1
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Nakamura T, Izumida M, Hans MB, Suzuki S, Takahashi K, Hayashi H, Ariyoshi K, Kubo Y. Post-Transcriptional Induction of the Antiviral Host Factor GILT/IFI30 by Interferon Gamma. Int J Mol Sci 2024; 25:9663. [PMID: 39273610 PMCID: PMC11395427 DOI: 10.3390/ijms25179663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) plays pivotal roles in both adaptive and innate immunities. GILT exhibits constitutive expression within antigen-presenting cells, whereas in other cell types, its expression is induced by interferon gamma (IFN-γ). Gaining insights into the precise molecular mechanism governing the induction of GILT protein by IFN-γ is of paramount importance for adaptive and innate immunities. In this study, we found that the 5' segment of GILT mRNA inhibited GILT protein expression regardless of the presence of IFN-γ. Conversely, the 3' segment of GILT mRNA suppressed GILT protein expression in the absence of IFN-γ, but it loses this inhibitory effect in its presence. Although the mTOR inhibitor rapamycin suppressed the induction of GILT protein expression by IFN-γ, the expression from luciferase sequence containing the 3' segment of GILT mRNA was resistant to rapamycin in the presence of IFN-γ, but not in its absence. Collectively, this study elucidates the mechanism behind GILT induction by IFN-γ: in the absence of IFN-γ, GILT mRNA is constitutively transcribed, but the translation process is hindered by both the 5' and 3' segments. Upon exposure to IFN-γ, a translation inhibitor bound to the 3' segment is liberated, and a translation activator interacts with the 3' segment to trigger the initiation of GILT translation.
Collapse
Affiliation(s)
- Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- San Lazaro Hospital-Nagasaki University Collaborative Research Office, Manila 1003, Philippines
| | - Kensuke Takahashi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Kaur R, Tada T, Landau NR. Restriction of SARS-CoV-2 replication by receptor transporter protein 4 (RTP4). mBio 2023; 14:e0109023. [PMID: 37382452 PMCID: PMC10470548 DOI: 10.1128/mbio.01090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is subject to restriction by several interferon-inducible host proteins. To identify novel factors that limit replication of the virus, we tested a panel of genes that we found were induced by interferon treatment of primary human monocytes by RNA sequencing. Further analysis showed that one of the several candidates genes tested, receptor transporter protein 4 (RTP4), that had previously been shown to restrict flavivirus replication, prevented the replication of the human coronavirus HCoV-OC43. Human RTP4 blocked the replication of SARS-CoV-2 in susceptible ACE2.CHME3 cells and was active against SARS-CoV-2 Omicron variants. The protein prevented the synthesis of viral RNA, resulting in the absence of detectable viral protein synthesis. RTP4 bound the viral genomic RNA and the binding was dependent on the conserved zinc fingers in the amino-terminal domain. Expression of the protein was strongly induced in SARS-CoV-2-infected mice although the mouse homolog was inactive against the virus, suggesting that the protein is active against another virus that remains to be identified. IMPORTANCE The rapid spread of a pathogen of human coronavirus (HCoV) family member, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), around the world has led to a coronavirus disease 2019 (COVID-19) pandemic. The COVID-19 pandemic spread highlights the need for rapid identification of new broad-spectrum anti-coronavirus drugs and screening of antiviral host factors capable of inhibiting coronavirus infection. In the present work, we identify and characterize receptor transporter protein 4 (RTP4) as a host restriction factor that restricts coronavirus infection. We examined the antiviral role of hRTP4 toward the coronavirus family members including HCoV-OC43, SARS-CoV-2, Omicron BA.1, and BA.2. Molecular and biochemical analysis showed that hRTP4 binds to the viral RNA and targets the replication phase of viral infection and is associated with reduction of nucleocapsid protein. Significant higher levels of ISGs were observed in SARS-CoV-2 mouse model, suggesting the role of RTP4 in innate immune regulation in coronavirus infection. The identification of RTP4 reveals a potential target for therapy against coronavirus infection.