1
|
Gao F, Xu L, Wang Q, Wang G, Liu M, Li L, He Q, Zhang X, Wang Y, Mao Q, Liang Z, Wang T, Ma X, Wu X. Four-Color Pseudovirus-Based Neutralization Assay: A Rapid Method for Evaluating Neutralizing Antibodies Against Quadrivalent Hand, Foot, and Mouth Disease Vaccine. Vaccines (Basel) 2025; 13:320. [PMID: 40266243 PMCID: PMC11946612 DOI: 10.3390/vaccines13030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Enterovirus 71 (EV71) and coxsackieviruses A16 (CA16), A10 (CA10), and A6 (CA6) are the primary pathogens that cause hand, foot, and mouth disease (HFMD). Currently, many manufacturers are developing bivalent, trivalent, and tetravalent vaccines that target these antigens. Cell-based neutralization assay (CBNA), the gold standard for detecting neutralizing antibodies (NtAbs), which are used as indicators of HFMD vaccine efficacy, has several limitations. We aimed to develop a novel assay for detecting NtAbs against a quadrivalent HFMD vaccine. METHODS We developed a four-color pseudovirus-based neutralization assay (PBNA), utilizing fluorescent reporter genes, to rapidly evaluate neutralizing antibodies against EV71, CA16, CA10, and CA6 in multivalent vaccines and compared it with CBNA. RESULTS PBNA could rapidly and simultaneously detect NtAbs against the four serotypes and required lesser amounts of sera compared to CBNA. A good consistency in determining NtAb titers was observed for PBNA and CBNA. CONCLUSIONS PBNA provides a robust tool for evaluating the efficacy of multivalent HFMD vaccines and conducting seroepidemiological studies.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Lingjie Xu
- Vazyme Biotech Co., Ltd., Nanjing 210089, China; (L.X.); (G.W.)
| | - Qian Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Gang Wang
- Vazyme Biotech Co., Ltd., Nanjing 210089, China; (L.X.); (G.W.)
| | - Mingchen Liu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Lu Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Qian He
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Xuanxuan Zhang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Ying Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Qunying Mao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Zhenglun Liang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
| | - Xiao Ma
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| | - Xing Wu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (Q.W.); (M.L.); (L.L.); (X.Z.); (Y.W.); (Q.M.); (Z.L.); (X.M.)
| |
Collapse
|
2
|
Liu Z, Li X, Li X, Yan X, Tian Y, Zhao Y, Liu K, Hao P, Zhang S, Zhang C. Completely conserved VP2 residue K140 of KREMEN1-dependent enteroviruses is critical for virus-receptor interactions and viral infection. mBio 2025; 16:e0304024. [PMID: 39817751 PMCID: PMC11796367 DOI: 10.1128/mbio.03040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
The KREMEN1 (KRM1) protein is a cellular receptor for multiple enteroviruses that cause hand, foot, and mouth disease (HFMD), including coxsackievirus CVA2, CVA3, CVA4, CVA5, CVA6, CVA10, and CVA12. The molecular basis for the broad recognition of these viruses by the KRM1 receptor remains unclear. Here, we report the indispensable role of the completely conserved VP2 capsid protein residue K140 (designated K2140) in mediating receptor recognition and infection by CVA10 and other KRM1-dependent enteroviruses. Residue K2140 not only facilitates receptor recognition, cell attachment, and infection of CVA10 but also contributes to CVA10 pathogenicity in vivo. Notably, residue K2140 is completely conserved in all strains of the KRM1-dependent enteroviruses. Mutational analysis confirms the importance of K2140 for infection by CVA2-CVA6, and CVA12. Moreover, CVA8, an enterovirus for which the cellular receptor has not yet been identified, also possesses the conserved K2140 residue. We experimentally demonstrate that CVA8 utilizes KRM1 as its receptor, with K2140 being essential for viral infection. Additionally, residue D90 of KRM1 engages with residue K2140 and plays a crucial role in KRM1-mediated enterovirus infections. Collectively, our findings underscore the significance of the absolutely conserved K2140 residue in receptor interactions and infection of all KRM1-binding enteroviruses, providing novel insights into the molecular basis of enterovirus infection and informing the development of broad-spectrum therapies against HFMD. IMPORTANCE Hand, foot, and mouth disease (HFMD) annually affects millions of children worldwide. HFMD is caused by various enteroviruses, such as coxsackieviruses CVA6, CVA16, CVA10, and enterovirus 71 (EV-A71). Licensed inactivated EV-A71 vaccines do not provide cross-protection against other enteroviruses. There are no drugs specifically for HFMD. KREMEN1 (KRM1) serves as the cellular receptor for many HFMD-related enteroviruses, including CVA2-CVA6, CVA10, and CVA12. However, the molecular basis for broad recognition of these enteroviruses by the KRM1 receptor remains elusive. Here, we report that VP2 residue K140 (K2140) is completely conserved among all KRM1-dependent enteroviruses and is essential for virus-receptor binding and viral infection by interacting with residue D90 of KRM1. Overall, our findings provide a deeper understanding of the molecular basis of KRM1-dependent enterovirus infection in vitro and in vivo and may contribute to the development of broad-spectrum anti-enterovirus vaccines and treatments.
Collapse
Affiliation(s)
- Zeyu Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiaohong Li
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingyu Yan
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuan Tian
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Zhao
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Pei Hao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuye Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Gao F, Liu P, Huo Y, Bian L, Wu X, Liu M, Wang Q, He Q, Dong F, Wang Z, Xie Z, Zhang Z, Gu M, Xu Y, Li Y, Zhu R, Cheng T, Wang T, Mao Q, Liang Z. A screening study on the detection strain of Coxsackievirus A6: the key to evaluating neutralizing antibodies in vaccines. Emerg Microbes Infect 2024; 13:2322671. [PMID: 38390796 PMCID: PMC10906128 DOI: 10.1080/22221751.2024.2322671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Pei Liu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yaqian Huo
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- Department of Research & Development, Shanghai Institute of Biological Products Co., Ltd, Shanghai, People’s Republic of China
| | - Lianlian Bian
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Fangyu Dong
- Department of Research & Development, Taibang Biologic Group, Beijing, People’s Republic of China
| | - Zejun Wang
- Department of R&D, Wuhan Institute of Biological Products Co., LTD, Wuhan, People’s Republic of China
| | - Zhongping Xie
- Department of Production Management, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
| | - Zhongyang Zhang
- The Second Research Laboratory, National Vaccine and Serum Institute, Beijing, People’s Republic of China
| | - Meirong Gu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yingzhi Xu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yajing Li
- R&D Center, Sinovac Biotech Co., LTD, Beijing, People’s Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Chen YA, Shen YS, Fang CY, Chan TT, Wu SR, Wang JR, Wu SC, Liu CC. Enhanced production of recombinant coxsackievirus A16 using a serum-free HEK293A suspension culture system for bivalent enterovirus vaccine development. Vaccine X 2024; 20:100559. [PMID: 39364390 PMCID: PMC11447303 DOI: 10.1016/j.jvacx.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Coxsackievirus A16 (CVA16) is one of the primary pathogens that causes hand, foot, and mouth disease (HFMD) in young children. In previous studies, CVA16 vaccine development has encountered several challenges, such as inefficient replication of the CVA16 virus in present culture systems, the induction of only mild neutralizing antibody titers, and neutralizing antibodies induced by certain vaccine candidates that are unable to protect against CVA16 viral challenge. In this study, we constructed a DNA-launched CVA16 infectious clone (CVA16ic) based on the genomic sequence of the CVA16 N5079 strain to minimize interference from viral quasispecies. The biochemical properties of this CVA16ic strain were similar to those of its parental strain. Serum-free HEK293A suspension cells, which produced higher virus titers than Vero cells, were demonstrated to improve CVA16 production yields. In addition, our study showed that inactivated EV-A71 antigens could enhance the immunogenicity of inactivated CVA16 mature/full particles (F-particles), suggesting that a bivalent CVA16 and EV-A71 vaccine may be an effective strategy for CVA16 vaccine development. These findings are expected to provide novel strategies and accelerate the development of bivalent HFMD vaccines.
