1
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Ibrahim MK, Liu CD, Zhang L, Yu X, Kim ES, Liu Z, Jo S, Liu Y, Huang Y, Gao SJ, Guo H. The loss of hepatitis B virus receptor NTCP/SLC10A1 in human liver cancer cells is due to epigenetic silencing. J Virol 2024; 98:e0118724. [PMID: 39297647 PMCID: PMC11495020 DOI: 10.1128/jvi.01187-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs). Firstly, we observed a significant reduction of hNTCP in HCC tumors compared to adjacent and normal tissues. Additionally, hNTCP mRNA levels were markedly lower in HepG2 cells compared to PHHs, which was corroborated at the protein level by immunoblotting. Sanger sequencing confirmed identical sequences for hNTCP promoter, exons, and mRNA coding sequences between PHH and HepG2 cells, indicating no mutations or splicing alterations. We then assessed the epigenetic status of hNTCP. The hNTCP promoter, with low CG content, showed no significant methylation differences between PHH and HepG2 cells. Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) revealed a loss of activating histone posttranslational modification (PTM) H3K27ac near the hNTCP transcription start site (TSS) in HepG2 cells. This loss was also confirmed in HCC tumor cells compared to adjacent and background cells. Treating HepG2 cells with histone deacetylase inhibitors enhanced H3K27ac accumulation and glucocorticoid receptor (GR) binding at the hNTCP TSS, significantly increasing hNTCP mRNA and protein levels, and rendering the cells susceptible to HBV infection. In summary, histone PTM-related epigenetic mechanisms play a critical role in hNTCP dysregulation in liver cancer cells, providing insights into hepatocarcinogenesis and its impact on chronic HBV infection. IMPORTANCE HBV is a hepatotropic virus that infects human hepatocytes expressing the viral receptor hNTCP. Without effective antiviral therapy, chronic HBV infection poses a high risk of liver cancer. However, most liver cancer cell lines, including HepG2 and Huh7, do not support HBV infection due to the absence of hNTCP expression, and the mechanism underlying this defect remains unclear. This study demonstrates a significant reduction of hNTCP in hepatocellular carcinoma samples and HepG2 cells compared to normal liver tissues and primary human hepatocytes. Despite identical hNTCP genetic sequences, epigenetic analyses revealed a loss of the activating histone modification H3K27ac near the hNTCP transcription start site in cancer cells. Treatment with histone deacetylase inhibitors restored H3K27ac levels, reactivated hNTCP expression, and rendered HepG2 cells susceptible to HBV infection. These findings highlight the role of epigenetic modulation in hNTCP dysregulation, offering insights into hepatocarcinogenesis and its implications for chronic HBV infection.
Collapse
MESH Headings
- Humans
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/genetics
- Symporters/metabolism
- Hepatitis B virus/genetics
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Hep G2 Cells
- Liver Neoplasms/virology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Epigenesis, Genetic
- Promoter Regions, Genetic
- Hepatocytes/virology
- Hepatocytes/metabolism
- DNA Methylation
- Histones/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Hepatitis B/virology
- Hepatitis B/genetics
- Hepatitis B/metabolism
Collapse
Affiliation(s)
- Marwa K. Ibrahim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheng-Der Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Liyong Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyang Yu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elena S. Kim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Sumin Jo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Yuanjie Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Guo Y, Zhang H, Zhao N, Peng Y, Shen D, Chen Y, Zhang X, Tang CE, Chai J. STING-mediated IL-6 Inhibits OATP1B1 Expression via the TCF4 Signaling Pathway in Cholestasis. J Clin Transl Hepatol 2024; 12:701-712. [PMID: 39130625 PMCID: PMC11310758 DOI: 10.14218/jcth.2024.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND AIMS Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels in cholestatic disease. However, it remains unclear whether IL-6 inhibits OATP1B1 expression in cholestatic diseases. This study aimed to investigate whether IL-6 can inhibit OATP1B1 expression and explore the underlying mechanisms. METHODS The effect of stimulator of interferon genes (STING) signaling on inflammatory factors was investigated in a cholestatic mouse model using RT-qPCR and enzyme-linked immunosorbent assay. To assess the impact of inflammatory factors on OATP1B1 expression in hepatocellular carcinoma, we analyzed OATP1B1 expression by RT-qPCR and Western Blot after treating PLC/PRF/5 cells with TNF-α, IL-1β, and IL-6. To elucidate the mechanism by which IL-6 inhibits OATP1B1 expression, we examined the expression of the OATP1B1 regulator TCF4 in PLC/PRF/5 and HepG2 cells using RT-qPCR and Western Blot. The interaction mechanism between β-catenin/TCF4 and OATP1B1 was investigated by knocking down β-catenin/TCF4 through siRNA transfection. RESULTS The STING inhibitor decreased inflammatory factor levels in the cholestatic mouse model, with IL-6 exhibiting the most potent inhibitory effect on OATP1B1. IL-6 downregulated β-catenin/TCF4, leading to decreased OATP1B1 expression. Knocking-down β-catenin/TCF4 counteracted the β-catenin/TCF4-mediated repression of OATP1B1. CONCLUSIONS STING-mediated IL-6 up-regulation may inhibit OATP1B1, leading to reduced transport of bile acids and bilirubin by OATP1B1. This may contribute to altered pharmacokinetics in patients with diseases associated with increased IL-6 production.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjia Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongya Shen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Can-E Tang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Li YP, Liu CR, He L, Dang SS. Hepatitis B cure: Current situation and prospects. World J Hepatol 2024; 16:900-911. [PMID: 38948438 PMCID: PMC11212658 DOI: 10.4254/wjh.v16.i6.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ling He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
7
|
Guan G, Abulaiti A, Qu C, Chen CC, Gu Z, Yang J, Zhang T, Chen X, Zhou Z, Lu F, Chen X. Multi-omics panoramic analysis of HBV integration, transcriptional regulation, and epigenetic modifications in PLC/PRF/5 cell line. J Med Virol 2024; 96:e29614. [PMID: 38647071 DOI: 10.1002/jmv.29614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The clearance or transcriptional silencing of integrated HBV DNA is crucial for achieving a functional cure in patients with chronic hepatitis B and reducing the risk of hepatocellular carcinoma development. The PLC/PRF/5 cell line is commonly used as an in vitro model for studying HBV integration. In this study, we employed a range of multi-omics techniques to gain a panoramic understanding of the characteristics of HBV integration in PLC/PRF/5 cells and to reveal the transcriptional regulatory mechanisms of integrated HBV DNA. Transcriptome long-read sequencing (ONT) was conducted to analyze and characterize the transcriptional activity of different HBV DNA integration sites in PLC/PRF/5 cells. Additionally, we collected data related to epigenetic regulation, including whole-genome bisulfite sequencing (WGBS), histone chromatin immunoprecipitation sequencing (ChIP-seq), and assays for transposase-accessible chromatin using sequencing (ATAC-seq), to