1
|
Zhang J, Xue Y, Zhang L, Chen J, Ma D, Zhang Y, Han Y. A Targeted Core-Shell ZIF-8/Au@Fe 3O 4 Platform with Multiple Antibacterial Pathways for Infected Skin Wound Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20901-20918. [PMID: 40132060 DOI: 10.1021/acsami.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Bacterial infections seriously retard skin wound healing. To enhance the antibacterial efficiency and subsequent skin regeneration, a core-shell structured therapeutic platform, named FZAM, was designed with multiple antimicrobial pathways. FZAM consists of nanosized Fe3O4 as the core and ZIF-8 loaded with Au nanoparticles (NPs) and maltodextrin as the shell. Fe3O4 and Au NPs form a heterojunction that generates hyperthermia and abundant reactive oxide species (ROS) under near-infrared (NIR) irradiation. This heterojunction also exhibits outstanding peroxidase-like activity. When bacteria invade, maltodextrin plays a targeting effect to increase the interaction between FZAM and bacteria, and with the synergistic action of NIR-induced hyperthermia and ROS as well as Zn2+ from ZIF-8, FZAM kills more than 99% of bacteria at 200 μg mL-1. Fortunately, FZAM is cytocompatible and even promotes the biofunctions of fibroblasts and endothelial cells. In infected skin wound models, FZAM sterilizes bacteria with NIR irradiation and subsequently reduces the inflammatory response and accelerates skin regeneration. This work provides a core-shell structured therapy platform for treating infection with the assistance of NIR irradiation and helping skin wound healing.
Collapse
Affiliation(s)
- Jing Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Chen
- Department of Osteology, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an 710100, China
| | - Dayan Ma
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Lin M, Tang K, Zheng W, Zheng S, Hu K. Curcumin delivery system based on a chitosan-liposome encapsulated zeolitic imidazolate framework-8: a potential treatment antioxidant and antibacterial treatment after phacoemulsification. Biomed Mater 2025; 20:035013. [PMID: 40081008 DOI: 10.1088/1748-605x/adc05c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Curcumin is a natural polyphenol extracted from plants that can interact with various molecular targets, including antioxidant, antibacterial, anticancer, and anti-aging activities. Due to its variety of pharmacological activities and large margin pf safety, curcumin has been used in the prevention and treatment of various diseases, such as Alzheimer's, heart, and rheumatic immune diseases. To develop curcumin eye drops that can be used as antioxidant and antibacterial agents after phacoemulsification, we have designed a nano-based drug delivery system to improve curcumin bioavailability and duration of action. We successfully prepared zeolitic imidazolate framework-8 (ZIF-8) coated with chitosan-liposome (Cur@ZIF-8/CS-Lip) for curcumin delivery. It can release curcumin for over 20 hin vitroand exhibits excellent biosafety, antioxidant, and antibacterial activities. Therefore, we hypothesized that Cur@ZIF-8/CS-Lip could reduce the incidence of oxidative stress and infection after cataract surgery.
Collapse
Affiliation(s)
- Meiting Lin
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Kunyuan Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Wendi Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| |
Collapse
|
3
|
Sacourbaravi R, Ansari-Asl Z, Hoveizi E, Darabpour E. Poly(vinyl alcohol)/Chitosan Hydrogel Containing Gallic Acid-Modified Fe, Cu, and Zn Metal-Organic Frameworks (MOFs): Preparation, Characterization, and Biological Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61609-61620. [PMID: 39476423 DOI: 10.1021/acsami.4c11053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogel composites are water-swollen and three-dimensional materials that have been investigated for various biological applications, including controlled drug delivery and tissue engineering, owing to the similarity between their mechanical, electrical, and chemical properties with biological tissues. The hydrogel composites can provide a superior replication of living tissue compared to their single components. In this regard, Fe-BTC, Cu-BTC, and Zn-BTC MOFs were synthesized and modified with gallic acid (GA). The MOFs-based hydrogel composites (M-BTC-GA@PVA-CS) were finally fabricated by freezing-thawing the as-synthesized MOFs, gallic acid, chitosan, and poly(vinyl alcohol) mixture. The obtained hydrogels were characterized using techniques such as FTIR, XRD, UV-vis, SEM, EDS, and TEM. Additionally, their antibacterial activity against E. coli and S. aureus and biocompatibility were investigated. The results showed that the surface modification of M-BTC MOFs with GA improves the antibacterial performance of hydrogels and increases their biocompatibility and cell viability. Among the as-prepared M-BTC MOF-based composites, the Cu-BTC MOF-loaded hydrogels showed the highest antibacterial activity. In contrast, the lowest antibacterial effect was observed for the hydrogels with Fe-BTC MOFs. Furthermore, the H&E staining exhibited improved vascularization in Zn-BTC-GA@PVA-CS and Cu-BTC-GA@PVA-CS scaffolds compared to the Fe-BTC-GA@PVA-CS hydrogel. These MOFs-loaded hydrogels may be suitable for utilization in biological applications such as skin treatment, drug delivery, and cosmetics owing to their excellent antibacterial activity and low cytotoxicity.
