1
|
Decking SM, Bruss C, Babl N, Bittner S, Klobuch S, Thomas S, Feuerer M, Hoffmann P, Dettmer K, Oefner PJ, Renner K, Kreutz M. LDHB Overexpression Can Partially Overcome T Cell Inhibition by Lactic Acid. Int J Mol Sci 2022; 23:ijms23115970. [PMID: 35682650 PMCID: PMC9180663 DOI: 10.3390/ijms23115970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Accelerated glycolysis leads to secretion and accumulation of lactate and protons in the tumor environment and determines the efficacy of adoptive T cell and checkpoint inhibition therapy. Here, we analyzed effects of lactic acid on different human CD4 T cell subsets and aimed to increase CD4 T cell resistance towards lactic acid. In all CD4 T cell subsets analyzed, lactic acid inhibited metabolic activity (glycolysis and respiration), cytokine secretion, and cell proliferation. Overexpression of the lactate-metabolizing isoenzyme LDHB increased cell respiration and mitigated lactic acid effects on intracellular cytokine production. Strikingly, LDHB-overexpressing cells preferentially migrated into HCT116 tumor spheroids and displayed higher expression of cytotoxic effector molecules. We conclude, that LDHB overexpression might be a promising strategy to increase the efficacy of adoptive T cell transfer therapy.
Collapse
Affiliation(s)
- Sonja-Maria Decking
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
- Department of Gynecology and Obstetrics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Sebastian Bittner
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
| | - Sebastian Klobuch
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Simone Thomas
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Markus Feuerer
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
| | - Petra Hoffmann
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany; (K.D.); (P.J.O.)
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany; (K.D.); (P.J.O.)
| | - Kathrin Renner
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
| | - Marina Kreutz
- LIT—Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; (S.-M.D.); (S.B.); (S.T.); (M.F.); (P.H.); (K.R.)
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (N.B.)
- Correspondence:
| |
Collapse
|
2
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
3
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
4
|
Iglesias R, Ferreras JM, Llorente A, Citores L. Ebulin l Is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins (Basel) 2021; 13:toxins13020102. [PMID: 33573355 PMCID: PMC7911328 DOI: 10.3390/toxins13020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Mechanical, Electronics and Chemical Engineering Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
- Correspondence:
| |
Collapse
|
5
|
Measuring Endocytosis During Proliferative Cell Quiescence. Methods Mol Biol 2020; 2233:19-42. [PMID: 33222125 DOI: 10.1007/978-1-0716-1044-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Quiescence (also called "G0") is the state in which cells have exited the cell cycle but are capable to reenter as required. Though poorly understood, it represents one of the most prevalent cell states across all life. Many biologically important cell types reside in quiescence including mature hepatocytes, endothelial cells, and dormant adult stem cells. Furthermore, the quiescence program occurs in both short- and long-term varieties, depending on the physiological environments. A barrier slowing our understanding of quiescence has been a scarcity of available in vitro model systems to allow for the exploration of key regulatory pathways, such as endocytosis. Endocytosis, the internalization of extracellular material into the cell, is a fundamental and highly regulated process that impacts many cell biological functions. Accordingly, we have developed an in vitro model of deep quiescence in hTERT-immortalized RPE1 cells, combining both long-term contact inhibition and mitogen removal, to measure endocytosis. In addition, we present an analytical approach employing automated high-throughput microscopy and image analysis that yields high-content data allowing for meaningful and statistically robust interpretation. Importantly, the methods presented herein provide a suitable platform that can be easily adapted to investigate other regulatory processes across the cell cycle.
Collapse
|
6
|
Johnston NR, Nallur S, Gordon PB, Smith KD, Strobel SA. Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 2020; 11:1410. [PMID: 32670247 PMCID: PMC7329995 DOI: 10.3389/fmicb.2020.01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrofluoric acid elicits cell cycle arrest through a mechanism that has long been presumed to be linked with the high affinity of fluoride to metals. However, we have recently found that the acid stress from fluoride exposure is sufficient to elicit many of the hallmark phenotypes of fluoride toxicity. Here we report the systematic screening of genes involved in fluoride resistance and general acid resistance using a genome deletion library in Saccharomyces cerevisiae. We compare these to a variety of acids - 2,4-dinitrophenol, FCCP, hydrochloric acid, and sulfuric acid - none of which has a high metal affinity. Pathways involved in endocytosis, vesicle trafficking, pH maintenance, and vacuolar function are of particular importance to fluoride tolerance. The majority of genes conferring resistance to fluoride stress also enhanced resistance to general acid toxicity. Genes whose expression regulate Golgi-mediated vesicle transport were specific to fluoride resistance, and may be linked with fluoride-metal interactions. These results support the notion that acidity is an important and underappreciated principle underlying the mechanisms of fluoride toxicity.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sunitha Nallur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Patricia B Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kathryn D Smith
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Dynamic measurement of cytosolic pH and [NO 3 -] uncovers the role of the vacuolar transporter AtCLCa in cytosolic pH homeostasis. Proc Natl Acad Sci U S A 2020; 117:15343-15353. [PMID: 32546525 PMCID: PMC7334523 DOI: 10.1073/pnas.2007580117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3 -/H+ exchanger regulating stomata aperture in A thaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3 - sensor. We were then able to quantify the variations of NO3 - and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3 - In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3 - and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.
