carcinoma. Cell Commun Signal 2023; 21:121. [PMID: 37231451 DOI: 10.1186/s12964-023-01148-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND It is well-established that most Hepatocellular carcinoma (HCC) patients die of metastasis, yet the potential mechanisms orchestrating metastasis remain poorly understood. Current evidence suggests that the dysregulation of METTL3-mediated m6A methylation modification is closely associated with cancer progression. STAT3 is an oncogenic transcription factor that reportedly plays a central role in the occurrence and development of HCC. However, the relationship between METTL3 and STAT3 in HCC metastasis remains unclear. METHODS The relationship between METTL3 expression and the survival of HCC patients was assessed by online tools GEPIA and Kaplan-Meier Plotter. Western blotting, Tissue microarray (TMA), and immunohistochemistry (IHC) staining were used to evaluate the expression levels of METTL3 and STAT3 in HCC cell lines and metastatic and non-metastatic tissues. Methylated RNA immunoprecipitation (MeRIP), MeRIP sequencing (MeRIP-seq), qRT-PCR, RNA immunoprecipitation (RIP), Western blotting and luciferase reporter gene assay were utilized to clarify the mechanism of METTL3 regulating STAT3 expression. Immunofluorescence staining, Western blotting, qRT-PCR, Co-immunoprecipitation (Co-IP), IHC staining, TMA and Chromatin immunoprecipitation (ChIP) assay were performed to explore the mechanism of STAT3 modulating METTL3 localization. Cell viability, wound healing and transwell assay, and orthotopic xenograft model were used to evaluate the role of METTL3-STAT3 feedback loop in the promotion of HCC metastasis in vitro and in vivo. RESULTS METTL3 and STAT3 are both abundantly expressed in high-metastatic HCC cells and tissues. Moreover, a positive correlation was found between the expression of STAT3 and METTL3 in HCC tissues. Mechanistically, METTL3 could induce the m6A modification of STAT3 mRNA, and then promote the translation of m6A-contained STAT3 mRNA by interacting with the translation initiation machinery. In contrast, STAT3 promoted nuclear localization of METTL3 via transcriptionally upregulating WTAP, a vital member of the methyltransferase complex, and facilitated the methyltransferase function of METTL3. METTL3 and STAT3 form a positive feedback loop to accelerate HCC metastasis in vitro and in vivo. CONCLUSIONS Our findings reveal a novel mechanism of HCC metastasis and uncover the METTL3-STAT3 feedback signaling as a potential target for the anti-metastatic treatment of HCC. Video Abstract.
Collapse
Affiliation(s)
- Bowen Liu
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.
| | - Jinling Cao
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaixuan Hao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyun Wang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Xin Chen
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Zhifa Shen
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Niu Y, Xu G, Zhu S, Wei X, Wu C, Zhang R, Chen C, Yan L, Luo H, Deng S, Wu W, Li Y, Liu M, Jiang Y, Zhang X. NONO regulates multiple cytokine production in sepsis via the ERK1/2 signaling pathway. Mol Immunol 2023; 153:94-105. [PMID: 36459792 DOI: 10.1016/j.molimm.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The massive release of pro-inflammatory cytokines is a crucial step in triggering the inflammatory cascade in sepsis. Exploring the key molecules regulating the expression and release of multiple cytokines has important value for revealing the mechanism of the cytokine storm in sepsis. This study aimed to investigate the role of multifunctional nuclear protein non-POU domain containing octamer-binding protein (NONO) in the sepsis cytokine storm and to elucidate the underlying mechanism. We found that NONO expression in tissues and cells of sepsis mice was significantly upregulated. Downregulation of NONO expression inhibited the mRNA expression of multiple cytokines, including IL-6, IL-1β, MCP-1, MIP-1α, and MIP-1β in inflammatory cells from mice and human leukemic monocyte-THP1 cells challenged with lipopolysaccharide (LPS), and significantly decreased the level of these cytokines and TNF-α in the supernatant of THP1 cells challenged by LPS. Nono knockout also reduced the levels of TNF-α, IL-6, MIP-1α, and MIP-1β in serum, alleviated hepatocyte edema, and improved the survival rate of sepsis mice. Reduced NONO expression decreased the phospho-ERK1/2 level in inflammatory cells from sepsis mice or THP1 cells challenged by LPS. Phospho-ERK1/2 inhibitor decreased the mRNA expression and concentration of cytokines in the culture supernatant of LPS-induced THP1 cells, similar to the effect of NONO knockdown. After LPS challenge, the levels of phospho-ERK1/2 and NONO were increased, with obvious colocalization in the nucleus and vesicular-like organelles in macrophages. NONO knockdown decreased nuclear translocation of phospho-ERK1/2 in LPS-challenged THP1 cells. These results suggest that NONO is a potentially critical molecule involved in multiple cytokine production in sepsis. Upregulated NONO in sepsis may promote the expression and release of multiple cytokines to participate in a sepsis cytokine storm by promoting ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Ya Niu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Guangyu Xu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Shaoping Zhu
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Xiurong Wei
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Changli Wu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Ruigang Zhang
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Chunling Chen
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Lvbin Yan
- Library, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China.
| | - Simin Deng
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Weijian Wu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Yaojing Li
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Ming Liu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China.
| | - Xiujuan Zhang
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
11
|
Zheng N, Wen R, Zhou L, Meng Q, Zheng K, Li Z, Cao F, Zhang W. Multiregion single cell analysis reveals a novel subtype of cancer-associated fibroblasts located in the hypoxic tumor microenvironment in colorectal cancer. Transl Oncol 2023; 27:101570. [PMID: 36371957 PMCID: PMC9660844 DOI: 10.1016/j.tranon.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in shaping tumor progression and determining the outcome of the therapeutic response. In this study, we aimed to generate a comprehensive cellular landscape of the colorectal cancer (CRC) TME. METHODS We generated a comprehensive single-cell atlas by collecting CRC cases that have been uploaded to the online database and conducting an in-depth secondary analysis. We then carried out spatial transcriptomic sequencing and multiple immunohistochemical analyses to verify the results of the single-cell analysis. Moreover, we applied our findings to the TCGA database and used tissue microarray (TMA) on CRC tissue specimens to validate clinical prognosis. FINDINGS We re-analyzed the transcriptomes of 23785 cells, revealing a pattern of cell heterogeneity in the tumor region, leading-edge region, and non-tumor region. A subtype of COL11A1+INHBA+ tumor-resident cancer-associated fibroblasts (CAFs) was identified, and marker genes, transcription factors, and tissue-specific expression differences were noted and suggested to have potential roles in promoting cancer. We further confirmed that COL11A1+INHBA+ tumor-resident CAFs are mainly located in the hypoxic TME and we propose that they interact with CD44+ CRC cells via INHBA. Elevation of INHBA in CRC is associated with a poor prognosis. INTERPRETATION Our results demonstrated a single cell landscape of CRC in different regions and identified in hypoxic TME a special subtype of CAFs producing INHBA, which promotes CRC development and correlates with poor prognosis. This special subtype of CAFs is a candidate target for translational research.
