1
|
Ishikawa K, Shibutani K, Mikami Y, Harada S, Komori K, Mori N. Successful treatment of an intra-abdominal abscess caused by KPC-2-producing hypervirulent Klebsiella pneumoniae sequence type 11 with imipenem/cilastatin/relebactam in a Japanese patient. J Infect Chemother 2025; 31:102717. [PMID: 40274049 DOI: 10.1016/j.jiac.2025.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
KPC-producing K. pneumoniae is rare in Japan. In China, KPC-2-producing sequence type (ST)11 K. pneumoniae isolates have been rapidly increasing, and a subset of these isolates have acquired hypervirulence. We report a case of a 39-year-old Japanese male who developed bacteremia and intra-abdominal abscesses caused by hypervirulent carbapenem-resistant K. pneumoniae. The patient sustained abdominal injuries following a traffic accident in Xinjiang Uygur Autonomous Region and underwent abdominal surgery before being transferred to our hospital. Abscess drainage was performed, and he was initially treated with meropenem (2 g every 8 hours, prolonged infusion over 3 hours), gentamicin (5 mg/kg/day), and tigecycline (200 mg as a loading, followed by 100 mg every 12 hours). KPC carbapenemase was detected using the NG-Test® CARBA 5 (NG Biotech, France), and the minimum inhibitory concentration for imipenem/cilastatin/relebactam was 1 μg/mL, indicating susceptibility. His treatment was switched to imipenem/cilastatin/relebactam (1 g every 6 hours) for 7 weeks, resulting in clinical improvement. Whole-genome sequencing analysis revealed that the causative strain was hypervirulent KPC-2-producing K. pneumoniae (capsular type K64, ST 11) carrying blaKPC-2 and blaCTX-M-65 on a multireplicon plasmid (pMTY24772_IncFII-R), which was a fusion of IncFII and IncR. Additionally, rmpA and iucABCD genes associated with hypervirulence were detected. The strain carried a resistance plasmid and a virulence plasmid similar to those carried by ST11-K64 KPC-producing strains reported from China. Imipenem/cilastatin/relebactam is potentially an option for treating infections caused by KPC-2-producing hypervirulent K, pneumoniae with porin mutations. Cross-border spread of pathogens that are both multidrug-resistant and hyperviirulent must be closely monitored.
Collapse
Affiliation(s)
- Kazuhiro Ishikawa
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo, Japan.
| | - Koko Shibutani
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo, Japan
| | - Yumiko Mikami
- Clinical Laboratory Department, St Luke's International Hospital, Tokyo, Japan
| | - Sohei Harada
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Nobuyoshi Mori
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Zheng Y, Zhu X, Ding C, Chu W, Pang X, Zhang R, Ma J, Xu G. Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Future Microbiol 2025; 20:499-511. [PMID: 40135944 PMCID: PMC11980460 DOI: 10.1080/17460913.2025.2482478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Xiaojue Zhu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Chao Ding
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Weiqiang Chu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Xiaoxiao Pang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Ruxia Zhang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Jiucheng Ma
- Department of Burns and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ma W, Wan Y, Li X, Huang X, Deng C, Qin Q. Phenotype and genotype of carbapenem-resistant hypervirulent Klebsiella pneumoniae in a teaching hospital in Shanghai, China. J Med Microbiol 2025; 74:001960. [PMID: 40042517 PMCID: PMC11897171 DOI: 10.1099/jmm.0.001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/19/2024] [Indexed: 03/14/2025] Open
Abstract
Introduction. Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is an emerging pathogen associated with severe clinical outcomes, prompting an urgent investigation into its genomic characteristics and pathogenic potential.Hypothesis/Gap Statement. We hypothesize that CR-hvKP strains exhibit high-level resistance and high virulence, leading to their rapid spread in clinical settings and posing a serious threat to clinical treatment.Aim. The aim of the study was to investigate the phenotype and genotype of CR-hvKP strains, reveal their resistance- and virulence-related genomic characteristics and elucidate the biological characteristics of high-virulence and high-resistance strains to provide molecular epidemiological data for clinical use.Methodology. Carbapenem-resistant K. pneumoniae (CRKP) strains were obtained from clinical samples, from January 2013 to December 2018. PCR amplification was conducted to screen for carbapenem genes. To evaluate the virulence potential of the isolates, we conducted various tests, including a string test, Galleria mellonella larvae infection test, capsular polysaccharide synthesis genotyping and genetic sequencing analyses. We used PFGE, multilocus sequence typing and next-generation sequencing to detect the genetic relationship and homology of the strains.Results. In this study, we obtained 500 strains of CRKP, among which 18 strains were identified as CR-hvKP. All CR-hvKP strains were multidrug-resistant, exhibiting high-level resistance to most β-lactam antibiotics, including carbapenems. All CR-hvKP strains except N5 were positive for blaKPC-2, of which 14 isolates belonged to capsular serotype K64. Ten unrelated PFGE types were identified by PFGE analysis. Based on the results of PFGE, a total of 12 CR-hvKP isolates were selected from the 18 isolates for further testing, and 9 isolates had high homology with pLVPK virulence-related plasmids. All CR-hvKP strains showed high virulence in the Galleria mellonella infection model.Conclusions. The study revealed the resistance- and virulence-related genomic characteristics of CR-hvKP strains and confirmed the high virulence of these strains. These results are of great significance for understanding the epidemiological characteristics and clinical treatment of CR-hvKP and provide basic data for the formulation of corresponding prevention and control strategies.
Collapse
Affiliation(s)
- Wei Ma
- Department of Laboratory Diagnostics, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China
| | - Yuxiang Wan
- Department of Laboratory Diagnostics, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China
| | - Xuejiao Li
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200433, PR China
| | - Xiaochun Huang
- Department of Laboratory Diagnostics, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China
| | - Changzi Deng
- Department of Laboratory Diagnostics, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China
| | - Qin Qin
- Department of Laboratory Diagnostics, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
4
|
Al Ismail D, Campos-Madueno EI, Donà V, Endimiani A. Hypervirulent Klebsiella pneumoniae (hv Kp): Overview, Epidemiology, and Laboratory Detection. Pathog Immun 2025; 10:80-119. [PMID: 39911145 PMCID: PMC11792540 DOI: 10.20411/pai.v10i1.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is a Gram-negative pathogen responsible for both hospital- and community-acquired infections. Kp is classified into 2 distinct pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). First described in Taiwan in 1986, hvKp are highly pathogenic and characterized by unique phenotypic and genotypic traits. The hypermucoviscous (hmv) phenotype, generally marked by overproduction of the capsule, is often associated with hvKp, although recent studies show that some cKp strains may also have this characteristic. Furthermore, hvKp can cause severe community-acquired infections in healthy people and have been associated with metastatic infections such as liver abscess, meningitis, and endophthalmitis. HvKp are increasingly being reported in hospital-acquired settings, complicating treatment strategies. In particular, while hvKp have historically been antibiotic-susceptible, multidrug-resistant (MDR) strains have emerged and pose a significant public health threat. The combination of high virulence and limited antibiotic options demands further research into virulence mechanisms and rapid identification methods. This review discusses the epidemiology of hvKp and their virulence factors, highlighting the importance of phenotypic and non-phenotypic tests, including next-generation molecular diagnostics, for the early detection of hvKp.
Collapse
Affiliation(s)
- Dania Al Ismail
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | | | - Valentina Donà
- Independent Researcher and Scientific Writer, Bolzano, Italy
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
He M, Jiang Y, Wu H, Xu X, Jiang H. Disseminated organ and tissue infection secondary to carbapenem-resistant Klebsiella pneumoniae bloodstream infection for acute lymphoblastic leukemia treated with ceftazidime-avibactam: Two case reports. Medicine (Baltimore) 2025; 104:e41195. [PMID: 39792772 PMCID: PMC11730841 DOI: 10.1097/md.0000000000041195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
RATIONALE Carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections are a severe complication resulting from granulocyte deficiency following chemotherapy for hematologic malignancies and have a high mortality rate. However, reports of disseminated organ infections secondary to bloodstream infections are rare. PATIENT CONCERNS AND DIAGNOSES We report 2 cases of patients with acute lymphoblastic leukemia who both developed CRKP bloodstream infections during the granulocyte deficiency stage following chemotherapy, with 1 case of secondary bacterial liver abscess and 1 case of secondary septic arthritis. INTERVENTIONS AND OUTCOMES Based on the results of drug sensitivity testing, both patients were treated with ceftazidime-avibactam, and the infections were rapidly and effectively controlled without significant adverse effects. LESSONS Ceftazidime-avibactam exhibited satisfactory efficacy and safety in the 2 cases of disseminated organ infection secondary to CRKP bloodstream infection following chemotherapy for acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Mingxia He
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Yuxia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Haiying Wu
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Xiaofeng Xu
- Department of Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, P.R. China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
6
|
Li L, Liang J, Zhang H, Guo J, Li S, Li M. Emergence and clinical challenges of ST11-K64 carbapenem-resistant Klebsiella pneumoniae: molecular insights and implications for antimicrobial resistance and virulence in Southwest China. BMC Infect Dis 2025; 25:19. [PMID: 39754049 PMCID: PMC11699810 DOI: 10.1186/s12879-024-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains. OBJECTIVES This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China. METHODS A retrospective analysis was performed on patients infected with carbapenem-resistant Klebsiella pneumoniae (CRKP) in a tertiary care hospital between July 2021 and May 2022. A total of 69 CRKP strains were isolated, with clinical data collected for detailed analysis. Laboratory assessments included antimicrobial susceptibility testing, hypermucoviscosity string testing, genotypic characterization of antimicrobial resistance and virulence genes, and multi-locus sequence typing. Statistical analyses were conducted using SPSS, with significance set at P < 0.05. RESULTS Among the 69 CRKP isolates, 36 strains (52.2%) were identified as ST11-K64 CRKP. Hematological diseases were less associated with ST11-K64 CRKP infection compared to non-ST11-K64 strains (P = 0.012). However, central intravenous catheter use (P = 0.001), mechanical ventilation (P = 0.002), tracheal intubation (P = 0.006), and tracheotomy (P = 0.041) were significantly more common in ST11-K64 CRKP cases. Resistance rates to amikacin (P < 0.001), gentamicin (P = 0.004), tobramycin (P = 0.034), and sulfamethoxazole (P < 0.001) were significantly higher in ST11-K64 CRKP. Additionally, resistance-associated genes such as blaKPC-2 (P < 0.001) and virulence-associated genes including rmpA (P < 0.001), iucA (P < 0.001), rmpA2 (P < 0.001), and iutA (P = 0.001) were detected at significantly higher rates in ST11-K64 strains compared to non-ST11-K64 strains. Furthermore, compared to ST11-K47 CRKP, ST11-K64 CRKP harbored more virulence genes, such as rmpA (P = 0.007), iucA (P = 0.001), and iutA (P = 0.003). CONCLUSION Our findings underscore the rising prevalence of ST11-K64 CRKP, characterized by high levels of antimicrobial resistance and the presence of potent resistance and virulence genes. This strain poses a significant clinical and therapeutic challenge, necessitating heightened vigilance, stringent infection control measures, and robust clinical management strategies.
