1
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
2
|
Hernández Rodríguez A, Díaz Pacheco A, Martínez Tolibia SE, Melendez Xicohtencatl Y, Granados Balbuena SY, López y López VE. Bioprocess of Gibberellic Acid by Fusarium fujikuroi: The Challenge of Regulation, Raw Materials, and Product Yields. J Fungi (Basel) 2024; 10:418. [PMID: 38921404 PMCID: PMC11205084 DOI: 10.3390/jof10060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering induction, increased fruit size, and defense against abiotic or biotic stress, which improve the quality and yield of crops. Therefore, GA3 has been considered as an innovative strategy to improve agricultural production. However, the yields obtained at large scale are insufficient for the current market demand. This low productivity is attributed to the lack of adequate parameters to optimize the fermentation process, as well as the complexity of its regulation. Therefore, this article describes the latest advances for potentializing the GA3 production process, including an analysis of its origins from crops, the benefits of its application, the related biosynthetic metabolism, the maximum yields achieved from production processes, and their association with genetic engineering techniques for GA3 producers. This work provides a new perspective on the critical points of the production process, in order to overcome the limits surrounding this modern line of bioengineering.
Collapse
Affiliation(s)
- Aranza Hernández Rodríguez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico; (A.H.R.); (Y.M.X.)
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala, Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala 90000, Mexico; (A.D.P.); (S.Y.G.B.)
| | | | - Yazmin Melendez Xicohtencatl
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico; (A.H.R.); (Y.M.X.)
| | - Sulem Yali Granados Balbuena
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala, Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala 90000, Mexico; (A.D.P.); (S.Y.G.B.)
| | - Víctor Eric López y López
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico; (A.H.R.); (Y.M.X.)
| |
Collapse
|
3
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Daenicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of fumonisins for pigs, poultry and horses. EFSA J 2022; 20:e07534. [PMID: 36034321 PMCID: PMC9399829 DOI: 10.2903/j.efsa.2022.7534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 2018, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. A no observed adverse effect level (NOAEL) of 1 mg/kg feed was established for pigs. In poultry a NOAEL of 20 mg/kg feed and in horses a reference point for adverse animal health effect of 8.8 mg/kg feed was established, referred to as NOAEL. The European Commission (EC) requested EFSA to review the information regarding the toxicity of fumonisins for pigs, poultry and horses and to revise, if necessary, the established NOAELs. The EFSA CONTAM Panel considered that the term reference point (RP) for adverse animal health effects better reflects the uncertainties in the available studies. New evidence which had become available since the previous opinion allowed to revise an RP for adverse animal health effects for poultry from 20 mg/kg to 1 mg/kg feed (based on a LOAEL of 2.5 mg/kg feed for reduced intestinal crypt depth) and for horses from 8.8 to 1.0 mg/kg feed (based on case studies on equine leukoencephalomalacia (ELEM)). For pigs, the previously established NOAEL was confirmed as no further studies suitable for deriving an RP for adverse animal health effects could be identified. Based on exposure estimates performed in the previous opinion, the risk of adverse health effects of feeds containing FB1-3 was considered a concern for poultry, when taking into account the RP of 1 mg/kg feed for intestinal effects. For horses and other solipeds, the risk is considered low, although a large uncertainty associated with exposure was identified. The same conclusions apply to the sum of FB1-3 and their hidden forms.
Collapse
|
4
|
Molina-Pintor I, Rojas-García A, Medina-Díaz I, Barrón-Vivanco B, Bernal-Hernández Y, Ortega-Cervantes L, Ramos A, Herrera-Moreno J, González-Arias C. An update on genotoxic and epigenetic studies of fumonisin B1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fumonisins (FBs), a widespread group of mycotoxins produced by Fusarium spp., are natural contaminants in cereals and foodstuffs. Fumonisin B1 (FB1) is the most toxic and prevalent mycotoxin of this group, and it has been reported that FB1 accounts for 70-80% of FBs produced by the mycotoxigenic strains. The mode of action of FB1 depends on the structural similarity with sphinganine/sphingosine N-acyltransferase. This fact causes an accumulation of sphingoid bases and blocks the sphingolipid biosynthesis or the function of sphingolipids. Diverse toxic effects and diseases such as hepatocarcinogenicity, hepatotoxicity, nephrotoxicity, and cytotoxicity have been reported, and diseases like leukoencephalomalacia in horses and pulmonary oedema in horses and swine have been described. In humans, FBs have been associated with oesophageal cancer, liver cancer, neural tube defects, and infantile growth delay. However, despite the International Agency for Research on Cancer designated FB1 as a possibly carcinogenic to humans, its genotoxicity and epigenetic properties have not been clearly elucidated. This review aims to summarise the progress in research about the genotoxic and epigenetics effects of FB1.
Collapse
Affiliation(s)
- I.B. Molina-Pintor
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - A.E. Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - I.M. Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - B.S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - Y.Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - L. Ortega-Cervantes
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida, 25198, Spain
| | - J.F. Herrera-Moreno
- Laboratory of Precision Environmental Health Sciences, Mailman School of Public Health, Columbia University, 630 west 168th Street, P&S Building Room 16-416, New York, NY, USA
| | - C.A. González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| |
Collapse
|
5
|
Abdul NS, Chuturgoon AA. Fumonisin B 1 regulates LDL receptor and ABCA1 expression in an LXR dependent mechanism in liver (HepG2) cells. Toxicon 2020; 190:58-64. [PMID: 33338448 DOI: 10.1016/j.toxicon.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
The metabolic toxicity of Fumonisin B1 (FB1) converges at the accumulation of sphingoid bases and reduced ceramide levels. Several studies have alluded to a hypercholesterolemic endpoint after FB1 exposure, yet the molecular mechanisms remain elusive. Cell surface receptors are important regulators of cholesterol metabolism by regulating influx of lipids and efflux of cholesterol. Western blot analysis showed that FB1 elevates the expression of ABCA1 (a cholesterol efflux promoter) in an LXR dependent mechanism. We further highlight the potential role of PCSK9 in the degradation of LDL receptor. These data provide important evidence for the mechanism underlying hypercholesterolemia in FB1 treated models. The disruption of lipid homeostasis by FB1 is beginning to shift away from canonical ceramide synthase inhibition, and this changed perspective may shed light on diseases caused by dysregulated cholesterol metabolism such as cancer initiation and promotion.