explore the potential mechanisms involved in the transcriptional regulation of integrated HBV DNA. Long-read RNA sequencing analysis revealed significant transcriptional differences at various integration sites in the PLC/PRF/5 cell line, with higher HBV DNA transcription levels at integration sites on chr11, chr13, and the chr13/chr5 fusion chromosome t (13:5). Combining long-read DNA and RNA sequencing results, we found that transcription of integrated HBV DNA generally starts downstream of the SP1, SP2, or XP promoters. ATAC-seq data confirmed that chromatin accessibility has limited influence on the transcription of integrated HBV DNA in the PLC/PRF/5 cell line. Analysis of WGBS data showed that the methylation intensity of integrated HBV DNA was highly negatively correlated with its transcription level (r = -0.8929, p = 0.0123). After AzaD treatment, the transcription level of integrated HBV DNA significantly increased, especially for the integration chr17, which had the highest level of methylation. Through ChIP-seq data, we observed the association between histone modification of H3K4me3 and H3K9me3 with the transcription of integrated HBV DNA. Our findings suggest that the SP1, SP2 and XP in integrated HBV DNA, methylation level of surrounding host chromosome, and histone modifications affect the transcription of integrated HBV DNA in PLC/PRF/5 cells. This provides important clues for future studies on the expression and regulatory mechanisms of integrated HBV.
Collapse
Affiliation(s)
- Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Abudurexiti Abulaiti
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenxiao Qu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chia-Chen Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- National Heart and Lung Institute Faculty of Medicine (NHLI), Imperial College London, London, UK
| | - Zhiqiang Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Zhao Zhou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Wang L, Lu C, Zhang Y, Liang Q, Zhang J. Association of chronic hepatitis B infection with hepatic steatosis and injury in nonalcoholic fatty liver disease children. BMC Gastroenterol 2024; 24:2. [PMID: 38166674 PMCID: PMC10759402 DOI: 10.1186/s12876-023-03103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The influence of chronic hepatitis B infection (CBI) on hepatic steatosis, necroinflammation, and fibrosis in nonalcoholic fatty liver disease (NAFLD) population was unclear. We aimed to investigate the effect of CBI on hepatic steatosis and assess the association between NAFLD co-existed CBI and hepatic injury in NAFLD pediatric population. METHODS Consecutive hospitalized children with biopsy-proven NAFLD with or without CBI were included. Hepatic steatosis, necroinflammation and fibrosis were evaluated by NASH CRN system and/or METAVIR scoring system, appropriately. Using multivariate logistic analysis, we identified variables associated with hepatic steatosis and liver injury. RESULTS Of 223 biopsy-proven NAFLD children, 161 were NAFLD without CBI, and 62 were NAFLD co-existed CBI. Grouped by mild, moderate and severe hepatic steatosis, there was an inverse association between CBI and the severity of hepatic steatosis [odd ratio (OR) 0.037, 95% confidence interval (CI) 0.014-0.098]. In addition, we explored the relationship between CBI and hepatic necroinflammation and fibrosis in NAFLD children. Hepatic necroinflammation and fibrosis, respectively, were divided into two groups according to severity. And CBI was positively associated with hepatic necroinflammation (OR 6.125, 95%CI 1.958-19.158). However, there was no statistically independent association between CBI and significant hepatic fibrosis. CONCLUSIONS CBI was inverse associated with the grade of steatosis and positively associated with severe hepatic necroinflammation, and does not appear to affect significant hepatic fibrosis in pediatric NAFLD children.
Collapse
Affiliation(s)
- Lu Wang
- Department of Laboratory Medicine, Peking University International Hospital, Zhongguancun Life and Science Street NO.1, 102206, Beijing, People's Republic of China
| | - Chang Lu
- Department of Laboratory Medicine, Peking University International Hospital, Zhongguancun Life and Science Street NO.1, 102206, Beijing, People's Republic of China
| | - Yuncong Zhang
- Department of Laboratory Medicine, Peking University International Hospital, Zhongguancun Life and Science Street NO.1, 102206, Beijing, People's Republic of China
| | - Qingsheng Liang
- Center of Non-Infectious Liver Disease, the 5Th Medical Centre, Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Jie Zhang
- Department of Laboratory Medicine, Peking University International Hospital, Zhongguancun Life and Science Street NO.1, 102206, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Shi J, Wang X, Qi W, Wang S, Fu Y, Zhang Y, Zhang Q, Han L, Xu Y, Duan H, Liu J, Cong X, Zhou C, Zhao P, Wang J. Association between NTCP hepatic expression and inflammation/fibrosis as well as gender-specific differences in chronic HBV-infected patients. J Med Virol 2024; 96:e29428. [PMID: 38258306 DOI: 10.1002/jmv.29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.
Collapse
Affiliation(s)
- Jingyi Shi
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenqian Qi
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Song Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yao Fu
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yonggui Zhang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Zhang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanhui Xu
- Department of Gastroenterology and Hepatology, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou, China
| | - Honglei Duan
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changyu Zhou
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Zhao
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiangbin Wang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Nemteanu R, Clim A, Hincu CE, Gheorghe L, Ciortescu I, Plesa A. Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet? Curr Issues Mol Biol 2023; 45:7878-7890. [PMID: 37886941 PMCID: PMC10605217 DOI: 10.3390/cimb45100498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Chronic delta hepatitis is a global health problem. Although a smaller percentage of chronic HBV-infected patients are coinfected with the hepatitis delta virus, these patients have a higher risk of an accelerated progression to fulminant "delta hepatitis", cirrhosis, hepatic decompensation, and hepatocellular carcinoma, putting a financial strain on the healthcare system and increasing the need for a liver transplant. Since its discovery, tremendous efforts have been directed toward understanding the intricate pathogenic mechanisms, discovering the complex viral replication process, the essential replicative intermediates, and cell division-mediated viral spread, which enables virion viability. The consideration of the interaction between HBV and HDV is crucial in the process of developing novel pharmaceuticals. Until just recently, interferon-based therapy was the only treatment available worldwide. This review aims to present the recent advancements in understanding the life cycle of HDV, which have consequently facilitated the development of innovative drug classes. Additionally, we will examine the antiviral strategies currently in phases II and III of development, including bulevirtide (an entry inhibitor), lonafarnib (a prenylation inhibitor), and REP 2139 (an HBsAg release inhibitor).