Collapse
Affiliation(s)
- Linlin Li
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Jiahui Liang
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Huan Zhang
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Jing Guo
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Shan Li
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Li
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Russo TA, Lebreton F, McGann PT. A Step Forward in Hypervirulent Klebsiella pneumoniae Diagnostics. Emerg Infect Dis 2025; 31:1-3. [PMID: 39714290 DOI: 10.3201/eid3101.241516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening infections in healthy community members. HvKp infections often involve multiple sites, some of which are unusual for classical K. pneumoniae (cKp) infections, such as the central nervous system, eyes, and fascia. The acquisition of antimicrobial resistance by hvKp has resulted in concerns of an emerging superbug. This concern is magnified by increasing geographic dissemination and healthcare associated infections. Currently, diagnostic testing to differentiate hvKp from cKp is lacking, causing challenges for clinical care, surveillance, and research. Although imperfect, the detection of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 is the most accurate and pragmatic means to identify hvKp. We propose a working definition for hvKp that will enhance accuracy for diagnosis and surveillance, which will aid in preventing the spread of hvKp.
Collapse
|
8
|
Han YL, Wang H, Zhu HZ, Lv YY, Zhao W, Wang YY, Wen JX, Hu ZD, Wang JR, Zheng WQ. Phenotypic and genomic characterization of ST11-K1 CR-hvKP with highly homologous blaKPC-2-bearing plasmids in China. mSystems 2024; 9:e0110124. [PMID: 39555910 DOI: 10.1128/msystems.01101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) strains present a significant global public health threat due to their high mortality rates. This study investigated the genomic characteristics of seven ST11-K1 CR-hvKP isolates harboring highly homologous KPC-2-encoding multidrug-resistance plasmids. The strains were isolated from a Chinese tertiary hospital between 2017 and 2020. Whole-genome sequencing and bioinformatic analysis revealed various antibiotic resistance genes (ARGs) and virulence determinants. The blaKPC-2-bearing plasmids that contain multiple antibiotic-resistance genes were also identified in these strains. ISfinder and Orifinder were applied to identify insertion sequences (IS) and conjugation-related factors among these blaKPC-2-bearing plasmids. The blaKPC-2 was highly consistent in seven blaKPC-2-bearing plasmids (ISKpn6-blaKPC-2-ISKpn27-ISYps3-IS26). In addition, we found a region composed of ISIR, Tn5393, and IS26. It was located upstream of the blaCTX-M-15 gene and presented in six blaKPC-2-bearing plasmids, with pCR-hvKP221-KPC-P3 as an exception. Conjugation experiments demonstrated the horizontal transfer of resistance plasmids pCR-hvKP128-KPC-P1 and pCR-hvKP132-KPC-P1 across species. Notably, pLVPK-like virulence plasmids carrying virulence gene clusters pCR-hvKP173-Vir-P1, and pCR-hvKP221-Vir-P1 were also detected. A fusional plasmid pCR-hvKP221-Vir-P2, which carries virulence gene clusters and ARGs, was also identified. Five CR-hvKP strains displayed enhanced biofilm formation and high virulence in vivo infection models. Phylogenetic and single nucleotide polymorphism (SNP) analyses indicated a close genetic relationship among the isolates, suggesting a subclade. These findings highlight the complex genetic profiles and potential transmission mechanisms of CR-hvKP strains. IMPORTANCE We reported seven CR-hvKP strains all carried a highly homologous blaKPC-2 integrated IncFⅡ-resistant plasmid, and two strains harbored virulence plasmids. Conjugation experiments confirmed the transferability of these plasmids, indicating a potential for resistance spread. Phylogenetic analysis clarified the relationship among the CR-hvKP isolates. This study provides insights into the phenotypic and genomic characteristics of seven ST11-K1 CR-hvKP strains. The high prevalence and potential for local outbreaks emphasize the need for effective control measures.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Hua Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong-Zhe Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Ying Lv
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan-Yan Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Shi Q, Shen S, Tang C, Ding L, Guo Y, Yang Y, Wu S, Han R, Yin D, Hu F. Molecular mechanisms responsible KPC-135-mediated resistance to ceftazidime-avibactam in ST11-K47 hypervirulent Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2361007. [PMID: 38801099 PMCID: PMC11172257 DOI: 10.1080/22221751.2024.2361007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 μg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Li H, Liu X, Li S, Rong J, Xie S, Gao Y, Zhong L, Jiang Q, Jiang G, Ren Y, Sun W, Hong Y, Zhou Z. KleTy: integrated typing scheme for core genome and plasmids reveals repeated emergence of multi-drug resistant epidemic lineages in Klebsiella worldwide. Genome Med 2024; 16:130. [PMID: 39529172 PMCID: PMC11556198 DOI: 10.1186/s13073-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Clinically important lineages in Klebsiella, especially those expressing multi-drug resistance (MDR), pose severe threats to public health worldwide. They arose from the co-evolution of the vertically inherited core genome and horizontal gene transfers by plasmids, which has not been systematically explored. METHODS We designed KleTy, which consists of dedicated typing schemes for both the core genome and plasmids in Klebsiella. We compared the performance of KleTy with many state-of-the-art pipelines using both simulated and real data. RESULTS Employing KleTy, we genotyped 33,272 Klebsiella genomes, categorizing them into 1773 distinct populations and predicting the presence of 87,410 plasmids from 837 clusters (PCs). Notably, Klebsiella is the center of the plasmid-exchange network within Enterobacteriaceae. Our results associated the international emergence of prevalent Klebsiella populations with only four carbapenem-resistance (CR) PCs, two hypervirulent PCs, and two hvCR-PCs encoding both carbapenemase and hypervirulence. Furthermore, we observed the ongoing international emergence of blaNDM, accompanied by the replacement of the previously dominant population, blaKPC-encoding HC1360_8 (CC258), during 2003-2018, with the emerging blaNDM-encoding HC1360_3 (CC147) thereafter. Additionally, expansions of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hvCRKP) were evidenced in both populations, driven by plasmids of MDR-hypervirulence convergences. CONCLUSIONS The study illuminates how the global genetic landscape of Klebsiella has been shaped by the co-evolution of both the core genome and the plasmids, underscoring the importance of surveillance and control of the dissemination of plasmids for curtailing the emergence of hvCRKPs.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiao Liu
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Shengkai Li
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jie Rong
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shichang Xie
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Iotabiome Biotechnology Inc, Suzhou, 215000, China
| | - Yuan Gao
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Ling Zhong
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Quangui Jiang
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Guilai Jiang
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yi Ren
- Iotabiome Biotechnology Inc, Suzhou, 215000, China
| | - Wanping Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Yuzhi Hong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Zhemin Zhou
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| |
Collapse
|
11
|
Wu C, Huang Y, Zhou P, Gao H, Wang B, Zhao H, Zhang J, Wang L, Zhou Y, Yu F. Emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae from 2014 - 2021 in Central and Eastern China: a molecular, biological, and epidemiological study. BMC Microbiol 2024; 24:465. [PMID: 39528921 PMCID: PMC11552131 DOI: 10.1186/s12866-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, the hypervirulent and carbapenem-resistant Klebsiella pneumoniae has been increasingly reported worldwide. The objective of this study was to compare the antibiotic resistance and virulence profiles of carbapenem-resistant hypervirulent K.pneumoniae (CR-hvKP) and hypervirulent carbapenem-resistant K.pneumoniae (hv-CRKP) and identify the prevailing strain in clinical settings. METHODS In this study, hv-CRKP or CR-hvKP were identified based on the results of whole-genome analysis (WGS), multilocus sequence typing (MLST) and the antimicrobial susceptibility testing. We then compared antibiotic resistance and virulence profiles between CR-hvKP and hv-CRKP through the antimicrobial susceptibility testing and a series of virulence experiments including biofilm formation ability detection method, the resistance test against human serum, siderophore production test, neutrophil phagocytosis assay and Galleria mellonella infection model. Additionally, pathway enrichment analysis was conducted to assess the effect of SNPs on the phenotype. RESULTS In this study, we categorized 17.4% of hypervirulent and carbapenem-resistant K. pneumoniae strains as CR-hvKP and 82.6% as hv-CRKP. Among them, 84.2% (16/19) of CR-hvKP strains harboring carbapenemase genes exhibited lower imipenem and meropenem MIC values compared to hv-CRKP strains. The virulence potential of hv-CRKP and CR-hvKP was confirmed by using virulence experiments in vitro and in vivo, showing that virulence of the CR-hvKP strains was comparable to that of hv-CRKP strains. Notably, the 90 hv-CRKP strains were classified into 3 different ST types and 8 capsule types, each showing varying degrees of resistance and virulence. We observed that subclonal replacement was within the predominant hv-CRKP clone, with the ST11-KL64 strain, characterized by high-level resistance and virulence emerging as the currently prevailing subclone, replacing ST11-KL47. KEGG enrichment analysis showed that pathways associated with the citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, two-component regulatory system, and folate metabolism were significantly enriched among the group expressing different levels of capsular polysaccharides. CONCLUSIONS The hv-CRKP strains exhibited a greater survival advantage in the hospital environment than CR-hvKP strains. Notably, the ST11-KL64 hv-CRKP strain which displayed a high level of resistance and hypervirulence, warrants the most clinical vigilance. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Chunyang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peiyao Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haojin Gao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Fangyou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Chu X, Jia X, Jia P, Zhu Y, Yu W, Liu X, Yang Q. Geneticand phenotypic characterization of a novel ST45-K43 carbapenem-resistant Klebsiella pneumoniae strain causing bloodstream infection: a potential clinical threat. Microbiol Spectr 2024; 12:e0030524. [PMID: 39287450 PMCID: PMC11537024 DOI: 10.1128/spectrum.00305-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is a common pathogen of nosocomial infection, which can cause pneumonia, urinary tract infection, cystitis, and bloodstream infections (BSIs). Here, we genetically characterize a novel carbapenem-resistant K. pneumoniae (CRKP) strain recovered from the blood of a 44-year-old male patient with severe acute necrotizing pancreatitis and septic shock in China. The strain is a ST45 K. pneumoniae with a novel serotype of K43, named 18SHX166. The susceptibility testing results showed that 18SHX166 was resistant to cephalosporin and carbapenems but still susceptible to ceftazidime-avibactam, quinolones, colistin, and amikacin. Genomic sequencing revealed that 18SHX166 contains three plasmids, namely pSHX166-Hv, pSHX166-KPC, and pSHX166-3. pSHX166-Hv harbored the iucABCD operon, encoding the siderophore of aerobactin. pSHX166-KPC harbored blaKPC-2 gene and possessed complete conjugative regions. The conjugation experiment verified pSHX166-KPC as a self-transmissible plasmid mediating the dissemination of antibiotic resistance, with a conjugation rate of 2.21 × 10-5. Additionally, the growth curve showed that 18SHX166 demonstrates a higher growth rate than the control strains. The characteristics of 18SHX166 indicate a potential high risk of clinical transmission.IMPORTANCEST45-K43 carbapenem-resistant Klebsiella pneumoniae isolate, 18SHX166, carries a carbapenem resistance plasmid and virulence plasmid. It has the characteristics of multidrug resistance, high transmissibility, and a fast growth rate, which could pose a threat to the control of antimicrobial resistance and clinical transmission, causing a severe challenge to public health.