Collapse
Affiliation(s)
- Yi-An Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Sheng Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ting Chan
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
5
|
Huang CY, Su SB, Chen KT. A review of enterovirus-associated hand-foot and mouth disease: preventive strategies and the need for a global enterovirus surveillance network. Pathog Glob Health 2024; 118:538-548. [PMID: 39229797 PMCID: PMC11892072 DOI: 10.1080/20477724.2024.2400424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Enterovirus (EV)-associated hand, foot, and mouth disease (HFMD) is a significant public health issue worldwide, commonly occurring in children five years of age or younger. The leading causes of most HFMD cases are EVs, which are members of the Picornaviridae family. The typical clinical manifestations of EV-associated HFMD are febrile presentations with mucosal herpangina, oral ulcerations, and skin rashes on the hands and feet. The majority of HFMD cases resolve without consequence; however, a subset progresses to severe neurological and cardiopulmonary complications, which can be fatal. In the past two decades, EV-associated HFMD has received significant attention. In this review, we organize published papers and provide updates on epidemiology, pathogenesis, surveillance, and vaccine developments for EV-associated HFMD. The impact of EV-associated HFMD is increasing globally. Developing efficacious vaccines has become a priority for preventing EV infections without adequate treatment. Simultaneously, emerging EV infections (including EV-D68, EV-A71, Coxsackieviruses, and echoviruses) are increasing, highlighting the need to create a vigilant surveillance system for EV infections worldwide.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Anjum R, Haque MA, Akter R, Islam MR. Beyond polio: Exploring non-polio enteroviruses, global health preparedness, and the "Disease X" paradigm. Health Sci Rep 2024; 7:e2147. [PMID: 38817886 PMCID: PMC11136642 DOI: 10.1002/hsr2.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
Background and Aims Disease X represents the possibility that an unidentified infection may spread globally and start a pandemic. This study explored various aspects of emerging non-polio enteroviruses (NPEVs) as a possible source of "Disease X," an enigmatic agent declared by the World Health Organization, and discussed the potential impact of NPEVs on global public health. Methods In this perspective article, we collected information from publicly available sources such as Google Scholar, PubMed, and Scopus. We used NPEVs, viral diseases, pandemics, and zoonotic diseases as keywords. We extracted information from the most relevant articles. Results Notable outbreaks caused by NPEVs include enterovirus D68 (EV-D68) and enterovirus A71 (EV-A71), among many others. With a focus on therapeutic and preventative components, alternate modes of therapy, and the development of broad-spectrum antivirals, this analysis looks at the origin, epidemiology, genetic alterations, transmission dynamics, and disease pathophysiology of NPEVs. The information presented in the review indicates the current risk assessment of NPEVs, taking into account the following factors: the need for research and therapeutic interventions, the diversity of clinical manifestations, the impact of genetic variability on virulence, the persistence of emergence despite vaccination efforts, recurrent outbreaks, and the global impact of these viruses. Conclusion There is a possibility that NPEVs could trigger global pandemics based on their zoonotic origins and urges for complete readiness, continuous research, cooperation, and a comprehensive strategy to combat emerging infectious diseases in a constantly changing global environment. It is peak time to acknowledge how important it is to abide by safety and health laws to prevent these illnesses.
Collapse
Affiliation(s)
- Ramisa Anjum
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | | | |
Collapse
|
7
|
Diwate S, Yadav PD, Yadav J, Yadav AK. Enterovirus Coxsackie A16 Detected in Hand, Foot, and Mouth Disease Outbreak Among Children in Western Uttar Pradesh, India, May to June 2022. Asia Pac J Public Health 2024; 36:143-145. [PMID: 37960869 DOI: 10.1177/10105395231211974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
| | | | - Jyoti Yadav
- Medical Officer, ART Plus centre, AFMC, Pune, India
| | - Arun Kumar Yadav
- Department of Community Medicine, Armed Forces Medical College, Pune, India
| |
Collapse
|
8
|
Pattassery SA, Kutteyil SS, Lavania M, Vilasagaram S, Chavan NA, Shinde PA, Kaulgud RK, Munivenkatappa A. Molecular epidemiology of hand, foot, and mouth disease in Karnataka, India in 2022. Indian J Med Microbiol 2023; 46:100429. [PMID: 37945122 DOI: 10.1016/j.ijmmb.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is an enteroviral disease that occurs as outbreaks and sporadic cases in India. In this study, we investigated and characterized the aetiology of HFMD cases that occurred in Karnataka, South India from April to October 2022. METHODS Throat swabs, vesicular swabs, urine, and blood samples from suspected cases were analysed by reverse transcription polymerase chain reaction (RT-PCR) for the detection of enteroviruses. Molecular typing of the enterovirus-positive samples was carried out by amplifying the partial virion protein 1(VP1) gene sequence, followed by sequencing and phylogenetic analysis. RESULTS Out of the 187 samples received from 82 cases, 93 (50%) tested positive (55/82 cases, 67%) for enteroviruses, with the majority of the HFMD cases reported in paediatric population of less than 5 years (36/55, 65.4%), while 3 cases (3/55, 5.4%) were adults. Out of the 55 enterovirus-positive cases, 31 showed partial VP1 region amplification and 19 of these cases were typed as coxsackievirus A16 (CV-A16) (13/19, 68.4%) and CV-A6 (6/19, 31.6%). The CV-A16 strains identified belonged to subclade B1c while two CV-A6 strains belonged to subclade E2. On molecular testing for other viruses causing fever-rash symptoms, 4/27 (15%) enterovirus-negative cases were detected as herpes simplex virus (1 case) and varicella zoster virus (3 cases) positive. CONCLUSION The main causative agent of HFMD in Karnataka in 2022 was CV-A16, followed by CV-A6. Apart from the common paediatric HFMD cases, adult cases were also reported during this period. Further studies involving laboratory and clinical investigations are essential for monitoring and managing HFMD in the community.
Collapse
Affiliation(s)
| | - Susha Subash Kutteyil
- ICMR-National Institute of Virology, Bangalore Unit, Bengaluru 560011, Karnataka, India.
| | - Mallika Lavania
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India.
| | - Srinivas Vilasagaram
- ICMR-National Institute of Virology, Bangalore Unit, Bengaluru 560011, Karnataka, India.
| | | | | | - Ramesh K Kaulgud
- Directorate of Health and Family Welfare Services, Arogyasoudha, Bengaluru 560023, Karnataka, India.
| | - Ashok Munivenkatappa
- ICMR-National Institute of Virology, Bangalore Unit, Bengaluru 560011, Karnataka, India.
| |
Collapse
|
9
|
Hu Y, Liu C, Yang J, Zhong M, Qian B, Chen J, Zhang Y, Song J. HMGB1 is involved in viral replication and the inflammatory response in coxsackievirus A16-infected 16HBE cells via proteomic analysis and identification. Virol J 2023; 20:178. [PMID: 37559147 PMCID: PMC10410909 DOI: 10.1186/s12985-023-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Coxsackievirus A16 (CV-A16) is still an important pathogen that causes hand, foot and mouth disease (HFMD) in young children and infants worldwide. Previous studies indicated that CV-A16 infection is usually mild or self-limiting, but it was also found that CV-A16 infection can trigger severe neurological complications and even death. However, there are currently no vaccines or antiviral compounds available to either prevent or treat CV-A16 infection. Therefore, investigation of the virus‒host interaction and identification of host proteins that play a crucial regulatory role in the pathogenesis of CV-A16 infection may provide a novel strategy to develop antiviral drugs. Here, to increase our understanding of the interaction of CV-A16 with the host cell, we analyzed changes in the proteome of 16HBE cells in response to CV-A16 using tandem mass tag (TMT) in combination with LC‒MS/MS. There were 6615 proteins quantified, and 172 proteins showed a significant alteration during CV-A16 infection. These differentially regulated proteins were involved in fundamental biological processes and signaling pathways, including metabolic processes, cytokine‒cytokine receptor interactions, B-cell receptor signaling pathways, and neuroactive ligand‒receptor interactions. Further bioinformatics analysis revealed the characteristics of the protein domains and subcellular localization of these differentially expressed proteins. Then, to validate the proteomics data, 3 randomly selected proteins exhibited consistent changes in protein expression with the TMT results using Western blotting and immunofluorescence methods. Finally, among these differentially regulated proteins, we primarily focused on HMGB1 based on its potential effects on viral replication and virus infection-induced inflammatory responses. It was demonstrated that overexpression of HMGB1 could decrease viral replication and upregulate the release of inflammatory cytokines, but deletion of HMGB1 increased viral replication and downregulated the release of inflammatory cytokines. In conclusion, the results from this study have helped further elucidate the potential molecular pathogenesis of CV-A16 based on numerous protein changes and the functions of HMGB1 Found to be involved in the processes of viral replication and inflammatory response, which may facilitate the development of new antiviral therapies as well as innovative diagnostic methods.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinghui Yang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Baojiang Qian
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
10
|
Song J, Zhao G, Li H, Yang Y, Yu Y, Hu Y, Li Y, Li J, Hu Y. Tandem mass tag (TMT) labeling-based quantitative proteomic analysis reveals the cellular protein characteristics of 16HBE cells infected with coxsackievirus A10 and the potential effect of HMGB1 on viral replication. Arch Virol 2023; 168:217. [PMID: 37524962 DOI: 10.1007/s00705-023-05821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023]
Abstract
Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Guifang Zhao
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Yang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yue Yu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yadong Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
11
|
Yajie H, Shenglan W, Wei Z, Rufang L, Tingting Y, Yunhui Z, Jie S. Global quantitative proteomic analysis profiles of host protein expression in response to Enterovirus A71 infection in bronchial epithelial cells based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS uncovers the key role of proteasome in virus replication. Virus Res 2023; 330:199118. [PMID: 37072100 DOI: 10.1016/j.virusres.2023.199118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic human pathogen which mainly caused hand, foot and mouth disease (HFMD) mostly in children under 5 years-old. Generally, EV-A71-associated HFMD is a relatively self-limiting febrile disease, but there will still be a small percentage of patients with rapid disease progression and severe neurological complications. To date, the underlying mechanism of EV-A71 inducing pathological injury of central nervous system (CNS) remains largely unclear. It has been investigated and discussed the changes of mRNA, miRNA and circRNA expression profile during infection by EV-A71 in our previous studies. However, these studies were only analyzed at the RNA level, not at the protein level. It's the protein levels that ultimately do the work in the body. Here, to address this, we performed a tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS approach to quantitatively identify cellular proteome changes at 24 h post-infection (hpi) in EV-A71-infected 16HBE cells. In total, 6615 proteins were identified by using TMT coupled with LC-MS/MS in this study. In the EV-A71- and mock-infected groups, 210 differentially expressed proteins were found, including 86 upregulated and 124 downregulated proteins, at 24 hpi. To ensure the validity and reliability of the proteomics data, 3 randomly selected proteins were verified by Western blot and Immunofluorescence analysis, and the results were consistent with the TMT results. Subsequently, functional enrichment analysis indicated that the up-regulated and down-regulated proteins were individually involved in various biological processes and signaling pathways, including metabolic process, AMPK signaling pathway, Neurotrophin signaling pathway, Viral myocarditis, GABAergic synapse, and so on. Moreover, among these enriched functional analysis, the "Proteasome" pathway was up-regulated, which has caught our attention. Inhibition of proteasome was found to obviously suppress the EV-A71 replication. Finally, further in-depth analysis revealed that these differentially expressed proteins contained distinct domains and localized in different subcellular components. Taken together, our data provided a comprehensive view of host cell response to EV-A71 and identified host proteins may lead to better understanding of the pathogenic mechanisms and host responses to EV-A71 infection, and also to the identification of new therapeutic targets for EV-A71 infection.