Collapse
Affiliation(s)
- Reza Sacourbaravi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Esmaeil Darabpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
4
|
Saif MS, Waqas M, Hussain R, Ahmed MM, Tariq T, Batool S, Liu Q, Mustafa G, Hasan M. Potential of CME@ZIF-8 MOF Nanoformulation: Smart Delivery of Silymarin for Enhanced Performance and Mechanism in Albino Rats. ACS APPLIED BIO MATERIALS 2024; 7:6919-6931. [PMID: 39344123 DOI: 10.1021/acsabm.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Silymarin, an antioxidant, is locally used for kidney and heart ailments. However, its limited water solubility and less oral bioavailability limit its therapeutic efficiency. The present study investigated the enhancement of solubility and bioavailability of silymarin by loading it in Cordia myxa plant extract-coated zeolitic imidazole framework (CME@ZIF-8) against carbon tetrachloride (CCl4)-induced nephrotoxicity and cardiac toxicity in albino rats. The synthesized PEG-coated silymarin drug-loaded CME@ZIF-8 MOFs (PEG-Sily@CME@ZIF-8) were characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and zeta potential. The average crystal size of CME@ZIF-8 and PEG-Sily@CME@ZIF-8 was 12.69 and 16.81 nm, respectively. The silymarin drug loading percentage in PEG-Sily@CME@ZIF-8 was 33.05% (w/w). In the animal model with CCl4 treatment, different parameters like serum profile, enzymatic level, genotoxicity, and histopathology were assessed. Treatment with PEG-Sily@CME@ZIF-8 with different doses of 500, 1000, and 1500 μg/kg body weight efficiently ameliorated the alterations in the antioxidant defenses, biochemical parameters, and histopathological alterations and DNA damage in comparison to silymarin drug in a CCl4-induced toxicity rat model via alleviating the cellular abnormalities and attenuation of normal antioxidant enzymes levels. Moreover, the molecular mechanism of drug-silymarin interaction with the target protein was investigated. It involves the binding pockets of silymarin molecules with VEGFR, TNF-α, NLRP3, AT1R, NOX1, RIPK1, Caspase-3, CHOP, and MMP-9 proteins, elucidating the silymarin-protein interactions by the formation of hydrogen bonds and hydrophobic interactions. This study suggests that the nanodrug PEG-Sily@CME@ZIF-8 MOFs protect the kidneys and heart possibly by mitigating oxidative stress more efficiently than the conventional drug silymarin.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Department of Biochemistry, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Bioinformatics, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biochemistry, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Batool
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qiang Liu
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
5
|
MubarakAli D, Saravanakumar K, Ganeshalingam A, Santosh SS, De Silva S, Park JU, Lee CM, Cho SH, Kim SR, Cho N, Thiripuranathar G, Park S. Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections. Pharmaceutics 2024; 16:976. [PMID: 39204321 PMCID: PMC11359499 DOI: 10.3390/pharmaceutics16080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0-5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India;
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | | | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - Jung Up Park
- Division of Practical Application, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Republic of Korea;
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Su-Hyeon Cho
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea;
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| |
Collapse
|
6
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
7
|
Wang J, Wang H, Qi X, Zhi G, Wang J. Cobalt metal replaces Co-ZIF-8 mesoporous material for effective adsorption of arsenic from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32935-32949. [PMID: 38671264 DOI: 10.1007/s11356-024-33419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The high cost and low adsorption capacity of primary metal-organic frameworks (ZIF-8) limit their application in heavy metal removal. In this paper, Co/Zn bimetallic MOF materials were synthesized with excellent adsorption performance for As5+. The adsorption reached equilibrium after 180 min and the maximum adsorption was 250.088 mg/g. In addition, Co-ZIF-8 showed strong selective adsorption of As5+. The adsorption process model of Co-ZIF-8 fits well with the pseudo-second-order kinetic model (R2=0.997) and Langmuir isotherm model (R2=0.994), and it is demonstrated that the adsorption behavior of the adsorbent is a single layer of chemical adsorption. In addition, when the adsorbent enters the arsenic-containing solution, the surface of Co-ZIF-8 is hydrolyzed to produce a large number of Co-OH active sites, and As5+ arrives at the surface of Co-ZIF-8 by electrostatic adsorption and combines with the active sites to generate the arsenic-containing complex As-O-Co. After four cycles, Co-ZIF-8 showed 80% adsorption of As5+. This study not only provides a new method to capture As5+ in water by preparing MOF with partial replacement of the central metal, but also has great significance for the harmless disposal of polluted water.
Collapse
Affiliation(s)
- Junfeng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Heng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xianjin Qi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Gang Zhi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianhua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
8
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Azizi J, Javanbakht S, Mohammadi R. In-situ green synthesis of copper tannic acid framework in the presence of graphene quantum dots: Improved colloidal and antibacterial properties. Int J Pharm 2024; 650:123682. [PMID: 38065347 DOI: 10.1016/j.ijpharm.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
This work reports the preparation of a copper tannic acid MOF (CuTA) and graphene quantum dot (GQD) nanocomposite, GQD/CuTA, by a simple, environmentally friendly, and inexpensive method with exceptionally enhanced antibacterial properties. To end this, GQDs were first fabricated from citric acid using a neoteric, simple and straightforward hydrolysis approach and followed by they effectively anchor MOF nanoparticles (CuTA) by a green hydrothermal in situ synthesizing method. The constructed GQD/CuTA nanomaterials were characterized and validated using XRD, FT-IR, TEM, DLS, UV-vis, and PL techniques. Significant antibacterial activity against E. coli bacteria for both CuTA and GQD/CuTA (0 CFU/mL) and S. aureus bacteria for CuTA and GQD/CuTA (300 and 40 CFU/mL) was observed for the GQD/CuTA nanocomposite. The MTT assay showed good cytocompatibility for the GQD/CuTA nanocomposite against human dermal fibroblast cells (HFF-2). The result suggests that the synthesized GQD/CuTA nanocomposite with improved colloidal and antibacterial properties has the potential to be used as a safe photoluminescent nanoplatform with strong antimicrobial activity.