Collapse
|
8
|
Lingelem ABD, Kavaliauskiene S, Halsne R, Klokk TI, Surma MA, Klose C, Skotland T, Sandvig K. Diacylglycerol kinase and phospholipase D inhibitors alter the cellular lipidome and endosomal sorting towards the Golgi apparatus. Cell Mol Life Sci 2020; 78:985-1009. [PMID: 32447426 PMCID: PMC7897626 DOI: 10.1007/s00018-020-03551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
The membrane lipids diacylglycerol (DAG) and phosphatidic acid (PA) are important second messengers that can regulate membrane transport by recruiting proteins to the membrane and by altering biophysical membrane properties. DAG and PA are involved in the transport from the Golgi apparatus to endosomes, and we have here investigated whether changes in these lipids might be important for regulation of transport to the Golgi using the protein toxin ricin. Modulation of DAG and PA levels using DAG kinase (DGK) and phospholipase D (PLD) inhibitors gave a strong increase in retrograde ricin transport, but had little impact on ricin recycling or degradation. Inhibitor treatment strongly affected the endosome morphology, increasing endosomal tubulation and size. Furthermore, ricin was present in these tubular structures together with proteins known to regulate retrograde transport. Using siRNA to knock down different isoforms of PLD and DGK, we found that several isoforms of PLD and DGK are involved in regulating ricin transport to the Golgi. Finally, by performing lipidomic analysis we found that the DGK inhibitor gave a weak, but expected, increase in DAG levels, while the PLD inhibitor gave a strong and unexpected increase in DAG levels, showing that it is important to perform lipidomic analysis when using inhibitors of lipid metabolism.
Collapse
Affiliation(s)
- Anne Berit Dyve Lingelem
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Forensic Biology, Oslo University Hospital, Oslo, Norway
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ruth Halsne
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Forensic Biology, Oslo University Hospital, Oslo, Norway
| | - Tove Irene Klokk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Regional Committees for Medical and Health Research Ethics, University of Oslo, Oslo, Norway
| | | | | | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Szwed M, Torgersen ML, Kumari RV, Yadava SK, Pust S, Iversen TG, Skotland T, Giri J, Sandvig K. Biological response and cytotoxicity induced by lipid nanocapsules. J Nanobiotechnology 2020; 18:5. [PMID: 31907052 PMCID: PMC6943936 DOI: 10.1186/s12951-019-0567-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lipid nanocapsules (LNCs) are promising vehicles for drug delivery. However, since not much was known about cellular toxicity of these nanoparticles in themselves, we have here investigated the mechanisms involved in LNC-induced intoxication of the three breast cancer cell lines MCF-7, MDA-MD-231 and MDA-MB-468. The LNCs used were made of Labrafac™ Lipophile WL1349, Lipoid® S75 and Solutol® HS15. Results High resolution SIM microscopy showed that the DiD-labeled LNCs ended up in lysosomes close to the membrane. Empty LNCs, i.e. without encapsulated drug, induced not only increased lysosomal pH, but also acidification of the cytosol and a rapid inhibition of protein synthesis. The cytotoxicity of the LNCs were measured for up to 72 h of incubation using the MTT assay and ATP measurements in all three cell lines, and revealed that MDA-MB-468 was the most sensitive cell line and MCF-7 the least sensitive cell line to these LNCs. The LNCs induced generation of reactive free oxygen species and lipid peroxidation. Experiments with knock-down of kinases in the near-haploid cell line HAP1 indicated that the kinase HRI is essential for the observed phosphorylation of eIF2α. Nrf2 and ATF4 seem to play a protective role against the LNCs in MDA-MB-231 cells, as knock-down of these factors sensitizes the cells to the LNCs. This is in contrast to MCF-7 cells where the knock-down of these factors had a minor effect on the toxicity of the LNCs. Inhibitors of ferroptosis provided a large protection against LNC toxicity in MDA-MB-231 cells, but not in MCF-7 cells. Conclusions High doses of LNCs showed a different degree of toxicity on the three cell lines studied, i.e. MCF-7, MDA-MD-231 and MDA-MB-468 and affected signaling factors and the cell fate differently in these cell lines.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Remya Valsala Kumari