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
6
|
Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 2020; 185:46-56. [DOI: 10.1016/j.toxicon.2020.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/17/2023]
|
7
|
Sheik Abdul N, Marnewick JL. Fumonisin B 1 -induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol 2020; 40:1602-1613. [PMID: 32667064 DOI: 10.1002/jat.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Fumonisins are a family of potentially carcinogenic mycotoxins produced by Fusarium verticillioides. Several fumonisins have been identified with fumonisin B1 (FB1 ) being the most toxic. The canonical mechanism of FB1 toxicity is centered on its structural resemblance with sphinganine and consequent competitive inhibition of ceramide synthase and disruption of lipidomic profiles. Recent and emerging evidence at the molecular level has identified the disruption of mitochondria and excessive generation of toxic reactive oxygen species (ROS) as alternative/additional mechanisms of toxicity. The understanding of how these pathways contribute to FB1 toxicity can lead to the identification of novel, effective approaches to protecting vulnerable populations. Natural compounds with antioxidant properties seem to protect against the induced toxic effects of FB1 . Rooibos (Aspalathus linearis), endemic to South Africa, has traditionally been used as a medicinal herbal tea with strong scientific evidence supporting its anecdotal claims. The unique composition of phytochemicals and combination of metabolic activators, adaptogens and antioxidants make rooibos an attractive yet underappreciated intervention for FB1 toxicoses. In the search for a means to address FB1 toxicoses as a food safety problem in developing countries, phytomedicine and traditional knowledge systems must play an integral part. This review aims to summarize the growing body of evidence succinctly, which highlights mitochondrial dysfunction as a secondary toxic effect responsible for the FB1 -induced generation of ROS. We further propose the potential of rooibos to combat this induced toxicity based on its integrated bioactive properties, as a socio-economically viable strategy to prevent and/or repair cellular damage caused by FB1 .
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
8
|
Short-term neuronal effects of fumonisin B1 on neuronal activity in rodents. Neurotoxicology 2020; 80:41-51. [PMID: 32561249 DOI: 10.1016/j.neuro.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by microscopic fungi (mostly Fusarium species), which may infect our major crops. The toxin inhibits the development of these plants and may also have harmful effects on animals and humans consuming the infected crops. FB1 inhibits sphingolipid biosynthesis which leads to altered membrane characteristics and consequently, altered cellular functions. There are some indications that the toxin has inhibitory effects on neuronal activity in case of repeated consumption, presumably due to sphingolipid depletion. However, according to new literature data, FB1 may have acute excitatory neural effects, too, via different mechanisms of action. Therefore, in the present study, we addressed the neuronal network effects of FB1 following acute treatment, using different electrophysiological techniques in vitro and in vivo. Acute treatments with FB1 (10-100 μM) were carried out on brain slices, tissue cultures and live animals. After direct treatment of samples, electrically evoked or spontaneous field potentials were examined in the hippocampus and the neocortex of rat brain slices and in hippocampal cell cultures. In the hippocampus, a short-term increase in the excitability of neuronal networks and individual cells was observed in response to FB1 treatment. In some cases, the initially enhanced excitation was reversed presumably due to overactivation of neuronal networks. Normal spontaneous activity was found to be stimulated in hippocampal cell cultures. Seizure susceptibility was not affected in the neocortex of brain slices. For the verification of the results caused by direct treatment, effects of systemic administration of FB1 (7.5 mg/kg, i.p.) were also examined. Evoked field potentials recorded in vivo from the somatosensory cortex and cell activation measured by the c-fos technique in hippocampus and somatosensory cortex were analyzed. However, the hippocampal and cortical stimulatory effect detected in vitro could not be demonstrated by these in vivo assays. Altogether, the toxin enhanced the basic excitability of neurons and neuronal networks after direct treatment but there were no effects on the given brain areas after systemic treatment in vivo. Based on the observed in vitro FB1 effects and the lack of data on the penetration of FB1 across the blood-brain barrier, we assume that in vivo consequences of FB1 administration can be more prominent in case of perturbed blood-brain barrier functions.
Collapse
|
9
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Eriksen GS, Taranu I, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J 2018; 16:e05242. [PMID: 32625894 PMCID: PMC7009563 DOI: 10.2903/j.efsa.2018.5242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fumonisins, mycotoxins primarily produced by Fusarium verticillioides and Fusarium proliferatum, occur predominantly in cereal grains, especially in maize. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to fumonisins and their modified and hidden forms in feed. Fumonisin B1 (FB 1), FB 2 and FB 3 are the most common forms of fumonisins in feedstuffs and thus were included in the assessment. FB 1, FB 2 and FB 3 have the same mode of action and were considered as having similar toxicological profile and potencies. For fumonisins, the EFSA Panel on Contaminants in the Food Chain (CONTAM) identified no-observed-adverse-effect levels (NOAELs) for cattle, pig, poultry (chicken, ducks and turkeys), horse, and lowest-observed-adverse-effect levels (LOAELs) for fish (extrapolated from carp) and rabbits. No reference points could be identified for sheep, goats, dogs, cats and mink. The dietary exposure was estimated on 18,140 feed samples on FB 1-3 representing most of the feed commodities with potential presence of fumonisins. Samples were collected between 2003 and 2016 from 19 different European countries, but most of them from four Member States. To take into account the possible occurrence of hidden forms, an additional factor of 1.6, derived from the literature, was applied to the occurrence data. Modified forms of fumonisins, for which no data were identified concerning both the occurrence and the toxicity, were not included in the assessment. Based on mean exposure estimates, the risk of adverse health effects of feeds containing FB 1-3 was considered very low for ruminants, low for poultry, horse, rabbits, fish and of potential concern for pigs. The same conclusions apply to the sum of FB 1-3 and their hidden forms, except for pigs for which the risk of adverse health effect was considered of concern.