Collapse
Affiliation(s)
- Nanxin Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingying Meng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kuo Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
13
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
14
|
Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, Feng LL, Zeng GD, Wang F, Feng WX, Zheng J, Wang YN, Zeng B, Liu Q, Hung MC, Wan XB. DNA damage-induced paraspeckle formation enhances DNA repair and tumor radioresistance by recruiting ribosomal protein P0. Cell Death Dis 2022; 13:709. [PMID: 35974014 PMCID: PMC9381602 DOI: 10.1038/s41419-022-05092-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Paraspeckles are mammal-specific membraneless nuclear bodies that participate in various biological processes. NONO, a central paraspeckle component, has been shown to play pivotal roles in DNA double-strand breaks (DSB) repair, whereas its underlying mechanism needs to be further disclosed. Here, using co-immunoprecipitation and mass spectrum, we identified ribosomal protein P0 (RPLP0) as a DSB-induced NONO-binding protein; RPLP0 binds to the RRM1 and RRM2 domains of NONO. Similar to NONO, RPLP0 enhances non-homologous end joining-mediated DSB repair, which was ascribed to a ribosome-independent manner. Interestingly, paraspeckles were induced as early as 15 min after irradiation; it further recruited nuclear RPLP0 to enhance its interaction with NONO. Radiation-induced NONO/RPLP0 complex subsequently anchored at the damaged DNA and increased the autophosphorylation of DNA-PK at Thr2609, thereby enhancing DSB repair. Consistently, in vivo and in vitro experiments showed that depletion of NONO sensitizes tumor cells to radiation. For patients with locally advanced rectal cancer, NONO expression was remarkably increased in tumor tissues and correlated with a poor response to radiochemotherapy. Our findings suggest a pivotal role of radiation-induced paraspeckles in DNA repair and tumor radioresistance, and provide a new insight into the ribosome-independent function of ribosomal proteins.
Collapse
Affiliation(s)
- Yun-Long Wang
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Wan-Wen Zhao
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Shao-Mei Bai
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Yan Ma
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Xin-Ke Yin
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Li-Li Feng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Guang-Dong Zeng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Fang Wang
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Wei-Xing Feng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Jian Zheng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Ying-Nai Wang
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bing Zeng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Quentin Liu
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 People’s Republic of China
| | - Mien-Chie Hung
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical University, Taichung, 404 Taiwan ,grid.252470.60000 0000 9263 9645Department of Biotechnology, Asia University, Taichung, 413 Taiwan
| | - Xiang-Bo Wan
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| |
Collapse
|
15
|
Zhao S, Zheng W, Yu C, Xu G, Zhang X, Pan C, Feng Y, Yang K, Zhou J, Ma Y. The Role of Ferroptosis in the Treatment and Drug Resistance of Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:845232. [PMID: 35309918 PMCID: PMC8927068 DOI: 10.3389/fcell.2022.845232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a fundamental feature of multicellular organisms’ development and a key driver of degenerative diseases. Ferroptosis is a new regulatory cell death mediated by iron-dependent lipid peroxidation, which is different from apoptosis and necrosis in morphology, pathophysiology and mechanism. Recent studies have found that ferroptosis is involved in the development of many diseases including hepatocellular carcinoma (HCC). As further research progresses, specific mechanisms of ferroptosis in HCC are being revealed. In this review, we summarize these recent advances about the treatment of drug-resistance in HCC and the latest ferroptosis-related treatment for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunxing Yang
- *Correspondence: Kunxing Yang, ; Jin Zhou, ; Yong Ma,
| | - Jin Zhou
- *Correspondence: Kunxing Yang, ; Jin Zhou, ; Yong Ma,
| | - Yong Ma
- *Correspondence: Kunxing Yang, ; Jin Zhou, ; Yong Ma,
| |
Collapse
|
16
|
Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding HG, Jing YW, Han YL, Li YC, Chen SL. Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy by Promoting Ferroptosis Through Regulating miR-9-5p/TFRC and GOT1 Axis. Mol Neurobiol 2022; 59:1954-1969. [PMID: 35038133 PMCID: PMC8882117 DOI: 10.1007/s12035-022-02738-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Sepsis can cause sepsis-associated encephalopathy (SAE), but whether SAE was induced or exacerbated by ferroptosis remains unknown. In this study, the rat sepsis model was constructed using the cecal ligation and puncture method. The blood-brain barrier (BBB) permeability was measured by Evans blue dye (EBD) in vivo. The levels of ROS, Fe ion, MDA, GSH, and GPX4 were assessed by enzyme-linked immunosorbent assay (ELISA). The exosomes isolated from serum were cultured with bEnd.3 cells for the in vitro analysis. Moreover, bEnd.3 cells cultured with 100 μM FeCl3 (iron-rich) were to simulate ferroptosis stress. The cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. A dual-luciferase reporter gene assay was performed to confirm the relationship between miR-9-5p with NEAT1, TFRC, and GOT1. In vivo, it is found that BBB permeability was damaged in model rats. Level of ROS, Fe ion, and MDA was increased, and level of GSH and GPX4 was decreased, which means ferroptosis was induced by sepsis. Exosome-packaged NEAT1 in serum was significantly upregulated in model rats. In vitro, it is found that NEAT1 functions as a ceRNA for miR-9-5p to facilitate TFRC and GOT1 expression. Overexpression of NEAT1 enhanced ferroptosis stress in bEnd.3 cells. Increased miR-9-5p alleviated sepsis-induced ferroptosis by suppressing the expression of TFRC and GOT1 both in vivo and in vitro. In conclusion, these findings suggest that sepsis induced high expression of serous exosome-derived NEAT1, and it might exacerbate SAE by promoting ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis.