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nathaniel Roy Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Nan X, Zhao K, Qin Y, Song Y, Guo Y, Luo Z, Li W, Wang Q. Antibacterial responses and functional characterization of the interferon gamma inducible lysosomal thiol reductase (GILT) protein in Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104514. [PMID: 35977559 DOI: 10.1016/j.dci.2022.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The inducible reductase of interferon gamma (IFN- γ), IFN-γ-induced lysosomal thiol reductase (GILT) is important in antiviral immunity, but its mechanism in invertebrate antimicrobial immunity is unclear. We determined that GILT protein was involved in the antibacterial immunity of Chinese mitten crab (Eriocheir sinensis). GILT protein was highly expressed in crab hemocytes and was significantly upregulated 6 h after bacterial stimulation. Recombinant E. sinensis GILT (rEsGILT) contained a CXXS active site that catalyzed disulfide bond reduction. Vibrio parahaemolyticus and Staphylococcus aureus were bound through interaction with peptidoglycan and lipopolysaccharide, respectively, and bacterial agglutination and clearance in the crabs was markedly promoted. Nevertheless, EsGILT exhibited no direct antibacterial or bactericidal activity. EsGILT also promoted crab hemocyte phagocytosis and played an anti-bacterial role, and inhibited hemocyte apoptosis. In summary, EsGILT promoted bacterial agglutination, clearance, and phagocytosis by recognizing and agglutinating pathogenic microorganisms and reduced the apoptosis level, indirectly participating in antibacterial reactions.
Collapse
Affiliation(s)
- Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
6
|
IDO1, FAT10, IFI6, and GILT Are Involved in the Antiretroviral Activity of γ-Interferon and IDO1 Restricts Retrovirus Infection by Autophagy Enhancement. Cells 2022; 11:cells11142240. [PMID: 35883685 PMCID: PMC9323257 DOI: 10.3390/cells11142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Gamma-interferon (γ-IFN) significantly inhibits infection by replication-defective viral vectors derived from the human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus (MLV) but the underlying mechanism remains unclear. Previously we reported that knockdown of γ-IFN-inducible lysosomal thiolreductase (GILT) abrogates the antiviral activity of γ-IFN in TE671 cells but not in HeLa cells, suggesting that other γ-IFN-inducible host factors are involved in its antiviral activity in HeLa cells. We identified cellular factors, the expression of which are induced by γ-IFN in HeLa cells, using a microarray, and analyzed the effects of 11 γ-IFN-induced factors on retroviral vector infection. Our results showed that the exogenous expression of FAT10, IFI6, or IDO1 significantly inhibits both HIV-1- and MLV-based vector infections. The antiviral activity of γ-IFN was decreased in HeLa cells, in which the function of IDO1, IFI6, FAT10, and GILT were simultaneously inhibited. IDO1 is an enzyme that metabolizes an essential amino acid, tryptophan. However, IDO1 did not restrict retroviral vector infection in Atg3-silencing HeLa cells, in which autophagy did not occur. This study found that IDO1, IFI6, FAT10, and GILT are involved in the antiviral activity of γ-IFN, and IDO1 inhibits retroviral infection by inducing autophagy.