Collapse
Affiliation(s)
- Hu Yajie
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.; Yunnan Provincial Key Laboratory of Clinical Virology
| | - Wang Shenglan
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Rufang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Tingting
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Yunhui
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China..
| | - Song Jie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
12
|
Wang J, Liu H, Cao Z, Xu J, Guo J, Zhao L, Wang R, Xu Y, Gao R, Gao L, Zuo Z, Xiao J, Lu H, Zhang Y. Epidemiology of Hand, Foot, and Mouth Disease and Genetic Evolutionary Characteristics of Coxsackievirus A10 in Taiyuan City, Shanxi Province from 2016 to 2020. Viruses 2023; 15:v15030694. [PMID: 36992403 PMCID: PMC10052898 DOI: 10.3390/v15030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the prevalence of hand, foot, and mouth disease (HFMD) caused by enteroviruses other than enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) has gradually increased. The throat swab specimens of 2701 HFMD cases were tested, the VP1 regions of CVA10 RNA were amplified using RT-PCR, and phylogenetic analysis of CVA10 was performed. Children aged 1–5 years accounted for the majority (81.65%) and boys were more than girls. The positivity rates of EV-A71, CVA16, and other EVs were 15.22% (219/1439), 28.77% (414/1439), and 56.01% (806/1439), respectively. CVA10 is one of the important viruses of other EVs. A total of 52 CVA10 strains were used for phylogenetic analysis based on the VP1 region, 31 were from this study, and 21 were downloaded from GenBank. All CVA10 sequences could be assigned to seven genotypes (A, B, C, D, E, F, and G), and genotype C was further divided into C1 and C2 subtypes, only one belonged to subtype C1 and the remaining 30 belonged to C2 in this study. This study emphasized the importance of strengthening the surveillance of HFMD to understand the mechanisms of pathogen variation and evolution, and to provide a scientific basis for HFMD prevention, control, and vaccine development.
Collapse
Affiliation(s)
- Jitao Wang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| | - Hongyan Liu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Zijun Cao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jihong Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jiane Guo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Lifeng Zhao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Rui Wang
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Yang Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Ruihong Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Li Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Zhihong Zuo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| |
Collapse
|
13
|
Hand-Foot-and-Mouth Disease-Associated Enterovirus and the Development of Multivalent HFMD Vaccines. Int J Mol Sci 2022; 24:ijms24010169. [PMID: 36613612 PMCID: PMC9820767 DOI: 10.3390/ijms24010169] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is an infectious disease of children caused by more than 20 types of enteroviruses, with most cases recovering spontaneously within approximately one week. Severe HFMD in individual children develops rapidly, leading to death, and is associated with other complications such as viral myocarditis and type I diabetes mellitus. The approval and marketing of three inactivated EV-A71 vaccines in China in 2016 have provided a powerful tool to curb the HFMD epidemic but are limited in cross-protecting against other HFMD-associated enteroviruses. This review focuses on the epidemiological analysis of HFMD-associated enteroviruses since the inactivated EV-A71 vaccine has been marketed, collates the progress in the development of multivalent enteroviruses vaccines in different technical routes reported in recent studies, and discusses issues that need to be investigated for safe and effective HFMD multivalent vaccines.
Collapse
|
14
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Hand, Foot, and Mouth Disease: A Narrative Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:77-95. [PMID: 36284392 DOI: 10.2174/1570180820666221024095837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease is a common viral disease in childhood. Because the disease has the potential to reach epidemic levels and mortality is high in some countries, early recognition of this disease is of paramount importance. OBJECTIVE This purpose of this article is to familiarize pediatricians with the clinical manifestations and management of hand, foot, and mouth disease. METHODS A search was conducted in February 2022 in PubMed Clinical Queries using the key term "hand, foot, and mouth disease". The search strategy included all clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in English were included in this review. RESULTS Hand, foot, and mouth disease is characterized by a painful oral enanthem and asymptomatic exanthem on the palms and soles. Children younger than 5 years are most commonly affected. Hand, foot, and mouth disease caused by enterovirus A71 is more severe and has a higher rate of complications than that attributed to other viruses such as coxsackievirus A16. Circulatory failure secondary to myocardial impairment and neurogenic pulmonary edema secondary to brainstem damage are the main causes of death. Fortunately, the disease is usually benign and resolves in 7 to10 days without sequelae. Given the self-limited nature of most cases, treatment is mainly symptomatic and supportive. Intravenous immunoglobulin should be considered for the treatment of severe/complicated hand, foot, and mouth disease and has been recommended by several national and international guideline committees. Currently, there are no specific antiviral agents approved for the treatment of the disease. Drugs such as ribavirin, suramin, mulberroside C, aminothiazole analogs, and sertraline have emerged as potential candidates for the treatment of hand, foot, and mouth disease. Vaccination of susceptible individuals in high-risk areas and good personal hygiene are important preventative measures to combat the disease. CONCLUSION Familiarity of the disease including its atypical manifestations is crucial so that a correct diagnosis can be made, and appropriate treatment initiated. A timely diagnosis can help avoid contact with the affected individual and decrease the risk of an outbreak.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Paediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Hong Kong Institute of Integrative Medicine, and the Jockey Club School of Public Health and Primary Care, The Chinese University Hong Kong, Hong Kong
| |
Collapse
|
15
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
16
|
Li P, Rui J, Niu Y, Xie F, Wang Y, Li Z, Liu C, Yu S, Huang J, Luo L, Deng B, Liu W, Yang T, Li Q, Chen T. Analysis of HFMD Transmissibility Among the Whole Population and Age Groups in a Large City of China. Front Public Health 2022; 10:850369. [PMID: 35480581 PMCID: PMC9035867 DOI: 10.3389/fpubh.2022.850369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Hand-Foot-and-Mouth-Disease (HFMD) has been widely spread in Asia, and has result in a high disease burden for children in many countries. However, the dissemination characteristics intergroup and between different age groups are still not clear. In this study, we aim to analyze the differences in the transmissibility of HFMD, in the whole population and among age groups in Shenzhen city, by utilizing mathematical models. Methods A database that reports HFMD cases in Shenzhen city from January 2010 to December 2017 was collected. In the first stage, a Susceptive-Infected-Recovered (SIR) model was built to fit data of Shenzhen city and its districts, and Reff was used to assess transmissibility in each district. In the second stage, a cross-age groups SIR model was constructed to calculate the difference in transmissibility of reported cases among three age groups of EV71 virus: 0–3 years, 3–5 years, and over 5 years which was denoted as age group 1, 2, and 3, respectively. Results From 2010 to 2017, 345,807 cases of HFMD were reported in Shenzhen city, with peak incidence in spring and autumn in Shenzhen city and most of its districts each year. Analysis of the EV71 incidence data by age group revealed that age Group 1 have the highest incidence (3.13 ×10−7–2.31 ×10−4) while age group 3 had the lowest incidence (0–3.54 ×10−5). The differences in weekly incidence of EV71 between age groups were statistically significant (t12 = 7.563, P < 0.0001; t23 = 12.420, P < 0.0001; t13 = 16.996, P < 0.0001). The R2 of the SIR model Shenzhen city population-wide HFMD fit for each region was >0.5, and P < 0.001. Reff values were >1 for the vast majority of time and regions, indicating that the HFMD virus has the ability to spread in Shenzhen city over the long-term. Differences in Reff values between regions were judged by using analysis of variance (ANOVA) (F = 0.541, P = 0.744). SiIiRi-SjIjRj models between age groups had R2 over 0.7 for all age groups and P <0.001. The Reff values between groups show that the 0–2 years old group had the strongest transmissibility (median: 2.881, range: 0.017–9.897), followed by the over 5 years old group (median: 1.758, range: 1.005–5.279), while the 3–5 years old group (median: 1.300, range: 0.005–1.005) had the weakest transmissibility of the three groups. Intra-group transmissibility was strongest in the 0–2 years age group (median: 1.787, range: 0–9.146), followed by Group 1 to Group 2 (median: 0.287, range: 0–1.988) and finally Group 1 to Group 3 (median: 0.287, range: 0–1.988). Conclusion The incidence rate of HFMD is high in Shenzhen city. In the data on the incidence of EV71 in each age group, the highest incidence was in the 0–2 years age group, and the lowest incidence was in the over 5 years age group. The differences in weekly incidence rate of EV71 among age groups were statistically significant. Children with the age of 0–2 years had the highest transmissibility.