Collapse
Affiliation(s)
- Xue-Biao Wei
- Department of Geriatric Intensive Care Unit, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Wen-Qiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Ju-Hao Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Lin-Qiang Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hong-Guang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yuan-Wen Jing
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yong-Li Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yi-Chen Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Sheng-Long Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
17
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
18
|
Su T, Wang T, Zhang N, Shen Y, Li W, Xing H, Yang M. Long non-coding RNAs in gastrointestinal cancers: implications for protein phosphorylation. Biochem Pharmacol 2022; 197:114907. [PMID: 35007523 DOI: 10.1016/j.bcp.2022.114907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Phosphorylation of proteins is one of the most extensively investigated post-translational protein modifications. Threonine, serine and tyrosine in proteins are the most commonly phosphorylated amino acids. Dysregulated cancer-related signaling pathways due to aberrant phosphorylation status of the key protein(s) in these pathways exist in most malignancies. Intensive studies in the recent decade have implicated long non-coding RNAs (lncRNAs) in the precise regulation of protein phosphorylation in cancers. In this review, we systematically delve into recent advance that underlines the multidimensional role of lncRNAs in modulating protein phosphorylation, regulating cancerous signaling and impacting prognosis of gastrointestinal (GI) cancers including hepatocellular carcinoma, colorectal cancer, gastric cancer, esophageal cancer, and pancreatic cancer. LncRNAs regulate protein phosphorylation via directly binding to the target protein(s), interacting with the partner protein(s) of the target protein(s) or lncRNAs-encoded small peptides. Although there are still extensive studies on disclosing the intricate interactions between lncRNAs and proteins and their impacts on protein phosphorylation, we believe that targeting lncRNAs controlling phosphorylation of key protein(s) in cancerous signaling pathways might provide novel paths for precision therapeutics of GI cancers in the future.
Collapse
Affiliation(s)
- Tao Su
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Teng Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Yue Shen
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
| | - Ming Yang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China.
| |
Collapse
|
19
|
Mohankumar K, Shrestha R, Safe S. Nuclear receptor 4A1 (NR4A1) antagonists target paraspeckle component 1 (PSPC1) in cancer cells. Mol Carcinog 2022; 61:73-84. [PMID: 34699643 PMCID: PMC8665050 DOI: 10.1002/mc.23362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFβ (TGFβ1), TGFβ-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFβ, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.
Collapse
Affiliation(s)
- Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA, 77843
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
20
|
Pan Y, Wang T, Zhao Z, Wei W, Yang X, Wang X, Xin W. Novel Insights into the Emerging Role of Neat1 and Its Effects Downstream in the Regulation of Inflammation. J Inflamm Res 2022; 15:557-571. [PMID: 35115805 PMCID: PMC8802408 DOI: 10.2147/jir.s338162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China
| | - Zhiqiang Zhao
- Department of Neurosurgery, Heji Hospital affiliated Changzhi Medical College, Shanxi, People’s Republic of China
| | - Wei Wei
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China
- Xianbin Wang, Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China, Email
| | - Wenqiang Xin
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Correspondence: Wenqiang Xin, Department of Neurosurgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, People’s Republic of China, Tel +86–18526201182, Fax +86–2260362062, Email
| |
Collapse
|
21
|
Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, Guo D, Cheng F, Fang C, Tan Y, Yan H, He Y, Sun X, Yuan Y, Liu H, Li T, Zhao Y, Kang C, Wu X. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res 2021; 81:5876-5888. [PMID: 34670781 DOI: 10.1158/0008-5472.can-21-1456] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The dynamic changes of RNA N6-methyl-adenosine (m6A) during cancer progression contribute to quick adaption to microenvironmental changes. Here, we profiled the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM). The m6A demethylase ALKBH5 was induced in GBM models under hypoxic conditions and was associated with a hypoxic gene signature in GBM patient samples. Depletion or inactivation of ALKBH5 in GBM cells significantly suppressed hypoxia-induced tumor-associated macrophage (TAM) recruitment and immunosuppression in allograft tumors. Expression and secretion of CXCL8/IL8 were significantly suppressed in ALKBH5-deficient tumors. However, ALKBH5 did not regulate CXCL8 m6A directly. Instead, hypoxia-induced ALKBH5 erased m6A deposition from the lncRNA NEAT1, stabilizing the transcript and facilitating NEAT1-mediated paraspeckle assembly, which led to relocation of the transcriptional repressor SFPQ from the CXCL8 promoter to paraspeckles and, ultimately, upregulation of CXCL8/IL8 expression. Accordingly, ectopic expression of CXCL8 in ALKBH5-deficient GBM cells partially restored TAM recruitment and tumor progression. Together, this study links hypoxia-induced epitranscriptomic changes to the emergence of an immunosuppressive microenvironment facilitating tumor evasion. SIGNIFICANCE: Hypoxia induces tumor immune microenvironment remodeling through an ALKBH5-mediated epigenetic and epitranscriptomic mechanism, providing potential immunotherapeutic strategies for treating glioblastoma.
Collapse
Affiliation(s)
- Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyang Qin
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, China
| | - Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Han Yan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - You He
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyu Sun
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ye Yuan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hang Liu
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ting Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yingying Zhao
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xudong Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
22
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
23
|
Mo C, Huang B, Zhuang J, Jiang S, Guo S, Mao X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin Transl Med 2021; 11:e493. [PMID: 34459124 PMCID: PMC8351523 DOI: 10.1002/ctm2.493] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) patients commonly present with osteoblastic-type bone metastasis. Exosomes derived from tumor cells possess biological significance and can mediate intercellular communication in the tumor microenvironment. Long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) is also implicated in the stability in tumorigenesis and the development of PCa, but the underlying mechanism remains elusive. Hence, the current study set out to investigate the physiological mechanisms by which exosomes-encapsulated NEAT1 affects the progression of PCa. First, after isolation, we found PCa cell-derived exosomes induced the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, NEAT1 in PCa cells could be transferred into hBMSCs via exosomes. Further gain- and loss-of-function experimentation revealed that NEAT1 acted as a competing endogenous RNA (ceRNA) of microRNA (miR)-205-5p to upregulate the runt-related transcription factor 2 (RUNX2) levels. Moreover, NEAT1 could promote the RUNX2 expression via the splicing factor proline- and glutamine-rich (SFPQ)/polypyrimidine tract-binding protein 2 (PTBP2) axis. Functional assays uncovered that NEAT1 shuttled by PCa-exosomes facilitated the activity of alkaline phosphatase (ALP) and mineralization of extracellular matrix, and continuously upregulated the levels of RUNX2, ALP, alpha-1 type 1 collagen, and osteocalcin by regulating RUNX2, to induce the osteogenic differentiation of hBMSCs. Furthermore, in vivo experimentation confirmed that upregulated NEAT1 induced osteogenesis. Collectively, our findings indicated that PCa-derived exosomes-loaded NEAT1 upregulated RUNX2 to facilitate the osteogenesis of hBMSCs by competitively binding to miR-205-5p via the SFPQ/PTBP2 axis, therefore providing a potential therapeutic target to treat osteogenesis of hBMSCs in PCa. PCa cells secrete exosomes containing NEAT1, and NEAT1 exerts effects on osteogenic differentiation of hBMSCs in PCa. NEAT1 shuttled by PCa-derived exosomes could be transferred into hBMSCs, where NEAT1 exerted inductive properties in osteogenic differentiation of hBMSCs through the upregulation of RUNX2 by competitively binding to miR-205-5p and regulating SFPQ/PTBP2 in vitro and in vivo.