Collapse
|
7
|
Wang SC, Zhang F, Zhu H, Yang H, Liu Y, Wang P, Parpura V, Wang YF. Potential of Endogenous Oxytocin in Endocrine Treatment and Prevention of COVID-19. Front Endocrinol (Lausanne) 2022; 13:799521. [PMID: 35592777 PMCID: PMC9110836 DOI: 10.3389/fendo.2022.799521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 or COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant threat to the health of human beings. While wearing mask, maintaining social distance and performing self-quarantine can reduce virus spreading passively, vaccination actively enhances immune defense against COVID-19. However, mutations of SARS-CoV-2 and presence of asymptomatic carriers frustrate the effort of completely conquering COVID-19. A strategy that can reduce the susceptibility and thus prevent COVID-19 while blocking viral invasion and pathogenesis independent of viral antigen stability is highly desirable. In the pathogenesis of COVID-19, endocrine disorders have been implicated. Correspondingly, many hormones have been identified to possess therapeutic potential of treating COVID-19, such as estrogen, melatonin, corticosteroids, thyroid hormone and oxytocin. Among them, oxytocin has the potential of both treatment and prevention of COVID-19. This is based on oxytocin promotion of immune-metabolic homeostasis, suppression of inflammation and pre-existing comorbidities, acceleration of damage repair, and reduction of individuals' susceptibility to pathogen infection. Oxytocin may specifically inactivate SARS-COV-2 spike protein and block viral entry into cells via angiotensin-converting enzyme 2 by suppressing serine protease and increasing interferon levels and number of T-lymphocytes. In addition, oxytocin can promote parasympathetic outflow and the secretion of body fluids that could dilute and even inactivate SARS-CoV-2 on the surface of cornea, oral cavity and gastrointestinal tract. What we need to do now is clinical trials. Such trials should fully balance the advantages and disadvantages of oxytocin application, consider the time- and dose-dependency of oxytocin effects, optimize the dosage form and administration approach, combine oxytocin with inhibitors of SARS-CoV-2 replication, apply specific passive immunization, and timely utilize efficient vaccines. Meanwhile, blocking COVID-19 transmission chain and developing other efficient anti-SARS-CoV-2 drugs are also important. In addition, relative to the complex issues with drug applications over a long term, oxytocin can be mobilized through many physiological stimuli, and thus used as a general prevention measure. In this review, we explore the potential of oxytocin for treatment and prevention of COVID-19 and perhaps other similar pathogens.
Collapse
Affiliation(s)
- Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, United States
| | - Fengmin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, Harbin Medical University The Fourth Affiliated Hospital, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Zhao X, Chen D, Li X, Griffith L, Chang J, An P, Guo JT. Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J Mol Biol 2022; 434:167438. [PMID: 34990653 PMCID: PMC8721920 DOI: 10.1016/j.jmb.2021.167438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.
Collapse
Affiliation(s)
- Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lauren Griffith
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
9
|
Duan Y, Yuan C, Suo X, Cao L, Kong X, Li X, Zheng H, Wang Q. TET2 is Required for Type I IFN-mediated Inhibition of Bat-Origin Swine Acute Diarrhea Syndrome Coronavirus. J Med Virol 2022; 94:3251-3256. [PMID: 35211991 DOI: 10.1002/jmv.27673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/07/2022]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered bat-origin coronavirus with fatal pathogenicity for neonatal piglets. There is no vaccine to prevent SADS-CoV infection or clinically approved drugs targeting SADS-CoV. Therefore, unraveling cellular factors that regulate SADS-CoV for cell entry is critical to understanding the viral transmission mechanism and provides a potential therapeutic target for SADS-CoV cure. Here, we showed that type I interferon (IFN-I) pretreatment potently blocks SADS-CoV entry into cells using lentiviral pseudo-virions as targets whose entry is driven by the SADS-CoV Spike glycoprotein. IFN-I-mediated inhibition of SADS-CoV entry and replication was dramatically impaired in the absence of TET2. These results suggest TET2 is found to serve as a checkpoint of IFN-I-meditated inhibition on the cell entry of SADS-CoV, and our discovery might constitute a novel treatment option to combat against SADS-CoV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yueyue Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Cong Yuan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xuepeng Suo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Liyan Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xiangyu Kong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xiangtong Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| |