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway. .,Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Eremin A, Bulychev AA, Kluge C, Harbinson J, Foissner I. PH-dependent cell-cell interactions in the green alga Chara. PROTOPLASMA 2019; 256:1737-1751. [PMID: 31367920 PMCID: PMC6820879 DOI: 10.1007/s00709-019-01392-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Characean internodal cells develop alternating patterns of acid and alkaline zones along their surface in order to facilitate uptake of carbon required for photosynthesis. In this study, we used a pH-indicating membrane dye, 4-heptadecylumbiliferone, to study the kinetics of alkaline band formation and decomposition. The differences in growth/decay kinetics suggested that growth occurred as an active, autocatalytic process, whereas decomposition was due to diffusion. We further investigated mutual interactions between internodal cells and found that their alignment parallel to each other induced matching of the pH banding patterns, which was mirrored by chloroplast activity. In non-aligned cells, the lowered photosynthetic activity was noted upon a rise of the external pH, suggesting that the matching of pH bands was due to a local elevation of membrane conductance by the high pH of the alkaline zones of neighboured cells. Finally, we show that the altered pH banding pattern caused the reorganization of the cortical cytoplasm. Complex plasma membrane elaborations (charasomes) were degraded via endocytosis, and mitochondria were moved away from the cortex when a previously acid region became alkaline and vice versa. Our data show that characean internodal cells react flexibly to environmental cues, including those originating from neighboured cells.
Collapse
Affiliation(s)
- Alexey Eremin
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | - Christopher Kluge
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Jeremy Harbinson
- Department of Plant Sciences, University of Wageningen, 6708 PB, Wageningen, The Netherlands
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
11
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
12
|
Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol 2018; 150:107-118. [PMID: 29774430 PMCID: PMC6096564 DOI: 10.1007/s00418-018-1678-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 11/03/2022]
Abstract
This article aims at providing an update on the complexity of clathrin-independent endocytosis. It is now almost 30 years since we first wrote a review about its existence; at that time many people believed that with the exception of macropinocytosis, which will only be briefly mentioned in this review, all uptake could be accounted for by clathrin-dependent endocytosis. Now it is generally accepted that there are different clathrin-independent mechanisms, some of them regulated by ligands and membrane lipid composition. They can be both dynamin-dependent and -independent, meaning that the uptake cannot be accounted for by caveolae and other dynamin-dependent processes such as tubular structures that can be induced by toxins, e.g. Shiga toxin, or the fast endophilin mediated endocytosis recently described. Caveolae seem to be mostly quite stable structures with other functions than endocytosis, but evidence suggests that they may have cell-type dependent functions. Although several groups have been working on endocytic mechanisms for years, and new advanced methods have improved our ability to study mechanistic details, there are still a number of important questions we need to address, such as: How many endocytic mechanisms does a cell have? How quantitatively important are they? What about the complexity in polarized cells where clathrin-independent endocytosis is differentially regulated on the apical and basolateral poles? These questions are not easy to answer since one and the same molecule may contribute to more than one process, and manipulating one mechanism can affect another. Also, several inhibitors of endocytic processes commonly used turn out to be less specific than originally thought. We will here describe the current view of clathrin-independent endocytic processes and the challenges in studying them.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Molecular Biosciences, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| |
Collapse
|
13
|
Bertone NI, Groisman AI, Mazzone GL, Cano R, Tabares L, Uchitel OD. Carbonic anhydrase inhibitor acetazolamide shifts synaptic vesicle recycling to a fast mode at the mouse neuromuscular junction. Synapse 2017; 71. [PMID: 28873252 DOI: 10.1002/syn.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus neuromuscular junctions (NMJs) from mice to investigate the modulation of synaptic transmission and vesicle recycling by AZ. Transmitter release was minimally affected by AZ, as evidenced by evoked and spontaneous end-plate potential measurements. However, optical evaluation with FM-styryl dyes of vesicle exocytosis elicited by 50 Hz stimuli showed a strong reduction in fluorescence loss in AZ treated NMJ, an effect that was abolished by bathing the NMJ in Hepes. The remaining dye was quenched by bromophenol, a small molecule capable of diffusing inside vesicles. Furthermore, in transgenic mice expressing Synaptophysin-pHluorin (SypHy), the fluorescence responses of motor nerve terminals to a 50 Hz train of stimuli was decrease to a 50% of controls in the presence of AZ. Immunohistochemistry experiments to evaluate the state of the Myosin light chain kinase (MLCK), an enzyme involved in vesicle recycling, demonstrated that MLCK phosphorylation was much stronger in the presence than AZ than in its absence in 50 Hz stimulated NMJs. We postulate that AZ, via cytosol acidification and activation of MLCK, shifts synaptic vesicle recycling to a fast (kiss-and-run) mode, which changes synaptic performance. These changes may contribute to the therapeutic action reported in many neurological syndromes like ataxia, epilepsy, and migraine.