Collapse
Affiliation(s)
- Chengqiang Mo
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Bin Huang
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jintao Zhuang
- Department of UrologyThe Eastern Hospital of the First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Shuangjian Jiang
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Shengjie Guo
- Department of UrologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Xiaopeng Mao
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| |
Collapse
|
24
|
Naipauer J, García Solá ME, Salyakina D, Rosario S, Williams S, Coso O, Abba MC, Mesri EA, Lacunza E. A Non-Coding RNA Network Involved in KSHV Tumorigenesis. Front Oncol 2021; 11:687629. [PMID: 34222014 PMCID: PMC8242244 DOI: 10.3389/fonc.2021.687629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Regulatory pathways involving non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA), have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat1, Neat1, H19, Meg3, and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.
Collapse
Affiliation(s)
- Julián Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Martín E. García Solá
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Departamento de Fisiología y Biología Molecular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daria Salyakina
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Santas Rosario
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sion Williams
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Neurology Basic Science Division, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omar Coso
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Departamento de Fisiología y Biología Molecular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín C. Abba
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Enrique A. Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ezequiel Lacunza
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
25
|
Zhu Y, Lu Y, Yuan L, Ling W, Jiang X, Chen S, Hu B. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311:151515. [PMID: 34146956 DOI: 10.1016/j.ijmm.2021.151515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes (Lm) can lead to high mortality rates relative to other foodborne pathogens. Lm-induced inflammation is partly characterized by macrophage activation. Long non-coding RNAs (lncRNAs) have important roles in various biological processes. However, it is unknown how lncRNAs regulate the host response to Lm infection. To identify the role of lncRNA in Lm infection, we used in vitro and in vivo models. We found that lincRNA-Cox2 was highly expressed in Lm-infected RAW264.7 cells. LincRNA-Cox2 knockdown resulted in reduced proinflammatory cytokines, apoptosis, migration ability and enhanced phagocytosis of Lm. LincRNA-Cox2 knockdown also reduced the phosphorylation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription (STAT3) and the nuclear translocation of nuclear factor (NF)-κB P65, which are known to be involved in inflammatory responses. Experimentally inhibiting the protein and phosphorylation levels of STAT3 resulted in reduced proinflammatory cytokines and enhanced phagocytosis of Lm by the RAW264.7 cells. Our research suggests that lincRNA-Cox2 plays important roles in inflammation, the phagocytic function and cell migration ability of RAW264.7 cells by activating interleukin (IL)-6/JAK3/STAT3 signaling, and lincRNA-Cox2 also regulates NF-κB P65 nuclear translocation. Our research provides new insights into the regulatory role of lincRNA-Cox2 in Lm infection.
Collapse
Affiliation(s)
- Yurong Zhu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, China
| | - Ye Lu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, Wuxi, 214200, China
| | - Lin Yuan
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Ling
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- School of medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Bing Hu
- Department of Clinical Laboratory, Northern Jiangsu People' s Hospital, Yangzhou, 225001, China.
| |
Collapse
|
26
|
Zhao Y, Li Z, Zhu Y, Fu J, Zhao X, Zhang Y, Wang S, Wu J, Wang K, Wu R, Sui C, Shen S, Wu X, Wang H, Gao D, Chen L. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003897. [PMID: 34105295 PMCID: PMC8188185 DOI: 10.1002/advs.202003897] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/29/2020] [Indexed: 05/30/2023]
Abstract
Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single-cell RNA sequencing. HCC272 with high status of epithelia-mesenchymal transition proves broad-spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo-time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta-1 (CTNNB1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak-STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N-Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance.
Collapse
Affiliation(s)
- Yan Zhao
- School of Life Sciences and Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200438China
| | - Zhi‐Xuan Li
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Yan‐Jing Zhu
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Jing Fu
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Xiao‐Fang Zhao
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Ya‐Ni Zhang
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200438China
| | - Shan Wang
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jian‐Min Wu
- School of Life Sciences and Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200438China
| | - Kai‐Ting Wang
- School of Life Sciences and Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200438China
| | - Rui Wu
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Cheng‐Jun Sui
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Si‐Yun Shen
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Xuan Wu
- Department of Laboratory MedicineThe Tenth People's Hospital of ShanghaiTongji UniversityShanghai200072China
| | - Hong‐Yang Wang
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Dong Gao
- The State Key Laboratory of Cell BiologyShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Lei Chen
- National Center for Liver CancerShanghai200441China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
27
|