Collapse
Affiliation(s)
- Jahanghir Azizi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
11
|
Wu W, Yu X, Sun J, Han Y, Ma Y, Zhang G, Ma Q, Li Q, Xiang H. Zeolitic Imidazolate Framework (ZIF-8) Decorated Iron Oxide Nanoparticles Loaded Doxorubicin Hydrochloride for Osteosarcoma Treatment - in vitro and in vivo Preclinical Studies. Int J Nanomedicine 2023; 18:7985-7999. [PMID: 38164268 PMCID: PMC10758197 DOI: 10.2147/ijn.s438771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background As a broad-spectrum antitumorigenic agent, doxorubicin (DOX) is commonly used as a chemotherapeutic drug for treating osteosarcoma (OS). Still, it is associated with significant cell toxicity and ineffective drug delivery, whereas the zeolite imidazolate framework is extensively applied in the biomedical field as a carrier owing to its favorable biocompatibility, high porosity, and pH-responsiveness. Therefore, we need to develop a drug delivery platform that can effectively increase the antitumorigenic effect of the loaded drug and concurrently minimize drug toxicity. Methods In this study, a Fe3O4@ZIF-8 nanocomposite carrier was prepared with ZIF-8 as the shell and encapsulated with Fe3O4 by loading DOX to form DOX- Fe3O4@ZIF-8 (DFZ) drug-loaded magnetic nanoparticles. Then, we characterized and analyzed the morphology, particle size, and characteristics of Fe3O4@ZIF-8 and DFZ by TEM, SEM, and Malvern. Moreover, we examined the inhibitory effects of DFZ in vitro and in vivo. Meanwhile, we established a tumor-bearing mouse model, evaluating its tumor-targeting by external magnetic field guidance. Results DFZ nanoparticles possessed have a size of ~110 nm, with an encapsulation rate of 21% and pH responsiveness. DFZ exerted a superior cytostatic effect and apoptosis rate on K7M2 cells in vitro compared to DOX(p<0.01). In animal experiments, DFZ offers up to 67% tumor inhibition and has shown a superior ability to induce apoptosis than DOX alone in TUNEL results(p<0.01). Tumor-targeting experiments have validated that DFZ can be effectively accumulated in the tumor tissue and enhance anticancer performance. Conclusion In summary, the DFZ nano-delivery system exhibited a more substantial anti-tumorigenic effect as well as superior active tumor targeting of DOX- Fe3O4@ZIF-8 compared to that of DOX alone in terms of biocompatibility, drug loading capacity, pH-responsiveness, tumor-targeting, and anti-tumorigenic effect, indicating its chemotherapeutic application potential.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Xiaoli Yu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, 266100, People’s Republic of China
| | - Jiaxiang Sun
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yuanyuan Han
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yuanye Ma
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Guoqing Zhang
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Qiang Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Hongfei Xiang
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| |
Collapse
|
12
|
Yu H, Saif MS, Hasan M, Zafar A, Zhao X, Waqas M, Tariq T, Xue H, Hussain R. Designing a Silymarin Nanopercolating System Using CME@ZIF-8: An Approach to Hepatic Injuries. ACS OMEGA 2023; 8:48535-48548. [PMID: 38144097 PMCID: PMC10734040 DOI: 10.1021/acsomega.3c08494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.
Collapse
Affiliation(s)
- Hui Yu
- College
of Science, Beihua University, Jilin 132013, P. R. China
| | - Muhammad Saqib Saif
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- School
of Engineering, Royal Melbourne Institute
of Technology (RMIT) University, Melbourne 3001, Australia
| | - Xi Zhao
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Muhammad Waqas
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Riaz Hussain
- Faculty
of Veterinary and Animal Sciences, Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
13
|
Subhadarshini A, Samal SK, Pattnaik A, Nanda B. Facile fabrication of plasmonic Ag/ZIF-8: an efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics. RSC Adv 2023; 13:31756-31771. [PMID: 37908651 PMCID: PMC10614039 DOI: 10.1039/d3ra04851a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Present article represents the fabrication of plasmonic Ag/ZIF-8 composite and its effect on antibacterial, haemolytic and photocatalytic degradation of antibiotics. Ag/ZIF-8 was prepared by varying molar concentrations (1 mM, 2.5 mM, and 5 mM) of AgNO3 into ZIF-8 using NaBH4 as a reducing agent by the sol-gel process. The material was then characterised using the XRD, XPS, FTIR, SEM, HRTEM, UVDRS, BET and EIS techniques. When it comes to breaking down the antibiotic CIP, the optimised Ag2.5/ZIF-8 exhibits the strongest photocatalytic capability, with a degradation efficiency of 82.3% after 90 minutes. Due to LSPR (Localised Surface Plasmon Resonance) as well as the efficient movement and separation of the interfaces of photo-generated charge carriers in Ag2.5/ZIF-8 may be the causes of this increase in photocatalytic degradation. The effect of several parameters, such as pH, a variety of catalysts, varying dose concentrations, scavenging and sustainability are being investigated. The para benzoquinone (OH˙) and citric acid (h+) the primary active species in the photocatalytic breakdown pathway, according to trapping study. Whereas, Ag5/ZIF-8 was optimised for greater antibacterial activity against S. aureus and E. coli due to the synergistic impact of Ag+ and Zn2+ in Ag5/ZIF-8 and in haemolytic experiment, all samples were discovered to be non-toxic to blood cells. Overall, the synthesised compound was discovered to be a reusable, affordable catalyst for water remediation that can also be used in biomedicine.