Collapse
Affiliation(s)
- Xiaobing Chu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
14
|
Jia X, Zhu Y, Jia P, Li C, Chu X, Sun T, Liu X, Yu W, Chen F, Xu Y, Yang Q. The key role of iroBCDN-lacking pLVPK-like plasmid in the evolution of the most prevalent hypervirulent carbapenem-resistant ST11-KL64 Klebsiella pneumoniae in China. Drug Resist Updat 2024; 77:101137. [PMID: 39178714 DOI: 10.1016/j.drup.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
AIMS Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP), coharboring hypervirulence and carbapenem-resistance genes mediated by plasmids, causes infections with extremely high mortality and seriously impacts public health. Exploring the transfer mechanisms of virulence/carbapenem-resistance plasmids, as well as the formation and evolution pathway of hv-CRKP is of great significance to the control of hv-CRKP infections. METHODS In this study, we identified the predominant clone of hv-CRKP in China and elucidated its genomic characteristics and formation route based on 239 multicenter clinical K. pneumoniae isolates and 1014 GenBank genomes by using comparative genomic analysis. Further, we revealed the factors affecting the transfer of virulence plasmids, and explained the genetic foundation for the prevalence of Chinese predominant hv-CRKP clone. RESULTS ST11-KL64 is the predominant clone of hv-CRKP in China and primarily evolved from ST11-KL64 CRKP by acquiring the pLVPK-like virulence plasmid from hvKP. Significantly, the virulence gene cluster iroBCDN was lost in the virulence plasmid of ST11-KL64 hv-CRKP but existed in that of hvKP. Moreover, the absence of iroBCDN didn't decrease the virulence of hv-CRKP, which was proved by bacterial test, cell-interaction test and mice infection model. On the contrary, loss of iroBCDN was observed to regulate virulence/carbapenem-resistance plasmid transfer and oxidative stress-related genes in strains and thus promoted the mobilization of nonconjugative virulence plasmid from hvKP into ST11-KL64 CRKP, forming hv-CRKP which finally had elevated antioxidant capacity and enhanced survival capacity in macrophages. The loss of iroBCDN increased the survival ability of hv-CRKP without decreasing its virulence, endowing it with an evolutionary advantage. CONCLUSIONS Our work provides new insights into the key role of iroBCDN loss in convergence of CRKP and hvKP, and the genetic and biological foundation for the widespread prevalence of ST11-KL64 hv-CRKP in China.
Collapse
Affiliation(s)
- Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Chu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianshu Sun
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Clinical Biobank, Center for Biomedical Technology, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
| |
Collapse
|
15
|
Hong HX, Huo BH, Xiang TX, Wei DD, Huang QS, Liu P, Zhang W, Xu Y, Liu Y. Virulence plasmid with IroBCDN deletion promoted cross-regional transmission of ST11-KL64 carbapenem-resistant hypervirulent Klebsiella pneumoniae in central China. BMC Microbiol 2024; 24:400. [PMID: 39385085 PMCID: PMC11465609 DOI: 10.1186/s12866-024-03564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) caused infections of high mortality and brought a serious impact on public health. This study aims to evaluate the epidemiology, resistance and virulence characteristics of CR-hvKP and to identify potential drivers of cross-regional transmission in different regions of China, in order to provide a basis for developing targeted prevention measures. METHODS Clinical K. pneumoniae strains were collected from Jiujiang and Nanchang in Jiangxi province between November 2021 to June 2022. Clinical data of patients (age, sex, source of infection, and diagnosis) were also gathered. We characterized these strains for their genetic relatedness using PFGE, antimicrobial and virulence plasmid structures using whole-genome sequencing, and toxicity using Galleria mellonella infection model. RESULTS Among 609 strains, 45 (7.4%) CR-hvKP were identified, while the strains. isolated from Nanchang and Jiujiang accounted for 10.05% (36/358) and 3.59% (9/251). We observed that ST11-KL64 CR-hvKP had an overwhelming epidemic dominance in these two regions. Significant genetic diversity was identified among all ST11-KL64 CR-hvKP cross-regional transmission between Nanchang and Jiujiang and this diversity served as the primary driver of the dissemination of clonal groups. Virulence genes profile revealed that ST11-KL64 CR-hvKP might harbour incomplete pLVPK-like plasmids and primarily evolved from CRKP by acquiring the hypervirulence plasmid. We found the predominance of truncated-IncFIB/IncHI1B type virulence plasmids with a 25 kb fragment deletion that encoded iroBCDN clusters. CONCLUSION ST11-KL64 is the most cross-regional prevalent type CR-hvKPs in Jiangxi province, which mainly evolved from CRKPs by acquiring a truncated-IncHI1B/IncFIB virulence plasmid with the deletion of iroBCDN. Stricter surveillance and control measures are urgently needed to prevent the epidemic transmission of ST11-KL64 CR-hvKP.
Collapse
Affiliation(s)
- Han-Xu Hong
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
- School of Public Health, Jiangxi Medical College, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, PR China
| | - Bing-Hui Huo
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
- School of Public Health, Jiangxi Medical College, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, PR China
| | - Tian-Xin Xiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Dan-Dan Wei
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, Jiangxi, 330006, PR China
| | - Qi-Sen Huang
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
| | - Peng Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China
| | - Ying Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, PR China.
- Department of Laboratory, First People's Hospital of Jiujiang City, Taling South Road No.48, Jiujiang, Jiangxi Province, 332000, PR China.
| | - Yang Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Yong Wai Zheng Jie No. 17, Nanchang, 330006, PR China.
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, Jiangxi, 330006, PR China.
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
16
|
Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, Dong Y, Bai L, Yang H, Shen J, Wu C, Hu F, Wang Y. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci U S A 2024; 121:e2400446121. [PMID: 39150777 PMCID: PMC11363291 DOI: 10.1073/pnas.2400446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.
Collapse
Affiliation(s)
- Shikai Song
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
- Poultry Research Institute, Shandong Academy of Agricultural Science, Jinan250100, Shandong, China
| | - Shixin Yang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Ruicheng Zheng
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yao Wang
- Shandong Animal Disease Prevention and Control Center, Jinan250100, Shandong, China
| | - Lu Qiao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Wenjuan Yin
- Department of Microbiology and Immunology, College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding071002, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Hui Yang
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
17
|
Liao Q, Zhang W, Deng J, Wu S, Liu Y, Xiao Y, Kang M. Relationship between virulence and carbapenem resistance phenotype of Klebsiella pneumoniae from blood infection: identification of a carbapenem-resistant and hypervirulent strain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:490-497. [PMID: 39183061 PMCID: PMC11375489 DOI: 10.3724/zdxbyxb-2024-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To investigate the relationship between the virulence and the carbapenem resistance phenotype of Klebsiella pneumoniae from blood infection, and to identify carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HVKP)strains. METHODS A total of 192 Klebsiella pneumoniae strains were isolated from blood culture of patients with bloodstream infections from 2016 to 2019, of which 96 isolates were carbapenem-resistant Klebsiella pneumoniae (CRKP) and 96 were carbapenem-sensitive Klebsiella pneumoniae (CSKP). The drug susceptibility was detected by VITEK-2 automatic microbial analyzer; carbapenemase genes, virulence genes and capsule typing were detected by polymerase chain reaction; the high viscosity phenotype of strains was detected by string test, and the genome characteristics of CR-HVKP were detected by whole genome sequencing. Serum killing and biofilm formation test were used to further verify the virulence of CR-HVKP. RESULTS There were significant differences in drug resistance to common antibiotics, except for minocycline between CSKP and CRKP isolates (all P<0.05). 92 out of 96 CRKP isolates carried carbapenemase genes, mainly blaKPC-2. The string tests were positive in 4 isolates of CRKP and 36 isolates of CSKP (P<0.05). The detection rates of virulence genes Kfu, aerobictin, iutA, ybtS, rmpA, magA, allS, and capsule antigen K1 and K2 in CSKP group were significantly higher than those in CRKP group (all P<0.05). One HVKP strain was detected in the CRKP group (CR-HVKP) and 36 HVKP was detected in the CSKP group (P<0.05). The CR-HVKP strain belonged to the MLST412, serotype K57, expressed iutA, entB, mrkD, fimH, and rmpA virulence genes, and showed strong biofilm formation and significantly increased serum resistance. Whole genome sequencing results showed that this CR-HVKP isolate carried blaSHV-145, blaTEM-1, blaCTX-M-3, fosA6, oqxA5, oqxB26, and aac(3)-IId resistance genes, accompanied by abnormalities in outer membrane protein K (OmpK) 35 and OmpK36. CONCLUSIONS The drug resistance of CRKP is significantly higher than that of CSKP, while CRKP carrying fewer virulence genes in both number and types compared to CSKP. A new MLST type of carbapenem-resistant and hypervirulent Klebsiella pneumoniae strain has been detected, which requires clinical awareness and epidemiological monitoring.
Collapse
Affiliation(s)
- Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Tu Y, Gao H, Zhao R, Yan J, Wu X. Molecular characteristics and pathogenic mechanisms of KPC-3 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (ST23-K1). Front Cell Infect Microbiol 2024; 14:1407219. [PMID: 39211794 PMCID: PMC11358127 DOI: 10.3389/fcimb.2024.1407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1β, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.
