1
|
Di Lorenzo R, Marzetti E, Coelho-Junior HJ, Calvani R, Pesce V, Landi F, Leeuwenburgh C, Picca A. Iron Metabolism and Muscle Aging: Where Ferritinophagy Meets Mitochondrial Quality Control. Cells 2025; 14:672. [PMID: 40358196 DOI: 10.3390/cells14090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired MQC contributes to muscle dysfunction during aging. The autophagy-lysosome system plays a critical role in MQC by tagging and engulfing proteins and organelles for degradation in lysosomes. The endolysosomal system is also instrumental in transferrin recycling, which, in turn, regulates cellular iron uptake. In the neuromuscular system, the autophagy-lysosome system supports the structural integrity of neuromuscular junctions, and its dysfunction contributes to muscle atrophy. While MQC was thought to protect against iron-induced cell death, the discovery of ferroptosis, a form of iron-dependent cell death, has highlighted a complex interplay between MQC and iron-inflicted damage. Ferritinophagy, the autophagic degradation of ferritin, if overactivated, can induce ferroptosis. Alternatively, aging may impair ferritinophagy, leading to ferritin accumulation and the release of toxic labile iron under stress, exacerbating oxidative damage and cellular senescence. Physical activity supports muscle health also by preserving mitochondrial quantity and quality and enhancing bioenergetics. However, therapeutic strategies for preventing or reversing physical function decline in aging are still lacking due to the insufficient understanding of the underlying mechanisms. Unveiling how disruptions in iron homeostasis impact muscle quality in older adults may allow for the development of therapeutic strategies targeting iron handling to alleviate age-associated muscle decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Helio José Coelho-Junior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
2
|
Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res 2025; 203:2216-2225. [PMID: 38969940 PMCID: PMC11920315 DOI: 10.1007/s12011-024-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.
Collapse
Affiliation(s)
- Tara Rolić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Osijek University Hospital Centre (Klinički bolnički centar Osijek), Osijek, Croatia
| | | | - Sanja Mandić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | |
Collapse
|
3
|
Buelo CJ, Velikina J, Mao L, Zhao R, Yuan Q, Ghasabeh MA, Ruschke S, Karampinos DC, Harris DT, Mattison RJ, Jeng MR, Pedrosa I, Kamel IR, Vasanawala S, Yokoo T, Reeder SB, Hernando D. Multicenter, multivendor validation of liver quantitative susceptibility mapping in patients with iron overload at 1.5 T and 3 T. Magn Reson Med 2025; 93:330-340. [PMID: 39238238 DOI: 10.1002/mrm.30251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/27/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To evaluate the repeatability and reproducibility of QSM of the liver via single breath-hold chemical shift-encoded MRI at both 1.5 T and 3 T in a multicenter, multivendor study in subjects with iron overload. METHODS This prospective study included four academic medical centers with three different MRI vendors at 1.5 T and 3 T. Subjects with known or suspected liver iron overload underwent multi-echo spoiled gradient-recalled-echo scans at each field strength. A subset received repeatability testing at either 1.5 T or 3 T. Susceptibility andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed from the multi-echo images and analyzed at a single center. QSM-measured susceptibility was compared withR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and a commercial R2-based liver iron concentration method across centers and field strengths using linear regression and F-tests on the intercept and slope. Field-strength reproducibility and test/retest repeatability were evaluated using Bland-Altman analysis. RESULTS A total of 155/80 data sets (test/retest) were available at 1.5 T, and 159/70 data sets (test/retest) were available at 3 T. Calibrations across sites were reproducible, with some variability (e.g., susceptibility slope with liver iron concentration ranged from 0.102 to 0.123 g/[mg· $$ \cdotp $$ ppm] across centers at 1.5 T). Field strength reproducibility was good (concordance correlation coefficient = 0.862), and test/retest repeatability was excellent (intraclass correlation coefficient = 0.951). CONCLUSION QSM as an imaging biomarker of liver iron overload is feasible and repeatable across centers and MR vendors. It may be complementary withR 2 * $$ {\mathrm{R}}_2^{\ast } $$ as they are obtained from the same acquisition. Although good reproducibility was observed, liver QSM may benefit from standardization of acquisition parameters. Overall, QSM is a promising method for liver iron quantification.
Collapse
Affiliation(s)
- Collin J Buelo
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia Velikina
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruiyang Zhao
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- GE Healthcare, Waukesha, Wisconsin, USA
| | - Qing Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar and Health, Technical University of Munich, Munich, Germany
| | | | - David T Harris
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan J Mattison
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael R Jeng
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ihab R Kamel
- Department of Radiology, The John Hopkins University, Baltimore, Maryland, USA
| | | | - Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Boneva SK, Wolf J, Jung M, Prinz G, Chui TYP, Jauch J, Drougard A, Pospisilik JA, Schlecht A, Bucher F, Rosen RB, Agostini H, Schlunck G, Lange CAK. The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy. J Neuroinflammation 2024; 21:297. [PMID: 39543723 PMCID: PMC11566480 DOI: 10.1186/s12974-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Despite great advances in proliferative diabetic retinopathy (PDR) therapy over the last decades, one third of treated patients continue to lose vision. While resident vitreous macrophages called hyalocytes have been implicated in the pathophysiology of vitreoretinal proliferative disease previously, little is known about their exact role in PDR. In this study, we address molecular and cellular alterations in the vitreous of PDR patients as a means towards assessing the potential contribution of hyalocytes to disease pathogenesis. RESULTS A total of 55 patients were included in this study encompassing RNA-Sequencing analysis of hyalocytes isolated from the vitreous of PDR and control patients, multiplex immunoassay and ELISA analyses of vitreous samples from PDR and control patients, as well as isolation and immunohistochemical staining of cultured porcine hyalocytes. Transcriptional analysis revealed an enhanced inflammatory response of hyalocytes contributing to the cytokine pool within the vitreous of PDR patients by expressing interleukin-6, among others. Further, increased angiopoietin-2 expression indicated that hyalocytes from PDR patients undergo a proangiogenic shift and may thus mediate the formation of retinal neovascularizations, the hallmark of PDR. Finally, RNA-Sequencing revealed an upregulation of factors known from hemoglobin catabolism in hyalocytes from PDR patients. By immunohistochemistry, cultured porcine hyalocytes exposed to red blood cells were shown to engulf and phagocytose these, which reveals hyalocytes' potential to dispose of erythrocytes. Thus, our data suggest a potential role for vitreous macrophages in erythrophagocytosis and, thereby, clearance of vitreous hemorrhage, a severe complication of PDR. CONCLUSION Our results strongly indicate a critical role for vitreous hyalocytes in key pathophysiological processes of proliferative diabetic retinopathy: inflammation, angiomodulation and erythrophagocytosis. Immunomodulation of hyalocytes may thus prove an essential novel therapeutic approach in diabetic vitreoretinal disease.