Collapse
Affiliation(s)
- Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yan Niu
- Chinese Center for Disease Control and Prevention, Public Health Emergency Center, Beijing, China
| | - Fang Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yifang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shanshan Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Public Health Emergency Center, Beijing, China
- Qun Li
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- *Correspondence: Tianmu Chen ;
| |
Collapse
|
17
|
Shahar S, Shahar HK, Muthiah SG, Mani KKC. Evaluating Health Education Module on Hand, Food, and Mouth Diseases Among Preschoolers in Malacca, Malaysia. Front Public Health 2022; 10:811782. [PMID: 35433565 PMCID: PMC9008192 DOI: 10.3389/fpubh.2022.811782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to improve parents' perceptions of susceptibility, severity, benefits, and barriers to children's handwashing practice by utilizing the Health Belief Model. In Alor Gajah, Melaka, a parallel cluster-randomized controlled study was conducted over 26 months. Parents who agreed to participate completed pre-test (t0) questionnaires. Data analysis used IBM SPSS version 25. The descriptive analysis described the baseline data pre-intervention. Chi-square and T-test or Mann-Whitney U test for non-parametric analysis assessed baseline data comparability between intervention and control groups. Generalized Estimating Equation (GEE) analyzed between and within-group comparison of the outcomes, and multivariate analysis determined the effectiveness of the intervention with clustered data. The individual participation rate was 86%. Parents who followed up immediately had higher perceived susceptibility, perceived severity, and perceived barriers (p < 0.001). Each unit increment in parents' practice score was 0.02-unit higher preschool children's hand hygiene practice score (p = 0.045). The intervention effectively improved parents' perceived susceptibility and benefits at immediate follow-up compared to baseline. However, there were no significant intervention effects on parents' perceived severity and barriers and preschool children's handwashing practices. The follow-up time significantly affected each outcome. There were significant covariates as the outcome predictors in this study, besides intervention groups and follow-up time. Parents' knowledge and age of the youngest child were significant predictors of parents' perceived susceptibility, besides parents' knowledge and perceived susceptibility being the predictors of parents' practice score. As a result, parents, teachers, and communities can implement this intervention in other schools with susceptible children.
Collapse
Affiliation(s)
- Syazwani Shahar
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hayati Kadir Shahar
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Hayati Kadir Shahar
| | - Sri Ganesh Muthiah
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kulanthayan K. C. Mani
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
18
|
Jia J, Liu G, Zhong J, Yan R, Song X, Zheng K, Ren Z, He Z, Zhu Q. Heat Shock Protein A6 Is Especially Involved in Enterovirus 71 Infection. Front Microbiol 2022; 13:865644. [PMID: 35308396 PMCID: PMC8931677 DOI: 10.3389/fmicb.2022.865644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Hand foot and mouth disease (HFMD) caused by Enterovirus 71 (EV71) infection is still a major infectious disease threatening children’s life and health in the absence of effective antiviral drugs due to its high prevalence and neurovirulence. A study of EV71-specific host response might shed some light on the reason behind its unique epidemiologic features and help to find means to conquer EV71 infection. We reported that host heat shock protein A6 (HSPA6) was induced by EV71 infection and involved infection in both Rhabdomyosarcoma (RD) cells and neurogliocytes. Most importantly, we found that EV71 did not induce the expression of other heat shock proteins HSPA1, HSPA8, and HSPB1 under the same conditions, and other HFMD-associated viruses including CVA16, CVA6, CVA10, and CVB1-3 did not induce the upregulation of HSPA6. In addition, EV71 infection enhanced the cytoplasmic aggregation of HSPA6 and its colocalization with viral capsid protein VP1. These findings suggest that HSPA6 is a potential EV71-specific host factor worthy of further study.
Collapse
Affiliation(s)
- Jiaoyan Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jianfeng Zhong
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ran Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Xun Song
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Zhendan He,
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
- Qinchang Zhu,
| |
Collapse
|
19
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
20
|
Masomian M, Lalani S, Poh CL. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules 2021; 26:molecules26216576. [PMID: 34770987 PMCID: PMC8587434 DOI: 10.3390/molecules26216576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV-A71) is one of the predominant etiological agents of hand, foot and mouth disease (HMFD), which can cause severe central nervous system infections in young children. There is no clinically approved vaccine or antiviral agent against HFMD. The SP40 peptide, derived from the VP1 capsid of EV-A71, was reported to be a promising antiviral peptide that targeted the host receptor(s) involved in viral attachment or entry. So far, the mechanism of action of SP40 peptide is unknown. In this study, interactions between ten reported cell receptors of EV-A71 and the antiviral SP40 peptide were evaluated through molecular docking simulations, followed by in vitro receptor blocking with specific antibodies. The preferable binding region of each receptor to SP40 was predicted by global docking using HPEPDOCK and the cell receptor-SP40 peptide complexes were refined using FlexPepDock. Local molecular docking using GOLD (Genetic Optimization for Ligand Docking) showed that the SP40 peptide had the highest binding score to nucleolin followed by annexin A2, SCARB2 and human tryptophanyl-tRNA synthetase. The average GoldScore for 5 top-scoring models of human cyclophilin, fibronectin, human galectin, DC-SIGN and vimentin were almost similar. Analysis of the nucleolin-SP40 peptide complex showed that SP40 peptide binds to the RNA binding domains (RBDs) of nucleolin. Furthermore, receptor blocking by specific monoclonal antibody was performed for seven cell receptors of EV-A71 and the results showed that the blocking of nucleolin by anti-nucleolin alone conferred a 93% reduction in viral infectivity. Maximum viral inhibition (99.5%) occurred when SCARB2 was concurrently blocked with anti-SCARB2 and the SP40 peptide. This is the first report to reveal the mechanism of action of SP40 peptide in silico through molecular docking analysis. This study provides information on the possible binding site of SP40 peptide to EV-A71 cellular receptors. Such information could be useful to further validate the interaction of the SP40 peptide with nucleolin by site-directed mutagenesis of the nucleolin binding site.
Collapse
Affiliation(s)
- Malihe Masomian
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| | | | - Chit Laa Poh
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| |
Collapse
|
21
|
Kamau E, Nguyen D, Celma C, Blomqvist S, Horby P, Simmonds P, Harvala H. Seroprevalence and Virologic Surveillance of Enterovirus 71 and Coxsackievirus A6, United Kingdom, 2006-2017. Emerg Infect Dis 2021; 27:2261-2268. [PMID: 34423767 PMCID: PMC8386771 DOI: 10.3201/eid2709.204915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A6 (CVA6) cause hand, foot and mouth disease (HFMD) and are occasionally linked to severe neurologic complications and large outbreaks worldwide. We estimated EV-A71 and CVA6 seroprevalence using cross-sectional age-stratified samples collected in 2006, 2011, and 2017. Seroprevalences of EV-A71 and CVA6 increased from 32% and 54% at 6-11 months to >75% by 10 years of age. Antibody titers declined after 20 years, which could indicate infrequent re-exposure in older populations. Age profiles for acquiring infections and mean titers were comparable in the 3 testing years, despite the marked increase in incidence of CVA6-related HFMD from 2010. The uncoupling of changes in disease severity from the infection kinetics of CVA6 as we inferred from the seroprevalence data, rather than incidence of infection over the 11-year study period, provides further evidence for a change in its pathogenicity.