Collapse
|
10
|
Stott-Marshall RJ, Foster TL. Inhibition of Arenavirus Entry and Replication by the Cell-Intrinsic Restriction Factor ZMPSTE24 Is Enhanced by IFITM Antiviral Activity. Front Microbiol 2022; 13:840885. [PMID: 35283811 PMCID: PMC8915953 DOI: 10.3389/fmicb.2022.840885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In the absence of effective vaccines and treatments, annual outbreaks of severe human haemorrhagic fever caused by arenaviruses, such as Lassa virus, continue to pose a significant human health threat. Understanding the balance of cellular factors that inhibit or promote arenavirus infection may have important implications for the development of effective antiviral strategies. Here, we identified the cell-intrinsic zinc transmembrane metalloprotease, ZMPSTE24, as a restriction factor against arenaviruses. Notably, CRISPR-Cas9-mediated knockout of ZMPSTE24 in human alveolar epithelial A549 cells increased arenavirus glycoprotein-mediated viral entry in pseudoparticle assays and live virus infection models. As a barrier to viral entry and replication, ZMPSTE24 may act as a downstream effector of interferon-induced transmembrane protein (IFITM) antiviral function; though through a yet poorly understood mechanism. Overexpression of IFITM1, IFITM2, and IFITM3 proteins did not restrict the entry of pseudoparticles carrying arenavirus envelope glycoproteins and live virus infection. Furthermore, gain-of-function studies revealed that IFITMs augment the antiviral activity of ZMPSTE24 against arenaviruses, suggesting a cooperative effect of viral restriction. We show that ZMPSTE24 and IFITMs affect the kinetics of cellular endocytosis, suggesting that perturbation of membrane structure and stability is likely the mechanism of ZMPSTE24-mediated restriction and cooperative ZMPSTE24-IFITM antiviral activity. Collectively, our findings define the role of ZMPSTE24 host restriction activity in the early stages of arenavirus infection. Moreover, we provide insight into the importance of cellular membrane integrity for productive fusion of arenaviruses and highlight a novel avenue for therapeutic development.
Collapse
Affiliation(s)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Wolfson Centre for Global Virus Research, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
11
|
Abstract
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical 'do or die' event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.
Collapse
|
12
|
Izumida M, Hayashi H, Smith C, Ishibashi F, Suga K, Kubo Y. Antivirus activity, but not thiolreductase activity, is conserved in interferon-gamma-inducible GILT protein in arthropod. Mol Immunol 2021; 140:240-249. [PMID: 34773863 DOI: 10.1016/j.molimm.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
We have previously reported that gamma-interferon inducible lysosomal thiolreductase (GILT) functions as a host defense factor against retroviruses by digesting disulfide bonds on viral envelope proteins. GILT is widely conserved even in plants and fungi as well as animals. The thiolreductase active site of mammalian GILT is composed of a CXXC amino acid motif, whereas the C-terminal cysteine residue is changed to serine in arthropods including shrimps, crabs, and flies. GILT from Penaeus monodon (PmGILT) also has the CXXS motif instead of the CXXC active site. We demonstrate here that a human GILT mutant (GILT C75S) with the CXXS motif and PmGILT significantly inhibit amphotropic murine leukemia virus vector infection in human cells without alterning its expression level and lysosomal localization, showing that the C-terminal cysteine residue of the active site is not required for the antiviral activity. We have reported that human GILT suppresses HIV-1 particle production by digestion of disulfide bonds on CD63. However, GILT C75S mutant and PmGILT did not digest CD63 disulfide bonds, and had no effect on HIV-1 virion production, suggesting that they do not have thiolreductase activity. Taken together, this study found that antiviral activity, but not thiolreductase activity, is conserved in arthropod GILT proteins. This finding provides a new insight that the common function of GILT is antiviral activity in many animals.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Chris Smith
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
13
|
Cell Entry of Animal Coronaviruses. Viruses 2021; 13:v13101977. [PMID: 34696406 PMCID: PMC8540712 DOI: 10.3390/v13101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.