Collapse
Affiliation(s)
- Asima Subhadarshini
- Environmental Science, Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India 751030
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Binita Nanda
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| |
Collapse
|
14
|
Chen LX, Yin SJ, Chai TQ, Wang JL, Chen GY, Zhou X, Yang FQ. Ultra-High Adsorption Capacity of Core-Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline. Molecules 2023; 28:5573. [PMID: 37513444 PMCID: PMC10383973 DOI: 10.3390/molecules28145573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A core-shell-derived structural magnetic zeolite imidazolate framework-67 (Fe3O4-COOH@ZIF-67) nanocomposite was fabricated through a single-step coating of zeolite imidazolate framework-67 on glutaric anhydride-functionalized Fe3O4 nanosphere for the magnetic solid-phase extraction (MSPE) of theophylline (TP). The Fe3O4-COOH@ZIF-67 nanocomposite was characterized through scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, Zeta potential analysis, X-ray diffraction, Brunauer-Emmett-Teller, and vibrating sample magnetometer. The material has a high specific surface area and good magnetism, which maintains the regular dodecahedron structure of ZIF-67 without being destroyed by the addition of Fe3O4-COOH nanospheres. The Fe3O4-COOH@ZIF-67 can rapidly adsorb TP mainly through the strong coordination interaction between undercoordinated Co2+ on ZIF-67 and -NH from imidazole of TP. The adsorption and desorption conditions, such as the amount of adsorbent, adsorption time, pH value, and elution solvent, were optimized. The kinetics of TP adsorption on Fe3O4-COOH@ZIF-67 was found to follow pseudo-second-order kinetics. The Langmuir model fits the adsorption data well and the maximum adsorption capacity is 1764 mg/g. Finally, the developed MSPE-HPLC method was applied in the enrichment and analysis of TP in four tea samples and rabbit plasma. TP was not detected in oolong tea and rabbit plasma, and its contents in jasmine tea, black tea, and green tea are 5.80, 4.31, and 1.53 μg/g, respectively. The recoveries of spiked samples are between 74.41% and 86.07% with RSD in the range of 0.81-3.83%. The adsorption performance of Fe3O4-COOH@ZIF-67 nanocomposite was nearly unchanged after being stored at room temperature for at least 80 days and two consecutive adsorption-desorption cycles. The results demonstrate that Fe3O4-COOH@ZIF-67 nanocomposite is a promising magnetic adsorbent for the preconcentration of TP in complex samples.
Collapse
Affiliation(s)
- Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
15
|
Zorlu T, Correa-Duarte MA, Alvarez-Puebla RA. Composite nanoparticle-metal-organic frameworks for SERS sensing. J Chem Phys 2023; 158:2887549. [PMID: 37125707 DOI: 10.1063/5.0144695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
In recent years, metal-organic frameworks, in general, and zeolitic imidazolate frameworks, in special, had become popular due to their large surface area, pore homogeneity, and easy preparation and integration with plasmonic nanoparticles to produce optical sensors. Herein, we summarize the late advances in the use of these hybrid composites in the field of surface-enhanced Raman scattering and their future perspectives.
Collapse
Affiliation(s)
- Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007 Tarragona, Spain
- Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS) and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS) and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Cai W, Zhang W, Chen Z. Magnetic Fe 3O 4@ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf B Biointerfaces 2023; 223:113170. [PMID: 36696823 DOI: 10.1016/j.colsurfb.2023.113170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
Metal-organic frameworks (MOFs) have a high specific surface area and inherent biodegradability due to their unique structure and composition. As well, owing to the properties of nanomaterials and especially their magnetic features, Fe3O4 nanoparticles and MOFs composite materials have great potential in the design and application of drug release. The present work: firstly, investigated norfloxacin loading in magnetic metal organic framework (Fe3O4@ZIF-8); and secondly, studied the release of norfloxacin and its antibacterial activity. Results showed the release efficiencies reached 97 % at 310 K after 84 h (pH 7.4). Drug release behavior was tested at various pH levels and it was found that Fe3O4@ZIF-8 has pH-sensitive properties. Furthermore, the release model calculation illustrated that the release process fitted well to the Bhaskar model. The magnetic properties of Fe3O4@ZIF-8 confirmed that the composite has potential application for a targeted drug delivery system. The mechanism of pH-responsive norfloxacin release was combined with diffusion, ion exchange and electrostatic repulsion. Furthermore, the antibacterial activities of Fe3O4@ZIF-8 and NOR-Fe3O4@ZIF-8 were tested against Escherichia coli. Results showed that Fe3O4@ZIF-8 had good biocompatibility while NOR-Fe3O4@ZIF-8 can deter or inhibit the actions of microorganisms.