Collapse
|
10
|
Oral and Intravenous Fumonisin Exposure in Pigs-A Single-Dose Treatment Experiment Evaluating Toxicokinetics and Detoxification. Toxins (Basel) 2018; 10:toxins10040150. [PMID: 29621161 PMCID: PMC5923316 DOI: 10.3390/toxins10040150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
We examined the toxicokinetics of fumonisin B1 (FB1) and its main metabolites after single dose application intravenously (iv) of 139 nmol FB1 or hydrolyzed FB1 (HFB1)/kg bodyweight (BW) in barrows (BW: 34.4 kg ± 2.7 kg), as well as the toxicokinetics of FB1, FB2, FB3 and FB1 bioavailability from oral exposure (3425 nmol FB1/kg BW, on top of ration). Additionally, detoxification efficacy of FumD (240 U/kg feed; 3321 nmol FB1/kg BW), a fumonisin esterase, was examined for oral fumonisin application. Urine and feces were collected quantitatively and serum samples were taken over a period of 120 h. Serum toxicokinetics of FB1iv showed a short distribution half-life of 6 min followed by a longer elimination half-life of 36 min. After HFB1iv administration, serum clearance was three times higher compared to FB1iv group (5.6 and 1.8 L/kg/h respectively) which together with a 5-times higher volume of distribution indicates that HFB1 is more rapidly cleared from systemic circulation but distributed more extensively into the extravasal space than FB1. The bioavailability of FB1 in orally exposed pigs was 5.2% (incl. metabolites). Moreover, we found a significant reduction of FB1 bioavailability by 90% caused by the action of fumonisin esterase in the gastrointestinal tract, clearly demonstrating the efficacy of FumD.
Collapse
|
11
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. Occurrence of Fusarium Mycotoxins in Cereal Crops and Processed Products (Ogi) from Nigeria. Toxins (Basel) 2016; 8:E342. [PMID: 27869703 PMCID: PMC5127138 DOI: 10.3390/toxins8110342] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/30/2022] Open
Abstract
In Nigeria, maize, sorghum, and millet are very important cash crops. They are consumed on a daily basis in different processed forms in diverse cultural backgrounds. These crops are prone to fungi infestation, and subsequently may be contaminated with mycotoxins. A total of 363 samples comprising of maize (136), sorghum (110), millet (87), and ogi (30) were collected from randomly selected markets in four agro-ecological zones in Nigeria. Samples were assessed for Fusarium mycotoxins contamination using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Subsequently, some selected samples were analysed for the occurrence of hidden fumonisins. Overall, 64% of the samples were contaminated with at least one toxin, at the rate of 77%, 44%, 59%, and 97% for maize, sorghum, millet, and ogi, respectively. Fumonisins were the most dominant, especially in maize and ogi, occurring at the rate of 65% and 93% with mean values of 935 and 1128 μg/kg, respectively. The prevalence of diacetoxyscirpenol was observed in maize (13%), sorghum (18%), and millet (29%), irrespective of the agro-ecological zone. Other mycotoxins detected were deoxynivalenol, zearalenone, and their metabolites, nivalenol, fusarenon-X, HT-2 toxin, and hidden fumonisins. About 43% of the samples were contaminated with more than one toxin. This study suggests that consumption of cereals and cereal-based products, ogi particularly by infants may be a source of exposure to Fusarium mycotoxins.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, PMB 7267 Umuahia, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Masching S, Naehrer K, Schwartz-Zimmermann HE, Sărăndan M, Schaumberger S, Dohnal I, Nagl V, Schatzmayr D. Gastrointestinal Degradation of Fumonisin B₁ by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine. Toxins (Basel) 2016; 8:toxins8030084. [PMID: 27007395 PMCID: PMC4810229 DOI: 10.3390/toxins8030084] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The mycotoxin fumonisin B1 (FB1) is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB1 to its less toxic metabolite hydrolyzed FB1 (HFB1) in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB1 was completely degraded to HFB1 in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme) in vivo, female turkeys (n = 5) received either basal feed (CON), fumonisin-contaminated feed (15 mg/kg FB1+FB2; FB) or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme) for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB1 in excreta, whereas HFB1 concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02), the mean serum sphinganine-to-sphingosine (Sa/So) ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02), thus resembling values of the CON group (0.16 ± 0.02). Similarly, exposure of piglets (n = 10) to 2 mg/kg FB1+FB2 for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15) compared to the CON group (0.14 ± 0.01). Supplementation with FUMzyme (60 U/kg) resulted in gastrointestinal degradation of FB1 and unaffected Sa/So ratios (0.16 ± 0.02). Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs.
Collapse
Affiliation(s)
- Sabine Masching
- BIOMIN Holding GmbH, Erber Campus 1, 3131 Getzersdorf, Austria.
| | - Karin Naehrer
- BIOMIN Holding GmbH, Erber Campus 1, 3131 Getzersdorf, Austria.
| | - Heidi-Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Mihai Sărăndan
- Faculty of Veterinary Medicine Timișoara, Calea Aradului 119, 300645 Timișoara, Romania.
| | | | - Ilse Dohnal
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | |
Collapse
|
13
|
Garbetta A, Debellis L, De Girolamo A, Schena R, Visconti A, Minervini F. Dose-dependent lipid peroxidation induction on ex vivo intestine tracts exposed to chyme samples from fumonisins contaminated corn samples. Toxicol In Vitro 2015; 29:1140-5. [DOI: 10.1016/j.tiv.2015.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
|
14
|
|
15
|
Antonissen G, Devreese M, Van Immerseel F, De Baere S, Hessenberger S, Martel A, Croubels S. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. Toxins (Basel) 2015; 7:560-71. [PMID: 25690690 PMCID: PMC4344641 DOI: 10.3390/toxins7020560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
16
|
Cirlini M, Hahn I, Varga E, Dall'Asta M, Falavigna C, Calani L, Berthiller F, Del Rio D, Dall'Asta C. Hydrolysed fumonisin B1 and N-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions. Int J Food Sci Nutr 2014; 66:98-103. [PMID: 25472591 DOI: 10.3109/09637486.2014.979316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Food processing may induce thermal degradation of fumonisins in corn via Maillard-type reactions, or alkaline hydrolysis via loss of the two tricarballylic acid moieties. In the former case, N-(1-deoxy-D-fructos-1-yl)-fumonisin B(1) (NDF) can be formed, while the latter derivative is called hydrolysed fumonisin B(1) (HFB(1)). The aim of this study was to deepen the knowledge about the gastrointestinal stability of HFB(1) and NDF in humans. Due to the lack of standard, NDF was chemically synthesised and cleaned up in high purity to be used for further experiments. While NDF is already partially cleaved (about 41%) during simulated digestion, it remained rather stable towards human colon microflora. In contrast to this, HFB(1) is partially metabolised by the colon microflora to unknown compounds after 24 h of fermentation, as seen by a loss of about 22%. Concluding, the cleavage of NDF during digestion as well as the likely metabolisation of HFB(1) emphasise the need for animal trials to ascertain their toxicity in vivo.