Mohan CD, Rangappa S, Nayak SC, Sethi G, Rangappa KS. Paradoxical functions of long noncoding RNAs in modulating STAT3 signaling pathway in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2021; 1876:188574. [PMID: 34062154 DOI: 10.1016/j.bbcan.2021.188574] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal and leading types of cancer threatening the globe with a high mortality rate. STAT3 is an oncogenic transcription factor that is aberrantly activated in several human malignancies including HCC. Many STAT3-driven genes control cell proliferation and survival, apoptotic resistance, cell cycle progression, metastasis, and chemotherapeutic resistance. STAT3 signaling is regulated by endogenous modulators such as protein tyrosine phosphatase (PTP), suppressor of cytokine signaling (SOCS), protein inhibitor of activated STAT (PIAS), and various long noncoding RNAs (lncRNAs). Interestingly, lncRNAs have been reported to exhibit oncogenic and tumor suppressor functions, and these effects are mediated through diverse molecular mechanisms including sponging of microRNAs (miRs), transcription activation/inhibition, and epigenetic modifications. In this article, we have discussed the possible role of STAT3 signaling in hepatocarcinogenesis and various mechanisms by which lncRNAs impart their oncogenic or tumor suppressive action by modulating the STAT3 pathway in HCC.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | | |
Collapse
|
28
|
Wu H, Liu A. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res 2021; 49:300060521996183. [PMID: 33730930 PMCID: PMC8166394 DOI: 10.1177/0300060521996183] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives Ferroptosis is caused by iron-dependent lipid peroxide accumulation, the sensitivity of which might be regulated by acyl-CoA synthetase long chain family member 4 (ACSL4). Non-small-cell lung cancer (NSCLC) can resist oxidative stress and reduce the sensitivity of tumor cells to ferroptosis by changing the expression of some proteins. Mechanisms involving ferroptosis sensitivity in NSCLC are not fully understood. Methods A dual-luciferase reporter assay was used to confirm a targeting relationship between long non-coding (lnc)RNA NEAT1 and ACSL4. Overexpression and silencing assays of NEAT1 function were used to determine its roles in cell death (by TUNEL staining) and lipid peroxidation (by malondialdehyde levels). Expression of ferroptosis-related proteins (SLCA11, GPX4, and TFR4) was evaluated by western blot in NSCLC cells treated or not with the ferroptosis inducer erastin. Results Erastin-induced cell death was positively correlated with ACSL4 level. NEAT1 regulated levels of ACSL4 and proteins related to the ferroptosis and classical apoptosis pathways. Levels of ACSL4, SLC7A11, and GPX4 were decreased more by NEAT1 silencing plus erastin than by erastin alone. Conclusion NEAT1 regulates ferroptosis and ferroptosis sensitivity, with the latter depending on ACSL4, suggesting that targeting NEAT1 or ACSL4 may be a viable therapeutic approach to the treatment of NSCLC.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, P. R. China
| | - Aiwen Liu
- Department of Respiration, the Fifth People's Hospital of Jinan, Shandong, P. R. China
| |
Collapse
|
29
|
Zan J, Zhao X, Deng X, Ding H, Wang B, Lu M, Wei Z, Huang Z, Wang S. Paraspeckle Promotes Hepatocellular Carcinoma Immune Escape by Sequestering IFNGR1 mRNA. Cell Mol Gastroenterol Hepatol 2021; 12:465-487. [PMID: 33667716 PMCID: PMC8255817 DOI: 10.1016/j.jcmgh.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies, with poor prognosis and low survival rate. Paraspeckles, which are unique subnuclear structures, are recently found to be involved in the development of various tumors, including HCC, and are related to induction in chemoresistance of HCC. This study aimed to investigate the possibility of paraspeckle in HCC cells participating in immune escape and its underlying mechanism in vitro and in vivo. METHODS Expression of NEAT1_2, the framework of paraspeckle, in HCC cells and tissues was detected by qRT-PCR and RNA-FISH. mRNAs interacted with NEAT1_2 were pull-downed and sequenced in C-terminal S1-aptamer-tagged NEAT1_2 endogenously expressed HCC cells constructed using CRISPR-CAS9 knock-in technology. The effects of paraspeckle on HCC sensitivity to T-cell-mediated cytolysis were detected by T-cell mediated tumor cell killing assay. The roles of NEAT1_2 or NONO on IFNGR1 expression and IFN-γ signaling by applying gene function loss analysis in HCC cells were detected by qRT-PCR, RNA immunoprecipitation, Western blotting, and ELISA. The role of paraspeckle during adoptive T-cell transfer therapy for HCC in vivo was performed with a subcutaneous xenograft mouse. RESULTS Paraspeckle in HCC cells is negatively related to T-cell-mediated cytolysis. Destruction of paraspeckle in HCC cells by knockdown of NEAT1_2 or NONO significantly improved the sensibility of resistant HCC cells to T-cell killing effects. Furthermore, IFNGR1 mRNA, which is sequestered by NEAT1_2 and NONO, is abundant in paraspeckle of T-cell killing-resistant HCC cells. Incapable IFN-γ-IFNGR1 signaling accounts for paraspeckle mediated-adoptive T-cell therapy resistance. Moreover, NEAT1_2 expression negatively correlates with IFNGR1 expression in clinical HCC tissues. CONCLUSIONS Paraspeckle in HCC cells helps tumor cells escape from immunosurveillance through sequestering IFNGR1 mRNA to inhibiting IFN-γ-IFNGR1 signaling, thereby avoiding T-cell killing effects. Collectively, our results hint that NEAT1_2 highly expressed HCC patient is more resistant to T-cell therapy in clinic, and NEAT1_2 may be potential target for HCC immunotherapy.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou
| | - Xuya Zhao
- Department of Interventional Radiology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang
| | - Xiya Deng
- School of Life Sciences, Westlake University, Hangzhou
| | - Hongda Ding
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bi Wang
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou
| | - Zijing Wei
- Department of interventional radiology, the Affiliated Hosptial of Guizhou Medical University, Guiyang, China
| | - Zhi Huang
- Department of interventional radiology, the Affiliated Hosptial of Guizhou Medical University, Guiyang, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Shuai Wang
- School of Life Sciences, Westlake University, Hangzhou.
| |
Collapse
|
30
|