Collapse
Affiliation(s)
- Roxana Nemteanu
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
| | - Corina Elena Hincu
- Department of Radiology, “Sfantul Spiridon” Hospital, 700111 Iasi, Romania;
| | - Liliana Gheorghe
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Department of Radiology, “Sfantul Spiridon” Hospital, 700111 Iasi, Romania;
| | - Irina Ciortescu
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alina Plesa
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
12
|
Liu Y, Cafiero TR, Park D, Biswas A, Winer BY, Cho CH, Bram Y, Chandar V, Connell AKO, Gertje HP, Crossland N, Schwartz RE, Ploss A. Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells. Nat Commun 2023; 14:3582. [PMID: 37328459 PMCID: PMC10276007 DOI: 10.1038/s41467-023-39148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection. Primary marmoset hepatocytes and induced pluripotent stem cell-derived hepatocyte-like cells support HBV and more efficient woolly monkey HBV (WMHBV) infection. Adapted chimeric HBV genome harboring residues 1-48 of WMHBV preS1 generated here led to a more efficient infection than wild-type HBV in primary and stem cell derived marmoset hepatocytes. Collectively, our data demonstrate that minimal targeted simianization of HBV can break the species barrier in small NHPs, paving the path for an HBV primate model.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Debby Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aoife K O' Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Nicholas Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
13
|
Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol 2023; 14:1169770. [PMID: 37089540 PMCID: PMC10113554 DOI: 10.3389/fmicb.2023.1169770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) and hepatitis D virus (HDV) can cause a major global health burden. Current medication regimens can repress viral replication and help to control disease progression, but a complete cure is hardly achieved due to the difficulties to eradicate viral templates (cccDNA and integrates). To develop novel curative antiviral therapies for HBV/HDV infection, it is vital to precisely understand the details of the molecular biology of both viruses and the virus-host interactions. One important prerequisite for gaining this aim is the availability of suitable in vitro models that support HBV/HDV infection, replicate both viruses via their authentic template and allow to adequately study host cell responses. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) receptor as the most crucial host factor promoted HBV/HDV research to a new era. Recently, the structure of human NTCP was solved, gaining a deeper understanding of HBV recognition as the bona fide receptor. After decades of continuous efforts, new progress has been achieved in the development of cell culture models supporting HBV/HDV study. This review summarizes the cell culture models currently available, discusses the advantages and disadvantages of each model, and highlights their future applications in HBV and HDV research.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| |
Collapse
|
14
|
Saran C, Ho H, Honkakoski P, Brouwer KLR. Effect of mTOR inhibitors on sodium taurocholate cotransporting polypeptide (NTCP) function in vitro. Front Pharmacol 2023; 14:1147495. [PMID: 37033614 PMCID: PMC10073475 DOI: 10.3389/fphar.2023.1147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
The sodium taurocholate cotransporting polypeptide (NTCP; gene name SLC10A1) is the primary hepatic basolateral uptake transporter for conjugated bile acids and the entry receptor for the hepatitis B and D virus (HBV/HDV). Regulation of human NTCP remains a knowledge gap due to significant species differences in substrate and inhibitor selectivity and plasma membrane expression. In the present study, various kinase inhibitors were screened for inhibition of NTCP function and taurocholate (TCA) uptake using NTCP-transfected HuH-7 cells. This study identified everolimus, an mTOR inhibitor and macrocyclic immunosuppressive drug, as an NTCP inhibitor with modest potency (IC50 = 6.7-8.0 µM). Further investigation in differentiated HuH-7 cells expressing NTCP and NTCP-overexpressing Flp-In T-REx 293 cells revealed that the mechanism of action of everolimus on NTCP is direct inhibition and mTOR-independent. Structural analogs of everolimus inhibited NTCP-mediated TCA uptake, however, functional analogs did not affect NTCP-mediated TCA transport, providing further evidence for direct inhibition. This work contributes to the growing body of literature suggesting that NTCP-mediated bile acid uptake may be inhibited by macrocyclic peptides, which may be further exploited to develop novel medications against HBV/HDV.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Yu T, Zhang M, Zhang H, Zheng J, Shen C, Jiang N, Zou L, Wang J, Yu Y, Zhang Q, Yu S, Huang Y, Huang Y, Zhang J, Qiu C, Zhang W, Meng Z. Evidence of Residual Ongoing Viral Replication in Chronic Hepatitis B Patients Successfully Treated With Nucleos(t)ide Analogues. J Infect Dis 2023; 227:675-685. [PMID: 36546708 DOI: 10.1093/infdis/jiac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved, even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in patients successfully treated with NAs. METHODS A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from patients successfully treated with NAs. Viral variants in serum HBV RNA were enumerated by deep sequencing. Viral replication intermediates in hepatocytes were directly visualized by in situ hybridization. The apparent half-life of each cccDNA was estimated. RESULTS Three of 6 successfully treated patients demonstrated clear evidence of a small proportion of virus evolution, although the overwhelming proportion of variants were identical or possessed a similar degree of divergence through time. The apparent half-life of variants was estimated to be from approximately 7.42 weeks to infinite. Hepatocytes remained positive for cytoplasmic nucleocapsids-associated relaxed circular DNA in 4 of 7 liver needle biopsies. CONCLUSIONS We conclude that even after prolonged treatment, a small proportion of the cccDNA reservoir is constantly replenished by continued low-level HBV replication, whereas a large proportion of the cccDNA reservoir persists over time.