Collapse
|
22
|
Zhang J, Xu D, Liu H, Zhang M, Feng C, Cong S, Sun H, Yang Z, Ma S. Characterization of coxsackievirus A10 strains isolated from children with hand, foot, and mouth disease. J Med Virol 2021; 94:601-609. [PMID: 34387895 DOI: 10.1002/jmv.27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from RD cells, but not from KMB17 and Vero cells. Through adaptive culture, two and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6% - 96.3% and 98.4 - 98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
23
|
Cross-Antigenicity between EV71 Sub-Genotypes: Implications for Vaccine Efficacy. Viruses 2021; 13:v13050720. [PMID: 33919184 PMCID: PMC8143144 DOI: 10.3390/v13050720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Enterovirus A-71 (EV71) is a global, highly contagkkious pathogen responsible for severe cases of hand-food-mouth-disease (HFMD). The use of vaccines eliciting cross neutralizing antibodies (NTAbs) against the different circulating EV71 sub-genotypes is important for preventing HFMD outbreaks. Here, we tested the cross-neutralizing activities induced by EV71 genotype/sub-genotype A, B0-B4, C1, C2, C4, and C5 viruses using rats. Differences were noted in the cross-neutralization of the 10 sub-genotypes tested but there were generally good levels of cross-neutralization except against genotype A virus, against which neutralization antibody titres (NTAb) where the lowest with NTAbs being the highest against sub-genotype B4. Moreover, NTAb responses induced by C4, B4, C1, and C2 viruses were homogenous, with values of maximum/minimum NTAb ratios (MAX/MIN) against all B and C viruses ranging between 4.0 and 6.0, whereas MAX/MIN values against B3 and A viruses were highly variable, 48.0 and 256.0, respectively. We then dissected the cross-neutralizing ability of sera from infants and children and rats immunized with C4 EV71 vaccines. Cross-neutralizing titers against the 10 sub-genotypes were good in both vaccinated infants and children and rats with the MAX/MIN ranging from 1.8–3.4 and 5.1–7.1, respectively, which were similar to those found in naturally infected patients (2.8). Therefore, we conclude that C4 EV71 vaccines can provide global protection to infants and children against HFMD caused by different sub-genotypes.
Collapse
|
24
|
Brown DM, Zhang Y, Scheuermann RH. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020; 8:microorganisms8121856. [PMID: 33255654 PMCID: PMC7759938 DOI: 10.3390/microorganisms8121856] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) are positive-sense RNA viruses, with over 50,000 nucleotide sequences publicly available. While most human infections are typically associated with mild respiratory symptoms, several different EV types have also been associated with severe human disease, especially acute flaccid paralysis (AFP), particularly with endemic members of the EV-B species and two pandemic types—EV-A71 and EV-D68—that appear to be responsible for recent widespread outbreaks. Here we review the recent literature on the prevalence, characteristics, and circulation dynamics of different enterovirus types and combine this with an analysis of the sequence coverage of different EV types in public databases (e.g., the Virus Pathogen Resource). This evaluation reveals temporal and geographic differences in EV circulation and sequence distribution, highlighting recent EV outbreaks and revealing gaps in sequence coverage. Phylogenetic analysis of the EV genus shows the relatedness of different EV types. Recombination analysis of the EV-A species provides evidence for recombination as a mechanism of genomic diversification. The absence of broadly protective vaccines and effective antivirals makes human enteroviruses important pathogens of public health concern.
Collapse
Affiliation(s)
- David M Brown
- Department of Synthetic Biology, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92065, USA
| |
Collapse
|
25
|
Hoa-Tran TN, Dao ATH, Nguyen AT, Kataoka C, Takemura T, Pham CH, Vu HM, Hong TTT, Ha NTV, Duong TN, Thanh NTH, Shimizu H. Coxsackieviruses A6 and A16 associated with hand, foot, and mouth disease in Vietnam, 2008-2017: Essential information for rational vaccine design. Vaccine 2020; 38:8273-8285. [PMID: 33223308 DOI: 10.1016/j.vaccine.2020.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Development of multivalent hand, foot, and mouth disease (HFMD) vaccines against enterovirus A71 (EV-A71) and several non-EV-A71 enteroviruses is needed for this life-threatening disease with a huge economic burden in Asia-Pacific countries. Comprehensive studies on the molecular epidemiology and genetic and antigenic characterization of major causative enteroviruses will provide information for rational vaccine design. Compared with molecular studies on EV-A71, that for non-EV-A71 enteroviruses remain few and limited in Vietnam. Therefore, we conducted a 10-year study on the circulation and genetic characterization of coxsackievirus A16 (CV-A16) and CV-A6 isolated from patients with HFMD in Northern Vietnam between 2008 and 2017. Enteroviruses were detected in 2228 of 3212 enrolled patients. Of the 42 serotypes assigned, 28.4% and 22.4% accounted for CV-A6 and CV-A16, being the second and the third dominant serotypes after EV-A71 (31.7%), respectively. The circulation of CV-A16 and CV-A6 showed a wide geographic distribution and distinct periodicity. Phylogenetic analyses revealed that the majority of Vietnamese CV-A6 and CV-A16 strains were located within the largest sub-genotypes or sub-genogroups. These comprised strains isolated from patients with HFMD worldwide during the past decade and the Vietnamese strains have been evolving in a manner similar to the strains circulating worldwide. Amino acid sequences of the putative functional loops on VP1 and other VPs among Vietnamese CV-A6 and CV-A16 isolates were highly conserved. Moreover, the functional loop patterns of VP1 were similar to the dominant patterns found worldwide, except for the T164K substitution on the EF loop in Vietnamese CV-A16. The findings suggest that the development of a universal HFMD vaccine, at least in Vietnam, must target CV-A6 and CV-A16 as two of the three major HFMD-causing serotypes. Vietnamese isolates or their genome sequences can be considered for rational vaccine design.
Collapse
Affiliation(s)
| | - Anh Thi Hai Dao
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anh The Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Chikako Kataoka
- The Research Foundation for Microbial Diseases of Osaka University, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chau Ha Pham
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hung Manh Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Ta Thi Thu Hong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Nguyen Thi Viet Ha
- Hanoi Medical University, Hanoi, Viet Nam; National Children's Hospital, Hanoi, Viet Nam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Protecting the most vulnerable from hand, foot, and mouth disease. THE LANCET. INFECTIOUS DISEASES 2020; 21:308-309. [PMID: 33031751 DOI: 10.1016/s1473-3099(20)30452-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/31/2023]
|
27
|
Li K, Dong F, Cui B, Cui L, Liu P, Ma C, Zheng H, Wu X, Liang Z. Development of a pseudovirus-based assay for measuring neutralizing antibodies against Coxsackievirus A10. Hum Vaccin Immunother 2020; 16:1434-1440. [PMID: 31851566 DOI: 10.1080/21645515.2019.1691404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Coxsackievirus A10 (CV-A10) has recently emerged as a major pathogen of hand, foot, and mouth disease in children worldwide. Currently no effective treatments are available; development of anti-CV-A10 vaccine is a most cost-effective way for CV-A10 prevention. Robust assay to measure neutralizing antibody (NtAb) titres elicited by vaccination would greatly prompt anti-CV-A10 vaccine development. Compare to the traditional neutralization assay based on inhibition of cytopathic effects (herein after referred to as cNT) which is time-consuming and labor-intensive, in this study we developed an efficient high-throughput neutralization antibody assay based on CV-A10 pseudoviruses (herein after referred to as pNT). In the pNT, anti-CV-A10 NtAb titre was negatively corresponded with the relative luminescent unit (RLU) produced by luciferase reporter gene incorporated in pseudovirus genome. As described in this study, the NtAb against CV-A10 could be detected within 10-16 h, anti- CV-A10 NtAb in 67 human serum samples were measured in parallel with pNT and cNT assays, a good correlation (r = 0.83,p < .0001) and good agreement(97%) were shown between cNT and pNT, indicating that the pNT provides a rapid and convenient procedure for measuring NtAb production against anti-CV-A10 NtAb measurement.
Collapse
Affiliation(s)
- Kelei Li
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China.,Research and Development Center, Minhai Biotechnology Co. Ltd , Beijing, China
| | - Fangyu Dong
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China.,The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd , Lanzhou, China
| | - Bopei Cui
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Lisha Cui
- The Second Department of Research, Changchun Institute of Biological Products Co. Ltd , Changchun, China
| | - Pei Liu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Chao Ma
- The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd , Lanzhou, China
| | - Haifa Zheng
- Research and Development Center, Minhai Biotechnology Co. Ltd , Beijing, China
| | - Xing Wu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| |
Collapse
|
28
|
Deng H, Yu S, Guo Y, Gu L, Wang G, Ren Z, Li Y, Li K, Li R. Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. Vaccine 2020; 38:3671-3681. [PMID: 32247566 DOI: 10.1016/j.vaccine.2020.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/05/2023]
Abstract
Hand, foot and mouth disease (HFMD) is mainly caused by EV-A71 and CV-A16. An increasing number of cases have been found to be caused by CV-A10, CV-A6, CV-B3 and the outbreaks are becoming increasingly more complex, often accompanied by the prevalence of a variety of enteroviruses. Based on the principle of synthetic peptide vaccines, we applied immune-informatics to design a highly efficient and safe multivalent epitope-based vaccine against EV-A71, CV-A16, CV-A10, CV-A6 and CV-B3. By screening B-cells, HTL and CTL cell antigen epitopes with high conservativity and immunogenicity that have no toxic effect on the host, further analysis confirmed that the vaccine built was IFN-γ inductive and IL-4 non-inductive HTL cell epitopes and had population coverage corresponding to MHC molecular alleles associated with T-cell phenotype. The multivalent enterovirus vaccine was constructed to connect the 50 s ribosomal protein L7/L12 adjuvant and candidate epitopes sequentially through appropriate linkers. Then, the antigenic, allergen and physical properties of the vaccine were evaluated, followed by a secondary structure analysis and tertiary structure modeling, disulfide engineering, refinement and validation. Moreover, the conformational B cell epitope of the vaccine was analyzed. The stability of the TLR4/MD2/Vaccine complex and details at atomic level were investigated by docking and molecular dynamics simulation. Finally, in silico immune simulation and in vivo immune experiments were done. This study provides a high cost-effective method of designing a multivalent enterovirus vaccine protect against a wide range of enterovirus pathogens.