Collapse
Affiliation(s)
- Wanling Cai
- School of Mechanical and Intelligent Manufacturing, Fujan Chuanzheng Communications College, Fuzhou 350007, Fujian Province, China; School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Bedford Park, SA 5042, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
17
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
18
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
19
|
Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Chen L, Zhang D, Cheng K, Li W, Yu Q, Wang L. Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound‐healing. J Colloid Interface Sci 2022; 623:21-33. [DOI: 10.1016/j.jcis.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
|
21
|
Akbari M, Sadeghi ME, Ghasemzadeh MA. Controlled delivery of tetracycline with TiO2@Chitosan@ZIF-8 nanocomposite and evaluation of their antimicrobial activities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections. J Control Release 2022; 349:338-353. [PMID: 35820538 DOI: 10.1016/j.jconrel.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Ciprofloxacin (CIP) a broad-spectrum antibiotic, is used extensively for the treatment of diverse infections and diseases of bacteria origin, and this includes infections caused by E. coli; P. aeruginosa; S. aureus; and MRSA. This extensive use of CIP has therefore led to an increase in resistance by these infection causing organisms. Nano delivery systems has recently proven to be a possible solution to resistance to these organisms. They have been applied as a strategy to improve the target specificity of CIP against infections and diseases caused by these organisms, thereby maximising the efficacy of CIP to overcome the resistance. Herein, we proffer a brief overview of the mechanisms of resistance; the causes of resistance; and the various approaches employed to overcome this resistance. The review then proceeds to critically evaluate various nano delivery systems including inorganic based nanoparticles; lipid-based nanoparticles; capsules, dendrimers, hydrogels, micelles, and polymeric nanoparticles; and others; that have been applied for the delivery of CIP against E. coli; P. aeruginosa; S. aureus; and MRSA infections. Finally, the review highlights future areas of research, for the optimisation of various nano delivery systems, to maximise the therapeutic efficacy of CIP against these organisms. This review confirms the potential of nano delivery systems, for addressing the challenges of resistance to caused by E. coli; P. aeruginosa; S. aureus; and MRSA to CIP.
Collapse
Affiliation(s)
- Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.; Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa..
| |
Collapse
|
24
|
Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catal Letters 2022. [DOI: 10.1007/s10562-021-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Yang M, Zhang J, Shi W, Zhang J, Tao C. Recent advances in metal-organic frameworks and their composites for the phototherapy of skin wounds. J Mater Chem B 2022; 10:4695-4713. [PMID: 35687028 DOI: 10.1039/d2tb00341d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound healing is a complex process that greatly affects the normal physiological activities of genes, proteins, signaling pathways, tissues, and organs. Bacterial infection could easily lead to serious tissue damage during wound healing, thus countering wound infections becomes a major challenge for clinicians and nursing professionals. At present, the exploration of highly effective, low toxicity and environment friendly methods for wound healing is attracting considerable interest all over the world. Recently, metal-organic frameworks (MOFs) have presented great potential for treating wound infections due to their unique characteristics of diversified functionality, large specific surface area, and high biocompatibility. These properties endow MOFs/MOF-based composites with an outstanding anti-wound infection effect, which is mainly attributed to the continuously released active components and the exerted catalytic activity with the assistance of phototherapy. In this review, the current progress of MOFs/MOF-based composites for the phototherapy of skin wounds is presented. Firstly, we illustrate the pathophysiological mechanisms, principles of phototherapy and the conventional methods for wound healing. Then, the structures and characteristics of MOFs are systematically summarized. Moreover, the review highlights the recent advances in the application of phototherapy for wound healing (including photodynamic therapy, photothermal therapy, and synergistic therapy) based on various MOFs/MOF-based composites. Finally, the challenges and perspectives are provided for the further development of MOF-based materials for medical application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wu Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
26
|
Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Dissolution and Biological Assessment of Cancer-Targeting Nano-ZIF-8 in Zebrafish Embryos. ACS Biomater Sci Eng 2022; 8:2445-2454. [PMID: 35583465 DOI: 10.1021/acsbiomaterials.2c00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer-targeting nanotherapeutics offer promising opportunities for selective delivery of cytotoxic chemotherapeutics to cancer cells. However, the understanding of dissolution behavior and safety profiles of such nanotherapeutics is scarce. In this study, we report the dissolution profile of a cancer-targeting nanotherapeutic, gemcitabine (GEM) encapsulated within RGD-functionalized zeolitic imidazolate framework-8 (GEM⊂RGD@nZIF-8), in dissolution media having pH = 6.0 and 7.4. GEM⊂RGD@nZIF-8 was not only responsive in acidic media (pH = 6.0) but also able to sustain the dissolution rate (57.6%) after 48 h compared to non-targeting nanotherapeutic GEM⊂nZIF-8 (76%). This was reflected by the f2 value of 36.1, which indicated a difference in the dissolution behaviors of GEM⊂RGD@nZIF-8 and GEM⊂nZIF-8 in acidic media compared to those in neutral media (pH = 7.4). A dissolution kinetic study showed that the GEM release mechanism from GEM⊂RGD@nZIF-8 followed the Higuchi model. In comparison to a non-targeting nanotherapeutic, the cancer-targeting nanotherapeutic exhibited an enhanced permeability rate in healthy zebrafish embryos but did not induce lethality to 50% of the embryos (LC50 > 250 μg mL-1) with significantly improved survivability (75%) after 96 h of incubation. Monitoring malformation showed minimal adverse effects with only 8.3% of edema at 62.5 μg mL-1. This study indicates that cancer-targeting GEM⊂RGD@nZIF, with its pH-responsive behavior for sustaining chemotherapeutic dissolution in a physiologically relevant environment and its non-toxicity toward the healthy embryos within the tested concentrations, has considerable potential for use in cancer treatment.