Collapse
|
19
|
Shamanna V, Srinivas S, Couto N, Nagaraj G, Sajankila SP, Krishnappa HG, Kumar KA, Aanensen DM, Lingegowda RK. Geographical distribution, disease association and diversity of Klebsiella pneumoniae K/L and O antigens in India: roadmap for vaccine development. Microb Genom 2024; 10:001271. [PMID: 39037209 PMCID: PMC11316559 DOI: 10.1099/mgen.0.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson's diversity index and Fisher's exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Varun Shamanna
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
| | | | - Natacha Couto
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | | | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | - NIHR Global Health Research Unit on genomic surveillance - India consortium
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Wang W, Ye C, Zhao B, Zheng Y, Zhang G, Su J, Huang H, Hao L, Chen M. Epidemiological and Molecular Characteristics of Hypermucoviscous and Hypervirulent Klebsiella pneumoniae Isolates in Community Patients in Shanghai, China. Infect Drug Resist 2024; 17:2685-2699. [PMID: 38953096 PMCID: PMC11216552 DOI: 10.2147/idr.s468482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background The occurrence and dissemination of hypermucoviscous and hypervirulent Klebsiella pneumoniae (hm-hvKp) isolates in clinical settings are a critical public health problem in the world. However, the data on these isolates in community populations are limited. This study aims to understand the prevalence and molecular characteristics of hm-hvKp isolates in community patients in Shanghai, China. Methods In 2018, an active surveillance system focused on hm-hvKp in community diarrhoeal cases was implemented in Pudong New Area, Shanghai, China, involving 12 sentinel hospitals. The antimicrobial susceptibility of hm-hvKp isolates from fecal samples was tested, and whole-genome sequencing (WGS) was performed to predict the serotypes and sequence types and to identify antimicrobial resistance determinants, virulence determinants, and phylogenetic clusters. Results The overall prevalence of hm K. pneumoniae isolates was 2.48% (31/1252), with the proportions of 1.76% (22/1252) for hm-hvKp and 0.72% (9/1252) for hm not hv K. pneumoniae. The prevalence of hm-hvKp isolates among different age groups and different months was statistically significant. All the 22 hm-hvKp isolates were susceptible to 20 antimicrobial agents and only carried bla SHV gene, and KL1 and KL2 accounted for eight (36.36%) cases and seven (31.82%) cases, respectively. The eight ST23/KL1 isolates belonged to the predominant CG23-I clade, which typically possessed the virulence determinants profile of rmpA/rmpA2-iro-iuc-ybt-irp-clb. The five ST86/KL2 isolates were assigned to the global clusters ST86/KL2-1 (n=2), ST86/KL2-2 (n=2), ST86/KL2-3 (n=1), all lack of the clb gene. Shanghai ST23/KL1 and ST86/KL2 isolates were closely related to the global isolates from liver abscesses, blood, and urine. Conclusion Hm-hvKp is carried by the community population of Shanghai, with ST23/KL1 and ST86/KL2 isolates predominant. Hm-hvKp isolates of different continents, different sources, and different virulence levels were closely related. Ongoing surveillance of hm-hvKp isolates in the community population is warranted.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
| | - Chuchu Ye
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
- Department of Infectious Disease Control and Prevention, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Bing Zhao
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yingjie Zheng
- Department of Epidemiology/Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning/Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, People’s Republic of China
| | - Ge Zhang
- School of Public Health, Dali University, Yunnan, People’s Republic of China
| | - Jinghua Su
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Hong Huang
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Lipeng Hao
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Chen Y, Huang J, Chen H, Xiao H, Shen X, Chen Q, Zhang Z, Huang Y, Wu S, Chen D. Whole genome sequencing analysis of seven unknown resistance mechanisms of carbapenem-resistant Klebsiella pneumoniae strains resistance to ceftazidime-avibactam. J Appl Microbiol 2024; 135:lxae135. [PMID: 38849309 DOI: 10.1093/jambio/lxae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
AIMS To investigate alternative resistance mechanisms among seven ceftazidime-avibactam (CZA)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) strains lacking common antimicrobial resistance genes (ARGs) using whole genome sequencing. METHODS AND RESULTS ARG and virulence factors (VFs) were screened using the ARG database CARD and the VF database, respectively, and identified using genomic annotation data with BLAST+. Six strains were ST11 sequence types (STs), and one was ST2123. ST11 strains harbored more ARGs than the ST2123 strains. All seven strains carried multiple ARGs with efflux-mediated antibiotic resistance, including oqxA, oqxB, tet (A), qacEdltal, CRP, H-NS, Kpn-E, F, G, H, acrA, LptD, acrB, acrD, cpxA, mdtB, and mdtC. These efflux-mediated ARGs were identified in most strains and even all strains. Whole genome sequencing revealed that the ST11 strain carried multiple potential prophages, genomic islands, and integrative and conjugative elements, while the ST2123 strain carried an independent potential prophages and a genomic island. CONCLUSIONS Whole genome sequencing analysis revealed that these seven CZA-resistant CRKP strains lacking common ARGs exhibited efflux-mediated antibiotic resistance-associated ARGs. The main mechanism by which CRKP resists CZA is antibiotic inactivation. Except for tet (A), no ARGs and validation experiments related to efflux were found. This study's results provide a new possibility for the resistance mechanism of CRKP to CZA, and we will verify this conclusion through experiments in the future.
Collapse
Affiliation(s)
- Yabin Chen
- Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 350525, China
| | - Jianxin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Huidan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Han Xiao
- Medical Technology, First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Xiuqing Shen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingqing Chen
- Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 350525, China
| | - Zhishan Zhang
- Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 350525, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shaolian Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Dongjie Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
22
|
廖 全, 袁 余, 张 为, 邓 劲, 康 梅. [Carbapenemase Genes, Virulence Genes, and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Derived From Bloodstream Infections]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:391-396. [PMID: 38645859 PMCID: PMC11026891 DOI: 10.12182/20240360202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 04/23/2024]
Abstract
Objective To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-β-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.
Collapse
Affiliation(s)
- 全凤 廖
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 余 袁
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 为利 张
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 劲 邓
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 梅 康
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Sun S, Cai M, Wang Q, Wang S, Zhang L, Wang H. Emergency of the plasmid co-carrying bla KPC-2 and bla NDM-1 genes in carbapenem-resistant hypervirulent Klebsiella pneumoniae. J Glob Antimicrob Resist 2024; 36:26-32. [PMID: 38040118 DOI: 10.1016/j.jgar.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prevalent issue in China, with its spread primarily attributed to the presence of the plasmid-borne carbapenemase genes, blaKPC and blaNDM. However, instances of plasmids containing both blaKPC-2 and blaNDM-1have never been reported. METHODS In this study, the genomic and microbiological characteristics of hybrid plasmids containing both blaKPC-2 and blaNDM-1 were identified in Chinese clinical CRKP isolates by Illumina combined with ONT nanopore sequencing technology. RESULTS The newly identified plasmid was formed via IS26-mediated recombination and has been shown to be transferable to Escherichia coli. It substantially elevates the minimum inhibitory concentration (MIC) of meropenem by 4000-fold in E. coli, surpassing the MIC values observed in E. coli strains that carry either blaKPC-2 and blaNDM-1 alone, as previously demonstrated in our study. Notably, the co-occurrence of the KPC-NDM fusion plasmid and a pLVPK-like virulence plasmid was observed in these organisms. In vivo experiments revealed that the isolates harbouring the pLVPK-like virulence plasmid exhibited a significantly higher lethality rate in Galleria mellonella. CONCLUSIONS The increased antibiotic resistance brought by this novel fusion plasmid and its accompanying virulence factors pose a serious potential threat to human health and deserve our vigilance.
Collapse
Affiliation(s)
- Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lin Zhang
- The First People's Hospital of Chenzhou City, Hunan, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
24
|
Wahl A, Fischer MA, Klaper K, Müller A, Borgmann S, Friesen J, Hunfeld KP, Ilmberger A, Kolbe-Busch S, Kresken M, Lippmann N, Lübbert C, Marschner M, Neumann B, Pfennigwerth N, Probst-Kepper M, Rödel J, Schulze MH, Zautner AE, Werner G, Pfeifer Y. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int J Med Microbiol 2024; 314:151601. [PMID: 38359735 DOI: 10.1016/j.ijmm.2024.151601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Klebsiella (K.) pneumoniae is a ubiquitous Gram-negative bacterium and a common coloniser of animals and humans. Today, K. pneumoniae is one of the most persistent nosocomial pathogens worldwide and poses a severe threat/burden to public health by causing urinary tract infections, pneumonia and bloodstream infections. Infections mainly affect immunocompromised individuals and hospitalised patients. In recent years, a new type of K. pneumoniae has emerged associated with community-acquired infections such as pyogenic liver abscess in otherwise healthy individuals and is therefore termed hypervirulent K. pneumoniae (hvKp). The aim of this study was the characterisation of K. pneumoniae isolates with properties of hypervirulence from Germany. METHODS A set of 62 potentially hypervirulent K. pneumoniae isolates from human patients was compiled. Inclusion criteria were the presence of at least one determinant that has been previously associated with hypervirulence: (I) clinical manifestation, (II) a positive string test as a marker for hypermucoviscosity, and (III) presence of virulence associated genes rmpA and/or rmpA2 and/or magA. Phenotypic characterisation of the isolates included antimicrobial resistance testing by broth microdilution. Whole genome sequencing (WGS) was performed using Illumina® MiSeq/NextSeq to investigate the genetic repertoire such as multi-locus sequence types (ST), capsule types (K), further virulence associated genes and resistance genes of the collected isolates. For selected isolates long-read sequencing was applied and plasmid sequences with resistance and virulence determinants were compared. RESULTS WGS analyses confirmed presence of several signature genes for hvKp. Among them, the most prevalent were the siderophore loci iuc and ybt and the capsule regulator genes rmpA and rmpA2. The most dominant ST among the hvKp isolates were ST395 capsule type K2 and ST395 capsule type K5; both have been described previously and were confirmed by our data as multidrug-resistant (MDR) isolates. ST23 capsule type K1 was the second most abundant ST in this study; this ST has been described as commonly associated with hypervirulence. In general, resistance to beta-lactams caused by the production of extended-spectrum beta-lactamases (ESBL) and carbapenemases was observed frequently in our isolates, confirming the threatening rise of MDR-hvKp strains. CONCLUSIONS Our study results show that K. pneumoniae strains that carry several determinants of hypervirulence are present for many years in Germany. The detection of carbapenemase genes and hypervirulence associated genes on the same plasmid is highly problematic and requires intensified screening and molecular surveillance. However, the non-uniform definition of hvKp complicates their detection. Testing for hypermucoviscosity alone is not specific enough to identify hvKp. Thus, we suggest that the classification of hvKp should be applied to isolates that not only fulfil phenotypical criteria (severe clinical manifestations, hypermucoviscosity) but also (I) the presence of at least two virulence loci e.g. iuc and ybt, and (II) the presence of rmpA and/or rmpA2.
Collapse
Affiliation(s)
- Anika Wahl
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Martin A Fischer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Kathleen Klaper
- Robert Koch Institute, Department of Sexually transmitted bacterial Pathogens (STI) and HIV, Berlin, Germany
| | - Annelie Müller
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Stefan Borgmann
- Klinikum Ingolstadt, Department of Infectious Diseases and Infection Control, Ingolstadt, Germany
| | | | - Klaus-Peter Hunfeld
- Institute for Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Centre, Medical Faculty, Goethe University, Frankfurt am Main, Germany
| | | | - Susanne Kolbe-Busch
- Institute of Hygiene, Hospital Epidemiology and Environmental Medicine, Leipzig University Medical Center, Leipzig, Germany; Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Kresken
- Paul-Ehrlich-Gesellschaft für Infektionstherapie e. V., Cologne, Germany
| | - Norman Lippmann
- Institute for Medical Microbiology and Virology, University Hospital of Leipzig, Leipzig, Germany
| | - Christoph Lübbert
- Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany; Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany
| | | | - Bernd Neumann
- Institute of Clinical Microbiology, Infectious Diseases and Infection Control, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marco H Schulze
- Department for Infection Control and Infectious Diseases, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas E Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guido Werner
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany.
| |
Collapse
|
25
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. mBio 2024; 15:e0286723. [PMID: 38231533 PMCID: PMC10865842 DOI: 10.1128/mbio.02867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g., siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Furthermore, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N = 16) or cKp (N = 33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression, the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49), respectively. These findings can be used to inform the identification of hvKp.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all five of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which, in turn, would assist in optimizing patient care.