Collapse
Affiliation(s)
- Huixiong Deng
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Shun Yu
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Yingzhu Guo
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Liming Gu
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Gefei Wang
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China.
| | - Zhihui Ren
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yanlei Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Kangsheng Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Rui Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China.
| |
Collapse
|
29
|
Au CC, Hon KL, Leung AKC, Torres AR. Childhood Infectious Encephalitis: An Overview of Clinical Features, Investigations, Treatment, and Recent Patents. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2020; 14:156-165. [PMID: 33238854 DOI: 10.2174/1872213x14999201124195724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Infectious encephalitis is a serious and challenging condition to manage. This overview summarizes the current literature regarding the etiology, clinical manifestations, diagnosis, management, and recent patents of acute childhood infectious encephalitis. METHODS We used PubMed Clinical Queries as a search engine and used keywords of "encephalitis" AND "childhood" Patents were searched using the key term "encephalitis" in google.patents.- com and patentsonline.com. RESULTS Viral encephalitis is the most common cause of acute infectious encephalitis in children. In young children, the clinical manifestations can be non-specific. Provision of empiric antimicrobial therapy until a specific infectious organism has been identified, which in most cases includes acyclovir, is the cornerstone of therapy. Advanced investigation tools, including nucleic acid-based test panel and metagenomic next-generation sequencing, improve the diagnostic yield of identifying an infectious organism. Supportive therapy includes adequate airway and oxygenation, fluid and electrolyte balance, cerebral perfusion pressure support, and seizure control. Recent patents are related to the diagnosis, treatment, and prevention of acute infectious encephalitis. CONCLUSION Viral encephalitis is the most common cause of acute infectious encephalitis in children and is associated with significant morbidity. Recent advances in understanding the genetic basis and immunological correlation of infectious encephalitis may improve treatment. Third-tier diagnostic tests may be incorporated into clinical practice. Treatment is targeted at the infectious process but remains mostly supportive. However, specific antimicrobial agents and vaccines development is ongoing.
Collapse
Affiliation(s)
- Cheuk C Au
- Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Kowloon Bay, Kowloon, Hong Kong
| | - Kam L Hon
- Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Kowloon Bay, Kowloon, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Alcy R Torres
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Traumatic Brain Injury Program, Associate Professor of Pediatrics and Neurology, Boston University, School of Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Seasonality of the transmissibility of hand, foot and mouth disease: a modelling study in Xiamen City, China. Epidemiol Infect 2019; 147:e327. [PMID: 31884976 PMCID: PMC7006018 DOI: 10.1017/s0950268819002139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study attempts to figure out the seasonality of the transmissibility of hand, foot and mouth disease (HFMD). A mathematical model was established to calculate the transmissibility based on the reported data for HFMD in Xiamen City, China from 2014 to 2018. The transmissibility was measured by effective reproduction number (Reff) in order to evaluate the seasonal characteristics of HFMD. A total of 43 659 HFMD cases were reported in Xiamen, for the period 2014 to 2018. The median of annual incidence was 221.87 per 100 000 persons (range: 167.98/100,000–283.34/100 000). The reported data had a great fitting effect with the model (R2 = 0.9212, P < 0.0001), it has been shown that there are two epidemic peaks of HFMD in Xiamen every year. Both incidence and effective reproduction number had seasonal characteristics. The peak of incidence, 1–2 months later than the effective reproduction number, occurred in Summer and Autumn, that is, June and October each year. Both the incidence and transmissibility of HFMD have obvious seasonal characteristics, and two annual epidemic peaks as well. The peak of incidence is 1–2 months later than Reff.
Collapse
|
31
|
The Clinical and Epidemiological Study of Children with Hand, Foot, and Mouth Disease in Hunan, China from 2013 to 2017. Sci Rep 2019; 9:11662. [PMID: 31406192 PMCID: PMC6690890 DOI: 10.1038/s41598-019-48259-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) is endemic in the Pacific region, especially in mainland China. The case-fatality ratio of HFMD is increasing steadily. Knowledge of the changing epidemiology of HFMD in different regions is necessary for implementing appropriate intervention strategies. In this study, we describe the clinical and epidemiological characteristics of HFMD in Hunan Children’s Hospital between 2013 and 2017. A total of 7203 patients with HFMD were admitted, with complication and mortality rates of 35.62% and 0.78%, respectively. The total number of children with HFMD, proportion of severely ill children, and HFMD mortality rate were the highest in 2014. The number of cases caused by EV-A71 and CV-A16 decreased continuously, while the number of cases caused by ‘other enteroviruses’ increased yearly since 2014, suggesting that other enteric viruses will gradually replace EV-A71 and CV-A16 as the main pathogenic HFMD agents. Furthermore, EV-A71 and mixed infections accounted for the high case fatality rates in children with severe HFMD, among whom EV-A71 infection resulted in the highest complication and mortality rates; the mild form of the disease was dominated by ‘other enteroviruses’. In conclusion, the changing etiological pattern highlights the need to improve pathogen surveillance and vaccine strategies for HFMD control.
Collapse
|
32
|
Zhang D. A template for EV-A71 vaccine evaluation in the real world. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:665-666. [PMID: 31375311 DOI: 10.1016/s2352-4642(19)30181-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Dingmei Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Bian L, Gao F, Mao Q, Sun S, Wu X, Liu S, Yang X, Liang Z. Hand, foot, and mouth disease associated with coxsackievirus A10: more serious than it seems. Expert Rev Anti Infect Ther 2019; 17:233-242. [PMID: 30793637 DOI: 10.1080/14787210.2019.1585242] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a common viral childhood illness, that has been a severe public health concern worldwide, particularly in the Asia-Pacific region. According to epidemiological data of HFMD during the past decade, the most prevalent causal viruses were enterovirus (EV)-A71, coxsackievirus (CV)-A16, CV-A6, and CV-A10. The public health burden of CV-A10-related diseases has been underestimated as their incidence was lower than that of EV-A71 and CV-A16 in most HFMD outbreaks. However, cases of CV-A10 infection are more severe, and its genome is more variable, which has alerted the research community worldwide. Areas covered: In this paper, studies on the epidemiology, laboratory diagnosis, clinical manifestations, molecular epidemiology, seroepidemiology, animal models of CV-A10, and vaccines and antiviral strategies against this genotype are reviewed. In addition, the genetic evolution of circulating strains was analyzed. Expert opinion: Multivalent vaccines against EV-A71, CV-A16, CV-A6, and CV-A10 should be a next-step HFMD vaccine strategy.
Collapse
Affiliation(s)
- Lianlian Bian
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China.,b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Fan Gao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Qunying Mao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Shiyang Sun
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xing Wu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Siyuan Liu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xiaoming Yang
- b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Zhenglun Liang
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
34
|
Du Z, Zhao Y, Luo Y, Du L, Gan Q, Zhang H, Li J, Yang Z, Ma S. Ongoing change of severe hand, foot, and mouth disease pathogens in Yunnan, China, 2012 to 2016. J Med Virol 2019; 91:881-885. [PMID: 30613995 DOI: 10.1002/jmv.25393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enteroviruses (EVs). In this study, a total of 341 children with serious HFMD were admitted to a pediatric hospital in Yunnan, China in 2012 to 2016. EVs were detected in 283 specimens (83.0%) and were assigned to 17 EV types. Enterovirus A71 (EV-A71) was predominant, accounting for 41.6%, and was followed by coxsackievirus A16 (CV-A16; 18.8%), CV-A6 (9.1%), CV-A10 and E-9 (2.9%), CV-B5 (1.8%), CV-A9 (1.2%), E-30 (0.9%), E-18, CV-A4, C-B3, and CV-A2 (0.6%) and other EV types such as CV-A8, CV-A14, E-14, E-11, and CV-B4 (0.3%). All of the EV-A71 isolates belonged to C4a; the CV-A16 belonged to B1b or B1a, although the B1b strains were predominant; and CV-A6 belonged to D3. In 2012 to 2014, E-9 was the third most frequent serotype (8.2%, 5.0%, and 6.5%, respectively). E-9 was not detected in 2015 and 2016. CV-A6 was not detected in 2012 but was the second most frequent serotype (25.3%) in 2015. Active etiological surveillance of HFMD makes it necessary to be aware of these emerging pathogens.
Collapse
Affiliation(s)
- Zengqing Du
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Yilin Zhao
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China
| | - Yunjiao Luo
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Lijiang Du
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Quan Gan
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Haihao Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China
| | - Jianlan Li
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
35
|
Cassidy H, Poelman R, Knoester M, Van Leer-Buter CC, Niesters HGM. Enterovirus D68 - The New Polio? Front Microbiol 2018; 9:2677. [PMID: 30483226 PMCID: PMC6243117 DOI: 10.3389/fmicb.2018.02677] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Enterovirus D68 (EV-D68) has emerged over the recent years, with large outbreaks worldwide. Increased occurrence has coincided with improved clinical awareness and surveillance of non-polio enteroviruses. Studies showing its neurotropic nature and the change in pathogenicity have established EV-D68 as a probable cause of Acute Flaccid Myelitis (AFM). The EV-D68 storyline shows many similarities with poliovirus a century ago, stimulating discussion whether EV-D68 could be ascertaining itself as the "new polio." Increasing awareness amongst clinicians, incorporating proper diagnostics and integrating EV-D68 into accessible surveillance systems in a way that promotes data sharing, will be essential to reveal the burden of disease. This will be a necessary step in preventing EV-D68 from becoming a threat to public health.