Chen Y, Li J, Xiao JK, Xiao L, Xu BW, Li C. The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int 2021; 21:90. [PMID: 33546665 PMCID: PMC7866772 DOI: 10.1186/s12935-021-01780-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent primary bone tumours in adolescents. Accumulating evidence shows that aberrant expression of the long non-coding RNA (lncRNA) NEAT1 and microRNA-483 (miR-483) contribute to the epithelial-mesenchymal transition (EMT), invasion and metastasis of tumour cells. However, the potential regulatory effects of NEAT1 and miR-483 on the EMT of osteosarcoma remain elusive. Methods The expression of the NEAT1, miR-483, signal transducer and activator of transcription-1 (STAT1), STAT3, and EMT-associated markers was measured using qRT-PCR or western blotting. NEAT1 overexpression or knockdown was induced by lentivirus-mediated transfection. A luciferase reporter assay was employed to confirm the association between NEAT1/miR-483 and miR-483/STAT3. RNA immunoprecipitation (RIP) was also performed to verify the NEAT1 and miR-483 interaction. Wound healing and transwell assays were implemented to assess the migration and invasion of U2OS cells. Unilateral subcutaneous injection of U2OS into nude mice was performed to investigate tumour metastasis in vivo. Results The expression of miR-483 was downregulated in both osteosarcoma cell lines and osteosarcoma tissues. The overexpression of miR-483 suppressed the migration, invasion, and expression of EMT-associated proteins in U2OS cells, while simultaneous overexpression of STAT3 partially relieved this suppression. Mechanistically, miR-483 specifically targeted the 3′ untranslated region (3′UTR) of STAT3 and repressed its expression. However, NEAT1 sponged miR-438, increased STAT3 expression, and repressed STAT1 expression, subsequently increasing the EMT of osteosarcoma cells. The knockdown of NEAT1 in transplanted U2OS cells impaired the liver and lung metastases of osteosarcoma in nude mice. Moreover, NEAT1 silencing inhibited the mesenchymal- epithelial transition (MET) of osteosarcoma at metastasis sites. Conclusions The lncRNA NEAT1/miR-483/STAT3 axis plays a crucial role in regulating the metastasis of osteosarcoma and potentially represents one appealing therapeutic target for osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jia-Kun Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lei Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bin-Wu Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
31
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
32
|
Gao H, Sun Y, Chen J, Jin H, Yang W. Long non-coding RNA AFAP1-AS1 promotes cell growth and inhibits apoptosis by binding to specific proteins in germinal center B-cell-like diffuse large B-cell lymphoma. Am J Transl Res 2020; 12:8225-8246. [PMID: 33437395 PMCID: PMC7791486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common subtype of lymphoma in adults. Previously, we found that actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) is among the most overexpressed lncRNAs in GCB-DLBCL. In this study, we explored its biological functions and molecular mechanisms in the progression of GCB-DLBCL. We discovered, via bioinformatics, that patients with a high expression of AFAP1-AS1 had significantly poor disease-free survival (DFS) and overall survival (OS). Subsequent assays demonstrated that AFAP1-AS1 knockdown inhibited cell proliferation and prompted arrest of the G0/G1 cell cycle and apoptosis in GCB-DLBCL cell lines. Proteomics analysis indicated that hundreds of proteins were deregulated after AFAP1-AS1 knockdown and KEGG pathway analysis revealed that the deregulated proteins belonged to multiple signaling pathways, such as "B-cell receptor signaling pathway". Moreover, in the comprehensive identification of proteins that bind to RNA (by ChIRP-MS), several proteins associated with RNA splicing were identified (e.g., SFPQ, NONO, SRSF2, SRSF6, and KHSRP) that could specifically bind to AFAP1-AS1, which was confirmed by parallel reaction monitoring assay (PRM). Conclusively, we demonstrated that AFAP1-AS1 is a possible prognostic marker of poor outcomes in GCB-DLBCL patients and could modulate gene expression through connecting to specific proteins to practice its oncogenic role in GCB-DLBCL.
Collapse
Affiliation(s)
- Hongyu Gao
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Ying Sun
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Jiawen Chen
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Hong Jin
- Department of Pathogen Biology, China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| |
Collapse
|
33
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
34
|
Jiang S, Fagman JB, Chen C, Alberti S, Liu B. Protein phase separation and its role in tumorigenesis. eLife 2020; 9:60264. [PMID: 33138914 PMCID: PMC7609067 DOI: 10.7554/elife.60264] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, but the precise pathological mechanisms underlying tumorigenesis often remain to be elucidated. In recent years, condensates formed by phase separation have emerged as a new principle governing the organization and functional regulation of cells. Increasing evidence links cancer-related mutations to aberrantly altered condensate assembly, suggesting that condensates play a key role in tumorigenesis. In this review, we summarize and discuss the latest progress on the formation, regulation, and function of condensates. Special emphasis is given to emerging evidence regarding the link between condensates and the initiation and progression of cancers.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changyan Chen
- Department of Oncology at the Department of Clinical Sciences, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
LncRNA LL22NC03-N14H11.1 promoted hepatocellular carcinoma progression through activating MAPK pathway to induce mitochondrial fission. Cell Death Dis 2020; 11:832. [PMID: 33028809 PMCID: PMC7542152 DOI: 10.1038/s41419-020-2584-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Involvement of long non-coding RNAs (lncRNAs) in hepatocarcinogenesis has been largely documented. Mitochondrial dynamics is identified to impact survival and metastasis in tumors including hepatocellular carcinoma (HCC), but the underlying mechanism remains poorly understood. This study planned to explore the regulation of lncRNA LL22NC03-N14H11.1 on HCC progression and mitochondrial fission. Dysregulated lncRNAs in HCC are identified through circlncRNAnet and GEPIA bioinformatics tools. Biological function of LL22NC03-N14H11.1 in HCC was detected by CCK-8 assay, flow cytometry analysis, transwell invasion, and wound healing assays. Molecular interactions were determined by RNA immunoprecipitation, RNA pull-down, and co-immunoprecipitation assays. Results showed that LL22NC03-N14H11.1 was upregulated in HCC tissues and cells. Functionally, LL22NC03-N14H11.1 contributed to cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in HCC. Moreover, LL22NC03-N14H11.1 facilitated mitochondrial fission in HCC cells. Mechanistically, LL22NC03-N14H11.1 recruited Myb proto-oncogene (c-Myb) to repress the transcription of leucine zipper-like transcription regulator 1 (LZTR1), so as to inhibit LZTR1-mediated ubiquitination of H-RAS (G12V), leading to the activation of mitogen-activated protein kinase (MAPK) signaling and induction of p-DRP1 (Serine 616). In conclusion, this study firstly revealed that lncRNA LL22NC03-N14H11.1 promoted HCC progression through activating H-RAS/MAPK pathway to induce mitochondrial fission, indicating LL22NC03-N14H11.1 as a novel potential biomarker for HCC treatment.