Collapse
Affiliation(s)
- Thomas A. Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Cassandra L. Alvarado
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Connor J. Davies
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Zachary J. Drayer
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Ulrike Carlino-MacDonald
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ting L. Luo
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Melissa J. Martin
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brendan W. Corey
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kara A. Moser
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison L. Halpin
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick T. McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Jiang M, Qiu X, Shui S, Zhao R, Lu W, Lin C, Tu Y, Wu Y, Li Q, Wu Q. Differences in molecular characteristics and expression of virulence genes in carbapenem-resistant and sensitive Klebsiella pneumoniae isolates in Ningbo, China. Front Microbiol 2024; 15:1356229. [PMID: 38389531 PMCID: PMC10881320 DOI: 10.3389/fmicb.2024.1356229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Background In recent years, Klebsiella pneumoniae has attracted attention because of its increasing drug resistance. At the same time, the migration and pathogenicity caused by its virulence genes also bring many difficulties to the diagnosis and treatment of clinical infections. However, it is currently unclear whether there are differences in virulence and pathogenicity with changes in drug resistance. Objective To understand the differences in molecular characteristics and expression of virulence genes in carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-sensitive Klebsiella pneumoniae (CSKP). Methods Using polymerase chain reaction (PCR), we examined capsule polysaccharide-related genes and virulence genes in 150 clinical isolates of CRKP and 213 isolates of CSKP from the local area in Ningbo, China. Multilocus sequence typing (MLST) was used to analyze the phylogenetic relationships of clinical Klebsiella pneumoniae isolates. Furthermore, real-time quantitative PCR (RT-qPCR) was used to analyze the expression differences of common virulence genes in CSKP and CRKP, and the virulence was further verified by the larval model of Galleria mellonella. Results The study found that the detection rates of genes rmpA, iroB, peg-344, magA, aerobactin, alls, kfu, and entB were significantly higher in CSKP compared to CRKP. The capsule gene types K1 and K2 were more common in CSKP, while K5 was more common in CRKP. Hypervirulent Klebsiella pneumoniae (hvKP) was predominantly from CSKP. CRKP strains exhibited noticeable homogeneity, with ST11 being the predominant sequence type among the strains. CSKP strains showed greater diversity in ST types, but ST23 was still the predominant sequence type. Carbapenem-sensitive hypervirulent Klebsiella pneumoniae (CS-hvKP) had higher expression of rmpA and rmpA2 genes compared to carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP). In the wax moth virulence model, the survival rate of CS-hvKP was significantly lower than that of CR-hvKP. Conclusion There is a significant difference in the distribution of virulence genes between CSKP and CRKP, with CSKP carrying a significantly greater number of virulence genes. Furthermore, compared to CSKP, CRKP strains exhibit noticeable homogeneity, with ST11 being the predominant sequence type among the strains. Additionally, in terms of virulence gene expression efficiency and virulence, CSKP is significantly higher than CRKP.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Xuedan Qiu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Siyi Shui
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Rongqing Zhao
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Wenjun Lu
- Department of Intensive Care Units, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Chenyao Lin
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Yanye Tu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Yifeng Wu
- Department of General Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Qiaoping Wu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Wang R, Zhang A, Sun S, Yin G, Wu X, Ding Q, Wang Q, Chen F, Wang S, van Dorp L, Zhang Y, Jin L, Wang X, Balloux F, Wang H. Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11-KL64. Nat Commun 2024; 15:67. [PMID: 38167298 PMCID: PMC10761919 DOI: 10.1038/s41467-023-44351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The acquisition of exogenous mobile genetic material imposes an adaptive burden on bacteria, whereas the adaptational evolution of virulence plasmids upon entry into carbapenem-resistant Klebsiella pneumoniae (CRKP) and its impact remains unclear. To better understand the virulence in CRKP, we characterize virulence plasmids utilizing a large genomic data containing 1219 K. pneumoniae from our long-term surveillance and publicly accessible databases. Phylogenetic evaluation unveils associations between distinct virulence plasmids and serotypes. The sub-lineage ST11-KL64 CRKP acquires a pK2044-like virulence plasmid from ST23-KL1 hypervirulent K. pneumoniae, with a 2698 bp region deletion in all ST11-KL64. The deletion is observed to regulate methionine metabolism, enhance antioxidant capacity, and further improve survival of hypervirulent CRKP in macrophages. The pK2044-like virulence plasmid discards certain sequences to enhance survival of ST11-KL64, thereby conferring an evolutionary advantage. This work contributes to multifaceted understanding of virulence and provides insight into potential causes behind low fitness costs observed in bacteria.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Anru Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Francois Balloux
- UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Zhang Y, Tian X, Fan F, Wang X, Dong S. The dynamic evolution and IS26-mediated interspecies transfer of a bla NDM-1-bearing fusion plasmid leading to a hypervirulent carbapenem-resistant Klebsiella pneumoniae strain harbouring bla KPC-2 in a single patient. J Glob Antimicrob Resist 2023; 35:181-189. [PMID: 37734657 DOI: 10.1016/j.jgar.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVES To characterize the evolution and interspecies transfer of plasmids between Klebsiella pneumoniae and Escherichia coli within a single patient. METHODS Minimum inhibitory concentrations were measured using broth microdilution assays. Conjugation assays, string tests, and Galleria mellonella infection model experiments were also conducted. Whole-genome sequencing was performed on the Illumina and Nanopore platforms. Antimicrobial resistance determinants, insertion sequences, and virulence factors were identified using ABRicate/ResFinder database, ISFinder, and virulence factor database. Wzi and capsular polysaccharide (KL) were typed using Kleborate and Kaptive. Multi-locus sequence typing (MLST), replicon typing, and single nucleotide polymorphism analyses were conducted using the BacWGSTdb server. RESULTS The carbapenem-resistant K. pneumoniae 2111KP was characterized as ST11, wzi64, and KL64, with a positive string test result and a relatively high virulence phenotype. Analysis of the 2111KP genome revealed that blaNDM-1 was located in a 268,400-bp IncFIB/IncHI1B/IncX3 conjugative plasmid (p2111KP-1), regulated by IS26, IS5, and ISKox3. p2111KP-1 was also a rmpA2-associated virulence plasmid with an iutA-iucABCD gene cluster and a IS26-mediated multidrug-resistant fusion plasmid, which contained 8-bp (AGCTGCAC or GGCCTTTG) target site duplications. Segments flanked by IS26 of p2111KP-1 were 99.99% identical to a 49,016-bp E. coli plasmid. CONCLUSIONS This study provided direct evidence of plasmid fusion via IS26 between two different bacterial species within one patient and revealed the process by which genetic elements conferring carbapenem resistance and virulence were simultaneously transferred between these species. It highlights the need for strategic antibiotic use and rigorous monitoring to prevent the plasmid-mediated fusion and transmission of drug-resistance/virulence factors.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fanghua Fan
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Xuan Wang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, People's Republic of China.
| |
Collapse
|
29
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
30
|
Yao L, Wei B, Wang Y, Xu B, Yang M, Chen X, Chen F. A critical role of outer membrane vesicles in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2023; 22:95. [PMID: 37919721 PMCID: PMC10623783 DOI: 10.1186/s12941-023-00645-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND This study aimed to illustrate the status of carbapenem-resistant Enterobacterales (CRE) infections in a Chinese tertiary hospital and to investigate the role of outer membrane vesicles (OMVs) in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP). METHODS The data of CRE infections was collected from laboratory records, and the CRE isolates from two distinct periods (2015/07 to 2017/07 and 2020/04 to 2021/04) were enrolled to detect the carbapenemase genes by polymerase chain reaction (PCR). Multilocus sequence typing (MLST) was used to analyze the molecular characterization of CRKP. The conjugation assay was performed to verify the transmission of the antibiotic resistance plasmid. The OMVs of CRKP were isolated with a method combining an electrophoretic technique with a 300 kDa cut-off dialysis bag. The protein components in CRKP OMVs were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS), and the meropenem-hydrolyzing bioactivity of KPC in CRKP OMVs was determined with different treatments in vitro. RESULTS A total of 178 CRE isolates, including 100 isolates from 2015/07 to 2017/07 and 78 isolates from 2020/04 to 2021/04, were collected for the detection of carbapenemase genes. We found that the carbapenemase gene blaKPC was the most prevalent, followed by blaNDM. By MLST, we found that sequence type (ST) 11 CRKP (96.1%) was the leading type during 2015/07 to 2017/07 and that the ST15 CRKP increased to 46.2% in the late period of 2020/04 to 2021/04. The diameters of Klebsiella pneumoniae OMVs ranged from 100 to 200 nm, and by proteomics analysis the most proteins from OMVs belonged to the "enzyme" group. The KPC enzyme was found in the OMVs from CRKP, and the OMVs could protect inside KPC from proteinase K digestion. Moreover, the KPC enzymes within OMVs, which could be released after Triton X-100 treatment, could hydrolyze meropenem. CONCLUSIONS CRE has increasingly caused infections in hospitals, and blaKPC-positive CRKP infections have constituted a major proportion of infections in the past decade. The OMVs play a critical role in antibiotic resistance in CRKP.
Collapse
Affiliation(s)
- Lifeng Yao
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiwen Wei
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanxia Wang
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beihui Xu
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yang
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuxiang Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547231. [PMID: 37961280 PMCID: PMC10634668 DOI: 10.1101/2023.06.30.547231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.
Collapse
|
32
|
Chen L, Zhou Y, Wang S, Wu C, Zhou P, Wang B, Chen Z, Yu F. Genomic Analysis of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in a Chinese Tertiary Hospital. Infect Drug Resist 2023; 16:6385-6394. [PMID: 37789842 PMCID: PMC10543750 DOI: 10.2147/idr.s425949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Background Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has become a clinical crisis and is associated with significant morbidity and mortality. The prevalence of CR-hvKP has trended upward since 2010. This study aims to describe the clinical and genomic characteristics of CR-hvKP collected from a tertiary hospital in eastern China, from August 2020 to October 2021. Methods We tested the susceptibility to common antibiotics in these isolates to feature the antibiotic-resistant phenotypes. We also applied whole-genome sequencing and core-genome phylogenetic to analysis the genetic features of these isolates. Plasmid replicons were identified by using the PlasmidFinder database, and core-genome phylogenetic analysis by Parsnp database. Results All these strains isolated from the patients with serious underlying diseases and poor prognosis. We found all CR-hvKp isolates exhibited a multidrug-resistant (MDR) phenotype. These results revealed that blaKPC-2 was the predominant carbapenemases gene (n = 53, 84.1%), and ST11-KL64 CR-hvKP strains dominated, forming a single cluster, and differed by an average of 26 core SNPs. We only found eight ST15 isolates containing KL24 and KL112 type capsules, with the main carbapenem resistance genes being blaOXA-232 and blaKPC-2. All ST11-KL64 strains had a series of resistance and virulence genes, along with IncHIB-FIB virulence plasmids and IncFII resistance plasmids, while the prevalence of resistance plasmids like the IncFII plasmid was absence in ST15 isolates. Conclusion This suggests that ST11-KL64 CR-hvKP has emerged as the most prevalent hypervirulence and carbapenem-resistant K. pneumoniae and may contribute to hospital outbreaks of infection, which required most clinical attention.