Collapse
Affiliation(s)
- Stefaniya K Boneva
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Gabriele Prinz
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Toco Y P Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline Jauch
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anne Drougard
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
- Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany.
| |
Collapse
|
5
|
von Haehling S, Sato R, Anker SD. Is myocardial accumulation of non-transferrin-bound iron clinically relevant? Eur Heart J 2024; 45:4509-4511. [PMID: 39374343 DOI: 10.1093/eurheartj/ehae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
| | - Ryosuke Sato
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany
| | - Stefan D Anker
- Berlin Institute of Health-Center for Regenerative Therapies (BCRT), Charité - University Medical Center Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Division of Cardiology and Metabolism-Heart Failure, Cachexia & Sarcopenia, Department of Cardiology (Virchow Klinikum), Charité - University Medical Center Berlin, Berlin, Germany
| |
Collapse
|
6
|
Stacy NI, Smith R, Sullivan KE, Nelson Jr SE, Nolan EC, De Voe RS, Witherington BE, Perrault JR. Health assessment of nesting loggerhead sea turtles ( Caretta caretta) in one of their largest rookeries (central eastern Florida coast, USA). CONSERVATION PHYSIOLOGY 2024; 12:coae064. [PMID: 39309467 PMCID: PMC11415931 DOI: 10.1093/conphys/coae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Reproduction is a physiologically demanding process for sea turtles. Health indicators, including morphometric indices and blood analytes, provide insight into overall health, physiology and organ function for breeding sea turtles as a way to assess population-level effects. The Archie Carr National Wildlife Refuge (ACNWR) on Florida's central eastern coast is critical nesting habitat for loggerhead sea turtles (Caretta caretta), but health variables from this location have not been documented. Objectives of the study were to (1) assess morphometrics and blood analyte data (including haematology, plasma biochemistry, protein electrophoresis, β-hydroxybutyrate, trace nutrients, vitamins and fatty acid profiles) from loggerheads nesting on or near the beaches of the ACNWR, (2) investigate correlations of body condition index (BCI) with blood analytes and (3) analyse temporal trends in morphometric and blood analyte data throughout the nesting season. Morphometric and/or blood analyte data are reported for 57 nesting loggerheads encountered between 2016 and 2019. Plasma copper and iron positively correlated with BCI. Mass tended to decline across nesting season, whereas BCI did not. Many blood analytes significantly increased or decreased across nesting season, reflecting the catabolic state and haemodynamic variations of nesting turtles. Twenty-three of 34 fatty acids declined across nesting season, which demonstrates the physiological demands of nesting turtles for vitellogenesis and reproductive activities, thus suggesting potential utility of fatty acids for the assessment of foraging status and phases of reproduction. The findings herein are relevant for future spatiotemporal and interspecies comparisons, investigating stressor effects and understanding the physiological demands in nesting sea turtles. This information provides comparative data for individual animals in rescue or managed care settings and for assessment of conservation strategies.
Collapse
Affiliation(s)
- Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16TH AVE, Gainesville, FL 32610, USA
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Rachel Smith
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Kathleen E Sullivan
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Steven E Nelson Jr
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Elizabeth C Nolan
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Ryan S De Voe
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
| | - Blair E Witherington
- Disney’s Animals, Science and Environment, 1200 N Savannah Circle, Disney's Animal Kingdom, Lake Buena Vista, FL 32830, USA
- Inwater Research Group, Inc., 4160 NE Hyline Dr, Jensen Beach, FL 34957, USA
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA
| |
Collapse
|
7
|
Kopeć Z, Starzyński RR, Lenartowicz M, Grzesiak M, Opiela J, Smorąg Z, Gajda B, Nicpoń J, Ogłuszka M, Wang X, Mazgaj R, Stankiewicz A, Płonka W, Pirga-Niemiec N, Herman S, Lipiński P. Comparison of Molecular Potential for Iron Transfer across the Placenta in Domestic Pigs with Varied Litter Sizes and Wild Boars. Int J Mol Sci 2024; 25:9638. [PMID: 39273585 PMCID: PMC11395084 DOI: 10.3390/ijms25179638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neonatal iron deficiency anemia is prevalent among domestic pigs but does not occur in the offspring of wild boar. The main causes of this disorder in piglets of modern pig breeds are paucity of hepatic iron stores, high birth weight, and rapid growth. Replenishment of fetal iron stores is a direct result of iron transfer efficiency across the placenta. In this study, we attempted to investigate the molecular potential of iron transfer across the placenta as a possible cause of differences between wild boar and Polish Large White (PLW) offspring. Furthermore, by analyzing placentas from PLW gilts that had litters of different sizes, we aimed to elucidate the impact of the number of fetuses on placental ability to transport iron. Using RNA sequencing, we examined the expression of iron-related genes in the placentas from wild boar and PLW gilts. We did not reveal significant differences in the expression of major iron transporters among all analyzed placentas. However, in wild boar placentas, we found higher expression of copper-dependent ferroxidases such as ceruloplasmin, zyklopen, and hephaestin, which facilitate iron export to the fetal circulation. We also determined a close co-localization of ceruloplasmin and zyklopen with ferroportin, the only iron exporter.
Collapse
Affiliation(s)
- Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Barbara Gajda
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Xiuying Wang
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Wiktoria Płonka
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Natalia Pirga-Niemiec
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
8
|
Kong Y, Yin R, He Y, Pan F, Yang H, Wang H, Zhang J, Gao Y. Plasticity changes in iron homeostasis in hibernating Daurian ground squirrels (Spermophilus dauricus) may counteract chronically inactive skeletal muscle atrophy. J Comp Physiol B 2024; 194:191-202. [PMID: 38522042 DOI: 10.1007/s00360-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.
Collapse
Affiliation(s)
- Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Rongrong Yin
- Department of Biology, WuXi APP Tec Co., Ltd., Shanghai, 200131, China
| | - Yue He
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Fangyang Pan
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Jie Zhang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
9
|
Cheng K, Yang G, Huang M, Huang Y, Wang C. Exogenous 1,25(OH) 2D 3/VD 3 counteracts RSL3-Induced ferroptosis by enhancing antioxidant capacity and regulating iron ion transport: Using zebrafish as a model. Chem Biol Interact 2024; 387:110828. [PMID: 38081571 DOI: 10.1016/j.cbi.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
RSL3 is a common inhibitor of glutathione peroxidase 4 (GPx4) that can induce ferroptosis. Ferroptosis is an iron ion-dependent, oxidative-type of programmed cell death. In this study, larval/adult zebrafish were stimulated with RSL3 to construct a ferroptosis model, and CYP2R1-/- zebrafish was used as a 1,25(OH)2D3 knock-down model to explore the regulatory effect and mechanism of 1,25(OH)2D3/VD3 on RSL3-induced ferroptosis. The results showed that 1,25(OH)2D3/VD3 alleviated RSL3 induced mitochondrial damage in liver of larval/adult zebrafish, reversed the decline of GPx4 activity, and reduced the accumulation of ROS, LPO and MDA. VD3 also inhibited hepcidin (HEPC) in adult fish liver, promoted the production of ferroportin (FPN), and reduced the aggregation of Fe2+. Exogenous 1,25(OH)2D3 increased the CYP2R1-/- survival and liver GPx4 activity after RSL3 treatment. At the gene level, 1,25(OH)2D3/VD3 activated Keap1-Nrf2-GPx4 and inhibited the NFκB-hepcidin axis. In the ferroptosis context, deletion of the cyp2r1 gene resulted in a more severe decline in gpx4 expression, but the exogenous 1,25(OH)2D3 increased the expression of the GPx4 gene and protein in CYP2R1-/- zebrafish liver after RSL3 treatment. The collective results indicated that 1,25(OH)2D3/VD3 can inhibit ferroptosis induced by RSL3 in liver of larval/adult zebrafish by improving the antioxidant capacity and regulating iron ion transport. Exogenous 1,25(OH)2D3 reverses the downregulation of GPx4 in the CYP2R1-/- zebrafish liver in the ferroptosis state. Compared with the ferroptosis inhibitor Fer-1, the mechanism of action of 1,25(OH)2D3/VD3 is diversified and nonspecific. This study demonstrated the resistance of VD3 to RSL3-induced ferroptosis at different developmental stages in zebrafish.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
10
|
Sullivan KE, Swanhall A, Livingston S. Interpretation of Serum Analytes for Nutritional Evaluation. Vet Clin North Am Exot Anim Pract 2024; 27:135-154. [PMID: 37735025 DOI: 10.1016/j.cvex.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Serum micronutrient analysis can provide insight into diet and clinical assessment, despite the complicated interplay between micronutrients and species idiosyncrasies. Approach serum nutrient analytes with skepticism, before jumping to alter diets or offering supplementation. Utilize across species but know that some exotics have exceptions to typical ranges, such as calcium in rabbits or iron in reptiles. Make sure you trust that referenced ranges reflect normal and healthy for that species. Micronutrients are integral to every bodily process, so measurement of serum analytes can tell a story that aids in the clinical picture, when one can recognize what stands out.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA.