Collapse
Affiliation(s)
- Nurul Akmarina Mohd Abdul Kamal
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Pekan 26600, Pahang, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kyle E Cordova
- Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Materials Discovery Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
27
|
Arkaban H, Barani M, Akbarizadeh MR, Pal Singh Chauhan N, Jadoun S, Dehghani Soltani M, Zarrintaj P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel) 2022; 14:1259. [PMID: 35335590 PMCID: PMC8948866 DOI: 10.3390/polym14061259] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’s University, Udaipur 313002, Rajasthan, India;
| | - Sapana Jadoun
- Department of Analytical and Inorganic Chemistry, Faculty of Sciences, University of Concepcion, Edmundo Larenas 129, Concepcion 4070371, Chile;
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
28
|
Mozaffari F, Razavian SMH, Ghasemzadeh MA. Encapsulation of Allopurinol in GO/CuFe2O4/IR MOF-3 Nanocomposite and In Vivo Evaluation of Its Efficiency. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Shateran F, Ghasemzadeh MA, Aghaei SS. Preparation of NiFe 2O 4@MIL-101(Fe)/GO as a novel nanocarrier and investigation of its antimicrobial properties. RSC Adv 2022; 12:7092-7102. [PMID: 35424658 PMCID: PMC8982281 DOI: 10.1039/d1ra08523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, we have investigated a novel magnetic nanocomposite including NiFe2O4@MIL-101(Fe)/GO for the delivery of the antibiotic tetracycline (TC). Moreover, the antibacterial activity of NiFe2O4@MIL-101(Fe)/GO, NiFe2O4@MIL-101(Fe)/GO/TC and pure TC was evaluated by agar well diffusion and minimum inhibitory concentration (MIC) methods on both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. In addition, the cytotoxicity of NiFe2O4@MIL-101(Fe)/GO/TC on HeLa cells was determined by an MTT assay which showed good results. The structure of the prepared nanocarrier was investigated by various spectroscopic techniques such as Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA). The results of this study showed that 98% of the TC was loaded on the synthesized nanocomposite. Drug release occurred at pH: 7.4 (phosphate buffer saline) and pH: 5.0 (acetate buffer) within 3 days, resulting in 77% and 85% release of the drug, respectively.
Collapse
Affiliation(s)
- Fatemeh Shateran
- Department of Chemistry, Qom Branch, Islamic Azad University Qom I. R. Iran
| | | | | |
Collapse
|
30
|
Sanaei-Rad S, Ghasemzadeh MA, Aghaei SS. Synthesis and structure elucidation of ZnFe2O4/IRMOF-3/GO for the drug delivery of tetracycline and evaluation of their antibacterial activities. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Al Sharabati M, Sabouni R, Husseini GA. Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:277. [PMID: 35055294 PMCID: PMC8780624 DOI: 10.3390/nano12020277] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of porous hybrid organic-inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| |
Collapse
|
32
|
Ma Y, Qu X, Liu C, Xu Q, Tu K. Metal-Organic Frameworks and Their Composites Towards Biomedical Applications. Front Mol Biosci 2022; 8:805228. [PMID: 34993235 PMCID: PMC8724581 DOI: 10.3389/fmolb.2021.805228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to their unique features, including high cargo loading, biodegradability, and tailorability, metal–organic frameworks (MOFs) and their composites have attracted increasing attention in various fields. In this review, application strategies of MOFs and their composites in nanomedicine with emphasis on their functions are presented, from drug delivery, therapeutic agents for different diseases, and imaging contrast agents to sensor nanoreactors. Applications of MOF derivatives in nanomedicine are also introduced. Besides, we summarize different functionalities related to MOFs, which include targeting strategy, biomimetic modification, responsive moieties, and other functional decorations. Finally, challenges and prospects are highlighted about MOFs in future applications.
Collapse
Affiliation(s)
- Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xianglong Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Soltani S, Akhbari K. Embedding an extraordinary amount of gemifloxacin antibiotic in ZIF-8 framework with one-step synthesis and measurement of its H 2O 2-sensitive release and potency against infectious bacteria. NEW J CHEM 2022. [DOI: 10.1039/d2nj02981b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GEM@ZIF-8 has DLC = 69.82% and DLE = 89.03%, with controlled release dependent on H2O2 concentration, and it shows significant antibacterial activity.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, P.O. Box 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, P.O. Box 14155-6455, Iran
| |
Collapse
|
34
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
35
|
Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010100. [PMID: 35011330 PMCID: PMC8746597 DOI: 10.3390/molecules27010100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs' chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.