Collapse
Affiliation(s)
- Tong Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Miaoqu Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Hanyue Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan Shen
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- Clinical Research Center for Infectious Disease of Hebei Province, Shijiazhuang, China
| | - Ning Jiang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zou
- Department of Infectious Disease, Yancheng Second People's Hospital, Yancheng, China
| | - Jing Wang
- Department of Infectious Disease, Jingan District Central Hospital of Shanghai, Shanghai, China
| | - Yiqi Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Qiran Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Shuili Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfang Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhefeng Meng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Lu Z, Wang L. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antiviral Res 2023; 212:105558. [PMID: 36806814 PMCID: PMC9938000 DOI: 10.1016/j.antiviral.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. CDK4/6 inhibitor palbociclib was reported to be one of the top-scored repurposed drugs to treat COVID-19. As the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry, expression level of angiotensin-converting enzyme 2 (ACE2) is closely related to SARS-CoV-2 infection. In this study, we demonstrated that palbociclib and other methods could arrest cells in G0/G1 phase and up-regulate ACE2 mRNA and protein levels without altering its subcellular localization. Palbociclib inhibited ubiquitin-proteasome and lysosomal degradation of ACE2 through down-regulating S-phase kinase-associated protein 2 (SKP2). In addition, increased ACE2 expression induced by palbociclib and other cell cycle arresting compounds facilitated pseudotyped SARS-CoV-2 infection. This study suggested that ACE2 expression was down-regulated in proliferating cells. Cell cycle arresting compounds could increase ACE2 expression and facilitate SARS-CoV-2 cell entry, which may not be suitable therapeutic agents for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China.
| |
Collapse
|
17
|
Xie C, Wang S, Zhang H, Zhu Y, Jiang P, Shi S, Si Y, Chen J. Lnc-AIFM2-1 promotes HBV immune escape by acting as a ceRNA for miR-330-3p to regulate CD244 expression. Front Immunol 2023; 14:1121795. [PMID: 36845111 PMCID: PMC9946971 DOI: 10.3389/fimmu.2023.1121795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) immune escape is regulated by the exhaustion of virus-specific CD8+ T cells, which is associated with abnormal expression of negative regulatory molecule CD244. However, the underlying mechanisms are unclear. To investigate the important roles of non-coding RNAs play in CD244 regulating HBV immune escape, we performed microarray analysis to determine the differential expression profiles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with CHB and patients with spontaneous clearance of HBV. Competing endogenous RNA (ceRNA) was analyzed by bioinformatics methods and confirmed by the dual-luciferase reporter assay. Furthermore, gene silencing and overexpression experiments were used to further identify the roles of lncRNA and miRNA in HBV immune escape through CD244 regulation. The results showed that the expression of CD244 on the surface of CD8+ T cells was significantly increased in CHB patients and in the co-culture system of T cells and HBV-infected HepAD38 cells, which was accompanied by the reduction of miR-330-3p and the elevation of lnc-AIFM2-1. The down-regulated miR-330-3p induced the apoptosis of T cells by lifting the inhibition of CD244, which was reversed by miR-330-3p mimic or CD244-siRNA. Lnc-AIFM2-1 promotes the accumulation of CD244, which is mediated by decreased miR-330-3p, and then reduced the clearance ability of CD8+ T cells to HBV through regulated CD244 expression. And the injury in the ability of CD8+ T cells to clear HBV can be reversed by lnc-AIFM2-1-siRNA, miR-330-3p mimic, or CD244-siRNA. Collectively, our findings indicate that lnc-AIFM2-1 on CD244 by acting as a ceRNA of miR-330-3p contributes to HBV immune escape, which may provide novel insights into the roles of interaction networks among lncRNA, miRNA, and mRNA in HBV immune escape, highlighting potential applications of lnc-AIFM2-1 and CD244 for diagnosis and treatment in CHB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Liu Y, Wu Y, Jiang X, Chen B, Lu J, Cai Z, Fu B, Zheng W, Wu R, Chen G, Tian S, Ren J. Apolipoprotein H induces sex-specific steatohepatitis and gut dysbiosis during chronic hepatitis B infection. iScience 2023; 26:106100. [PMID: 36852272 PMCID: PMC9958358 DOI: 10.1016/j.isci.2023.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Apolipoprotein H (APOH) is involved in lipid metabolism and functions as an acute-phase protein during hepatitis B virus (HBV) infection. Herein, we explored whether APOH acts on the development of fatty liver upon chronic HBV infection. Serum APOH level was significantly lower in cirrhosis patients than in healthy controls or patients with chronic infection. It showed sex bias, with elevated levels in female patients with chronic infection. Also, serum APOH levels were negatively correlated with HBV surface antigen (HBsAg) but positively correlated with albumin and triglyceride levels. In In vitro HBV infection model, HBV upregulated APOH expression in a non-temporal manner, and HBsAg levels were elevated by silencing APOH. RNA sequencing (RNA-seq) demonstrated bidirectional expression of APOH, which impacted the immunoregulation upon infection or the metabolic regulation in HepG2.2.15 cells. Then, ApoH -/- mice with persistent HBV replication displayed steatohepatitis and gut microbiota dysbiosis with synergistic sex differences. Our study deciphers the roles of APOH in chronic liver diseases.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Yangtao Wu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,National Institute of Diagnostic and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Xiaoming Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province 132001, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Jing Lu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Zexin Cai
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Baorong Fu
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,National Institute of Diagnostic and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, Fujian Province 361001, China
| | - Wei Zheng
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,Department of Pathology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province 132001, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Shulan Tian
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jianlin Ren
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, Fujian Province 361001, China,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province 361001, China,Corresponding author
| |
Collapse
|
19
|
Zahoor MA, Kuipery A, Mosa AI, Gehring AJ, Feld JJ. HepG2-NTCP Subclones Exhibiting High Susceptibility to Hepatitis B Virus Infection. Viruses 2022; 14:v14081800. [PMID: 36016422 PMCID: PMC9412438 DOI: 10.3390/v14081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adrian Kuipery
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander I. Mosa
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adam J. Gehring
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordan J. Feld
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Correspondence:
| |
Collapse
|
20
|