Collapse
Affiliation(s)
- Martina Cirlini
- LS9 Bioactives&Health, Interlaboratory Group, Department of Food Science, University of Parma , Parma , Italy and
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Minervini F, Garbetta A, D'Antuono I, Cardinali A, Martino NA, Debellis L, Visconti A. Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:115-123. [PMID: 24549592 DOI: 10.1007/s00244-014-0004-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect of FB1. This study aims to investigate, by dose- and time-dependent experiments on human colon proliferating intestinal cell line (HT-29), the modifications induced by FB1 at concentrations ranging from 0.25 to 69 μM. The choice of highest FB1 concentration considered the low toxicity previously reported on intestinal cell lines, whereas the lowest one corresponded to the lower FBs levels permitted by European Commission Regulation. Different functional parameters were tested such as cell proliferation, oxidative status, immunomodulatory effect and changes in membrane microviscosity. In addition FB1-FITC localization in this cell line was assessed by using confocal laser scanning microscopy. Lipid peroxidation induction was the main and early (12 h) effect induced by FB1 at concentrations ranging from 0.5 to 69 μM, followed by inhibition of cell proliferation (up to 8.6 μM), the immunomodulatory effect (up to 17.2 μM), by assessing IL-8 secretion, and increase in membrane microviscosity (up to 34.5 μM). The toxic effects observed in different functional parameters were not dose-dependent and could be the consequence of the FB1 intracytoplasmatic localization as confirmed by confocal microscopy results. The different timescales and concentrations active of different functional parameters could suggest different cellular targets of FB1.
Collapse
Affiliation(s)
- Fiorenza Minervini
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70125, Bari, Italy,
| | | | | | | | | | | | | |
Collapse
|
18
|
Proposal of a comprehensive definition of modified and other forms of mycotoxins including "masked" mycotoxins. Mycotoxin Res 2014; 30:197-205. [PMID: 24962446 PMCID: PMC4202116 DOI: 10.1007/s12550-014-0203-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/23/2023]
Abstract
As the term “masked mycotoxins” encompasses only conjugated mycotoxins generated by plants and no other possible forms of mycotoxins and their modifications, we hereby propose for all these forms a systematic definition consisting of four hierarchic levels. The highest level differentiates the free and unmodified forms of mycotoxins from those being matrix-associated and from those being modified in their chemical structure. The following lower levels further differentiate, in particular, “modified mycotoxins” into “biologically modified” and “chemically modified” with all variations of metabolites of the former and dividing the latter into “thermally formed” and “non-thermally formed” ones. To harmonize future scientific wording and subsequent legislation, we suggest that the term “modified mycotoxins” should be used in the future and the term “masked mycotoxins” to be kept for the fraction of biologically modified mycotoxins that were conjugated by plants.
Collapse
|
19
|
Minervini F, Debellis L, Garbetta A, De Girolamo A, Schena R, Portincasa P, Visconti A. Influence on functional parameters of intestinal tract induced by short-term exposure to fumonisins contaminated corn chyme samples. Food Chem Toxicol 2014; 66:166-172. [PMID: 24480040 DOI: 10.1016/j.fct.2014.01.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
The gut is a possible target toward mycotoxin fumonisins (FBs) exposure. The study aims to investigate the effects induced by FBs contaminated-corn chyme samples on functional parameters of human and rat intestine by using Ussing chamber. Fumonisins-contaminated corn and processed corn samples were undergone to in vitro digestion process and then added to luminal side. A reduction (about 90%) of short circuit current (Isc μA/cm(2)) during exposure of human colon tissues to fumonisins-free corn chyme samples was observed, probably related to increased chyme osmolality. This hyperosmotic stress could drain water towards the luminal compartment, modifying Na(+) and Cl(-) transports. The presence of FBs in corn chyme samples, independently to their concentration, did not affect significantly the Isc, probably related to their interference towards epithelial Na(+) transport, as assessed by using a specific inhibitor (Amiloride). The rat colon tract represents a more accessible model to study FBs toxicity showing a similar functional response to human. In the rat small intestine a significant reduction (about 15%) of Isc parameter during exposure to uncontaminated or FBs contaminated corn chyme samples was observed; therefore such model was not suitable to assess the FBs toxicity, probably because the prevalent glucose and amino acids electrogenic absorption overwhelmed the FBs influence on ionic transport.
Collapse
Affiliation(s)
- F Minervini
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Via G. Amendola 122/O, 70125 Bari, Italy.
| | - L Debellis
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy.
| | - A Garbetta
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Via G. Amendola 122/O, 70125 Bari, Italy.
| | - A De Girolamo
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Via G. Amendola 122/O, 70125 Bari, Italy.
| | - R Schena
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Via G. Amendola 122/O, 70125 Bari, Italy.
| | - P Portincasa
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza G. Cesare, 70100 Bari, Italy.
| | - A Visconti
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Via G. Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
20
|
van der Westhuizen L, Shephard G, Gelderblom W, Torres O, Riley R. Fumonisin biomarkers in maize eaters and implications for human disease. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maize is the predominant food source contaminated by fumonisins and this has particular health risks for communities consuming maize as a staple diet. The main biochemical effect of fumonisins is the inhibition of ceramide biosynthesis causing an increase in sphingoid bases and sphingoid base 1-phosphates and a depletion of the complex sphingolipids, thereby disrupting lipid metabolism and sphingolipid-mediated processes and signalling systems. Attempts to use the elevation of sphinganine as a human biomarker of fumonisin exposure have to date been unsuccessful. Consequently, recent research has focussed on developing a urinary exposure biomarker based on the measurement of the nonmetabolised toxin. In animals, fumonisins are poorly absorbed in the gut and are mostly excreted unmetabolised in faeces, with only a small percentage (0.25-2.0%) in urine. This appears to also be true in humans were fumonisin B1 (FB1) is detectable in urine soon after exposure, but in very small amounts relative to total intake. However, with modern sensitive and selective analytical methods such as liquid chromatography-tandem mass spectrometry, these low levels can be readily determined. The first study to show a positive correlation between consumption of maize and urinary FB1 was conducted in a Mexican population consuming tortillas as a staple food. Further validation of this relationship was achieved in a South African subsistence farming community with a positive correlation between urinary FB1 and fumonisin exposure, as assessed by food analysis and food intake data. The most recent developments are aimed at measuring multiple mycotoxin biomarkers in urine, including FB1. Current exposure studies in Guatemala are combining the urinary biomarker with measurement of sphinganine-1-phosphate in blood spots as a measure of biochemical effect. Thus, the urinary FB1 biomarker could contribute considerably in assessing the adverse health impact of fumonisin exposure.