Collapse
|
36
|
Soni J, Sethiya A, Sahiba N, Joshi D, Agarwal S. Graphene Oxide as Metal-Free Catalyst in the Two-Component Reaction to Generate Some Novel Perimidines and Antimicrobial Evaluation. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2019803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Deepkumar Joshi
- Department of Chemistry, Sheth M.N. Science College, Patan, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
37
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
38
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Sanaei-Rad S, Ghasemzadeh MA, Razavian SMH. Synthesis of a novel ternary ZIF-8/GO/MgFe 2O 4 nanocomposite and its application in drug delivery. Sci Rep 2021; 11:18734. [PMID: 34548587 PMCID: PMC8455615 DOI: 10.1038/s41598-021-98133-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022] Open
Abstract
In recent year, metal-organic frameworks (MOFs) have been displayed to be a category of promising drug delivery systems because of their crystalline structure, the potential of further functionality, and high porosity. In this research, graphene oxide was synthesized from pure graphite via hummer method and then MgFe2O4 nanoparticles was incorporated into the synthesized ZIF-8 metal-organic frameworks which followed with loading on the surfaces of graphene oxide. In continue, tetracycline as an antibiotic drug was loaded on the surfaces and the cavities of the prepared nanocomposite. The outcomes of this research revealed that 90% of the tetracycline was loaded on the synthesized ZIF-8/GO/MgFe2O4 nanostructure. Next, drug release was done at pH: 5 and pH: 7.4 within 3 days, resulting about 88% and 92% release of the tetracycline, respectively. With using different spectroscopic methods like X-ray crystallography (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX/Mapping), Fourier transform infrared (FTIR), thermalgravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET), the structure of synthesized materials was confirmed. Furthermore, the antibiotic activity of tetracycline trapped into the ZIF-8/GO/MgFe2O4 was evaluated by agar-well diffusion method on both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, which showed good antibacterial results.
Collapse
Affiliation(s)
- Saleheh Sanaei-Rad
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| | | | | |
Collapse
|
40
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol 2021; 48:161-196. [PMID: 34432563 DOI: 10.1080/1040841x.2021.1950120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.
Collapse
Affiliation(s)
| | - Renata Carolina Alves
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | | | - Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| |
Collapse
|
42
|
Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Li X, Li B, Chen M, Yan M, Cao X, Yin J, Zhang Z. Preparation of magnetic zeolitic imidazolate framework-8 for magnetic solid-phase extraction of strobilurin fungicides from environmental water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2943-2950. [PMID: 34110334 DOI: 10.1039/d1ay00645b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, magnetic zeolitic imidazolate framework-8 composites were synthesized by a simple in situ method and then used for the first time as an adsorbent in magnetic solid-phase extraction for extracting multiple strobilurin fungicides. The magnetic composites were characterized in detail. The results showed that Fe3O4 nanoparticles were attached on the surface of zeolitic imidazolate framework-8 with a uniform particle size of 150-200 nm and that the magnetic composites possessed a perfect molecular transfer rate towards strobilurin fungicides. The parameters of the magnetic solid-phase extraction process, including solution pH, adsorption time, solution volume, elution solvent, and elution volume, were investigated. Under the optimum conditions, the recoveries of all five fungicides fell within the range 80.8-109.0% with spiking levels of 10, 20 and 50 ng mL-1. A magnetic solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry method based on the magnetic composites was established and confirmed to be simple, time-efficient and highly sensitive.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Bingzhi Li
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Min Chen
- Yantai Academy of Agricultural Sciences, Yantai, 265500, P. R. China
| | - Mengmeng Yan
- Institution of Quality Standard Testing Technology for Agro-Product, Shandong Academy of Agricultural Science, Jinan 250100, P. R. China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Jungang Yin
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
44
|
Liu Y, Zhou L, Dong Y, Wang R, Pan Y, Zhuang S, Liu D, Liu J. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem 2021; 12:915-928. [PMID: 34223159 PMCID: PMC8221260 DOI: 10.1039/d0md00416b] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
With increasing pathogenic bacterial infection that is occurring worldwide, antibacterial therapy has become an important research field. There is great antimicrobial potential in the nanomaterial-based metal-organic framework (MOF) platform because it is highly biocompatible, biodegradable, and nontoxic, and it is now widely used in the anticancer agent industry and in the production of medical products. This review summarizes the possible mechanisms of representative MOF-based nanomaterials, and recounts recent progress in the design and development of MOF-based antibacterial materials for the remedy of postoperative infection. The existing shortcomings and future perspectives of the rapidly growing field of antimicrobial therapy addressing patient quality of life issues are also briefly discussed. Because of their wide applicability, further studies on the use of different MOF antimicrobial therapies will be of great interest.