| | - Alyxandra Swanhall
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| | - Shannon Livingston
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| |
Collapse
|
11
|
Muranov KO. Fenton Reaction in vivo and in vitro. Possibilities and Limitations. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S112-S126. [PMID: 38621747 DOI: 10.1134/s0006297924140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 04/17/2024]
Abstract
The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
12
|
Ng SW, Lee C, Ng A, Ng SK, Arcuri F, House MD, Norwitz ER. Ferroportin expression and regulation in human placenta/fetal membranes: Implications for ferroptosis and adverse pregnancy outcomes. Reprod Biol 2023; 23:100816. [PMID: 37890398 DOI: 10.1016/j.repbio.2023.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Iron overload is associated with pregnancy complications. Ferroportin (FPN) is the only known iron exporter in mammalian cells. We hypothesize that FPN is functionally important in ferrotopsis, a process of iron-dependent non-apoptotic programmed cell death, and may have a critical role to play in pregnancy success. We investigated the expression of FPN in placenta/fetal membranes by immunohistochemistry in tissues collected from pregnancies with/without preeclampsia (PE) and spontaneous preterm birth (SPTB). FPN was highly expressed in both trophoblasts and decidual cells found in placenta/fetal membranes. Staining was significantly reduced in fetal membranes from SPTB versus healthy pregnancies (P = 0.046). FPN expression in immortalized human endometrial stromal cells (HESC) increased with in vitro decidualization induction using 1 μM of medroxyprogesterone acetate and 0.5 mM of dibutyryl-cAMP. In addition, both HESC cells and immortalized extravillous trophoblast SW71 cells with FPN knockdown showed significant sensitivity to ferroptosis inducer, erastin (P < 0.001 and P = 0.009, respectively). The survival of both HESC and SW71 cells was not negatively affected by iron supplementation with ferric ammonium citrate in the medium. However, SW71 cells were more sensitive than HESC cells to physiologic iron in the presence of a non-lethal dose of erastin (P < 0.001). Taken together, our data demonstrating increased sensitivity of FPN knockdown HESC and SW71 cells to erastin and increased sensitivity of trophoblasts to iron overload under ferroptotic stress support the hypothesis that FPN protects against ferroptosis during pregnancy.
Collapse
Affiliation(s)
- Shu-Wing Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Chungyan Lee
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Allen Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Felice Arcuri
- Department of Molecular & Developmental Medicine, University of Siena, Siena, Italy
| | - Michael D House
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
13
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Velikina JV, Zhao R, Buelo CJ, Samsonov AA, Reeder SB, Hernando D. Data adaptive regularization with reference tissue constraints for liver quantitative susceptibility mapping. Magn Reson Med 2023; 90:385-399. [PMID: 36929781 PMCID: PMC11057046 DOI: 10.1002/mrm.29644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To improve repeatability and reproducibility across acquisition parameters and reduce bias in quantitative susceptibility mapping (QSM) of the liver, through development of an optimized regularized reconstruction algorithm for abdominal QSM. METHODS An optimized approach to estimation of magnetic susceptibility distribution is formulated as a constrained reconstruction problem that incorporates estimates of the input data reliability and anatomical priors available from chemical shift-encoded imaging. The proposed data-adaptive method was evaluated with respect to bias, repeatability, and reproducibility in a patient population with a wide range of liver iron concentration (LIC). The proposed method was compared to the previously proposed and validated approach in liver QSM for two multi-echo spoiled gradient-recalled echo protocols with different acquisition parameters at 3T. Linear regression was used for evaluation of QSM methods against a reference FDA-approvedR 2 $$ {R}_2 $$ -based LIC measure andR 2 ∗ $$ {R}_2^{\ast } $$ measurements; repeatability/reproducibility were assessed by Bland-Altman analysis. RESULTS The data-adaptive method produced susceptibility maps with higher subjective quality due to reduced shading artifacts. For both acquisition protocols, higher linear correlation with bothR 2 $$ {R}_2 $$ - andR 2 ∗ $$ {R}_2^{\ast } $$ -based measurements were observed for the data-adaptive method (r 2 = 0 . 74 / 0 . 69 $$ {r}^2=0.74/0.69 $$ forR 2 $$ {R}_2 $$ ,0 . 97 / 0 . 95 $$ 0.97/0.95 $$ forR 2 ∗ $$ {R}_2^{\ast } $$ ) than the standard method (r 2 = 0 . 60 / 0 . 66 $$ {r}^2=0.60/0.66 $$ and0 . 79 / 0 . 88 $$ 0.79/0.88 $$ ). For both protocols, the data-adaptive method enabled better test-retest repeatability (repeatability coefficients 0.19/0.30 ppm for the data-adaptive method, 0.38/0.47 ppm for the standard method) and reproducibility across protocols (reproducibility coefficient 0.28 vs. 0.53ppm) than the standard method. CONCLUSIONS The proposed data-adaptive QSM algorithm may enable quantification of LIC with improved repeatability/reproducibility across different acquisition parameters as 3T.
Collapse
Affiliation(s)
- Julia V Velikina
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ruiyang Zhao
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Collin J Buelo
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Alexey A Samsonov
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Chen X, Yang T, Wang D, Huang B, Cao Y, Lu J, Cai L, Yin J. More precise measurement of irregular splenic volume in cirrhotic patients with portal hypertension. ILIVER 2023; 2:109-115. [DOI: 10.1016/j.iliver.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Pfefferlé M, Dubach IL, Buzzi RM, Dürst E, Schulthess-Lutz N, Baselgia L, Hansen K, Imhof L, Koernig S, Le Roy D, Roger T, Humar R, Schaer DJ, Vallelian F. Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity. J Immunother Cancer 2023; 11:e005718. [PMID: 36593065 PMCID: PMC9809320 DOI: 10.1136/jitc-2022-005718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sandra Koernig
- CSL Ltd., Research, Bio21 Institute, Parkville, Victoria, Australia
| | | | | | - Rok Humar
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
17
|
NCOA4 Regulates Iron Recycling and Responds to Hepcidin Activity and Lipopolysaccharide in Macrophages. Antioxidants (Basel) 2022; 11:antiox11101926. [PMID: 36290647 PMCID: PMC9598790 DOI: 10.3390/antiox11101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Macrophages, via erythrophagocytosis, recycle iron from effete erythrocytes to newly developing red blood cells. Conversion of potentially cytotoxic levels of iron from its heme into nonheme form during iron recycling is safely accomplished via coordinated regulations of cellular iron transport and homeostasis. Herein, we demonstrate the roles and regulation of NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy in macrophages after erythrophagocytosis using the mouse macrophage cell line J774 cells. Ferritin in J774 cells increased with the rise of nonheme iron by erythrocyte ingestion and declined when total cellular iron contents subsequently decreased. NCOA4, a selective autophagic cargo receptor for ferritin, was responsible for the control of cellular ferritin and total iron contents at the later stage of erythrophagocytosis. A hepcidin analog, which limits the flux of iron through iron-recycling by inhibiting iron export at the plasma membrane, repressed NCOA4 expression and led to accumulation of ferritin in the mouse macrophages. Transcriptome analyses revealed a functional association of immune response with NCOA4-dependent gene expressions, and we confirmed repression of Ncoa4 by lipopolysaccharide (LPS) in J774 cells and the spleen of mice. Collectively, our studies indicate that NCOA4 facilitates cellular ferritin turnover and the release of iron by macrophages after erythrophagocytosis and functions as a regulatory target for molecular signals of systemic iron overload and inflammation. These identify macrophage NCOA4 as a potential therapeutic target for disorders of systemic iron dysregulation, including anemia of inflammation and hemochromatosis.