Collapse
Affiliation(s)
| | - G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, 7505 Tygerberg, South Africa
| | - W.C.A. Gelderblom
- PROMEC Unit, Medical Research Council, P.O. Box 19070, 7505 Tygerberg, South Africa
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - O. Torres
- Centro de Investigaciones en Nutrición y Salud, Laboratorio Diagnóstico Molecular, S.A., 2a. calle 25-19 zona 15 VHI, 01015 Guatemala City, Guatemala
| | - R.T. Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, 950 College Station Rd, Athens, GA 30605, USA
| |
Collapse
|
21
|
González-Arias C, Marín S, Sanchis V, Ramos A. Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: a review. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the evaluation of the oral bioavailability of a mycotoxin, the first step is the determination of its bioaccessibility, i.e. the percentage of mycotoxin released from the food matrix during digestion in the gastrointestinal (GI) tract that could be absorbed through the intestinal epithelium. Different in vitro digestion models have been recently used for determination of bioaccessibility, thereby avoiding the use of more complex cell culture techniques or the use of animals in expensive in vivo experiments. In vitro methods offer an appealing alternative to human and animal studies. They usually are rapid, simple and reasonably low in cost, and can be used to perform simplified experiments under uniform and well-controlled conditions, providing insights not achievable in whole animal studies. The available in vitro methods for GI simulation differ in the design of the system, the composition of the physiological juices assayed, as well as in the use or not of intestinal microbiota. There are models that only simulate the upper part of the GI tract (mouth-stomach-small intestine), whereas other methods include the large intestine, so that the model chosen could have some influence on the bioaccessibility data obtained. Bioaccessibility depends on the food matrix, as well as on the contamination level and the way the food/feed is contaminated (spiked or naturally). This review focuses on the currently available data regarding in vitro digestion models for the study of the bioaccessibility or absorption of mycotoxins, detailing the characteristics of each digestion step and the importance of the physiological juices employed during digestion. The effect that different factors play on mycotoxin release from the food matrix in the GI tract is also considered, and existing data on bioaccessibility of the main mycotoxins are given.
Collapse
Affiliation(s)
- C.A. González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - S. Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
22
|
Motta EL, Scott PM. Effect ofin vitro digestion on fumonisin B1 in corn flakes. Mycotoxin Res 2013; 23:166-72. [PMID: 23606020 DOI: 10.1007/bf02946043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 08/13/2007] [Indexed: 10/21/2022]
Abstract
Low levels of fumonisins have been found frequently in corn based breakfast cereals and can occur bound to protein and other matrix components.In vitro digestion of two samples of corn flakes was carried out under "fed conditions." Fumonisins were measured as o-phthaldialdehyde/mercaptoethanol derivatives by LC-fluorescence. One sample of corn flakes (FN12) had high concentrations of fumonisin B1 (FB) (average 125 ng/g) and total bound FB1, (TB FB1) (average 92 ng/g) and the other (FN11) had a low level of free FB1 (average 29 ng/g) and no detectable TB FB1. After incubation of the samples with gastrointestinal tract solutions simulating saliva plus stomach and duodenal juices, chyme was analysed for FB1, hydrolyzed FB1 (HFB1) and partially hydrolyzed fumonisin B1 (PHFB1). The bioaccessibility (percentage of FB1 released from corn flakes into chyme) was 38-78% for incurred FB1 in FN12, 8-54% for incurred plus spiked FB1 in FN12, and 19-66% for incurred plus spiked FB1 in FN11. HFB1 and PHFB1 were not detected. If free FB1 was first extracted from sample FN12, no FB1 was detected in the chyme, indicating no contribution from TB FB1. Concentrations were corrected for method recovery of FB1 or, for bound FB1, partial method recovery of HFB1.
Collapse
Affiliation(s)
- E L Motta
- Bureau of Chemical Safety, Health Canada, Address Locator 2203D, K1A0K9, Ottawa, Ontario, Canada,
| | | |
Collapse
|
23
|
|
24
|
Falavigna C, Cirlini M, Galaverna G, Dall'Asta C. Masked fumonisins in processed food: co-occurrence of hidden and bound forms and their stability under digestive conditions. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1403] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fumonisins can occur in foodstuffs as free forms (prent, partially hydrolysed, or totally hydrolysed), as covalently bound fumonisins (bound fumonisins) and as non-covalently bound fumonisins (hidden fumonisins). The formation of several covalently bound fumonisin B1 conjugates upon reaction with sugars and/or amino acids has been reported in the literature so far, but occurrence data are still very poor. Since very little is known about the relevance of both hidden and bound fumonisins in processed products, the present study aimed to evaluate the occurrence of both masked forms in maize-based food products and to study their stability under digestive conditions. The behaviour of covalently bound fumonisin B1 conjugates upon in vitro digestion was evaluated, demonstrating their stability under these conditions. In addition, the co-occurrence of hidden and bound fumonisins in maize-based food products was investigated by application of both alkaline hydrolysis and simulated in vitro digestion assay. The experiments clearly showed that bound fumonisins were rather stable under the applied conditions, whereas hidden fumonisins released their parent forms.