Collapse
Affiliation(s)
- Yiwei Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Luyi Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Dong
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Rui Wang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Pan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Shuze Zhuang
- Dongguan Sixth People's Hospital No. 216 Dongcheng West Road, Guancheng District Dongguan 523808 China
| | - Dong Liu
- Shenzhen Huachuang Biopharmaceutical Technology Co. Ltd. Shenzhen 518112 Guangdong China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| |
Collapse
|
45
|
Rivero PJ, Esparza J, San Martín R, Vitas AI, Fuentes GG, García JA, Rodríguez R. Antibacterial Activity of Photocatalytic Metal Oxide Thin Films Deposited by Layer-by-Layer Self-Assembly. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2855-2863. [PMID: 33653451 DOI: 10.1166/jnn.2021.19051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports the use of the Layer-by-Layer self-assembly (LbL) as an efficient technique for the fabrication of thin-films with antibacterial activity. The LbL coatings are composed of a positive polyelectrolyte such as Poly(allylamine hydrochloride) (PAH) and an anionic polyelectrolyte such as Poly(sodium 4-styrene sulfonate) solution (PSS). In addition, these polyelectrolytes can be also used as an adequate encapsulating agent of specific metal oxide precursors such as titanium dioxide (TiO₂) and iron oxide (Fe₂O₃) nanoparticles, making possible the fabrication of hybrid thin films composed of organic polymeric chains related to the polyelectrolytes and inorganic structure associated to the metal oxide nanoparticles. Four different LbL coatings have been fabricated and a comparative study about the resultant topographical, optical and wettability properties is presented by using light interferometry, atomic force microscopy (AFM), UV-Vis spectroscopy and water contact angle (WCA) measurements. In addition, X-ray fluorescence (XRF) has been also employed in order to corroborate the presence of metal oxide precursors inside the polymeric chains of the polyelectrolytes. Finally, the antibacterial tests have demonstrated that LbL coatings composed of metal oxide nanoparticles produce an enhancement in the efficacy and antibacterial activity.
Collapse
Affiliation(s)
- Pedro J Rivero
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006, Pamplona, Spain
| | - Joseba Esparza
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla-Pamplona, Spain
| | - Ricardo San Martín
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006, Pamplona, Spain
| | - Ana I Vitas
- Microbiology and Parasitology Department, University of Navarra, 31080 Pamplona, Spain
| | - Gonzalo G Fuentes
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla-Pamplona, Spain
| | - Jose A García
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006, Pamplona, Spain
| | - Rafael Rodríguez
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006, Pamplona, Spain
| |
Collapse
|
46
|
Ding YW, Jin L, Feng SL, Chen J. Core-shell magnetic zeolite imidazolate framework-8 as adsorbent for magnetic solid phase extraction of brucine and strychnine from human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122702. [PMID: 33910140 DOI: 10.1016/j.jchromb.2021.122702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/21/2023]
Abstract
Core-shell magnetic zeolite imidazolate framework-8 (Fe3O4@PAA@ZIF-8) was successfully synthesized and first employed as adsorbent of magnetic solid-phase extraction (MSPE) for the determination of brucine and strychnine in human urine sample coupled with high performance liquid chromatography. The as-prepared Fe3O4@PAA@ZIF-8 was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, X-ray diffraction, vibrating sample magnetometer and zeta potential analysis. Main parameters affecting the MSPE efficiency, including amount of adsorbent, sample solution pH, extraction time, ionic strength, desorption solvent, desorption time and desorption volume were further optimized. Under the optimized conditions, the proposed method provided good linearity (5.0-1000.0 μg L-1) with determination coefficients between 1.0000 and 0.9998, low limits of detection in the range of 1.1-1.2 μg L-1, and excellent reproducibility with relative standard deviations of less than 7.7%. The intra-day and inter-day precision were 1.5-3.2% and 2.1-7.2%, respectively. Satisfactory spiked recoveries were between97.2% and 115.4% with the relative standard deviations less than 6.3%. The results demonstrated that Fe3O4@PAA@ZIF-8 composite was a promising magnetic adsorbent for the preconcentration of brucine and strychnine in human urine sample.
Collapse
Affiliation(s)
- Ya-Wen Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shi-Lan Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
47
|
Adsorption of phenol on environmentally friendly Fe3O4/ chitosan/ zeolitic imidazolate framework-8 nanocomposite: Optimization by experimental design methodology. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Akbari M, Ghasemzadeh MA, Fadaeian M. Synthesis and Application of ZIF‐8 MOF Incorporated in a TiO
2
@Chitosan Nanocomposite as a Strong Nanocarrier for the Drug Delivery of Acyclovir. ChemistrySelect 2020. [DOI: 10.1002/slct.202003213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mahdiyeh Akbari
- Department of Chemistry, Qom Branch Islamic Azad University Qom, I. R. Iran Post Box: 37491–13191 I. R. Iran
| | - Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom Branch Islamic Azad University Qom, I. R. Iran Post Box: 37491–13191 I. R. Iran
| | - Manoochehr Fadaeian
- Department of Chemistry, Qom Branch Islamic Azad University Qom, I. R. Iran Post Box: 37491–13191 I. R. Iran
| |
Collapse
|
49
|
Ghasemzadeh MA, Bakhshali‐Dehkordi R. Novel and Green Preparation of Fe
3
O
4
@TiO
2
‐Immobilized‐ILs Based on DABCO for Highly Efficient Synthesis of Primido[4,5‐d]pyrimidines. ChemistrySelect 2020. [DOI: 10.1002/slct.202002085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom BranchIslamic Azad University Qom, Iran Post Box: 37491–13191 I. R. Iran
| | | |
Collapse
|
50
|
Bakhshali‐Dehkordi R, Ghasemzadeh MA, Safaei‐Ghomi J. Preparation and characterization of a novel DABCO‐based ionic liquid supported on Fe
3
O
4
@TiO
2
nanoparticles and investigation of its catalytic activity in the synthesis of quinazolinones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Javad Safaei‐Ghomi
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan Kashan Iran
| |
Collapse
|