Collapse
|
18
|
Humar R, Schaer DJ, Vallelian F. Erythrophagocytes in hemolytic anemia, wound healing, and cancer. Trends Mol Med 2022; 28:906-915. [PMID: 36096988 DOI: 10.1016/j.molmed.2022.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Hemolysis is a ubiquitous pathology defined as premature red blood cell destruction within the circulation or local tissues. One of the most archetypal functions of macrophages is phagocytosis of damaged or extravasated red blood cells, preventing the extracellular release of toxic hemoglobin and heme. Upon erythrophagocytosis, spiking intracellular heme concentrations drive macrophage transformation into erythrophagocytes, leveraging antioxidative and iron recycling capacities to defend against hemolytic stress. This unique phenotype transformation is coordinated by a regulatory network comprising the transcription factors BACH1, SPI-C, NRF2, and ATF1. Erythrophagocytes negatively regulate inflammation and immunity and may modulate disease-specific outcomes in hemolytic anemia, wound healing, atherosclerosis, and cancer. In this opinion article, we outline the known and presumed functions of erythrophagocytes and their implications for therapeutic innovation and research.
Collapse
Affiliation(s)
- Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Vallelian F, Buzzi RM, Pfefferlé M, Yalamanoglu A, Dubach IL, Wassmer A, Gentinetta T, Hansen K, Humar R, Schulthess N, Schaer CA, Schaer DJ. Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from dendritic cells towards red pulp-like macrophages in hemolytic anemia. Cell Death Differ 2022; 29:1450-1465. [PMID: 35031770 PMCID: PMC9345992 DOI: 10.1038/s41418-022-00932-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency. ![]()
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Raphael M Buzzi
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Marc Pfefferlé
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Ayla Yalamanoglu
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Irina L Dubach
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - Kerstin Hansen
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Nadja Schulthess
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Sullivan KE, Lavin SR, Livingston S, Knutson M, Valdes EV, Warren LK. Safety and efficacy of a novel iron chelator (HBED; (N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid)) in equine (Equus caballus) as a model for black rhinoceros (Diceros bicornis). J Anim Physiol Anim Nutr (Berl) 2022; 106:1107-1117. [PMID: 35894091 PMCID: PMC9542505 DOI: 10.1111/jpn.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
While iron overload disorder (IOD) and related disease states are not considered a common occurrence in domestic equids, these issues appear prevalent in black rhinoceroses under human care. In addressing IOD in black rhinos, altering dietary iron absorption and excretion may be the most globally practical approach. A main option for treatment used across other species such as humans, is chelation therapy using iron‐specific synthetic compounds. As horses may serve as an appropriate digestive model for the endangered rhinoceros, we evaluated the potential use of the oral iron chelator N,N‐bis(2‐hydroxybenzyl)ethylenediamine‐N,N‐diacetic acid (HBED) in horses for safety and efficacy prior to testing in black rhinoceros. Health and iron digestibility and dynamics were assessed in horses (n = 6) before, and after treatment with HBED (50 mg/kg body weight) for 8 days using a crossover design with serum, faecal and urine collection. A preliminary pharmacokinetic trial was also performed but no trace of HBED was found in serially sampled plasma through 8 h post‐oral dosing. HBED increased urinary iron output in horses compared to control by 0.7% of total iron intake (p < 0.01), for an average of 27 mg urinary iron/day, similar to human chelation goals. Blood chemistry, blood cell counts and overall wellness were not affected by treatment. As healthy horses are able to regulate iron absorption, the lack of change in iron balance is unsurprising. Short‐term HBED administration appeared to be safely tolerated by horses, therefore it was anticipated it would also be safe to administer to black rhinos for the management of iron overload.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA.,Disney's Animals, Science and Environment, Disney's Animal Kingdom®, Bay Lake, Florida, USA
| | - Shana R Lavin
- Disney's Animals, Science and Environment, Disney's Animal Kingdom®, Bay Lake, Florida, USA.,Department of Animal Science, University of Florida, Gainesville, Florida, USA
| | - Shannon Livingston
- Disney's Animals, Science and Environment, Disney's Animal Kingdom®, Bay Lake, Florida, USA
| | - Mitchell Knutson
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Eduardo V Valdes
- Disney's Animals, Science and Environment, Disney's Animal Kingdom®, Bay Lake, Florida, USA.,Department of Animal Science, University of Florida, Gainesville, Florida, USA
| | - Lori K Warren
- Department of Animal Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Gautreaux MA, Tucker LJ, Person XJ, Zetterholm HK, Priddy LB. Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. J Orthop Res 2022; 40:1251-1262. [PMID: 35315119 PMCID: PMC9106877 DOI: 10.1002/jor.25330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Disease or trauma of orthopedic tissues, including osteomyelitis, osteoporosis, arthritis, and fracture, results in a complex immune response, leading to a change in the concentration and milieu of immunological cells and proteins in the blood. While C-reactive protein levels and white blood cell counts are used to track inflammation and infection clinically, controlled longitudinal studies of disease/injury progression are limited. Thus, the use of clinically-relevant animal models can enable a more in-depth understanding of disease/injury progression and treatment efficacy. Though longitudinal tracking of immunological markers has been performed in rat models of various inflammatory and infectious diseases, currently there is no consensus on which markers are sensitive and reliable for tracking levels of inflammation and/or infection. Here, we discuss the blood markers that are most consistent with other outcome measures of the immune response in the rat, by reviewing their utility for longitudinal tracking of infection and/or inflammation in the following types of models: localized inflammation/arthritis, injury, infection, and injury + infection. While cytokines and acute phase proteins such as haptoglobin, fibrinogen, and α2 -macroglobulin demonstrate utility for tracking immunological response in many inflammation and infection models, there is likely not a singular superior marker for all rat models. Instead, longitudinal characterization of these models may benefit from evaluation of a collection of cytokines and/or acute phase proteins. Identification of immunological plasma markers indicative of the progression of a pathology will allow for the refinement of animal models for understanding, diagnosing, and treating inflammatory and infectious diseases of orthopedic tissues.
Collapse
Affiliation(s)
- Malley A. Gautreaux
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Luke J. Tucker
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Xavier J. Person
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Haley K. Zetterholm
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA.,corresponding author, Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
22
|
Hepatic manifestations of systemic disease: an imaging-based review. Pediatr Radiol 2022; 52:852-864. [PMID: 34797394 DOI: 10.1007/s00247-021-05222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The liver is responsible for many processes that maintain human metabolic homeostasis and can be affected by several pediatric systemic diseases. In this manuscript, we explore key pathological findings and imaging features across multiple modalities of a spectrum of congenital, metabolic and autoimmune disorders. Strengthening the radiologists' knowledge regarding potential hepatic manifestations of these systemic diseases will ultimately lead to improved care for pediatric patients.