Collapse
Affiliation(s)
- C. Falavigna
- Department of Food Science, University of Parma, Viale Usberti 17/A, 43124 Parma, Italy
| | - M. Cirlini
- Department of Food Science, University of Parma, Viale Usberti 17/A, 43124 Parma, Italy
| | - G. Galaverna
- Department of Food Science, University of Parma, Viale Usberti 17/A, 43124 Parma, Italy
| | - C. Dall'Asta
- Department of Food Science, University of Parma, Viale Usberti 17/A, 43124 Parma, Italy
| |
Collapse
|
25
|
Hartinger D, Moll W. Fumonisin elimination and prospects for detoxification by enzymatic transformation. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A technology to efficiently reduce the concentration of carcinogenic and toxic fumonisins in food and feed would be desirable. This class of mycotoxins is produced by the maize pathogen Fusarium verticillioides and other fungi. Fumonisins are frequently found in maize from the warm growing regions of the world, sometimes in considerable concentrations. Their molecular similarity with sphingolipids enables their binding to mammalian ceramide synthase, and the resulting interference with sphingolipid metabolism. Recently, we reported on a cluster of genes of Sphingopyxis sp. MTA144 which enables this alphaproteobacterium to degrade fumonisins. These and the previously known fumonisin catabolism genes and enzymes from the black yeast Exophiala spinifera and from bacterium ATCC 55552 allow the consideration of prospects for enzymatic detoxification of fumonisins in food and feed. All the known fumonisin catabolism pathways start by hydrolytic release of the two tricarballylic acid side chains, followed by removal of the 2-amino group from the core chain by different enzymatic mechanisms. The potential for application of feed enzymes for fumonisin detoxification in the gastrointestinal tract of animals is discussed, and possible applications in processing of maize for feed or food are also considered. To be able to evaluate the requirement for, and potential of, a new, enzyme-based fumonisin detoxification technology, an overview of the state of the art of fumonisin elimination and the known chemical reactions of fumonisins in processing or decontamination is also given. There is a special focus on the toxicity of hydrolysed fumonisins, because they can be generated from fumonisins both by an established, traditional method of maize processing, nixtamalisation, and by enzymatic biotransformation. As a complement to other approaches, enzymatic degradation of fumonisins to ameliorate the health risk of contaminated maize for animals, and possibly also for humans, seems feasible.
Collapse
Affiliation(s)
- D. Hartinger
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - W. Moll
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
26
|
Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. TOXIN REV 2010. [DOI: 10.3109/15569541003598553] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Dall’Asta C, Mangia M, Berthiller F, Molinelli A, Sulyok M, Schuhmacher R, Krska R, Galaverna G, Dossena A, Marchelli R. Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal Bioanal Chem 2009; 395:1335-45. [DOI: 10.1007/s00216-009-2933-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
|
28
|
Dall'Asta C, Galaverna G, Mangia M, Sforza S, Dossena A, Marchelli R. Free and bound fumonisins in gluten-free food products. Mol Nutr Food Res 2009; 53:492-9. [PMID: 19199285 DOI: 10.1002/mnfr.200800088] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work a multiresidual LC-ESI-MS/MS method for the simultaneous detection of free and bound fumonisins is described, which allowed for a very low LOD and a very good recovery for all the analytes. The method was applied to the determination of free and bound fumonisins in several gluten-free products from the Italian market. Free fumonisins were found to occur in 90% of the samples: the overall median value was below the EU legal limit for foods for human consumption (800 microg/kg). Nonetheless, fumonisins occurred in several samples at concentrations above the legal limit, reaching also very strong contamination levels (maximum concentration level: 3310 microg/kg). Anyway, considering the limited diet of people suffering of the celiac disease or allergic to other wheat proteins, the incidence of fumonisin contamination may be envisaged as problematic. Furthermore, bound fumonisins were found to be present in all the analysed samples at similar or even higher amounts than the free forms. In many cases the sum of free and bound fumonisins exceeded the EU legal limit for total fumonisins also for those samples characterized by a low contamination of free fumonisins, thus opening a new important task to be addressed for the risk assessment in this field.
Collapse
Affiliation(s)
- Chiara Dall'Asta
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Abou‐Karam M, Abbas HK, Shier WT. N‐Fatty Acylation of Hydrolyzed Fumonisin B1, But Not of Intact Fumonisin B1, Strongly Enhances In Vitro Mammalian Toxicity. ACTA ACUST UNITED AC 2008. [DOI: 10.1081/txr-120030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Dall'Asta C, Galaverna G, Aureli G, Dossena A, Marchelli R. A LC/MS/MS method for the simultaneous quantification of free and masked fumonisins in maize and maize-based products. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.x040] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An LC-ESI-MS/MS method for the simultaneous detection of the main fumonisins and their hydrolysed derivatives is described, allowing for a simplified sample preparation without previous clean up. The method has a very low quantification limit (10 µg/kg for FB1, 12 µg/kg for FB2 and FB3, 70 µg/kg for HFB1, HFB2 and HFB3 in maize flour) and a very good recovery for all the analytes. The method has been applied to check several maize-based foods for the presence of free and bound forms of fumonisins, the latter being determined after alkaline hydrolysis as hydrolysed derivatives. Bound fumonisins were found to be present not only in thermally treated maize-based products but also in mild processed or even raw products (pasta, bread, cakes, crisps, flour) and they were always present in almost similar or even higher amounts than the free forms. Osborne fractions of maize proteins showed that fumonisins were particularly bound to prolamins and glutelins. Model systems and extracts of these protein fractions gave positive response to ELISA tests, thus confirming the cross reactivity of these masked forms.
Collapse
Affiliation(s)
- C. Dall'Asta
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, 43100 Parma, Italy
| | - G. Galaverna
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, 43100 Parma, Italy
| | - G. Aureli
- C.R.A.-Istituto Sperimentale per la Cerealicoltura, Sezione Merceologia dei Prodotti, Via Cassia 176, 00191 Roma, Italy
| | - A. Dossena
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, 43100 Parma, Italy
| | - R. Marchelli
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, 43100 Parma, Italy
| |
Collapse
|
31
|
Burns TD, Snook ME, Riley RT, Voss KA. Fumonisin concentrations and in vivo toxicity of nixtamalized Fusarium verticillioides culture material: evidence for fumonisin-matrix interactions. Food Chem Toxicol 2008; 46:2841-8. [PMID: 18602734 DOI: 10.1016/j.fct.2008.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/08/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
The toxic potential of nixtamalized foods can be underestimated if, during cooking, reversible fumonisin-food matrix interactions reduce the amount of mycotoxin that is detected but not the amount that is bioavailable. Fusarium verticillioides culture material (CM) was nixtamalized as is (NCM) or after mixing with ground corn (NCMC). Additional portions were sham nixtamalized without (SCM) or with corn (SCMC). Nixtamalization and sham nixtamalization reduced FB(1); CM, NCM, and SCM diets contained 9.08, 2.08, and 1.19 ppm, respectively. FB(1) was further reduced in the NCMC (0.49 ppm) but not the SCMC (1.01 ppm) diets compared to their NCM and SCM counterparts. Equivalent weights of the cooked products, uncooked CM, corn (UC) or nixtamalized UC (NUC) were fed to rats for up to three weeks. Kidney lesions in the NCM-fed group were less severe than in the CM-fed, positive control group and no lesions were found in the NCMC and other groups. Group kidney sphinganine (biomarker of fumonisin exposure) concentrations decreased in the order: CM (absolute concentration (nmol/g)=600-800)>NCM (400-600)>SCM and SCMC (30-90)>NCMC, UC and NUC (<8). Together, these results suggest that mycotoxin-corn matrix interactions during nixtamalization reduce the bioavailability and toxicity of FB(1).