Collapse
|
36
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
37
|
Kang JH, Li MJ, Luan PP, Jiang DK, Chen YW, Xu X, Yu Q, Xu YW, Su Q, Peng WH, Jian WX. NLRC3 silencing accelerates the invasion of hepatocellular carcinoma cell via IL-6/JAK2/STAT3 pathway activation. Cell Biol Int 2020; 44:2053-2064. [PMID: 32584509 DOI: 10.1002/cbin.11414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Nucleotide-binding domain, leucine-rich repeat family with a caspase activation and recruitment domain 3 (NLRC3) participates in both immunity and cancer. The aim of this study was to determine the role of NLRC3 in human hepatocellular carcinoma (HCC) and the underlying mechanisms. We collected human liver tissues from nonalcoholic steatohepatitis (NASH), HCC, and adjacent normal tissues to characterize the pattern of NLRC3 expression by real-time quantitative polymerase chain reaction and immunohistochemistry. Then, we used the HCC cell line, HuH-7, transfected with small interfering RNA to silence the NLRC3 expression. 5-Ethynyl-2'-deoxyuridine assay, scratch assay, and transwell invasion assay were used for assessing proliferation, migration, and invasion, respectively. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were conducted to assess cell apoptosis. The expression of NLRC3 was reduced in human HCC tissues, compared with normal liver and nonalcoholic steatohepatitis tissues. After knocking down of NLRC3, the proliferation, migration, and invasion were increased in HuH-7 cells. And flow cytometry and TUNEL assay showed that HuH-7 cell apoptosis was suppressed after NLRC3 knockdown. As for the underlying mechanisms, knockdown of NLRC3 in HuH-7 cells was associated with the activation of Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway under interleukin-6 (IL-6) stimulation. NLRC3 expression was downregulated in human HCC tissues. NLRC3 silencing in HuH-7 cells can promote the proliferation, migration, and invasion of hepatocellular carcinoma cells. JAK2/STAT3 pathway activation induced by IL-6 may be the underlying mechanism for HCC when NLRC3 expression is silenced. And the invasion of HuH-7 cells was partially suppressed by the STAT3 specific inhibitor (cryptotanshinone). Therefore, NLRC3 may play a significant role in HCC and might be a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jian-Hua Kang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Jie Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei-Pei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - De-Ke Jiang
- Department of Infectious Diseases and Hepatology Unit, State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Hui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Xia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Ding H, Liu J, Wang C, Su Y. NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA. Cancer Cell Int 2020; 20:425. [PMID: 32884448 PMCID: PMC7461318 DOI: 10.1186/s12935-020-01520-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dysregulation of fatty acid (FA) metabolism is involved in hepatocellular carcinoma (HCC) development. Non-POU domain-containing octamer binding protein (NONO), known as the component of nuclear paraspeckles, has recently been found to promote HCC progression. In this study, we investigated the functions of NONO in regulating de novo FA synthesis and its underling mechanism during HCC development. Methods The roles of NONO in HCC development by applying gene function loss analysis in HCC cells were detected by quantitative real-time polymerase chain reaction, cell proliferation, and cell invasion assays. The underlying mechanism of NONO in HCC development was examined by western blotting, subcellular fractionation, RNA-binding protein immunoprecipitation-sequencing, chromatin immunoprecipitation, co-immunoprecipitation and mass spectrometry. The effect of NONO on tumorigenesis in vivo was performed with a subcutaneous xenograft mouse model of HCC. Results NONO promotes HCC progression by interacting with and increasing ATP-citrate lyase (ACLY) mRNA to enhance FA biosynthesis. Furthermore, NONO promotes ACLY expression through enhancing nuclear ACLY mRNA stability in Diethylnitrosamine-stimulated HCC cells, not related to nuclear paraspeckles. Moreover, we find that NONO/SFPQ (Splicing factor proline and glutamine rich) heterodimer is essential for NONO interacting with ACLY mRNA in DEN stimulated HCC cells. In addition, NONO, Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) and ACLY expressions contribute HCC development in mice and are related to poor survival. Conclusion NONO promotes HCC progression by enhancing FA biosynthesis through interacting with ACLY mRNA and provide a novel potential target for HCC therapy.
Collapse
Affiliation(s)
- Hongda Ding
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Junpeng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Caibin Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| |
Collapse
|
39
|
Zang J, Zheng MH, Cao XL, Zhang YZ, Zhang YF, Gao XY, Cao Y, Shi M, Han H, Liang L. Adenovirus infection promotes the formation of glioma stem cells from glioblastoma cells through the TLR9/NEAT1/STAT3 pathway. Cell Commun Signal 2020; 18:135. [PMID: 32843056 PMCID: PMC7448505 DOI: 10.1186/s12964-020-00598-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are glioma cells with stemness and are responsible for a variety of malignant behaviors of glioma. Evidence has shown that signals from tumor microenvironment (TME) enhance stemness of glioma cells. However, identification of the signaling molecules and underlying mechanisms has not been completely elucidated. METHODS Human samples and glioma cell lines were cultured in vitro to determine the effects of adenovirus (ADV) infection by sphere formation, RT-qPCR, western blotting, FACS and immunofluorescence. For in vivo analysis, mouse intracranial tumor model was applied. Bioinformatics analysis, gene knockdown by siRNA, RT-qPCR and western blotting were applied for further mechanistic studies. RESULTS Infection of patient-derived glioma cells with ADV increases the formation of tumor spheres. ADV infection upregulated stem cell markers and in turn promoted the capacities of self-renewal and multi-lineage differentiation of the infected tumor spheres. These ADV infected tumor spheres had stronger potential to form xenograft tumors in immune-compromised mice. GSCs formation could be promoted by ADV infection via TLR9, because TLR9 was upregulated after ADV infection, and knockdown of TLR9 reduced ADV-induced GSCs. Consistently, MYD88, as well as total STAT3 and phosphorylated (p-)STAT3, were also upregulated in ADV-induced GSCs. Knockdown of MYD88 or pharmaceutical inhibition of STAT3 attenuated stemness of ADV-induced GSCs. Moreover, we found that ADV infection upregulated lncRNA NEAT1. Knockdown of NEAT1 impaired stemness of ADV-induced GSCs. Lastly, HMGB1, a damage associated molecular pattern (DAMP) that triggers TLR signaling, also upregulated stemness markers in glioma cells. CONCLUSION ADV, which has been developed as vectors for gene therapy and oncolytic virus, promotes the formation of GSCs via TLR9/NEAT1/STAT3 signaling. Video abstract.
Collapse
Affiliation(s)
- Jian Zang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China.,Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China
| | - Min-Hua Zheng
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Zhe Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China
| | - Yu-Fei Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China
| | - Xiang-Yu Gao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China
| | - Yuan Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China.
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi'an, 710032, China.
| |
Collapse
|
40
|
Deng Y, Luo H, Yang Z, Liu L. LncAS2Cancer: a comprehensive database for alternative splicing of lncRNAs across human cancers. Brief Bioinform 2020; 22:5895039. [PMID: 32820322 DOI: 10.1093/bib/bbaa179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating studies demonstrated that the roles of lncRNAs for tumorigenesis were isoform-dependent and their aberrant splicing patterns in cancers contributed to function specificity. However, there is no existing database focusing on cancer-related alternative splicing of lncRNAs. Here, we developed a comprehensive database called LncAS2Cancer, which collected 5335 bulk RNA sequencing and 1826 single-cell RNA sequencing samples, covering over 30 cancer types. By applying six state-of-the-art splicing algorithms, 50 859 alternative splicing events for 8 splicing types were identified and deposited in the database. In addition, the database contained the following information: (i) splicing patterns of lncRNAs under seven different conditions, such as gene interference, which facilitated to infer potential regulators; (ii) annotation information derived from eight sources and manual curation, to understand the functional impact of affected sequences; (iii) survival analysis to explore potential biomarkers; as well as (iv) a suite of tools to browse, search, visualize and download interesting information. LncAS2Cancer could not only confirm the known cancer-associated lncRNA isoforms but also indicate novel ones. Using the data deposited in LncAS2Cancer, we compared gene model and transcript overlap between lncRNAs and protein-coding genes and discusses how these factors, along with sequencing depth, affected the interpretation of splicing signals. Based on recurrent signals and potential confounders, we proposed a reliable score to prioritize splicing events for further elucidation. Together, with the broad collection of lncRNA splicing patterns and annotation, LncAS2Cancer will provide important new insights into the diverse functional roles of lncRNA isoforms in human cancers. LncAS2Cancer is freely available at https://lncrna2as.cd120.com/.