Collapse
|
23
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
24
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
25
|
Delaney KM, Cao C, Guillet R, Pressman EK, O'Brien KO. Fetal iron uptake from recent maternal diet and the maternal RBC iron pool. Am J Clin Nutr 2022; 115:1069-1079. [PMID: 35102365 PMCID: PMC8971007 DOI: 10.1093/ajcn/nqac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND During pregnancy iron can be obtained from the diet, body iron stores, or iron released from RBC catabolism. Little is known about the relative use of these sources to support fetal iron acquisition. OBJECTIVES To describe longitudinal change in iron absorption and enrichment across gestation and partitioning of RBC iron to the fetus. METHODS Fifteen pregnant women ingested an oral stable iron isotope (57Fe) in the second trimester (T2) of pregnancy (weeks 14-16) to label the RBC pool, and a second oral stable isotope (58Fe) in the third trimester (T3) (weeks 32-35). Absorption was measured at T2 and T3. Change in RBC 57Fe enrichment was monitored (18.8-26.6 wk) to quantify net iron loss from this pool. Iron transfer to the fetus was determined based on RBC 57Fe and 58Fe enrichment in umbilical cord blood at delivery. RESULTS Iron absorption averaged 9% at T2 and increased significantly to 20% (P = 0.01) by T3. The net increase in iron absorption from T2 to T3 was strongly associated with net loss in maternal total body iron (TBI) from T2 to T3 (P = 0.01). Mean time for the labeled RBC 57Fe turnover based on change in RBC enrichment was 94.9 d (95% CI: 43.5, 207.1 d), and a greater decrease in RBC 57Fe enrichment was associated with higher iron absorption in T2 (P = 0.001). Women with a greater decrease in RBC 57Fe enrichment transferred more RBC-derived iron to their fetus (P < 0.05). CONCLUSIONS Iron absorption doubled from T2 to T3 as maternal TBI declined. Women with low TBI had a greater decrease in RBC iron enrichment and transferred more RBC-derived iron to their neonate. These findings suggest maternal RBC iron serves as a significant source of iron for the fetus, particularly in women with depleted body iron stores.
Collapse
Affiliation(s)
| | - Chang Cao
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronnie Guillet
- Department of Pediatrics Division of Neonatology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Eva K Pressman
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine, Rochester, NY, USA
| | | |
Collapse
|
26
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
27
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
28
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
29
|
Albalat E, Cavey T, Leroyer P, Ropert M, Balter V, Loréal O. H fe Gene Knock-Out in a Mouse Model of Hereditary Hemochromatosis Affects Bodily Iron Isotope Compositions. Front Med (Lausanne) 2021; 8:711822. [PMID: 34722560 PMCID: PMC8554230 DOI: 10.3389/fmed.2021.711822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary hemochromatosis is a genetic iron overload disease related to a mutation within the HFE gene that controls the expression of hepcidin, the master regulator of systemic iron metabolism. The natural stable iron isotope composition in whole blood of control subjects is different from that of hemochromatosis patients and is sensitive to the amount of total iron removed by the phlebotomy treatment. The use of stable isotopes to unravel the pathological mechanisms of iron overload diseases is promising but hampered by the lack of data in organs involved in the iron metabolism. Here, we use Hfe -/- mice, a model of hereditary hemochromatosis, to study the impact of the knock-out on iron isotope compositions of erythrocytes, spleen and liver. Iron concentration increases in liver and red blood cells of Hfe -/- mice compared to controls. The iron stable isotope composition also increases in liver and erythrocytes, consistent with a preferential accumulation of iron heavy isotopes in Hfe -/- mice. In contrast, no difference in the iron concentration nor isotope composition is observed in spleen of Hfe -/- and control mice. Our results in mice suggest that the observed increase of whole blood isotope composition in hemochromatosis human patients does not originate from, but is aggravated by, bloodletting. The subsequent rapid increase of whole blood iron isotope composition of treated hemochromatosis patients is rather due to the release of hepatic heavy isotope-enriched iron than augmented iron dietary absorption. Further research is required to uncover the iron light isotope component that needs to balance the accumulation of hepatic iron heavy isotope, and to better understand the iron isotope fractionation associated to metabolism dysregulation during hereditary hemochromatosis.
Collapse
Affiliation(s)
- Emmanuelle Albalat
- CNRS UMR 5276, LGL-TPE, ENS de Lyon, Université de Lyon, Villeurbanne, France
| | - Thibault Cavey
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Martine Ropert
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Vincent Balter
- CNRS UMR 5276, LGL-TPE, ENS de Lyon, Université de Lyon, Villeurbanne, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| |
Collapse
|
30
|
Lieser J, Schwedes C, Walter M, Langenstein J, Moritz A, Bauer N. Oxidative damage of canine erythrocytes after treatment with non-steroidal anti-inflammatory drugs. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2021; 49:407-413. [PMID: 34861718 DOI: 10.1055/a-1623-7506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate oxidative erythrocyte damage in dogs treated with different non-steroidal anti-inflammatory drugs. MATERIAL AND METHODS Case-controlled prospective observational study using blood obtained from dogs presenting for lameness examinations or standard surgical procedures to a private referral clinic. Sampling was performed from April 2018 to July 2019. Groups comprised dogs receiving either metamizole (dipyrone) (22 dogs), carprofen (20 dogs) or meloxicam (20 dogs) for a minimum of 10 days. Dogs with gastrointestinal hemorrhage were excluded from the study. A complete hematological, as well as a basic biochemical profile were performed in every dog. Pappenheim stained blood smears were evaluated for eccentrocytes and brilliant cresyl blue stained smears for Heinz bodies. EDTA blood was frozen at -80°C immediately after sampling for measurement of superoxide dismutase and gluthathione peroxidase activity at an external laboratory. Hemoglobin concentration, superoxide dismutase and gluthathione peroxidase activities, reticulocyte count, eccentrocyte and Heinz body numbers were determined prospectively as key parameters for further statistical assessment with Kruskal-Wallis test and Dunn's multiple comparisons test. RESULTS Dogs receiving metamizole showed a significant increase in eccentrocyte (median 14.5/500 cells vs. 0/500 cells in the other groups, p < 0.0001) and reticulocyte number (median 191.4 × 109/l vs. 31.6-37.9 × 109/l, p < 0.0001) and a significant decrease in hemoglobin concentration (median 8.4 mmol/l vs. 10.1-10.5 mmol/l, p < 0.0003). No significant difference in superoxide dismutase and gluthathione peroxidase activities was observed between dogs receiving metamizole and the other groups. Heinz bodies were not found in any of the dogs. CONCLUSION Treatment with metamizole for 10 or more days resulted in decreased hemoglobin concentration, eccentrocytosis and reticulocytosis in dogs in this study. This might be a sign of increased oxidative damage caused by this drug. CLINICAL SIGNIFICANCE Prolonged metamizole therapy should be evaluated critically in patients already affected by severe illness or underlying anaemia.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Moritz
- Department of Veterinary Clinical Sciences, Clinical Pathophysiology and Clinical Pathology, Justus Liebig University
| | - Natali Bauer
- Department of Veterinary Clinical Sciences, Clinical Pathophysiology and Clinical Pathology, Justus Liebig University
| |
Collapse
|
31
|
Santaolalla A, Sollie S, Rislan A, Josephs DH, Hammar N, Walldius G, Garmo H, Karagiannis SN, Van Hemelrijck M. Association between serum markers of the humoral immune system and inflammation in the Swedish AMORIS study. BMC Immunol 2021; 22:61. [PMID: 34488637 PMCID: PMC8420021 DOI: 10.1186/s12865-021-00448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the onset of inflammatory cascades may profoundly influence the nature of antibody responses, the interplay between inflammatory and humoral (antibody) immune markers remains unclear. Thus, we explored the reciprocity between the humoral immune system and inflammation and assessed how external socio-demographic factors may influence these interactions. From the AMORIS cohort, 5513 individuals were identified with baseline measurements of serum humoral immune [immunoglobulin G, A & M (IgG, IgA, IgM)] and inflammation (C-reactive protein (CRP), albumin, haptoglobin, white blood cells (WBC), iron and total iron-binding capacity) markers measured on the same day. Correlation analysis, principal component analysis and hierarchical clustering were used to evaluate biomarkers correlation, variation and associations. Multivariate analysis of variance was used to assess associations between biomarkers and educational level, socio-economic status, sex and age. RESULTS Frequently used serum markers for inflammation, CRP, haptoglobin and white blood cells, correlated together. Hierarchical clustering and principal component analysis confirmed the interaction between these main biological responses, showing an acute response component (CRP, Haptoglobin, WBC, IgM) and adaptive response component (Albumin, Iron, TIBC, IgA, IgG). A socioeconomic gradient associated with worse health outcomes was observed, specifically low educational level, older age and male sex were associated with serum levels that indicated infection and inflammation. CONCLUSIONS These findings indicate that serum markers of the humoral immune system and inflammation closely interact in response to infection or inflammation. Clustering analysis presented two main immune response components: an acute and an adaptive response, comprising markers of both biological pathways. Future studies should shift from single internal marker assessment to multiple humoral and inflammation serum markers combined, when assessing risk of clinical outcomes such as cancer.