Salhab A, Amer J, Lu Y, Safadi R. Sodium +/taurocholate cotransporting polypeptide as target therapy for liver fibrosis. Gut 2022; 71:1373-1385. [PMID: 34266968 PMCID: PMC9185811 DOI: 10.1136/gutjnl-2020-323345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Sodium+/ taurocholate cotransporting polypeptide (NTCP) is a membrane transporter affecting the enterohepatic circulation of bile acids (BAs). We aimed to evaluate NTCP's roles in humans and animal models of liver fibrosis (LF). DESIGN Primary hepatic stellate cells (pHSCs) isolated from livers biopsies of patients with LF with different fibrosis grading were stained for NTCP. NTCP gene silencing, taurocholic acid (TCA), obeticholic acid (OCA), epigallocatechin gallate (EGCG) and HA-100 dihydrochloride (HA-100) were used as tools to modulate NTCP expression on human HSC line (LX2). BA trafficking/uptake were assessed extracellularly (LX2 culture medium) and intracellularly following treatment with/without NTCP neutralizing antibody. LF models of C57/BL6 mice of carbon tetrachloride (CCl4) and leptin-deficient (Ob/Ob) fed with high-fat diet (Ob/Ob HFD ) were evaluated for pHSCs-NTCP expressions, metabolic and LF profiles following intraperitoneal injections of NTCP neutralizing antibody. RESULTS pHSCs from F3/F4-scored patients of LF exhibit threefold increased NTCP expressions compared with F0-scored patients (p<0.0001). Sorted-activated HSCs (LX2αSMA+) showed high expressions of NTCP and high TCA uptake in vitro and triggered a further increase in their activations. This phenomenon was inhibited with NTCP small interfering RNA and the NTCP neutralizing antibody. Sorted LX2NTCP+ (high alpha smooth muscle actin (αSMA)/high NTCP) cells showed high phosphorylated pathways of AKT/mTOR and protein kinase C (PKC) accompanied with a decrease in farnesoid X receptor expression. Moreover, LX2NTCP+ cells treated with EGCG, OCA and PKC inhibitor HA-100 significantly decreased NTCP and αSMA. NTCP neutralizing antibody inhibited NTCP (less TCA uptake); it attenuated LF in both CCl4 and Ob/Ob HFD animal models with ameliorated metabolic profile. CONCLUSION NTCP expression is linearly correlated with fibrosis severity. Modulated BA trafficking could be an important step in LF pathogenesis. Antagonising BA uptake may suggest a therapeutic strategy for preventing disease progression.
Collapse
Affiliation(s)
- Ahmad Salhab
- Liver Unit, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Johnny Amer
- Liver Unit, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Rifaat Safadi
- Liver Unit, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
21
|
Sasikumar S, Boden A, Chameettachal S, Cipolla L, Cromer B, Kingshott P, Pati F. Galactose Tethered Decellularized Liver Matrix: Toward a Biomimetic and Biofunctional Matrix for Liver Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:3023-3037. [PMID: 35548974 DOI: 10.1021/acsabm.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major challenge in liver tissue engineering is the replication of the microenvironment and microarchitecture of the liver tissue at the nanoscale. Decellularized liver matrix (DLM) provides an ideal material for scaffold preparation, as it retains the relevant structural and biochemical composition. However, the loss of bioactive factors during decellularization needs to be taken into account when using DLM and should be supplemented accordingly for an expected outcome. This study reports on the modification of DLM by the addition of galactose residues using a two-step thiol-ene-mediated photoclick chemistry for the coupling of galactose moieties to the DLM. Modification with galactose enhanced the function of hepatocytes and provides many advantages over currently used DLM and DLM-based materials. The galactose modified DLM enhanced the initial HepG2 cell adhesion to the substrate with changes in dynamics over time such as spheroid formation and further migration on the matrix. Our observation is that the galactose ligand decoration can also enhance the liver-specific metabolism of HepG2 compared to unmodified DLM. Galactosylated DLM also showed a better establishment of cellular polarity which also contributes to the function of HepG2 cells. Together our results demonstrate the advantages of adding galactose residues to currently available biomaterials, which makes this approach an attractive method for ECM-based liver tissue engineering.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| |
Collapse
|
22
|
Research Progress on the Mechanism of Persistent Low-Level HBsAg Expression in the Serum of Patients with Chronic HBV Infection. J Immunol Res 2022; 2022:1372705. [PMID: 35465353 PMCID: PMC9020929 DOI: 10.1155/2022/1372705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Among HBV-infected persons, there is a group of people with hepatitis B surface antigen (HBsAg) showing persistently low levels of expression. The production of low-level HBsAg does not mean a good outcome of chronic HBV infection. Patients still have virus replication and sustained liver damage, and they have the potential to transmit the infection. This risk poses a challenge to clinical diagnosis and blood transfusion safety and is a major concern of experts. However, the mechanism behind persistent low-level HBsAg expression in serum is not completely clear, and complete virus clearance by the host is vital. In this review, we summarize the research progress on the mechanism behind low-level expression of HBsAg in patients with chronic HBV infection in recent years.
Collapse
|
23
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
24
|
He C, He HY, Sun CF, Ojha SC, Wang H, Deng CL, Sheng YJ. The relationship between NTCP gene varieties and the progress of liver disease after HBV infection: an updated systematic review and meta-analysis. Am J Med Sci 2022; 364:207-219. [DOI: 10.1016/j.amjms.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 06/22/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
25
|
Tricot T, Thibaut HJ, Abbasi K, Boon R, Helsen N, Kumar M, Neyts J, Verfaillie C. Metabolically Improved Stem Cell Derived Hepatocyte-Like Cells Support HBV Life Cycle and Are a Promising Tool for HBV Studies and Antiviral Drug Screenings. Biomedicines 2022; 10:biomedicines10020268. [PMID: 35203482 PMCID: PMC8869365 DOI: 10.3390/biomedicines10020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
More than 300 million people worldwide are diagnosed with a chronic hepatitis B virus (HBV) infection. Nucleos(t)ide viral polymerase inhibitors are available on the market and can efficiently treat patients with chronic HBV. However, life-long treatment is needed as covalently closed circular DNA (cccDNA) persists in the hepatocyte nucleus. Hence, there is a high demand for novel therapeutics that can eliminate cccDNA from the hepatocyte nucleus and cure chronically infected HBV patients. The gold standard for in vitro HBV studies is primary human hepatocytes (PHHs). However, alternatives are needed due to donor organ shortage and high batch-to-batch variability. Therefore, human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are being explored as an in vitro HBV infection model. We recently generated hPSC lines that overexpress three transcription factors (HC3x) and that, upon differentiation in a high amino-acid supplemented maturation medium, generate a more mature hepatocyte progeny (HC3x-AA-HLCs). Here, we demonstrate that HBV can efficiently infect these HC3x-AA-HLCs, as was shown by the presence of HBV core (HBc) and surface antigens. A clear increasing release of HBV surface and e antigens was detected, indicating the formation of functional cccDNA. Moreover, back-titration of culture supernatant of HBV-infected HC3x-AA-HLCs on HepG2-NTCP cells revealed the production of novel infectious HBV particles. Additionally, an increasing number of HBc-positive HC3x-AA-HLCs over time suggests viral spreading is occurring. Finally, the HC3x-AA-HLC model was validated for use in antiviral drug studies using the nucleoside reverse-transcriptase inhibitor, lamivudine, and the HBV entry inhibitor, Myrcludex B.