Collapse
Affiliation(s)
- T D Burns
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | | | | | | |
Collapse
|
32
|
Zimmer I, Usleber E, Klaffke H, Weber R, Majerus P, Otteneder H, Gareis M, Dietrich R, Märtlbauer E. Fumonisin intake of the German consumer. Mycotoxin Res 2008; 24:40-52. [DOI: 10.1007/bf02985269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/20/2008] [Indexed: 11/28/2022]
|
33
|
|
34
|
Abstract
Fumonisins constitute a family of toxic and carcinogenic mycotoxins produced by Fusarium verticillioides (formerly F. moniliforme), a common fungal contaminant of corn. Contamination with fumonisin B(1) (FB(1)) is of concern as this mycotoxin causes various animal diseases. The gastrointestinal tract represents the first barrier against ingested chemicals, food contaminants, and natural toxins. Following ingestion of fumonisin-contaminated food or feed, intestinal epithelial cells could be exposed to a high concentration of toxin. In this review, we have summarized the data dealing with the impact of FB(1) on the intestine. Although FB(1 )is poorly absorbed and metabolized in the intestine, it induces intestinal disturbances (abdominal pain or diarrhea) and causes extra-intestinal organ pathologies (pulmonary edema, leukoencephalomalacia, or neural tube defects). The main toxicological effect of FB(1) reported in vivo and in vitro is the accumulation of sphingoid bases associated with the depletion of complex sphingolipids. This disturbance of the sphingolipid biosynthesis pathway could explain the other observed toxicological effects such as an alteration in intestinal epithelial cell viability and proliferation, a modification of cytokine production, and a modulation of intestinal physical barrier function.
Collapse
Affiliation(s)
- Sandrine Bouhet
- Laboratoire de Pharmacologie-Toxicologie, INRA, Toulouse, France
| | | |
Collapse
|
35
|
Voss KA, Norred WP, Meredith FI, Riley RT, Stephen Saunders D. Fumonisin concentration and ceramide synthase inhibitory activity of corn, masa, and tortilla chips. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1387-97. [PMID: 16760143 DOI: 10.1080/15287390500471260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nixtamalization removes fumonisins from corn and reduces their amounts in masa and tortilla products. Fumonisin concentrations and potential toxicity could be underestimated, however, if unknown but biologically active fumonisins are present. Therefore, the relative amounts of fumonisins in extracts of fumonisin-contaminated corn and its masa and tortilla chip nixtamalization products were determined with an in vitro ceramide synthase inhibition bioassay using increased sphinganine (Sa) and sphinganine to sphingosine ratio (Sa/So) as endpoints. African green monkey kidney cells (Vero cells ATCC CCL-81) were grown in 1-ml wells and exposed to 4 microl of the concentrated extracts for 48 h. The corn extract inhibited ceramide synthase as Sa (mean = 132 pmol/well) and Sa/So (mean = 2.24) were high compared to vehicle controls (Sa = 9 pmol/well; Sa/So = 0.10). Inhibitory activity (mean Sa = 14-24 pmol/well; mean Sa/So = 0.17-0.28) of the masa and tortilla chip extracts were reduced > or = 80% compared to the corn extract. Results were corroborated in a second experiment in which Sa and Sa/So of the wells treated with masa or tortilla chip extracts were reduced > or = 89% compared to those treated with the corn extract. Masa and tortilla chip FB1 concentrations (4-7 ppm) were reduced about 80-90% compared to the corn (30 ppm) when the materials were analyzed by high-performance liquid chromatography (HPLC). Therefore, nixtamalization reduced both the measured amount of FB1 and the ceramide synthase inhibitory activity of masa and tortilla chips extracts. The results further suggest that the masa and tortilla chip extracts did not contain significant amounts of unknown fumonisins having ceramide synthase inhibitory activity.
Collapse
Affiliation(s)
- Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, USDA Agricultural Research Service, Athens, Georgia 30605-5677, USA.
| | | | | | | | | |
Collapse
|
36
|
Paepens C, De Saeger S, Van Poucke C, Dumoulin F, Van Calenbergh S, Van Peteghem C. Development of a liquid chromatography/tandem mass spectrometry method for the quantification of fumonisin B1, B2 and B3 in cornflakes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2021-9. [PMID: 15973649 DOI: 10.1002/rcm.2022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of fumonisin B1 (FB1), B2 (FB2) and B3 (FB3) in cornflakes is described. During method development, special attention was paid to the selection of a suitable internal standard (IS) in order to offer a good alternative for deuterated FB1. In this respect, the C12-sphinganine analogue (2S,3R)-2-aminododecane-1,3-diol was chosen because of its structural similarity to the fumonisin backbone and its chromatographic elution between the target analytes. For the extraction of the fumonisins from the cornflakes matrix, MeOH/H2O (adjusted to pH 4 with 0.1 M HCl; 70:30, v/v), ACN/MeOH/H(2)O (25:25:50, v/v/v) and acidified ACN/MeOH/H2O (25:25:50, v/v/v; pH 4) were evaluated. Preference was given to acidified MeOH/H2O (70:30, v/v) with mean recoveries (n=12) for FB1, FB2 and FB3 of, respectively, 84+/-10, 78+/-7 and 85+/-9%. Cleanup was performed using immunoaffinity columns (FumoniTest, VICAM). The chromatography was performed under isocratic conditions at a flow of 0.3 mL min-1 with a mobile phase consisting of ACN/H2O (60:40, v/v) containing 0.3% formic acid. The mass spectrometer was operated in the positive electrospray ionization (ESI+) mode using multiple reaction monitoring (MRM). An intralaboratory validation was conducted with fortified samples determining limits of detection (LOD), limits of quantification (LOQ), precision, trueness, specificity and measurement uncertainty. The LOD concentrations for FB1, FB2 and FB3 were 20, 7.5 and 12.5 microg/kg. The LOQs were 40 microg/kg for FB1, 15 microg/kg for FB2 and 25 microg/kg for FB3. The coefficients of variation (CVs) under repeatability conditions varied from 11 to 13% for FB1, from 9 to 14% for FB2 and from 7 to 10% for FB3. Under within-laboratory reproducibility conditions, the CVs ranged from 12 to 17% for FB1, from 9 to 16% for FB2 and from 7 to 13% for FB3. The percent bias for FB1 varied from -12 to -10%, while for FB2 and FB3 bias ranged, respectively, from -4 to -2% and from -12 to -5%. The expanded measurement uncertainties for FB1, FB2 and FB3 were, respectively, 19, 18 and 22%.