Collapse
Affiliation(s)
- Aida Santaolalla
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK. .,Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sam Sollie
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK
| | - Ali Rislan
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK
| | - Debra H Josephs
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, UK
| | - Niklas Hammar
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Goran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans Garmo
- Regional Cancer Center, Uppsala/Örebro, Uppsala University Hospital, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK.,Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
The Role of Copper in the Regulation of Ferroportin Expression in Macrophages. Cells 2021; 10:cells10092259. [PMID: 34571908 PMCID: PMC8469096 DOI: 10.3390/cells10092259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The critical function of ferroportin (Fpn) in maintaining iron homeostasis requires complex and multilevel control of its expression. Besides iron-dependent cellular and systemic control of Fpn expression, other metals also seem to be involved in regulating the Fpn gene. Here, we found that copper loading significantly enhanced Fpn transcription in an Nrf2-dependent manner in primary bone-marrow-derived macrophages (BMDMs). However, prolonged copper loading resulted in decreased Fpn protein abundance. Moreover, CuCl2 treatment induced Fpn expression in RAW 264.7 macrophages at both the mRNA and protein level. These data suggest that cell-type-specific regulations have an impact on Fpn protein stability after copper loading. Transcriptional suppression of Fpn after lipopolysaccharide (LPS) treatment contributes to increased iron storage inside macrophages and may result in anemia of inflammation. Here, we observed that in both primary BMDMs and RAW 264.7 macrophages, LPS treatment significantly decreased Fpn mRNA levels, but concomitant CuCl2 stimulation counteracted the transcriptional suppression of Fpn and restored its expression to the control level. Overall, we show that copper loading significantly enhances Fpn transcription in macrophages, while Fpn protein abundance in response to CuCl2 treatment, depending on macrophage type and factors specific to the macrophage population, can influence Fpn regulation in response to copper loading.
Collapse
|
33
|
Slusarczyk P, Mleczko-Sanecka K. The Multiple Facets of Iron Recycling. Genes (Basel) 2021; 12:genes12091364. [PMID: 34573346 PMCID: PMC8469827 DOI: 10.3390/genes12091364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the “making”, the “breaking” of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.
Collapse
|
34
|
IDH1 mutation contributes to myeloid dysplasia in mice by disturbing heme biosynthesis and erythropoiesis. Blood 2021; 137:945-958. [PMID: 33254233 DOI: 10.1182/blood.2020007075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl-coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.
Collapse
|
35
|
Pfefferlé M, Ingoglia G, Schaer CA, Hansen K, Schulthess N, Humar R, Schaer DJ, Vallelian F. Acute Hemolysis and Heme Suppress Anti-CD40 Antibody-Induced Necro-Inflammatory Liver Disease. Front Immunol 2021; 12:680855. [PMID: 34054870 PMCID: PMC8149790 DOI: 10.3389/fimmu.2021.680855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Clearance of red blood cells and hemoproteins is a key metabolic function of macrophages during hemolytic disorders and following tissue injury. Through this archetypical phagocytic function, heme is detoxified and iron is recycled to support erythropoiesis. Reciprocal interaction of heme metabolism and inflammatory macrophage functions may modify disease outcomes in a broad range of clinical conditions. We hypothesized that acute hemolysis and heme induce acute anti-inflammatory signals in liver macrophages. Using a macrophage-driven model of sterile liver inflammation, we showed that phenylhydrazine (PHZ)-mediated acute erythrophagocytosis blocked the anti-CD40 antibody-induced pathway of macrophage activation. This process attenuated the inflammatory cytokine release syndrome and necrotizing hepatitis induced by anti-CD40 antibody treatment of mice. We further established that administration of heme-albumin complexes specifically delivered heme to liver macrophages and replicated the anti-inflammatory effect of hemolysis. The anti-inflammatory heme-signal was induced in macrophages by an increased intracellular concentration of the porphyrin independently of iron. Overall, our work suggests that induction of heme-signaling strongly suppresses inflammatory macrophage function, providing protection against sterile liver inflammation.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Giada Ingoglia
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | | - Kerstin Hansen
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Nadja Schulthess
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Chambers IG, Willoughby MM, Hamza I, Reddi AR. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118881. [PMID: 33022276 PMCID: PMC7756907 DOI: 10.1016/j.bbamcr.2020.118881] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Heme, as a hydrophobic iron-containing organic ring, is lipid soluble and can interact with biological membranes. The very same properties of heme that nature exploits to support life also renders heme potentially cytotoxic. In order to utilize heme, while also mitigating its toxicity, cells are challenged to tightly control the concentration and bioavailability of heme. On the bright side, it is reasonable to envision that, analogous to other transition metals, a combination of membrane-bound transporters, soluble carriers, and chaperones coordinate heme trafficking to subcellular compartments. However, given the dual properties exhibited by heme as a transition metal and lipid, it is compelling to consider the dark side: the potential role of non-proteinaceous biomolecules including lipids and nucleic acids that bind, sequester, and control heme trafficking and bioavailability. The emergence of inter-organellar membrane contact sites, as well as intracellular vesicles derived from various organelles, have raised the prospect that heme can be trafficked through hydrophobic channels. In this review, we aim to focus on heme delivery without deliverers - an alternate paradigm for the regulation of heme homeostasis through chaperone-less pathways for heme trafficking.
Collapse
Affiliation(s)
- Ian G Chambers
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America.