Collapse
Affiliation(s)
- Lan Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, People’s Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People’s Republic of China
| | - Shanshan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, People’s Republic of China
| | - Chunyang Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Peiyao Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People’s Republic of China
| | - Zhu Chen
- Department of Clinical Laboratory Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
33
|
Zou H, Zhou Z, Berglund B, Zheng B, Meng M, Zhao L, Zhang H, Wang Z, Wu T, Li Q, Li X. Persistent transmission of carbapenem-resistant, hypervirulent Klebsiella pneumoniae between a hospital and urban aquatic environments. WATER RESEARCH 2023; 242:120263. [PMID: 37390655 DOI: 10.1016/j.watres.2023.120263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
The increasing prevalence of infections caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae strains (CR-hvKP) prompts the question of whether these strains also circulate outside of clinical settings. However, the environmental occurrence and dissemination of CR-hvKP are poorly studied. In the current study, we investigated the epidemiological characteristics, and dissemination dynamics of carbapenem-resistant K. pneumoniae (CRKP) isolated from a hospital, an urban wastewater treatment plant (WWTP), and adjacent rivers in Eastern China during one year of monitoring. A total of 101 CRKP were isolated, 54 were determined to be CR-hvKP harboring pLVPK-like virulence plasmids, which were isolated from the hospital (29 out of 51), WWTP (23 out of 46), and rivers (2 out of 4), respectively. The period with lowest detection rate of CR-hvKP in the WWTP, August, corresponded with the lowest detection rate at the hospital. Comparing the inlet and outlet of the WWTP, no significant reduction of the detection of CR-hvKP and relative abundance of carbapenem resistance genes was observed. The detection rate of CR-hvKP and the relative abundance of carbapenemase genes were significantly higher in the WWTP in colder months compared to warmer months. Clonal dissemination of CR-hvKP clones of ST11-KL64 between the hospital and the aquatic environment, as well as the horizontal spread of IncFII-IncR and IncC plasmids carrying carbapenemase genes, was observed. Furthermore, phylogenetic analysis showed that the ST11-KL64 CR-hvKP strain has spread nationally by interregional transmission. These results indicated transmission of CR-hvKP clones between hospital and urban aquatic environments, prompting the need for improved wastewater disinfection and epidemiological models to predict the public health hazard from prevalence data of CR-hvKP.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziyu Zhou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyi Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
34
|
Zhu J, Ju Y, Zhou X, Chen T, Zhuge X, Dai J. Epidemiological characteristics of SHV, cmlv, and FosA6-producing carbapenem-resistant Klebsiella pneumoniae based on whole genome sequences in Jiangsu, China. Front Microbiol 2023; 14:1219733. [PMID: 37538843 PMCID: PMC10394843 DOI: 10.3389/fmicb.2023.1219733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), particularly those with high virulence, cause invasive disease in clinical settings. An epidemiological investigation was conducted on the evolution, virulence, and antimicrobial resistance of CRKP isolates in two tertiary teaching hospitals in Jiangsu, China from November 2020 to December 2021. There were 31 different CRKP strains discovered. We performed whole genome sequencing (WGS) on 13 SHV, cmlv, and FosA6-producing CRKP to reveal molecular characteristics. Five ST15/ST11 isolates had CRISPR-Cas systems. By conjugation tests, KPC-2 can be transmitted horizontally to E. coil. A conjugative pHN7A8-related multi-resistance plasmid (KPC-2, blaCTX-M-65, blaTEM-1, fosA3, catII, and rmtB) was first discovered in CRKP clinical isolates. Using bacteriological testing, a serum killing assay, and an infection model with Galleria mellonella, three ST11-K64 KPC-2 generating carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) were identified. These strains harbored a virulent plasmid and an IncFII-family pKPC/pHN7A8 conjugative plasmid, which led to hypervirulence and resistance. One of these CR-hvKPs, which co-harbored KPC-2, NDM-6, SHV-182, SHV-64, and blaCTX-M-122 genes, was first discovered. Importantly, this CR-hvKP strain also produced biofilm and had non-inferior fitness. The widespread use of ceftazidime/avibactam might provide this CR-hvKP with a selective advantage; hence, immediate action is required to stop its dissemination. Another important finding is the novel ST6136 in K. pneumoniae. Finally, the sterilization efficiency rates of Fe2C nanoparticles in CRKP were more than 98%. Furthermore, our novel antibacterial Fe2C nanoparticles may also provide a therapeutic strategy for infections.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyu Zhou
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Taoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
36
|
Yang X, Sun T, Jia P, Li S, Li X, Shi Y, Li X, Gao H, Yin H, Jia X, Yang Q. A-to-I RNA Editing in Klebsiella pneumoniae Regulates Quorum Sensing and Affects Cell Growth and Virulence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206056. [PMID: 37083223 PMCID: PMC10265045 DOI: 10.1002/advs.202206056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Millions of adenosine (A) to inosine (I) RNA editing events are reported and well-studied in eukaryotes; however, many features and functions remain unclear in prokaryotes. By combining PacBio Sequel, Illumina whole-genome sequencing, and RNA Sequencing data of two Klebsiella pneumoniae strains with different virulence, a total of 13 RNA editing events are identified. The RNA editing event of badR is focused, which shows a significant difference in editing levels in the two K. pneumoniae strains and is predicted to be a transcription factor. A hard-coded Cys is mutated on DNA to simulate the effect of complete editing of badR. Transcriptome analysis identifies the cellular quorum sensing (QS) pathway as the most dramatic change, demonstrating the dynamic regulation of RNA editing on badR related to coordinated collective behavior. Indeed, a significant difference in autoinducer 2 activity and cell growth is detected when the cells reach the stationary phase. Additionally, the mutant strain shows significantly lower virulence than the WT strain in the Galleria mellonella infection model. Furthermore, RNA editing regulation of badR is highly conserved across K. pneumoniae strains. Overall, this work provides new insights into posttranscriptional regulation in bacteria.
Collapse
Affiliation(s)
- Xin‐Zhuang Yang
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Tian‐Shu Sun
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Pei‐Yao Jia
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Sheng‐Jie Li
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Xiao‐Gang Li
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yanan Shi
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Xue Li
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Haotian Gao
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Xin‐Miao Jia
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Qiwen Yang
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
37
|
Zhou K, Xue CX, Xu T, Shen P, Wei S, Wyres KL, Lam MMC, Liu J, Lin H, Chen Y, Holt KE, Xiao Y. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun 2023; 14:2464. [PMID: 37117217 PMCID: PMC10147710 DOI: 10.1038/s41467-023-38061-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.
Collapse
Affiliation(s)
- Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Chun-Xu Xue
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Sha Wei
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haoyun Lin
- Department of Clinical Laboratory, Shenzhen People's Hospital, Shenzhen, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
38
|
Tang N, Li Y, Yao S, Hu J, Zhao Y, Fu S, Song Y, Wang C, Zhang G, Wei D, Li C, Jia R, Feng J. Epidemicity and clonal replacement of hypervirulent carbapenem-resistant Klebsiella pneumoniae with diverse pathotypes and resistance profiles in a hospital. J Glob Antimicrob Resist 2023; 32:4-10. [PMID: 36400407 DOI: 10.1016/j.jgar.2022.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The emergence of carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) poses a great threat to public health. There is a paramount need to increase awareness of the epidemiology, evolution, and pathogenesis of CR-hvKP. METHODS We collected strains of K. pneumoniae for over two years in a hospital. CR-hvKP strains were screened by polymerase chain reaction (PCR) with primers targeting the virulence genes. Genome sequencing was used to determine phylogenetic relationships and genetic characterization of virulence elements. The population dynamics within these strains were analyzed through epidemiological data. The string test, siderophore secretion, and murine infection experiments were performed to investigate virulence potential of different clones. RESULTS A total of 1172 K. pneumoniae strains were isolated from 817 patients, and 125 isolates were identified as CR-hvKP. In all, 102 CR-hvKP strains belonged to sequence type (ST) 11. Genomic analysis demonstrated that three clones of ST11 successively replaced each other in the hospital. Among them, the strains of clade A and clade B acquired virulence plasmids and the strains of clade C acquired a new integrating conjugative element (ICE). Phenotypic experiments revealed enhanced virulence potential of the recent epidemic clone from clade B. Sequence type 11 strains were favorable hosts for the convergence of virulence and resistance, indicated by clonal replacement and acquisition patterns of virulence elements. CONCLUSION The emergence of the enhanced virulence potential of ST11 CR-hvKP suggests that coevolution between hosts and exogenous factors can produce super-virulent CR-hvKP strains, highlighting the need to closely monitor changes in the virulence characteristics of CR-hvKP.
Collapse
Affiliation(s)
- Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shigang Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinshu Hu
- Cangzhou Central Hospital, Cangzhou, China
| | - Yingying Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songzhe Fu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China; College of Marine Science and Environment, Dalian Ocean University, Dalian, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rufu Jia
- Cangzhou Central Hospital, Cangzhou, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Qian C, Zhang S, Xu M, Zeng W, Chen L, Zhao Y, Zhou C, Zhang Y, Cao J, Zhou T. Genetic and Phenotypic Characterization of Multidrug-Resistant Klebsiella pneumoniae from Liver Abscess. Microbiol Spectr 2023; 11:e0224022. [PMID: 36598251 PMCID: PMC9927449 DOI: 10.1128/spectrum.02240-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Cooccurrence of multidrug resistant (MDR) and hypervirulence phenotypes in liver abscess-causing Klebsiella pneumoniae (LAKp) would pose a major threat to public health. However, relatively little information is available on the genomic and phenotypic characteristics of this pathogen. This study aimed to investigate the virulence and resistance phenotype and genotype of MDR LAKp strains from 2016 to 2020. We collected 18 MDR LAKp strains from 395 liver abscess samples and characterized these strains using antimicrobial susceptibility test, string test, mucoviscosity assay, biofilm formation assay, Galleria mellonella killing assay, and whole-genome sequencing. Besides, phylogenetic and comparative genomic analyses were performed on these MDR LAKp, along with 94 LAKp genomes from global sources. Most of these MDR LAKp strains exhibited resistance to cephalosporins, quinolones, and chloramphenicol. Virulence assays revealed that only half of MDR LAKp strains exhibited higher virulence than classical MDR strain K. pneumoniae MGH78578. Importantly, we identified three ST11 KL64 hypervirulence carbapenem-resistant strains carrying blaKPC-2 and one colistin-resistant strain carrying mcr-1. Phylogenetic analysis revealed that 112 LAKp genomes were divided into two clades, and most of MDR LAKp strains in this study belonged to clade 1 (83.33%, 15/18). We also detected the loss of mucoviscosity mediated by mutations and ISKpn14 insertion in rmpA, and the latter representing a novel mechanism by which bacteria regulate RmpA system. This study provides novel insights into MDR LAKp and highlights the necessity for measures to prevent further spread of such organisms in hospital settings and the community. IMPORTANCE Pyogenic liver abscess is a potentially life-threatening suppurative infection of hepatic parenchyma. K. pneumoniae has emerged as a predominant pathogen of pyogenic liver abscess. Liver abscess-causing K. pneumoniae is generally considered hypervirulent K. pneumoniae and is susceptible to most antibiotics. Recently, convergence of multidrug resistant and hypervirulence phenotypes in liver abscess-causing K. pneumoniae was emerging and poses a major threat to public health. However, relatively little information is available on liver abscess-causing multidrug-resistant hypervirulent K. pneumoniae. In this study, we characterized phenotype and genotype of virulence and resistance of 18 multidrug-resistant hypervirulent liver abscess-causing K. pneumoniae strains collected from 395 pyogenic liver abscess cases in a tertiary teaching hospital over a 5-year period to enable in-depth understanding of this pathogen.