Collapse
Affiliation(s)
| | | | | | | | - Hubert G. M. Niesters
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
37
|
Zhao Y, Zhang H, Liu H, Zhang J, He L, Sun H, Huang X, Yang Z, Ma S. Molecular characteristics of hand, foot, and mouth disease for hospitalized pediatric patients in Yunnan, China. Medicine (Baltimore) 2018; 97:e11610. [PMID: 30075535 PMCID: PMC6081097 DOI: 10.1097/md.0000000000011610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by multiple enteroviruses (EVs) in China. To better define the etiologic agents and clinical characteristics of HFMD, we conducted this study in Yunnan, China.In this study, 1280 stool specimens were collected from pediatric patients hospitalized for treatment of HFMD in 2010. EV was detected with nested reverse transcription polymerase chain reaction and directly genotyped by gene sequencing of the viral protein 1 (VP1) region. Phylogenetic analysis was performed based on the VP1 partial gene and the clinical characteristics were analyzed using SPSS Software.Of 1280 specimens, 1115 (87.1%) tested positive for EV. Seventeen different EV serotypes were detected. Coxsackievirus A16 (CA16) was the most frequently detected serotype (615/1115 cases, 55.1%), followed by enterovirus 71 (EV71; 392/1115, 35.2%), CA10 (45/1115, 4.0%), and CA4 (23/1115, 2.1%). Among the 709 severe cases, CA16, EV71, CA10, and CA4 accounted for 48.0%, 42.0%, 3.5%, and 2.3%, respectively. Of the 26 critical cases, 13 were caused by EV71, 9 by CA16, 2 by CA4, and 1 each were the result of CA10 and E9, respectively. All EV71, CA16, CA10, and CA4 isolates were highly homologous to the strains isolated from mainland China, and belonged to the C4a, B1a, G, and C genotypes, respectively.Our study showed that EV71 and CA16 were the main causative agents for severe and critical HFMD, but other serotypes can also cause severe and critical cases.
Collapse
Affiliation(s)
- Yilin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Licun He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Xiaoqin Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, Yunnan, PR China
| |
Collapse
|
38
|
A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg Microbes Infect 2018; 7:94. [PMID: 29777102 PMCID: PMC5959873 DOI: 10.1038/s41426-018-0094-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 11/09/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an infectious disease that mainly affects infants and children, causing considerable morbidity and mortality worldwide. HFMD is commonly caused by enterovirus 71 (EV71) and coxsackieviruses A16 (CVA16), A6 (CVA6), and A10 (CVA10). Formalin-inactivated EV71 vaccines are currently available in China; however, these vaccines fail to confer cross-protection against infections by other HFMD-causing enteroviruses, highlighting the necessity of developing a multivalent HFMD vaccine. Our previous studies demonstrated that recombinant virus-like particles (VLP) of EV71, CVA16, and CVA6 are capable of inducing protective immunity against homologous virus challenges in mice. In this study, we generated CVA10-VLP using a baculovirus-insect cell expression system and then combined CVA10-VLP with EV71-VLP, CVA16-VLP, and CVA6-VLP to formulate a tetravalent VLP vaccine. Immunogenicity and protective efficacy of tetravalent VLP vaccine was compared with that of monovalent VLP vaccines. Mouse immunization studies revealed that the tetravalent vaccine elicited antigen-specific and long-lasting serum antibody responses comparable to those elicited by its corresponding monovalent vaccines. Moreover, tetravalent vaccine immune sera strongly neutralized EV71, CVA16, CVA10, and CVA6 strains with neutralization titers similar to those of their monovalent counterparts, indicating a good compatibility among the four antigens in the combination vaccine. Importantly, passively transferred tetravalent vaccine-immunized sera conferred efficient protection against single or mixed infections with EV71, CVA16, CVA10, and CVA6 viruses in mice, whereas the monovalent vaccines could only protect mice against homotypic virus infections but not heterotypic challenges. These results demonstrate that the tetravalent VLP vaccine represents a promising broad-spectrum HFMD vaccine candidate.
Collapse
|
39
|
Gu W, Zeng G, Hu YM, Hu YS, Zhang Y, Hu YL, Wang Y, Li JX, Zhu FC. A comparative analysis of immunogenicity and safety of an enterovirus 71 vaccine between children aged 3-5 years and infants aged 6-35 months. Expert Rev Vaccines 2018; 17:257-262. [DOI: 10.1080/14760584.2018.1430572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Gu
- School of Public Health, Nanjing Medical University, Nanjing, PR China
| | | | - Yue-mei Hu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | | | | | | | - Yang Wang
- School of Public Health, Southeast University, Nanjing, PR China
| | - Jing-Xin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Feng-Cai Zhu
- School of Public Health, Nanjing Medical University, Nanjing, PR China
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|
40
|
Production and purification of virus-like particles of different enterovirus subtypes as vaccines. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Xu L, Zheng Q, Li S, He M, Wu Y, Li Y, Zhu R, Yu H, Hong Q, Jiang J, Li Z, Li S, Zhao H, Yang L, Hou W, Wang W, Ye X, Zhang J, Baker TS, Cheng T, Zhou ZH, Yan X, Xia N. Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nat Commun 2017; 8:505. [PMID: 28894095 PMCID: PMC5593947 DOI: 10.1038/s41467-017-00477-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022] Open
Abstract
Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.Coxsackievirus A6 (CVA6) causes hand, foot and mouth disease in children. Here the authors present the CVA6 procapsid and A-particle cryo-EM structures and identify an immune-dominant neutralizing epitope, which can be exploited for vaccine development.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yongchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qiyang Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Jie Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Zizhen Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Lisheng Yang
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xiangzhong Ye
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Timothy S Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Z Hong Zhou
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, 90095, USA
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
42
|
Phylogeography of Coxsackievirus A16 Reveals Global Transmission Pathways and Recent Emergence and Spread of a Recombinant Genogroup. J Virol 2017; 91:JVI.00630-17. [PMID: 28659474 DOI: 10.1128/jvi.00630-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/06/2017] [Indexed: 12/17/2022] Open
Abstract
Coxsackievirus A16 (CV-A16; Picornaviridae) is an enterovirus (EV) type associated with hand, foot, and mouth disease (HFMD) in children. To investigate the spatial spread of CV-A16, we used viral sequence data sampled during a prospective sentinel surveillance of HFMD in France (2010 to 2014) and phylogenetic reconstruction. A data set of 168 VP1 sequences was assembled with 416 publicly available sequences of various geographic origins. The CV-A16 sequences reported were assigned to two clades, genogroup B and a previously uncharacterized clade D. The time origins of clades B and D were assessed in 1978 (1973 to 1981) and 2004 (2001 to 2007), respectively. The shape of the global CV-A16 phylogeny indicated worldwide cocirculation of genetically distinct virus lineages over time and across geographic regions. Phylogenetic tree topologies and Bayes factor analysis indicated virus migration. Virus transportation events in clade B within Europe and Asia and between countries of the two geographic regions were assessed. The sustained transmission of clade D viruses over 4 years was analyzed at the township level in France and traced back to Peru in South America. Comparative genomics provided evidence of recombination between CV-A16 clades B and D and suggested an intertype recombinant origin for clade D. Time-resolved phylogenies and HFMD surveillance data indicated that CV-A16 persistence is sustained by continuing virus migration at different geographic scales, from community transmission to virus transportation between distant countries. The results showed a significant impact of virus movements on the epidemiological dynamics of HFMD that could have implications for disease prevention.IMPORTANCE Coxsackievirus A16 is one of the most prevalent enterovirus types in hand, foot, and mouth disease outbreaks reported in Southeast Asia. This study is based on epidemiological and viral data on HFMD caused by CV-A16 in a European country. The phylogeographic data complemented the syndromic surveillance with virus migration patterns between geographic regions in France. The results show how viral evolutionary dynamics and global virus spread interact to shape the worldwide pattern of an EV disease. CV-A16 transmission is driven by movements of infected individuals at different geographic levels: within a country (local dynamics), between neighboring countries (regional dynamics), and between distant countries (transcontinental dynamics). The results are consistent with our earlier data on EV-A71 and confirm the epidemiological interconnection of Asia and Europe with regard to EV infections.