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.
| |
Collapse
|
37
|
Venkataramani V. Iron Homeostasis and Metabolism: Two Sides of a Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:25-40. [PMID: 34370286 DOI: 10.1007/978-3-030-62026-4_3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron is an ancient, essential and versatile transition metal found in almost all living organisms on Earth. This fundamental trace element is used in the synthesis of heme and iron-sulfur (Fe-S) containing proteins and other vital cofactors that are involved in respiration, redox reactions, catalysis, DNA synthesis and transcription. At the same time, the ability of iron to cycle between its oxidized, ferric (Fe3+) and its reduced, ferrous (Fe2+) state contributes to the production of free radicals that can damage biomolecules, including proteins, lipids and DNA. In particular, the regulated non-apoptotic cell death ferroptosis is driven by Fe2+-dependent lipid peroxidation that can be prevented by iron chelation or genetic inhibition of cellular iron uptake. Therefore, iron homeostasis must be tightly regulated to avoid iron toxicity. This review provides an overview of the origin and chemistry of iron that makes it suitable for a variety of biological functions and addresses how organisms evolved various strategies, including their scavenging and antioxidant machinery, to manage redox-associated drawbacks. Finally, key mechanisms of iron metabolism are highlighted in human diseases and model organisms, underlining the perils of dysfunctional iron handlings.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany.
| |
Collapse
|
38
|
Sullivan KE, Mylniczenko ND, Nelson SE, Coffin B, Lavin SR. Practical Management of Iron Overload Disorder (IOD) in Black Rhinoceros (BR; Diceros bicornis). Animals (Basel) 2020; 10:ani10111991. [PMID: 33138144 PMCID: PMC7692874 DOI: 10.3390/ani10111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Black rhinoceros under human care are predisposed to Iron Overload Disorder that is unlike the hereditary condition seen in humans. We aim to address the black rhino caretaker community at multiple perspectives (keeper, curator, veterinarian, nutritionist, veterinary technician, and researcher) to describe approaches to Iron Overload Disorder in black rhinos and share learnings. This report includes sections on (1) background on how iron functions in comparative species and how Iron Overload Disorder appears to work in black rhinos, (2) practical recommendations for known diagnostics, (3) a brief review of current investigations on inflammatory and other potential biomarkers, (4) nutrition knowledge and advice as prevention, and (5) an overview of treatment options including information on chelation and details on performing large volume voluntary phlebotomy. The aim is to use evidence to support the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population. Abstract Critically endangered black rhinoceros (BR) under human care are predisposed to non-hemochromatosis Iron Overload Disorder (IOD). Over the last 30 years, BR have been documented with diseases that have either been induced by or exacerbated by IOD, prompting significant efforts to investigate and address this disorder. IOD is a multi-factorial chronic disease process requiring an evidence-based and integrative long-term approach. While research continues to elucidate the complexities of iron absorption, metabolism, and dysregulation in this species, preventive treatments are recommended and explained herein. The aim of this report is to highlight the accumulated evidence in nutrition, clinical medicine, and behavioral husbandry supporting the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population.
Collapse
|
39
|
Bednarz A, Lipiński P, Starzyński RR, Tomczyk M, Kraszewska I, Herman S, Kowalski K, Gruca E, Jończy A, Mazgaj R, Szudzik M, Rajfur Z, Baster Z, Józkowicz A, Lenartowicz M. Exacerbation of Neonatal Hemolysis and Impaired Renal Iron Handling in Heme Oxygenase 1-Deficient Mice. Int J Mol Sci 2020; 21:ijms21207754. [PMID: 33092142 PMCID: PMC7589678 DOI: 10.3390/ijms21207754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Kacper Kowalski
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Ewelina Gruca
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
- Correspondence:
| |
Collapse
|
40
|
Newman L, Jasim DA, Prestat E, Lozano N, de Lazaro I, Nam Y, Assas BM, Pennock J, Haigh SJ, Bussy C, Kostarelos K. Splenic Capture and In Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS NANO 2020; 14:10168-10186. [PMID: 32658456 PMCID: PMC7458483 DOI: 10.1021/acsnano.0c03438] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.
Collapse
Affiliation(s)
- Leon Newman
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Dhifaf A. Jasim
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Eric Prestat
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Neus Lozano
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| | - Irene de Lazaro
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Yein Nam
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Bakri M. Assas
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Department
of Immunology, Faculty of Applied Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Joanne Pennock
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sarah J. Haigh
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cyrill Bussy
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| |
Collapse
|
41
|
Liu J, Wu X, Wang H, Wei J, Wu Q, Wang X, Yan Y, Cui J, Min J, Wang F, Zhou J. HFE inhibits type I IFNs signaling by targeting the SQSTM1-mediated MAVS autophagic degradation. Autophagy 2020; 17:1962-1977. [PMID: 32746697 DOI: 10.1080/15548627.2020.1804683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron metabolism is involved in numerous physiological processes such as erythropoiesis, oxidative metabolism. However, the in vivo physiological functions of the iron metabolism-related gene Hfe in immune response during viral infection remain poorly understood. Here, we identified 5 iron metabolism-associated genes specifically affected during RNA virus infection by a high-throughput assay and further found that HFE was a key negative regulator of RIG-I-like receptors (RLR)-mediated type I interferons (IFNs) signaling. RNA virus infection inhibited the binding of HFE to MAVS (mitochondrial antiviral signaling protein) and blocked MAVS degradation via selective autophagy. HFE mediated MAVS autophagic degradation by binding to SQSTM1/p62. Depletion of Hfe abrogated the autophagic degradation of MAVS, leading to the stronger antiviral immune response. These findings established a novel regulatory role of selective autophagy in innate antiviral immune response by the iron metabolism-related gene Hfe. These data further provided insights into the crosstalk among iron metabolism, autophagy, and innate immune response.Abbreviations: ATG: autophagy-related; BAL: bronchoalveolar lavage fluid; BMDMs: bone marrow-derived macrophages; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; Dpi: days post-infection; ELISA: enzyme-linked immunosorbent assay; GFP: green fluorescent protein; HAMP: hepcidin antimicrobial peptide; Hpi: hours post-infection; HJV: hemojuvelin BMP co-receptor; IFNs: interferons; IL6: interleukin 6; IRF3: interferon regulatory factor 3; ISRE: interferon-stimulated response element; Lipo: clodronate liposomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MEFs: mouse embryonic fibroblasts; SLC40A1/FPN1: solute carrier family 40 (iron-regulated transporter), member 1; flatiron; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1/STING: stimulator of interferon response cGAMP interactor 1; TBK1: TANK-binding kinase 1; TFRC/TfR1: transferrin receptor; TNF/TNFα: tumor necrosis factor; WT: wild type.
Collapse
Affiliation(s)
- Juan Liu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaopeng Wu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Hailong Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jiayu Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Junxia Min
- School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fudi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
42
|
Regulation of Iron Homeostasis and Related Diseases. Mediators Inflamm 2020; 2020:6062094. [PMID: 32454791 PMCID: PMC7212278 DOI: 10.1155/2020/6062094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson's syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration, and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related diseases.
Collapse
|
43
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
44
|
AlGahtani FH, Stuckey R, Alqahtany FS. Secondary hemosiderosis presented by porphyria cutanea tarda in a kidney dialysis patient: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20907815. [PMID: 32128211 PMCID: PMC7036493 DOI: 10.1177/2050313x20907815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/14/2020] [Indexed: 11/23/2022] Open
Abstract
A 68-year-old woman with chronic kidney disease receiving dialysis and iron
supplementation presented to our hospital with painful blisters, fragile skin,
and changes to skin pigmentation on the dorsal side of both upper and lower
limbs. Skin biopsy findings and an increase in urine porphyrins confirmed the
diagnosis of porphyria cutanea tarda. Upon examination, extremely high serum
ferritin levels (6000 µg/L) suggested iron overload. Oral iron supplementation
was immediately discontinued, and the patient received treatment with the iron
chelators deferoxamine, 10 mg/kg/day intravenously for 4 days, and deferasirox,
540 mg/day orally. After a 4-month follow-up, ferritin levels were normal
(97.7 µg/L) and the cutaneous manifestations of porphyria cutanea tarda had
improved. Complete remission has been maintained for the last 2 years, and the
patient’s liver and heart function are normal. This case of porphyria cutanea
tarda caused by secondary hemosiderosis highlights the potential toxicity of
iron accumulation as a result of excessive iron supplementation. Although not
approved for the treatment of patients on hemodialysis, we report the efficacy
of deferasirox without any adverse effects in this case. We also stress the
importance of the close monitoring of serum iron levels in kidney dialysis—and
indeed all iron-supplemented—patients to avoid potential hepatic, cardiac, and
endocrine damage.