Collapse
Affiliation(s)
- Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Jianming Cao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
40
|
Rong F, Liu Z, Yang P, Wu F, Sun Y, Sun X, Zhou J. Epidemiological and Molecular Characteristics of bla NDM-1 and bla KPC-2 Co-Occurrence Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2023; 16:2247-2258. [PMID: 37090038 PMCID: PMC10120834 DOI: 10.2147/idr.s400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
Objective Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged and spread worldwide. It can usually cause a serious threat complicating treatment options in clinical settings. However, treatment options are limited. The present study investigates the prevalence and genetic characteristics of bla NDM-1 and bla KPC-2 co-harboring clinical isolates of Klebsiella pneumoniae. Methods In this study, Multiplex polymerase chain reaction (PCR) was performed to detect the carbapenem-resistant genes, and the broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of antibacterial drugs. The transferability of carbapenem-resistant phenotypes was examined using filter mating assays. Overall, we used Illumina sequencing to evaluate the epidemiological and molecular characteristics of bla NDM-1 and bla KPC-2 (genes encoding carbapenemase) co-occurrence in CRKP strains. Results All strains exhibited resistance to carbapenems and other antibiotics. However, they were still susceptible to polymyxin E. Among them, 18 isolates were positive for bla KPC-2, bla NDM-1, and multiple virulence determinants, such as genes encoding the virulence factor aerobactin, yersiniabactin, and the regulator of the mucoid phenotype (rmpA and rmpA2). Whole genome sequencing revealed that the 18 CRKP strains belonged to ST11 and capsular serotype KL64, and could be grouped into two evolutionary branches. Furthermore, these strains displayed hypervirulence potential since all of them carried pLVPK-like plasmid. Conclusion These findings suggested that ST11-KL64 CRKP strains are major threats in terms of nosocomial infections in this hospital. Hence, new strategies should be urgently developed to monitor, diagnose, and treat this high-risk CRKP clone.
Collapse
Affiliation(s)
- Fang Rong
- Department of General Practice, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Graduate School Department of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ziyi Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Pengbin Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yu Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Xuewei Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Correspondence: Jun Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, People’s Republic of China, Email
| |
Collapse
|
41
|
Liu M, Zheng L, Zhu L, Lu G, Guo H, Guan J, Jing J, Sun S, Wang Y, Wang Z, Sun Y, Ji X, Jiang B, Liu J, Zhang W, Guo X. Characteristics of Carbapenem-resistant Klebsiella pneumoniae in sewage from a tertiary hospital in Jilin Province, China. PLoS One 2023; 18:e0285730. [PMID: 37195919 DOI: 10.1371/journal.pone.0285730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hospitals worldwide. We monitored a tertiary hospital in Changchun, Jilin Province, China, and found that CRKP was the major species among the carbapenem-resistant isolates in sewage. Subsequently, we evaluated the drug susceptibility, resistance genes, virulence genes, outer pore membrane protein-related genes (OmpK35 & OmpK 36), multi-locus sequence typing and replicons, biofilm formation capabilities, and resistance to chlorine-containing disinfectants among KP isolates. Identification of drug sensitivity, multiple resistance profiles were observed including 77 (82.80%) multidrug resistant (MDR), 16 (17.20%) extensive drug resistant (XDR). Some antibiotic resistance genes were detected, the most prevalent carbapenemase gene was blaKPC, and 16 resistance genes were associated with other antibiotics. In addition, 3 (3.23%) CRKP isolates demonstrated loss of OmpK-35 and 2 (2.15%) demonstrated loss of OmpK-36. In the detection of multi-locus sequence typing (MLST), 11 ST11 isolates carried virulence genes. The most common replicon type was IncFII. Biofilm-forming capabilities were demonstrated by 68.8% of the isolates, all of which were resistant to chlorine-containing disinfectants. The results of the study showed that antibiotic-resistant isolates, especially CRKP, could resist disinfectants in hospital wastewater, and improper treatment of hospital wastewater may lead to the spread of drug-resistant bacteria and their genes. Thus, these bacteria must be eliminated before being discharged into the municipal sewage system.
Collapse
Affiliation(s)
- Mingwei Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lin Zheng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lingwei Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Gejin Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hongru Guo
- The Sericultural Research Institute of Jilin Province, Jilin, PR China
| | - Jiayao Guan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Jing
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shiwen Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zixian Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xue Ji
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bowen Jiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jun Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenhui Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xuejun Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
42
|
Cao H, Liang S, Zhang C, Liu B, Fei Y. Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient. Infect Drug Resist 2023; 16:1367-1380. [PMID: 36937147 PMCID: PMC10017834 DOI: 10.2147/idr.s404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat. Methods Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene. Conclusion A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.
Collapse
Affiliation(s)
- Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Bao Liu
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Ying Fei
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Correspondence: Ying Fei, Email
| |
Collapse
|
43
|
Huang Y, Li J, Wang Q, Tang K, Cai X, Li C. Detection of carbapenem-resistant hypervirulent Klebsiella pneumoniae ST11-K64 co-producing NDM-1 and KPC-2 in a tertiary hospital in Wuhan. J Hosp Infect 2023; 131:70-80. [PMID: 36183928 DOI: 10.1016/j.jhin.2022.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses serious challenges to public health. Only a few sporadic reports of strains co-producing NDM-1 and KPC-2 (NDM-1-KPC-2-CR-hvKP strains) are available to date. OBJECTIVES This retrospective study investigated the clinical features, prevalence and antibiotic resistance of hvKP in a tertiary hospital in central China, and characterized an NDM-1-KPC-2-CR-hvKP strain (KP169). METHODS Clinical data were collected. Antimicrobial and virulence-associated phenotyping and genotyping, capsular serotype gene analysis and multi-locus sequence typing of hvKP isolates were performed. Whole-genome sequencing (WGS) was performed on strain KP169. RESULTS Forty-five of 109 K. pneumoniae clinical isolates were hvKP. Of these, 37 originated from nosocomial infections and 24 expressed carbapenemases. Eight NDM-1-KPC-2-CR-hvKP strains were identified, and enterobacterial repetitive intergenic consensus polymerase chain reaction showed that they were clonally related. WGS revealed that strain KP169, which belongs to ST11-K64, had a single 5.5-Mb chromosome and six plasmids of 5.5-221.6 kb. The blaNDM-1 gene was located on plasmid pKP169-P3, and blaKPC-2, blaSHV-12 and blaTEM-1 were located on IncFII/IncR pKP169-P2. IncHI 1/IncFIB virulence plasmid pKP169-P1 was similar to pKPC-CR-hvKP-C789 plasmid reported previously. Plasmid stability testing showed that blaKPC-2- and blaNDM-1-harbouring plasmids were maintained stably in the host. CONCLUSION To the best of the authors' knowledge, this study identified the largest cohort, to date, of eight NDM-1-KPC-2-CR-hvKP strains, and suggests that antimicrobial stewardship and protocols to prevent transmission are needed urgently.
Collapse
Affiliation(s)
- Y Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - J Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Q Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - K Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - X Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - C Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
44
|
Liao W, Zhao T, Zhang Z, Yan F, Peng X, Cui J, Zuo W. Fatal Stent-Associated Respiratory Tract Infection Caused by K64-ST11 KPC-2-Producing Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae: A Rare Case Report. Microb Drug Resist 2023; 29:28-33. [PMID: 36656990 DOI: 10.1089/mdr.2022.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objectives: This study reported a fatal stent-associated respiratory tract infection (SARTI) caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP). Case: A bare-metal stent in the left main bronchus and a Y-shaped stent graft in the tracheal bronchus were placed successively in a 50-year-old woman due to shortness of breath after undergoing multiple chemotherapy treatments for lung cancer. Unfortunately, the followed SARTI and lung abscess in our patient caused by CR-hvKP eventually led to the death of the patient, despite our aggressive clearing of phlegm and potent antibiotics. The genomic analysis showed it was caused by a KPC-2-producing extensively drug-resistant K64-ST11 hypervirulent K. pneumoniae harboring several virulence and antimicrobial resistance genes. Conclusion: This study highlights the risk of SARTI caused by CR-hvKP in immunocompromised individuals.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Zhizhe Zhang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Fuyi Yan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Xiong Peng
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Jian Cui
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Wei Zuo
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
45
|
Jia X, Zhu Y, Jia P, Liu X, Yu W, Li X, Xu Y, Yang Q. Emergence of a Superplasmid Coharboring Hypervirulence and Multidrug Resistance Genes in Klebsiella pneumoniae Poses New Challenges to Public Health. Microbiol Spectr 2022; 10:e0263422. [PMID: 36264236 PMCID: PMC9769819 DOI: 10.1128/spectrum.02634-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
The emergence of plasmids coharboring hypervirulence (Hv) and multidrug resistance (MDR) genes has further accelerated the spread of MDR-Hv Klebsiella pneumoniae (MDR-HvKP) strains, having a severe impact on public health. Here, we report an MDR-Hv superplasmid coharboring hypervirulence and MDR genes and the detailed characterization of its genetic and phenotypic features. This plasmid was identified in an ST11 (sequence type 11)-K64 carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) strain, SZS128, which was responsible for a bloodstream infection in a 21-year-old female. Susceptibility testing showed that SZS128 was resistant to amikacin, levofloxacin, and almost all of the β-lactams examined. SZS128 showed high virulence in a Galleria mellonella survival assay and a mouse intraperitoneal infection model. Genomic analysis showed that SZS128 not only possessed a KPC plasmid (pSZS128-KPC) but also carried a superplasmid (pSZS128-Hv-MDR) coharboring hypervirulence and MDR genes and possessing complete conjugative regions. Conjugation and transformation assays confirmed the potential for horizontal transfer and the high stability (retention rate of >95%) of the pSZS128-Hv-MDR superplasmid. Furthermore, growth curve assessment confirmed that there was no increase in the fitness cost in the presence of pSZS128-Hv-MDR. Therefore, we define a superplasmid as a plasmid fulfilling all the following criteria: (i) a single plasmid that coharbors hypervirulence and MDR genes, (ii) a plasmid that harbors complete conjugative elements that guarantee self-transmissibility, (iii) a plasmid that is stable and conserved, and (iv) a plasmid with no fitness cost to the host strain. The emergence of this kind of superplasmid could represent a serious threat to public health, and urgent control measures must be implemented. IMPORTANCE This self-transmissible superplasmid, which simultaneously carries hypervirulence and MDR genes, greatly enhances the challenges to clinical prevention and control and anti-infection treatment. Thus, active surveillance of this type of superplasmid is needed to prevent these efficient resistance/virulence plasmids from disseminating in hospital settings. Our findings provide a reference for defining the term "superplasmid" and emphasize the importance of raising public awareness of the rapid dissemination of this self-transmissible superplasmid and the consistent emergence of MDR-HvKP strains.