Collapse
|
43
|
Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009-2016. Sci Rep 2017; 7:8900. [PMID: 28827733 PMCID: PMC5567189 DOI: 10.1038/s41598-017-09196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
In the past decade, hand, foot, and mouth disease (HFMD) has posed a serious threat to childhood health in China; however, no epidemiological data from large HFMD epidemics have been described since 2013. In the present study, we described the epidemiological patterns of HFMD in Shandong province during 2009–2016 from a large number of symptomatic cases (n = 839,483), including >370,000 HFMD cases since 2013. Our results revealed that HFMD activity has remained at a high level and continued to cause annual epidemics in Shandong province from 2013 onwards. Although the incidence rate was significantly higher in urban areas than in rural areas, no significantly higher case-severity and case-fatality rates were found in urban areas. Furthermore, the seventeen cities of Shandong province could be classified into three distinct epidemiological groups according to the different peak times from southwest (inland) to northeast (coastal) regions. Notably, a replacement of the predominant HFMD circulating agent was seen and non-EVA71/Coxsackievirus A16 enteroviruses became dominant in 2013 and 2015, causing approximately 30% of the severe cases. Our study sheds light on the latest epidemiological characteristics of HFMD in Shandong province and should prove helpful for the prevention and control of the disease in Shandong and elsewhere.
Collapse
|
44
|
Zhang H, Zhao Y, Liu H, Sun H, Huang X, Yang Z, Ma S. Molecular characterization of two novel echovirus 18 recombinants associated with hand-foot-mouth disease. Sci Rep 2017; 7:8448. [PMID: 28814774 PMCID: PMC5559515 DOI: 10.1038/s41598-017-09038-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/19/2017] [Indexed: 01/11/2023] Open
Abstract
Human echovirus 18 (E-18) is a member of the enterovirus B species. To date, sixteen full-length genome sequences of E-18 are available in the GenBank database. In this study, we describe the complete genomic characterization of two E-18 strains isolated in Yunnan, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the two Yunnan E-18 strains had 87.5% nucleotide identity and 96.3–96.5% amino acid identity with the Chinese strain. Phylogenetic and bootscanning analyses revealed the two E-18 strains had the highest identity with other several EV-B serotypes than the other E-18 strains in the P3 coding region, especially, 3B region of the Swine Vesicular disease virus (SVDV) strain HK70, indicated that frequent intertypic recombination might have occurred in the two Yunnan strains. This study contributes the complete genome sequences of E-18 to the GenBank database and provides valuable information on the molecular epidemiology of E-18 in China.
Collapse
Affiliation(s)
- Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Yilin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Xiaoqin Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China.
| |
Collapse
|
45
|
Chen P, Wu X, Su Y, Hao X, Mao Q, Liang Z. Development of a pseudovirus based assay for measuring neutralizing antibodies against coxsackievirus B5. J Virol Methods 2017; 246:21-26. [PMID: 28435072 PMCID: PMC7113871 DOI: 10.1016/j.jviromet.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/15/2017] [Accepted: 04/16/2017] [Indexed: 11/29/2022]
Abstract
Coxsackievirus B5 (CV-B5), an important Coxsackie B virus from genus Enteroviruse within the family Picornaviridae, has also been isolated from Hand, Foot, and Mouth Disease (HFMD) patients, and often associated with neurological manifestations. In this study, we found out that Coxsackievirus B3 (CV-B3) replicon RNA could be encapsidated with CV-B5 capsid to assemble infectious CV-B5 pseudovirus. We then utilized this single round infection system of CV-B5 to develop a neutralizing antibody quantification assay. This pseudovirus neutralization assay showed superiority in biosafety, sensibility, quantitativity, efficiency and high throughput, and would facilitate the epidemiological studies and vaccine development of CV-B5.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xing Wu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yao Su
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xiaotian Hao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
46
|
Yang L, Liu Y, Li S, Zhao H, Lin Q, Yu H, Huang X, Zheng Q, Cheng T, Xia N. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice. Vaccine 2016; 34:5938-5945. [PMID: 27771182 DOI: 10.1016/j.vaccine.2016.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210-225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210-225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development.
Collapse
Affiliation(s)
- Lisheng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Yajing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Qiaona Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Xiumin Huang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science & School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Zhang J, Zhang H, Zhao Y, Guo C, Yang Z, Ma S. Molecular characterization of a new human coxsackievirus B2 associated with severe hand-foot-mouth disease in Yunnan Province of China in 2012. Arch Virol 2016; 162:307-311. [PMID: 27709402 DOI: 10.1007/s00705-016-3075-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Human coxsackievirus B2 (CVB2) belongs to the species Human enterovirus B and can cause aseptic meningitis, myocarditis and hand-foot-mouth disease (HFMD). We first determined the complete genome of the RW41-2/YN/CHN/2012 strain, isolated from a patient with HFMD and aseptic meningitis in the Yunnan Province, China in 2012. The strain shared 83.5 % and 82.2 % nucleotide similarity with CVB2 prototype strain Ohio-1, in the complete VP1 gene and the complete genome, respectively. Using phylogenetic and homogeneity analyses for the complete VP1 gene, CVB2 strains could be divided into four genogroups (A-D); the RW41-2/YN/CHN/2012 strain belonging to genogroup D. The amino acid sequence of VP1 is highly conserved. Recombination analyses showed the newly isolated RW41-2/YN/CHN/2012 strain was probably a recombinant, which was closely related to strain CVB2 (KM386639) in the genomic P1 and P2 regions and strains of other human enterovirus B (HEV-B) viruses (KT353721, JX644073, and KP262053) in the P3 region.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yilin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Chen Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
48
|
Aswathyraj S, Arunkumar G, Alidjinou EK, Hober D. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol 2016; 205:397-407. [PMID: 27406374 DOI: 10.1007/s00430-016-0465-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious viral disease and mainly affects infants and young children. The main manifestations are fever, vesicular rashes on hand, feet and buttocks and ulcers in the oral mucosa. Usually, HFMD is self-limiting, but a small proportion of children may experience severe complications such as meningitis, encephalitis, acute flaccid paralysis and neurorespiratory syndrome. Historically, outbreaks of HFMD were mainly caused by two enteroviruses: the coxsackievirus A16 (CV-A16) and the enterovirus 71 (EV-A71). In the recent years, coxsackievirus A6 and coxsackievirus A10 have been widely associated with both sporadic cases and outbreaks of HFMD worldwide, particularly in India, South East Asia and Europe with an increased frequency of neurological complications as well as mortality. Currently, there is no pharmacological intervention or vaccine available for HFMD. A formalin-inactivated EV-A71 vaccine has completed clinical trial in several Asian countries. However, this vaccine cannot protect against other major emerging etiologies of HFMD such as CV-A16, CV-A6 and CV-A10. Therefore, the development of a globally representative multivalent HFMD vaccine could be the best strategy.
Collapse
Affiliation(s)
- S Aswathyraj
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France
- Manipal Center for Virus Research (Regional Reference Laboratory for Influenza Virus & ICMR Virology Network Laboratory-Grade-I), Manipal, 576104, Karnataka, India
| | - G Arunkumar
- Manipal Center for Virus Research (Regional Reference Laboratory for Influenza Virus & ICMR Virology Network Laboratory-Grade-I), Manipal, 576104, Karnataka, India
| | - E K Alidjinou
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France
| | - D Hober
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France.
| |
Collapse
|
49
|
Yang L, Mao Q, Li S, Gao F, Zhao H, Liu Y, Wan J, Ye X, Xia N, Cheng T, Liang Z. A neonatal mouse model for the evaluation of antibodies and vaccines against coxsackievirus A6. Antiviral Res 2016; 134:50-57. [PMID: 27582066 DOI: 10.1016/j.antiviral.2016.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023]
Abstract
Coxsackievirus A6 (CA6) can induce atypical hand, foot, and mouth disease, which is characterized by severe rash, onychomadesis and a higher rate of infection in adults. Increasing epidemiological data indicated that outbreaks of CA6-associated hand, foot, and mouth disease have markedly increased worldwide in recent years. However, the current body of knowledge on the infection, pathogenic mechanism, and immunogenicity of CA6 is still very limited. In this study, we established the first neonatal mouse model for the evaluation of antibodies and vaccines against CA6. The CA6 strain CA6/141 could infect a one-day-old BALB/c mouse through intraperitoneal and intracerebral routes. The infected mice developed clinical symptoms, such as inactivity, wasting, hind-limb paralysis and even death. Pathological examination indicated that CA6 showed special tropism to skeletal muscles and skin, but not to nervous system or cardiac muscles. Infections with CA6 could induce vesicles in the dermis without a rash in mice, and the CA6 antigen was mainly localized in hair follicles. The strong tropism of CA6 to the skin may be related to its severe clinical features in infants. This mouse model was further applied to evaluate the efficacy of a therapeutic antibody and an experimental vaccine against CA6. A potential mAb 1D5 could fully protect mice from a lethal CA6 infection and also showed good therapeutic effects in the CA6-infected mice. In addition, an inactivated CA6 vaccine was evaluated through maternal immunization and showed 100% protection of neonatal mice from lethal CA6 challenge. Collectively, these results indicate that this infection model will be a useful tool in future studies on vaccines and antiviral reagents against CA6.
Collapse
Affiliation(s)
- Lisheng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yajing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junkai Wan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
50
|
Mao Q, Wang Y, Bian L, Xu M, Liang Z. EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg Microbes Infect 2016; 5:e75. [PMID: 27436364 PMCID: PMC5141264 DOI: 10.1038/emi.2016.73] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|