Collapse
|
14
|
Ogunrinola OO, Kanmodi RI, Ogunrinola OA. Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Olabisi O. Ogunrinola
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | - Rahmon I. Kanmodi
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | | |
Collapse
|
15
|
Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021; 13:v13050784. [PMID: 33925004 PMCID: PMC8146327 DOI: 10.3390/v13050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.
Collapse
|
16
|
Monticelli M, Mele BH, Andreotti G, Cubellis MV, Riccio G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur J Med Genet 2021; 64:104227. [PMID: 33872774 PMCID: PMC8051015 DOI: 10.1016/j.ejmg.2021.104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, Università Federico II, 80126, Napoli, Italy.
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | | | - Maria Vittoria Cubellis
- Department of Biology, Università Federico II, 80126, Napoli, Italy; Istituto di Chimica Biomolecolare -CNR, 80078, Pozzuoli, Italy.
| | - Guglielmo Riccio
- Scuola di Specializzazione in Pediatria, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
17
|
Gao L, Li A, Lv Y, Huang M, Liu X, Deng H, Liu D, Zhao B, Liu B, Pang Q. Planarian gamma-interferon-inducible lysosomal thiol reductase (GILT) is required for gram-negative bacterial clearance. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103914. [PMID: 33137392 DOI: 10.1016/j.dci.2020.103914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The powerful regenerative ability of planarians has long been a concern of scientists, but recently, their efficient immune system has attracted more and more attention from researchers. Gamma-interferon-inducible lysosomal thiol reductase (GILT) is related not only to antigen presentation but also to bacteria invasions. But the systematic studies are not yet to be conducted on the relationship between bacterial infection. Our study reveals for the first time that GILT of planarian (DjGILT) plays an essential role in the clearance of Gram-negative bacteria by conducting H2O2 concentration in planarians. In animals that DjGILT was silenced, it persisted for up to 9 days before all bacteria were cleared, compared with 6 days of the control group. When infected with E. coli and V. anguillarum, the level of H2O2 was significantly increased in DjGILT-silenced planarians, and concomitantly, mRNA level of C-type lectin DjCTL, which modulates agglutination and clearance efficiency of invading bacteria, was decreased. Further study showed that the decrease of H2O2 level led to a significant increase in DjCTL transcripts. Collectively, we proposed a mechanism model for the involvement of GILT gene in bacterial elimination. We have for the first time revealed the specific mechanism of GILT in innate immune response against bacterial infection.
Collapse
Affiliation(s)
- Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China
| | - Mujie Huang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Xi Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; Shenzhen University of Health Science Center, District Shenzhen, 518060, China.
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
18
|
Wang SC, Wang YF. Cardiovascular protective properties of oxytocin against COVID-19. Life Sci 2021; 270:119130. [PMID: 33513400 PMCID: PMC7837104 DOI: 10.1016/j.lfs.2021.119130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection or COVID-19 has become a worldwide pandemic; however, effective treatment for COVID-19 remains to be established. Along with acute respiratory distress syndrome (ARDS), new and old cardiovascular injuries are important causes of significant morbidity and mortality in COVID-19. Exploring new approaches managing cardiovascular complications is essential in controlling the disease progression and preventing long-term complications. Oxytocin (OXT), an immune-regulating neuropeptide, has recently emerged as a strong candidate for treatment and prevention of COVID-19 pandemic. OXT carries special functions in immunologic defense, homeostasis and surveillance. It suppresses neutrophil infiltration and inflammatory cytokine release, activates T-lymphocytes, and antagonizes negative effects of angiotensin II and other key pathological events of COVID-19. Additionally, OXT can promote γ-interferon expression to inhibit cathepsin L and increases superoxide dismutase expression to reduce heparin and heparan sulphate fragmentation. Through these mechanisms, OXT can block viral invasion, suppress cytokine storm, reverse lymphocytopenia, and prevent progression to ARDS and multiple organ failures. Importantly, besides prevention of metabolic disorders associated with atherosclerosis and diabetes mellitus, OXT can protect the heart and vasculature through suppressing hypertension and brain-heart syndrome, and promoting regeneration of injured cardiomyocytes. Unlike other therapeutic agents, exogenous OXT can be used safely without the side-effects seen in remdesivir and corticosteroid. Importantly, OXT can be mobilized endogenously to prevent pathogenesis of COVID-19. This article summarizes our current understandings of cardiovascular pathogenesis caused by COVID-19, explores the protective potentials of OXT against COVID-19-associated cardiovascular diseases, and discusses challenges in applying OXT in treatment and prevention of COVID-19. Chemical compounds Angiotensin-converting enzyme 2 (ACE2); atrial natriuretic peptide (ANP); cathepsin L; heparan sulphate proteoglycans (HSPGs); interferon; interleukin; oxytocin; superoxide dismutase; transmembrane serine protease isoform 2 (TMPRSS2).