Collapse
Affiliation(s)
- Tine Tricot
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| | - Hendrik Jan Thibaut
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
- Department of Microbiology, Immunology and Transplantation, Translational Platform Virology and Chemotherapy (TPVC), Rega Institute KU Leuven, 3000 Leuven, Belgium
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| | - Kayvan Abbasi
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
| | - Ruben Boon
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Laboratory for Functional Epigenetics, Department of Human Genetics, Rega Institute KU Leuven, 3000 Leuven, Belgium
| | - Nicky Helsen
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Ismar Healthcare NV, 2500 Lier, Belgium
| | - Manoj Kumar
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
| | - Catherine Verfaillie
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| |
Collapse
|
26
|
Entry Inhibitors of Hepatitis B and D Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:199-205. [DOI: 10.1007/978-981-16-8702-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
28
|
Zhang Q, Cai DC, Hu P, Ren H. Low-level viremia in nucleoside analog-treated chronic hepatitis B patients. Chin Med J (Engl) 2021; 134:2810-2817. [PMID: 34759219 PMCID: PMC8668013 DOI: 10.1097/cm9.0000000000001793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Low-level viremia (LLV) was defined as persistent or intermittent episodes of detectable hepatitis B virus (HBV) DNA (<2000 IU/mL, detection limit of 10 IU/mL) after 48 weeks of antiviral treatment. Effective antiviral therapies for chronic hepatitis B (CHB) patients, such as entecavir (ETV), tenofovir disoproxil fumarate (TDF), and tenofovir alafenamide (TAF), have been shown to inhibit the replication of HBV DNA and prevent liver-related complications. However, even with long-term antiviral therapy, there are still a number of patients with persistent or intermittent LLV. At present, the research on LLV to address whether adversely affect the clinical outcome is limited, and the follow-up treatment for these patients is open to question. At the same time, the mechanism of LLV is not clear. In this review, we summarize the incidence of LLV, the association between LLV and long-term outcomes, possible mechanisms, and management strategies in these patient populations.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, China
| | - Da-Chuan Cai
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
29
|
Lo Nigro A, Gallo A, Bulati M, Vitale G, Paini DS, Pampalone M, Galvagno D, Conaldi PG, Miceli V. Amnion-Derived Mesenchymal Stromal/Stem Cell Paracrine Signals Potentiate Human Liver Organoid Differentiation: Translational Implications for Liver Regeneration. Front Med (Lausanne) 2021; 8:746298. [PMID: 34631757 PMCID: PMC8494784 DOI: 10.3389/fmed.2021.746298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
The prevalence of end-stage liver diseases has reached very high levels globally. The election treatment for affected patients is orthotopic liver transplantation, which is a very complex procedure, and due to the limited number of suitable organ donors, considerable research is being done on alternative therapeutic options. For instance, the use of cell therapy, such as the transplantation of hepatocytes to promote liver repair/regeneration, has been explored, but standardized protocols to produce suitable human hepatocytes are still limited. On the other hand, liver progenitor and multipotent stem cells offer potential cell sources that could be used clinically. Different studies have reported regarding the therapeutic effects of transplanted mesenchymal stromal/stem cells (MSCs) on end-stage liver diseases. Moreover, it has been shown that delivery of MSC-derived conditioned medium (MSC-CM) can reduce cell death and enhance liver proliferation in fulminant hepatic failure. Therefore, it is believed that MSC-CM contains many factors that probably support liver regeneration. In our work, we used an in vitro model of human liver organoids to study if the paracrine components secreted by human amnion-derived MSCs (hAMSCs) affected liver stem/progenitor cell differentiation. In particular, we differentiated liver organoids derived from bipotent EpCAM+ human liver cells and tested the effects of hAMSC secretome, derived from both two-dimensional (2D) and three-dimensional (3D) hAMSC cultures, on that model. Our analysis showed that conditioned medium (CM) produced by 3D hAMSCs was able to induce an over-expression of mature hepatocyte markers, such as ALB, NTCP, and CYP3A4, compared with both 2D hAMSC cultures and the conventional differentiation medium (DM). These data were confirmed by the over-production of ALB protein and over-activity of CYP3A4 observed in organoids grown in 3D hAMSC-CM. Liver repair dysfunction plays a role in the development of liver diseases, and effective repair likely requires the normal functioning of liver stem/progenitor cells. Herein, we showed that hAMSC-CM produced mainly by 3D cultures had the potential to increase hepatic stem/progenitor cell differentiation, demonstrating that soluble factors secreted by those cells are potentially responsible for the reaction. This work shows a potential approach to improve liver repair/regeneration also in a transplantation setting.