Collapse
Affiliation(s)
- Farjah H AlGahtani
- Hematology-Oncology Division, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas, Spain
| | - Fatima S Alqahtany
- Pathology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Baek JH, Shin HKH, Gao Y, Buehler PW. Ferroportin inhibition attenuates plasma iron, oxidant stress, and renal injury following red blood cell transfusion in guinea pigs. Transfusion 2020; 60:513-523. [PMID: 32064619 DOI: 10.1111/trf.15720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Red blood cell (RBC) transfusions result in the sequestration and metabolism of storage-damaged RBCs within the spleen and liver. These events are followed by increased plasma iron concentrations that can contribute to oxidant stress and cellular injury. We hypothesized that administration of a ferroportin inhibitor (FPN-INH) immediately after acute RBC exchange transfusion could attenuate posttransfusion circulatory compartment iron exposure, by retaining iron in spleen and hepatic macrophages. STUDY DESIGN AND METHODS Donor guinea pig blood was leukoreduced, and RBCs were preserved at 4°C. Recipient guinea pigs (n = 5/group) were exchange transfused with donor RBCs after refrigerator preservation and dosed intravenously with a small-molecule FPN-INH. Groups included transfusion with vehicle (saline), 5 mg/kg or 25 mg/kg FPN-INH. A time course of RBC morphology, plasma non-transferrin-bound iron (NTBI) and plasma hemoglobin (Hb) were evaluated. End-study spleen, liver, and kidney organ iron levels, as well as renal tissue oxidation and injury, were measured acutely (24-hr after transfusion). RESULTS RBC transfusion increased plasma NTBI, with maximal concentrations occurring 8 hours after transfusion. Posttransfusion iron accumulation resulted in tubule oxidation and acute kidney injury. FPN inhibition increased spleen and liver parenchymal/macrophage iron accumulation, but attenuated plasma NTBI, and subsequent renal tissue oxidation/injury. CONCLUSION In situations of acute RBC transfusion, minimizing circulatory NTBI exposure by FPN inhibition may attenuate organ-specific adverse consequences of iron exposure.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Hye Kyung H Shin
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Yamei Gao
- Division of Viral Products, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Paul W Buehler
- Department of Pathology, Center for Blood Oxygen Transport, Baltimore, Maryland, USA.,Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Shahin N, Louati H, Trudel G. Measuring Human Hemolysis Clinically and in Extreme Environments Using Endogenous Carbon Monoxide Elimination. Ann Biomed Eng 2020; 48:1540-1550. [PMID: 32034608 DOI: 10.1007/s10439-020-02473-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
The measure of hemolysis in humans is clinically important. Here we describe methods using a gas chromatograph equipped with a reduction gas detector to detect the human analyte carbon monoxide (CO) that were developed for the extreme environment of the International Space Station. These methods can be adapted to in-hospital use for clinical care with characteristics that may surpass existing measures of hemolysis. We demonstrate improved performance over previous-generation methods in terms of reproducibility, accuracy, control for physical and intervening factors to quantitatively assess hemolysis rates at unprecedented levels. The presented measure of hemolysis using CO elimination is based on a different physiological approach that can complement and augment existing detection tools. In addition to their suitability for extreme environments, the methods present distinctive advantages over existing markers for the diagnosis, monitoring and response to treatment of hemolytic anemia. These methods have the potential to fulfill a wide range of research and clinical applications.
Collapse
Affiliation(s)
- Nibras Shahin
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada
| | - Hakim Louati
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada.
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
47
|
Evcan E, Gulec S. The development of lentil derived protein–iron complexes and their effects on iron deficiency anemia in vitro. Food Funct 2020; 11:4185-4192. [DOI: 10.1039/d0fo00384k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lentil derived proteins have the capacity to chelate iron minerals and hydrolysed protein–iron complexes have functional properties on iron deficiency anemia in in vitro by influencing mRNA levels of iron regulating genes.
Collapse
Affiliation(s)
- Ezgi Evcan
- Molecular Nutrition and Human Physiology Laboratory
- Food Engineering Department
- İzmir Institute of Technology
- İzmir Institute of Technology Food Engineering Department
- Urla
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory
- Food Engineering Department
- İzmir Institute of Technology
- İzmir Institute of Technology Food Engineering Department
- Urla
| |
Collapse
|
48
|
Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol 2019; 104:935-951. [DOI: 10.1007/s00253-019-10157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023]
|
49
|
Liu H, Wu H, Zhu N, Xu Z, Wang Y, Qu Y, Wang J. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced Parkinson’s disease in mice. J Neurochem 2019; 152:397-415. [DOI: 10.1111/jnc.14857] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Huiying Liu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Hao Wu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Ning Zhu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Zijie Xu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Yue Wang
- School of Clinical Medicine Qingdao University Qingdao China
| | - Yan Qu
- Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders Department of Physiology Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology Medical College of Qingdao University Qingdao China
| | - Jun Wang
- Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders Department of Physiology Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology Medical College of Qingdao University Qingdao China
| |
Collapse
|
50
|
Malik N, Dunn KM, Cassels J, Hay J, Estell C, Sansom OJ, Michie AM. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci Rep 2019; 9:16917. [PMID: 31729420 PMCID: PMC6858379 DOI: 10.1038/s41598-019-53141-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates phosphoinositide-3-kinase (PI3K)/AKT signalling. This pathway is involved in a plethora of cellular functions including protein and lipid synthesis, cell migration, cell proliferation and apoptosis. In this study, we proposed to delineate the role of mTORC1 in haemopoietic lineage commitment using knock out (KO) mouse and cell line models. Mx1-cre and Vav-cre expression systems were used to specifically target Raptorfl/fl (mTORC1), either in all tissues upon poly(I:C) inoculation, or specifically in haemopoietic stem cells, respectively. Assessment of the role of mTORC1 during the early stages of development in Vav-cre+Raptorfl/fl mice, revealed that these mice do not survive post birth due to aberrations in erythropoiesis resulting from an arrest in development at the megakaryocyte-erythrocyte progenitor stage. Furthermore, Raptor-deficient mice exhibited a block in B cell lineage commitment. The essential role of Raptor (mTORC1) in erythrocyte and B lineage commitment was confirmed in adult Mx1-cre+Raptorfl/fl mice upon cre-recombinase induction. These studies were supported by results showing that the expression of key lineage commitment regulators, GATA1, GATA2 and PAX5 were dysregulated in the absence of mTORC1-mediated signals. The regulatory role of mTOR during erythropoiesis was confirmed in vitro by demonstrating a reduction of K562 cell differentiation towards RBCs in the presence of established mTOR inhibitors. While mTORC1 plays a fundamental role in promoting RBC development, we showed that mTORC2 has an opposing role, as Rictor-deficient progenitor cells exhibited an elevation in RBC colony formation ex vivo. Collectively, our data demonstrate a critical role played by mTORC1 in regulating the haemopoietic cell lineage commitment.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen M Dunn
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher Estell
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|