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA.
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Zang R, Case JB, Yutuc E, Ma X, Shen S, Gomez Castro MF, Liu Z, Zeng Q, Zhao H, Son J, Rothlauf PW, Kreutzberger AJB, Hou G, Zhang H, Bose S, Wang X, Vahey MD, Mani K, Griffiths WJ, Kirchhausen T, Fremont DH, Guo H, Diwan A, Wang Y, Diamond MS, Whelan SPJ, Ding S. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A 2020; 117:32105-32113. [PMID: 33239446 PMCID: PMC7749331 DOI: 10.1073/pnas.2012197117] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Eylan Yutuc
- Swansea University Medical School, SA2 8PP Swansea, United Kingdom
| | - Xiucui Ma
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | - Sheng Shen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Program in Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Alex J B Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Michael D Vahey
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Kartik Mani
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | | | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, United Kingdom
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110;
| |
Collapse
|
20
|
LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2. J Virol 2020; 94:JVI.00562-20. [PMID: 32641482 PMCID: PMC7459569 DOI: 10.1128/jvi.00562-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022] Open
Abstract
Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection. C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry. IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.
Collapse
|
21
|
Zhao X, Chen D, Szabla R, Zheng M, Li G, Du P, Zheng S, Li X, Song C, Li R, Guo JT, Junop M, Zeng H, Lin H. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. J Virol 2020; 94:e00940-20. [PMID: 32661139 PMCID: PMC7459545 DOI: 10.1128/jvi.00940-20] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.
Collapse
Affiliation(s)
- Xuesen Zhao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Danying Chen
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Robert Szabla
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Mei Zheng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Guoli Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Pengcheng Du
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Shuangli Zheng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Xinglin Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Chuan Song
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Rui Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Murray Junop
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Hui Zeng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Distinct Molecular Mechanisms of Host Immune Response Modulation by Arenavirus NP and Z Proteins. Viruses 2020; 12:v12070784. [PMID: 32708250 PMCID: PMC7412275 DOI: 10.3390/v12070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endemic to West Africa and South America, mammalian arenaviruses can cross the species barrier from their natural rodent hosts to humans, resulting in illnesses ranging from mild flu-like syndromes to severe and fatal haemorrhagic zoonoses. The increased frequency of outbreaks and associated high fatality rates of the most prevalent arenavirus, Lassa, in West African countries, highlights the significant risk to public health and to the socio-economic development of affected countries. The devastating impact of these viruses is further exacerbated by the lack of approved vaccines and effective treatments. Differential immune responses to arenavirus infections that can lead to either clearance or rapid, widespread and uncontrolled viral dissemination are modulated by the arenavirus multifunctional proteins, NP and Z. These two proteins control the antiviral response to infection by targeting multiple cellular pathways; and thus, represent attractive targets for antiviral development to counteract infection. The interplay between the host immune responses and viral replication is a key determinant of virus pathogenicity and disease outcome. In this review, we examine the current understanding of host immune defenses against arenavirus infections and summarise the host protein interactions of NP and Z and the mechanisms that govern immune evasion strategies.
Collapse
|