Collapse
Affiliation(s)
| | - Alessia Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | | | - Mariangela Pampalone
- Ri.MED Foundation, Palermo, Italy
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Vitale Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| |
Collapse
|
30
|
Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021; 70:1782-1794. [PMID: 34103404 PMCID: PMC8355886 DOI: 10.1136/gutjnl-2020-323888] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Appelman MD, Wettengel JM, Protzer U, Oude Elferink RPJ, van de Graaf SFJ. Molecular regulation of the hepatic bile acid uptake transporter and HBV entry receptor NTCP. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158960. [PMID: 33932583 DOI: 10.1016/j.bbalip.2021.158960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Transporters expressed by hepatocytes and enterocytes play a critical role in maintaining the enterohepatic circulation of bile acids. The sodium taurocholate cotransporting polypeptide (NTCP), exclusively expressed at the basolateral side of hepatocytes, mediates the uptake of conjugated bile acids. In conditions where bile flow is impaired (cholestasis), pharmacological inhibition of NTCP-mediated bile acid influx is suggested to reduce hepatocellular damage due to bile acid overload. Furthermore, NTCP has been shown to play an important role in hepatitis B virus (HBV) and hepatitis Delta virus (HDV) infection by functioning as receptor for viral entry into hepatocytes. This review provides a summary of current molecular insight into the regulation of NTCP expression at the plasma membrane, hepatic bile acid transport, and NTCP-mediated viral infection.
Collapse
Affiliation(s)
- Monique D Appelman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Li X, Xu Z, Mitra B, Wang M, Guo H, Feng Z. Elevated NTCP expression by an iPSC-derived human hepatocyte maintenance medium enhances HBV infection in NTCP-reconstituted HepG2 cells. Cell Biosci 2021; 11:123. [PMID: 34225786 PMCID: PMC8256212 DOI: 10.1186/s13578-021-00641-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV). NTCP-reconstituted human hepatoma cells support HBV infection, but the infection is suboptimal and no apparent HBV spread has been observed in this system. RESULTS We found that NTCP-reconstituted HepG2 cells were highly susceptible to HBV infection after cells were cultured in a commercial human inducible pluripotent stem cell (iPSC)-derived hepatocyte maintenance medium (HMM). The enhanced HBV infection coincided with increased NTCP expression, and was observed in six different clones of HepG2-NTCP cells. Promoter assays indicated that HMM activated the cytomegalovirus immediate-early (IE) promoter that drives the NTCP expression in the HepG2-NTCP cells. RNA-Seq analysis revealed that HMM upregulated multiple metabolic pathways. Despite highly upregulated NTCP expression by HMM, no obvious HBV spread was observed even in the presence of PEG 8000. CONCLUSIONS Our data suggest that this particular medium could be used to enhance HBV infection in NTCP-reconstituted hepatocytes in vitro.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Bidisha Mitra
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minghang Wang
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
33
|
Liao H, Wang J, Liu Y, Chen J, Xu D, Lu F. Letter to the Editor: Why Serum Hepatitis B Virus (HBV) DNA Has Higher Frequency of rtM204I/V Mutation Than Serum HBV RNA in the Same Individual? Hepatology 2021; 73:2075-2076. [PMID: 32772386 DOI: 10.1002/hep.31514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Hao Liao
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Institute of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Dongping Xu
- Institute of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Center of Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Cao X, Zao X, Xue B, Chen H, Zhang J, Li S, Li X, Zhu S, Guo R, Li X, Ye Y. The mechanism of TiaoGanYiPi formula for treating chronic hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2021; 11:8402. [PMID: 33863948 PMCID: PMC8052433 DOI: 10.1038/s41598-021-87812-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Chinese herbal formula TiaoGanYiPi (TGYP) showed effective against chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection. Hence, we aimed to clarify the mechanisms and potential targets between TGYP and CHB. The active compounds and related putative targets of TGYP, and disease targets of CHB were obtained from the public databases. The key targets between TGYP and CHB were identified through the network construction and module analysis. The expression of the key targets was detected in Gene Expression Omnibus (GEO) dataset and normal hepatocyte cell line LO2. We first obtained 11 key targets which were predominantly enriched in the Cancer, Cell cycle and HBV-related pathways. And the expression of the key targets was related to HBV infection and liver inflammation verified in GSE83148 database. Furthermore, the results of real-time quantitative PCR and CCK-8 assay indicated that TGYP could regulate the expression of key targets including CCNA2, ABL1, CDK4, CDKN1A, IGFR and MAP2K1, and promote proliferation of LO2 cells. In coclusion, we identified the active compounds and key targets btween TGYP and CHB, and found that the TGYP might exhibite curative effect on CHB via promoting hepatocyte proliferation and inhibiting the liver inflammatory processes.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Baiquan Xue
- The First People's Hospital of Jinzhou District, Dalian, 116100, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shun Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Rui Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
35
|
Hong B, Wang L, Huang C, Hong X, Liu A, Li Q, Liu Q, Su L, Wang L, Wang C, Ying T. Decrease of Clone Diversity in IgM Repertoires of HBV Chronically Infected Individuals With High Level of Viral Replication. Front Microbiol 2021; 11:615669. [PMID: 33519772 PMCID: PMC7843509 DOI: 10.3389/fmicb.2020.615669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput antibody sequencing allows in-depth insights into human antibody repertoires. To investigate the characteristics of antibody repertoires in patients with chronic HBV infection, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of B lymphocytes from healthy adults and the HBV carriers with high or low level of viral replication. The comparative study revealed high levels of similarity between the IgM and IgG repertoires of the HBV carriers and the healthy adults, including the somatic mutations in V regions, the average CDR3 length, and the occurrence of junctional modifications. Nevertheless, the diversity of the unique clones decreased and some clusters of unique clones expanded in the IgM repertoire of chronic HBV carriers (CHB) compared with healthy adults (HH) and inactive HBV carriers (IHB). Such difference in clone diversity and expansion was not observed in the IgG repertoires of the three populations. More shared antibody clones were found between the IgM repertoires of IHB and HH than that found between CHB and HH (7079 clones vs. 2304 clones). Besides, the biased used IGHD genes were IGHD2-2 and IGHD3-3 in CHB library but were IGHD3-10 and IGHD3-22 in IHB and HH library. In contrast, for IgG repertories, the preferred used VDJ genes were similar in all the three populations. These results indicated that low level of serum HBV might not induce significant changes in BCR repertoires, and high level of HBV replication could have more impacts on IgM repertories than IgG repertoires. Taken together, our findings provide a better understanding of the antibody repertoires of HBV chronically infected individuals.