Collapse
Affiliation(s)
- Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
47
|
Jia P, Jia X, Zhu Y, Liu X, Yu W, Li R, Li X, Kang M, Xu Y, Yang Q. Emergence of a Novel NDM-5-Producing Sequence Type 4523 Klebsiella pneumoniae Strain Causing Bloodstream Infection in China. Microbiol Spectr 2022; 10:e0084222. [PMID: 35993711 PMCID: PMC9603328 DOI: 10.1128/spectrum.00842-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is a significant infectious pathogen that causes bloodstream infections. This study aimed to genetically characterize a novel sequence type 4523 (ST4523) multidrug-resistant (MDR) K. pneumoniae strain recovered from the blood of a 79-year-old Chinese female patient with severe pneumonia and chronic obstructive pulmonary disease who ultimately died of the infection. The susceptibility testing results showed that strain 18SHX180 is nonsusceptible to cephalosporin, carbapenems, combinations of β-lactam and β-lactamase inhibitors, levofloxacin, and colistin and is only susceptible to amikacin. The phylogenetic structure showed that strain 18SHX180 belongs to a novel sequence type, ST4523, and capsule serotype K111. ST4523 is closely related to ST11, the most dominant clone of clinical carbapenem-resistant K. pneumoniae in China. ST4523 has 2 single-base variants in mdh and phoE. 18SHX180 showed medium virulence in Galleria mellonella and a mouse intraperitoneal infection model. PacBio Sequel and Illumina sequencing were performed to analyze the genetic characterization of 18SHX180, which contains 2 plasmids (pSHX180-NDM5 and pSHX180-1). pSHX180-NDM5 exhibits 86% coverage and 100% identity with 3 blaNDM-5-carrying plasmids and contains an additional region coding for the frmRAB operon, which permits bacteria to sense and detoxify formaldehyde. pSHX180-1 is responsible for the MDR phenotype: it carries 11 categories of genes for antimicrobial resistance [aadA16, aph(3″)-Ib, aph(6)-Id, blaSHV-182, blaTEM-1A, qacE, aac(6')-Ib-cr, mph(A), floR, qnrB6, arr-3, sul, sul2], all of which are associated with transposons and integrons located in three accessory resistance regions. The novel ST4523 K. pneumoniae strain could threaten the control of antimicrobial resistance, and its discovery calls attention to the genetic evolution of bacteria. IMPORTANCE Klebsiella pneumoniae is a significant infectious pathogen causing bloodstream infections. Due to the dissemination of carbapenemase genes, the incidence of carbapenem-resistant K. pneumoniae (CRKP) has increased, with high morbidity and mortality rates in immunocompromised patients. Here, we reported a novel ST4523 blaNDM-5-bearing CRKP strain initially recovered from a 79-year-old female who died of both a lower respiratory tract infection and bloodstream infection. We also describe the genetic and phenotypic characteristics of this strain. This study provides important insights into the genetic evolution of ST11 K. pneumoniae.
Collapse
Affiliation(s)
- Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rui Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Mei Kang
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
48
|
Zhu W, Liu Y, Chen F, Chen S, Zhu Y, Li H, Wang J, Liu J, Li Y, Yu J, Guan H, Yu J, Shen L. Cooccurrence of Antibiotic Resistance and Hypervirulence in High-Risk Carbapenem-Resistant K14.K64 and Wzi209 Klebsiella pneumoniae Strains Driven by Plasmids and Their Derivatives. Microbiol Spectr 2022; 10:e0254121. [PMID: 35993767 PMCID: PMC9603693 DOI: 10.1128/spectrum.02541-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/25/2022] [Indexed: 01/04/2023] Open
Abstract
Emerging hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a severe public health problem worldwide. To assess the cooccurrence of CRKP and hv-CRKP, a total of 1,181 CRKP isolates were collected from 2009 to 2018, covering their initial occurrence to outbreaks. Overall, two major capsular serotypes, namely, wzi209-CRKP and K14.K64-CRKP, were identified as being prevalent in pediatric and adult patients, respectively. Most isolates carried blaKPC, and the blaKPC-carrying hybrid plasmid IncFII-IncR, which was stable and transferable, was identified. The conjugation region (traN/traC) of IncFII-IncR was found to be variable, and the genes were used as markers to identify the transmission of strains among patient groups in this study. Notably, hv-CRKP was characterized by screening for four virulence genes (rmpA, iroN, terW, and rmpA2) in all 977 blaKPC-carrying K14.K64-CRKP and wzi209-CRKP strains. Two virulence types, namely, rmpA/iroN/terW/rmpA2 positive and terW/rmpA2 positive, were found. The corresponding virulence plasmids Vir1, i.e., nonconjugative IncFIB(k)-IncHI1B, and Vir2, i.e., conjugative antibiotic-resistant IncFIB-IncHI1B, were further characterized. Both Vir1 and Vir2 were stable, and the transferability of Vir2 was significantly higher than that of IncFII-IncR. However, none of the Vir1- or Vir2-carrying strains exhibited the hypervirulent phenotype. Meanwhile, hv-CRKP (terW/rmpA2 positive) was found in late 2018 among wzi209-CRKP strains. The corresponding Vir2-related fragment was characterized as chromosomally integrated, which dramatically enhanced the virulence of wzi209-CRKP. Transmission of hv-CRKP among patient groups was also confirmed according to virulence elements. Taken together, CRKP and hv-CRKP occurred on a large scale. Plasmids and their derivatives played an important role on this process. Surveillance and intervention of hv-CRKP are urgently needed. IMPORTANCE Currently, an increasing number of hv-CRKP strains have been reported and pose a substantial threat to public health worldwide, because these strains are considered to be simultaneously hypervirulent, carbapenem resistant, and transmissible. In this study, we provided a complete transition process of CRKP and hv-CRKP from their early emergence to outbreak in 10 years. We identified two epidemic groups, K14.K64 (wzi64)-CRKP and wzi209-CRKP, in adult and pediatric patients, respectively. K14.K64 (wzi64)-CRKP was widely present, while wzi209-CRKP was rarely reported as an epidemic type. We discovered a large scale of hv-CRKP transmission from CRKP and determined the importance of antibiotic resistance and virulence plasmids and their derivatives for the transition of CRKP and hv-CRKP. Two virulence plasmids coexist in out hospital, but neither of them enhanced virulence. Notably, we found a newly emerged type of CRKP, hypervirulent wzi209-CRKP, which had dramatically enhanced virulence, making it a great threat to human health.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Hu Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Wang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Liu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanrui Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Yu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Guan
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Laboratory Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Xin Hua Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Kamau E, Ranson EL, Tsan AT, Bergmann-Leitner ES, Garner OB, Yang S. Clinical and genomic characterization of hypervirulent Klebsiella pneumoniae (hvKp) infections via passive surveillance in Southern California, 2020–2022. Front Microbiol 2022; 13:1001169. [PMID: 36312975 PMCID: PMC9614223 DOI: 10.3389/fmicb.2022.1001169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is more invasive and virulent than classical K. pneumoniae, and requires specialized treatment. To raise clinical awareness, this study determined the prevalence, clinical characteristics, and genomic epidemiology of hvKp infections in Southern California (SoCal) by conducting a passive surveillance in a single large academic medical center. We report here that hvKp infections were more common than expected, accounting for 2.6% of invasive K. pneumoniae infections, and presented with a wide disease spectrum, occasionally mimicking tumors, even co-infecting a COVID-19 patient. Most infections were community acquired with no recent international travel, suggesting hvKp strains are circulating in the community. Genomic analysis revealed genetic diversity, with the K1-ST23 lineage predominating but not clonal, and multiple sequence types of K2 including a SoCal unique K2-ST66 sublineage that had been unrecognized. Our findings highlight the urgency of heightened awareness of hvKp infection in the US, the need for rapid diagnosis of hvKp, and the necessity of implementing robust surveillance programs for hvKp at the institutional or local level.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elizabeth L. Ranson
- Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Allison T. Tsan
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elke S. Bergmann-Leitner
- Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- *Correspondence: Shangxin Yang
| |
Collapse
|
50
|
He Z, Xu W, Zhao H, Li W, Dai Y, Lu H, Zhao L, Zhang C, Li Y, Sun B. Epidemiological characteristics an outbreak of ST11 multidrug-resistant and hypervirulent Klebsiella pneumoniae in Anhui, China. Front Microbiol 2022; 13:996753. [PMID: 36212848 PMCID: PMC9537591 DOI: 10.3389/fmicb.2022.996753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae has become a primary threat to global health because of its virulence and resistance. In 2015, China reported multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKp) isolates. The emergence of MDR-hvKp poses a significant threat to public health. We collected 76 MDR K. pneumoniae isolates from the same hospital, of which there were a total of six MDR-hvKp isolates. We performed multilocus sequence typing (MLST) and capsular typing, whole genome sequencing, comparative genome analysis, and phylogenetic analysis as well as phenotypic experiments, including growth curves, mucoviscosity assay, Galleria mellonella infection model, human whole blood survival, and human neutrophil bactericidal assay to further characterize the samples. We identified six large plasmids carrying extended spectrum β-lactamase (ESBL) genes or carbapenemase genes (blaCTX–M–65, blaKPC–2, blaSHV–12, blaSHV–158), 9 plasmids containing other drug resistance genes, and 7 hypervirulence plasmids carrying rmpA and rmpA2 in ST11 MDR-hvKp isolates. Some of these plasmids were identical, whereas others differed only by insertion elements. In addition, we identified a plasmid, p21080534_1, that carries hypervirulence genes (iucABCD, iutA, rmpA2), a carbapenemase gene (blaKPC–2), and an ESBL gene (blaSHV–12), as well as MDR-hvKp 21072329, which did not carry rmpA or rmpA2, but exhibited hypervirulence and hypermucoviscosity. ST11 MDR-hvKp derived from hypervirulence and multidrug resistance plasmids not only causes significant treatment difficulties, but also represents an unprecedented challenge to public health. Therefore, urgent measures are needed to limit further spread.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weifeng Xu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hang Zhao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, Anhui Provincial Hospital of Anhui Medical University of China, Hefei, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, Anhui Provincial Hospital of Anhui Medical University of China, Hefei, China
| | - Liping Zhao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhang
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yujie Li,
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Baolin Sun,
| |
Collapse
|