Collapse
Affiliation(s)
- Yulan Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Hao Luo
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Zhenyu Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| |
Collapse
|
41
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
42
|
Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers (Basel) 2020; 12:cancers12051245. [PMID: 32429086 PMCID: PMC7281179 DOI: 10.3390/cancers12051245] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term "lncRNA or long non-coding RNA" was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.
Collapse
|
43
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
45
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 568] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
46
|
Shu D, Xu Y, Chen W. Knockdown of lncRNA BLACAT1 reverses the resistance of afatinib to non-small cell lung cancer via modulating STAT3 signalling. J Drug Target 2019; 28:300-306. [PMID: 31359792 DOI: 10.1080/1061186x.2019.1650368] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Degui Shu
- Department of Respiratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yufen Xu
- Department of Oncology, the First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, PR China
| | - Wenyu Chen
- Department of Respiratory, the First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, PR China
| |
Collapse
|
47
|
Lin X, Xiaoqin H, Jiayu C, Li F, Yue L, Ximing X. Long non-coding RNA miR143HG predicts good prognosis and inhibits tumor multiplication and metastasis by suppressing mitogen-activated protein kinase and Wnt signaling pathways in hepatocellular carcinoma. Hepatol Res 2019; 49:902-918. [PMID: 30945380 DOI: 10.1111/hepr.13344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
AIM The expression of microRNA143HG (miR143HG) was significantly downregulated in hepatocellular carcinoma (HCC) tissues by bioinformatics analysis. This study aimed to determine the role of miR143HG in HCC cell proliferation and metastasis. METHODS Fifty patients with HCC were divided into two groups based on median miR143HG expression levels. The correlation between miR143HG expression and prognosis, and the correlations between miR143HG expression and the patients' clinicopathological characteristics were evaluated based on the two groups. Gain-of-function and loss-of-function measurements of miR143HG were carried out to verify the biological function of miR143HG by Cell Counting Kit-8, EdU, Transwell, and western blotting assays and flow cytometric analysis. The underlying mechanism was explored by quantitative real-time polymerase chain reaction of miRNA (miR-155-5p and miR-26b-5p), luciferase reporter assay, western blotting of Wnt signaling pathway-related proteins (β-catenin, adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), ZEB1, and E-cadherin), mitogen-activated protein kinase (MAPK) signaling pathway-related proteins (extracellular signal-regulated kinase [ERK]1/2, p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, P38, and p-P38), and immunofluorescence staining of β-catenin. RESULTS miR143HG expression was markedly downregulated in HCC tissues and cells. Its expression was associated with the presence or absence of portal vein tumor thrombus, hepatitis B virus infection, relapse and metastasis, and Barcelona Clinic Liver Cancer stage. Additionally, miR143HG expression predicted a good prognosis and acted as an independent prognostic factor in HCC for overall survival. Overexpression of miR143HG suppressed HCC cell proliferation and metastasis, and induced cell cycle arrest and apoptosis. Consistently, the depletion of miR143HG resulted in the opposite phenomenon of the aforementioned results. miR143HG inhibits miR-155 expression; miR-155 directly targets APC, which is a negative regulator of the Wnt/β-catenin pathway, so miR143HG can act on the Wnt pathway. miR143HG was further found to reduce the expression of β-catenin and block the nuclear accumulation of β-catenin, ultimately inhibiting the activation of the Wnt pathway. It inhibits the expression of Wnt downstream target gene ZEB1, and then E-cadherin expression is increased and cell motility is inhibited. Furthermore, miR143HG exerts its antiproliferative function by influencing the MAPK signaling pathway and then inducing G2 /M arrest in cells. CONCLUSION This study showed that miR143HG plays critical roles in the development and progression of HCC by suppressing the MAPK and Wnt signaling pathways.
Collapse
Affiliation(s)
- Xiong Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - He Xiaoqin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Jiayu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Yue
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Ximing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Pang Y, Wu J, Li X, Wang C, Wang M, Liu J, Yang G. NEAT1/miR‑124/STAT3 feedback loop promotes breast cancer progression. Int J Oncol 2019; 55:745-754. [PMID: 31322202 DOI: 10.3892/ijo.2019.4841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/25/2019] [Indexed: 11/05/2022] Open
Abstract
The long non‑coding RNA nuclear enriched abundant transcript 1 (NEAT1) has important roles in the regulation of multiple cell functions, such as proliferation, apoptosis and migration. However, the mechanism by which NEAT1 regulates breast cancer progression is not well elucidated. In the present study, NEAT1 and microRNA‑124 (miR‑124) levels were detected by reverse transcription‑quantitative PCR in breast cancer tissues and cell lines. STAT3 protein levels were detected by western blot analysis. Cell proliferation and cell cycle distribution were determined using MTT and colony formation assays, and flow cytometry, respectively. The results demonstrated that NEAT1 and STAT3 expression levels were increased in breast cancer tissues compared with normal breast tissues, whereas miR‑124 expression was significantly decreased. Functional analyses revealed that NEAT1 promoted cell proliferation and cell cycle progression in breast cancer cells. Additionally, NEAT1 and STAT3 expression levels were negatively correlated with miR‑124 levels in breast cancer tissues. A direct interaction between miR‑124, and NEAT1 and STAT3, was predicted by bioinformatics analysis and confirmed using a luciferase activity assay. NEAT1 overexpression markedly increased STAT3 protein expression levels, and this effect was reversed by miR‑124 overexpression in breast cancer cells. Furthermore, miR‑124 overexpression partially attenuated the effects of NEAT1 on breast cancer cell proliferation and cell cycle progression. The inhibitory effects of miR‑124 overexpression on the proliferation rate and cell cycle progression were abolished by STAT3 overexpression. In turn, STAT3 silencing inhibited NEAT1 transcription in breast cancer cells. In summary, the present findings revealed that NEAT1 and STAT3 formed a feedback loop via sponging miR‑124 to promote breast cancer progression.
Collapse
Affiliation(s)
- Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Cuicui Wang
- Department of Hematology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Meng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
Ghafouri-Fard S, Taheri M. Nuclear Enriched Abundant Transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 2019; 111:51-59. [DOI: 10.1016/j.biopha.2018.12.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
|