Collapse
Affiliation(s)
- Binbin Hong
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lizhi Wang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Chunlan Huang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Xiaoju Hong
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Alan Liu
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Qiulan Li
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qiaoling Liu
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lili Su
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lixing Wang
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Zao X, Cheng J, Shen C, Guan G, Feng X, Zou J, Zhang J, Liu T, Zheng H, Zhang T, Wang J, Liu J, Li D, Lu F, You F, Chen X. NFATc3 inhibits hepatocarcinogenesis and HBV replication via positively regulating RIG-I-mediated interferon transcription. Oncoimmunology 2021; 10:1869388. [PMID: 33520407 PMCID: PMC7808430 DOI: 10.1080/2162402x.2020.1869388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor of activated T cells 3 (NFATc3) has been reported to upregulate type I interferons (IFNs) expression, and the abnormal expression and activation of NFATc3 were closely related to tumorigenesis. However, the potential function of NFATc3 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that NFATc3 gene was frequently deleted and downregulated in HCC tumor tissues, and that the downregulation of NFATc3 was associated with poor prognosis of HCC patients. The gain- and loss-of-function experiments demonstrated that NFATc3 inhibited HCC cell proliferation and invasion, as well as HBV replication. Mechanistically, NFATc3 could bind to the promoters of IFNL1 and IFNB1 genes and prompt the production of IFNs and interferon-stimulated genes. Furthermore, retinoic acid-inducible gene-I (RIG-I) pathway activation increased NFATc3 expression and nuclear localization, and activated NFATc3 further enhanced RIG-I-mediated IFN responses. Collectively, our findings reveal a novel regulatory signaling cascade, the RIG-I/NFATc3/IFNs axis, which inhibits hepatocarcinogenesis and HBV replication by enhancing the immune response in hepatocytes, and this functional axis might potentially be exploited for therapeutic benefits in the clinical treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Xiaobin Zao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Congle Shen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Feng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Tianxu Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Huiling Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jia Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Deyao Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China.,Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Guan G, Zheng L, Xi J, Yang X, Chen X, Lu F. Cell Cycle Arrest Protein CDKN2C Is Not an HBV Host Factor. Virol Sin 2021; 36:810-813. [PMID: 33400093 DOI: 10.1007/s12250-020-00337-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guiwen Guan
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, 100044, China.,Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liwei Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Fengmin Lu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, 100044, China. .,Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
38
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|
39
|
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 2020; 6:53. [PMID: 32595984 PMCID: PMC7305227 DOI: 10.1038/s41420-020-0287-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the second most frequent cause of cancer-related death globally. The main histological subtype is hepatocellular carcinoma (HCC), which is derived from hepatocytes. According to the epidemiologic studies, the most important risk factors of HCC are chronic viral infections (HBV, HCV, and HIV) and metabolic disease (metabolic syndrome). Interestingly, these carcinogenic factors that contributed to HCC are associated with MDM2-p53 axis dysfunction, which presented with inactivation of p53 and overactivation of MDM2 (a transcriptional target and negative regulator of p53). Mechanically, the homeostasis of MDM2-p53 feedback loop plays an important role in controlling the initiation and progression of HCC, which has been found to be dysregulated in HCC tissues. To maintain long-term survival in hepatocytes, hepatitis viruses have lots of ways to destroy the defense strategies of hepatocytes by inducing TP53 mutation and silencing, promoting MDM2 overexpression, accelerating p53 degradation, and stabilizing MDM2. As a result, genetic instability, chronic ER stress, oxidative stress, energy metabolism switch, and abnormalities in antitumor genes can be induced, all of which might promote hepatocytes' transformation into hepatoma cells. In addition, abnormal proliferative hepatocytes and precancerous cells cannot be killed, because of hepatitis viruses-mediated exhaustion of Kupffer cells and hepatic stellate cells (HSCs) and CD4+T cells by disrupting their MDM2-p53 axis. Moreover, inefficiency of hepatic immune response can be further aggravated when hepatitis viruses co-infected with HIV. Unlike with chronic viral infections, MDM2-p53 axis might play a dual role in glucolipid metabolism of hepatocytes, which presented with enhancing glucolipid catabolism, but promoting hepatocyte injury at the early and late stages of glucolipid metabolism disorder. Oxidative stress, fatty degeneration, and abnormal cell growth can be detected in hepatocytes that were suffering from glucolipid metabolism disorder, and all of which could contribute to HCC initiation. In this review, we focus on the current studies of the MDM2-p53 axis in HCC, and specifically discuss the impact of MDM2-p53 axis dysfunction by viral infection and metabolic disease in the transformation of normal hepatocytes into hepatoma cells. We also discuss the therapeutic avenues and potential targets that are being developed to normalize the MDM2-p53 axis in HCC.
Collapse
Affiliation(s)
- Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Wang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Wei Zhang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| |
Collapse
|
40
|
Xiang H, Chen Y, Zhang J, Zhang J, Pan D, Liu B, Ouyang L. Discovery of a novel sodium taurocholate cotransporting polypeptide (NTCP) inhibitor: Design, synthesis, and anti-proliferative activities. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Dandri M. Epigenetic modulation in chronic hepatitis B virus infection. Semin Immunopathol 2020; 42:173-185. [PMID: 32185454 PMCID: PMC7174266 DOI: 10.1007/s00281-020-00780-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
The human hepatitis B virus (HBV) is a small-enveloped DNA virus causing acute and chronic hepatitis. Despite the existence of an effective prophylactic vaccine and the strong capacity of approved antiviral drugs to suppress viral replication, chronic HBV infection (CHB) continues to be a major health burden worldwide. Both the inability of the immune system to resolve CHB and the unique replication strategy employed by HBV, which forms a stable viral covalently closed circular DNA (cccDNA) minichromosome in the hepatocyte nucleus, enable infection persistence. Knowledge of the complex network of interactions that HBV engages with its host is still limited but accumulating evidence indicates that epigenetic modifications occurring both on the cccDNA and on the host genome in the course of infection are essential to modulate viral activity and likely contribute to pathogenesis and cancer development. Thus, a deeper understanding of epigenetic regulatory processes may open new venues to control and eventually cure CHB. This review summarizes major findings in HBV epigenetic research, focusing on the epigenetic mechanisms regulating cccDNA activity and the modifications determined in infected host cells and tumor liver tissues.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.
| |
Collapse
|