Collapse
Affiliation(s)
- C Paepens
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, UGent, Harelbekestraat 72, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Park JW, Scott PM, Lau BPY, Lewis DA. Analysis of heat-processed corn foods for fumonisins and bound fumonisins. ACTA ACUST UNITED AC 2004; 21:1168-78. [PMID: 15799562 DOI: 10.1080/02652030400021873] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thirty retail samples of heat-processed corn foods, i.e. corn flakes, corn-based breakfast cereals, tortilla chips and corn chips, were analysed for fumonisins--fumonisin B1 (FB1), fumonisin B2 (FB2) and hydrolysed FB1 (HFB1)--as well as for protein- and total-bound FB1. Bound (hidden) fumonisins cannot be detected by conventional analysis. Improved methods for the determination of bound FB1 were developed. The protein-bound FB1 was extracted with 1% sodium dodecylsulfate (SDS) solution. The SDS, which interfered with high-performance liquid chromatography (HPLC) analysis, was then separated from protein-bound FB1 by complexing with methylene blue followed by solvent extraction and hydrolysis with 2 N KOH. To measure total-bound FB1, the sample itself was hydrolysed with KOH. In both cases, clean-up was accomplished on an OASIS polymeric solid-phase extraction column and the bound fumonisins were determined by HPLC measurement of HFB1. Fourteen of 15 samples of corn flakes and other corn-based breakfast cereals analysed contained detectable levels of FB1 with a mean in positive samples of 67ng g(-1) (13-237 ng g(-1)). Two samples also had detectable levels of FB2 (21-23ng g(-1)). Bound FB1 was found in all samples; the mean protein-bound FB1 measured was 58 ng g(-1) (22-176 ng g(-1)) and the mean total-bound FB1 measured was 106 ng g(-1) (28-418 ng g(-1)), reported as FB1 equivalents after correction for recoveries of HFB1. There was an average of about 1.3 times more FB1 in the bound form compared with extractable FB1, and this was about twice as much as protein-bound FB1. Seven of the 15 samples of alkali-processed corn-based foods, such as tortilla chips and corn chips, contained FB1 and three contained HFB1 with means in measurable positive samples of 78 (48-134) and 29 (13-47) ng g(-1), respectively. Five of these alkali-processed corn foods contained bound FB1; the mean measurable protein-bound FB1 was 42 ng g(-1) (39-46 ng g(-1)) and the mean measurable total-bound FB1 was 100 ng g(-1) (54-209 ng g(-1)). HFB1 derived from bound FB1 in selected samples was confirmed by HPLC with mass spectrometry (MS).
Collapse
Affiliation(s)
- J W Park
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0L2, Canada
| | | | | | | |
Collapse
|
38
|
Humpf HU, Voss KA. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 2004; 48:255-69. [PMID: 15497177 DOI: 10.1002/mnfr.200400033] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fumonisins are Fusarium mycotoxins that occur in corn and corn-based foods. They are toxic to animals and at least one analogue, fumonisin B1, is carcinogenic to rodents. Their effect on human health is unclear, however, fumonisins are considered to be risk factors for cancer and possibly neural tube defects in some heavily exposed populations. It is therefore important to minimize exposures in these populations. Cleaning corn to remove damaged or moldy kernels reduces fumonisins in foods while milling increases their concentration in some and reduces their concentration in other products. Fumonisins are water-soluble and nixtamalization (cooking in alkaline water) lowers the fumonisin content of food products if the cooking liquid is discarded. Baking, frying, and extrusion cooking of corn at high temperatures ( > or = 190 degrees C) also reduces fumonisin concentrations in foods, with the amount of reduction achieved depending on cooking time, temperature, recipe, and other factors. However, the chemical fate of fumonisins in baked, fried, and extruded foods is not well understood and it is not known if the reduced concentrations result from thermal decomposition of fumonisins or from their binding to proteins, sugars or other compounds in food matrices. These possibilities might or might not be beneficial depending upon the bioavailability and inherent toxicity of decomposition products or the degree to which bound fumonisins are released in the gastrointestinal tract. In this review the affects of cooking and processing on the concentration and chemical structure of fumonisins as well as the toxicological consequences of known and likely fumonisin reaction products are discussed.
Collapse
Affiliation(s)
- Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | |
Collapse
|
39
|
Shier WT, Abbas HK, Abou‐Karam M, Badria FA, Resch PA. Fumonisins: Abiogenic Conversions of an Environmental Tumor Promoter and Common Food Contaminant. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/txr-120026916] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Abstract
This study shows for the first time the accumulation of fumonisin mycotoxins in human hair of population clusters exposed to contaminated maize, and thus the feasibility of human hair analysis for the assessment of past fumonisin exposure. Composite hair samples were obtained from the Bizana, Butterworth and Centane districts within the Transkei region of the Eastern Cape Province of South Africa. Following methanol extraction and strong anion exchange clean up, the fumonisins FB(1), FB(2) and FB(3) were detected using high performance liquid chromatography coupled to electrospray ionization-mass spectrometry (HPLC-ESI-MS). Hair from Centane and Butterworth showed mean levels of FB(1) of 26.7 and 23.5 microg kg(-1) hair, respectively. FB(2) was only detected in hair from Centane and in one sampling point in Butterworth, with mean levels of 6.5 and 5.7 microg kg(-1) hair, respectively. Hair samples from Bizana, on the other hand, were found to contain higher levels of FB(1) (mean 33.0 microg kg(-1) hair) and FB(2) (mean 11.1 microg kg(-1) hair). No samples contained more than trace levels of FB(3). Recoveries from spiked hair samples using this method ranged from 81% to 101%, demonstrating the applicability of hair analysis in assessing human exposure to fumonisin mycotoxins.
Collapse
Affiliation(s)
- Vikash Sewram
- Promec Unit, Medical Research Council, Tygerberg, South Africa.
| | | | | | | |
Collapse
|
41
|
|