Collapse
Affiliation(s)
- Nicolas Ivan Bertone
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ayelén Ivana Groisman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Graciela Lujan Mazzone
- Laboratorios de Investigación aplicada en Neurociencias (LIAN)-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina
| | - Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
14
|
Omran Z, Scaife P, Stewart S, Rauch C. Physical and biological characteristics of multi drug resistance (MDR): An integral approach considering pH and drug resistance in cancer. Semin Cancer Biol 2017; 43:42-48. [DOI: 10.1016/j.semcancer.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
|
15
|
Ailte I, Lingelem ABD, Kvalvaag AS, Kavaliauskiene S, Brech A, Koster G, Dommersnes PG, Bergan J, Skotland T, Sandvig K. Exogenous lysophospholipids with large head groups perturb clathrin-mediated endocytosis. Traffic 2017; 18:176-191. [PMID: 28067430 DOI: 10.1111/tra.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
In this study, we have investigated how clathrin-dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin-coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin-dependent endocytosis by addition of LPLs in a head group size- and fatty acyl-dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior.
Collapse
Affiliation(s)
- Ieva Ailte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne Berit D Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Audun S Kvalvaag
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Paul G Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
17
|
Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. J Biol Chem 2016; 291:20188-97. [PMID: 27510037 DOI: 10.1074/jbc.m116.738799] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
2-Hydroxyglutarate (2-HG) is an important epigenetic regulator, with potential roles in cancer and stem cell biology. The d-(R)-enantiomer (d-2-HG) is an oncometabolite generated from α-ketoglutarate (α-KG) by mutant isocitrate dehydrogenase, whereas l-(S)-2-HG is generated by lactate dehydrogenase and malate dehydrogenase in response to hypoxia. Because acidic pH is a common feature of hypoxia, as well as tumor and stem cell microenvironments, we hypothesized that pH may regulate cellular 2-HG levels. Herein we report that cytosolic acidification under normoxia moderately elevated 2-HG in cells, and boosting endogenous substrate α-KG levels further stimulated this elevation. Studies with isolated lactate dehydrogenase-1 and malate dehydrogenase-2 revealed that generation of 2-HG by both enzymes was stimulated severalfold at acidic pH, relative to normal physiologic pH. In addition, acidic pH was found to inhibit the activity of the mitochondrial l-2-HG removal enzyme l-2-HG dehydrogenase and to stimulate the reverse reaction of isocitrate dehydrogenase (carboxylation of α-KG to isocitrate). Furthermore, because acidic pH is known to stabilize hypoxia-inducible factor (HIF) and 2-HG is a known inhibitor of HIF prolyl hydroxylases, we hypothesized that 2-HG may be required for acid-induced HIF stabilization. Accordingly, cells stably overexpressing l-2-HG dehydrogenase exhibited a blunted HIF response to acid. Together, these results suggest that acidosis is an important and previously overlooked regulator of 2-HG accumulation and other oncometabolic events, with implications for HIF signaling.
Collapse
Affiliation(s)
| | | | | | - Keith Nehrke
- Medicine, University of Rochester, Rochester, New York 14642
| | | | | |
Collapse
|
18
|
Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz-Morea FA, Mishev K, Delang S, Scholl S, Zarza X, Heilmann M, Kourelis J, Kasprowicz J, Nguyen LSL, Drozdzecki A, Van Houtte I, Szatmári AM, Majda M, Baisa G, Bednarek SY, Robert S, Audenaert D, Testerink C, Munnik T, Van Damme D, Heilmann I, Schumacher K, Winne J, Friml J, Verstreken P, Russinova E. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat Commun 2016; 7:11710. [PMID: 27271794 PMCID: PMC4899852 DOI: 10.1038/ncomms11710] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/21/2016] [Indexed: 11/27/2022] Open
Abstract
ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. Plant cells maintain strict proton gradients over different membranes. Here, Dejonghe et al. show that several protonophores, including the known tyrosine kinase inhibitor TyrphostinA23, inhibit clathrin-mediated endocytosis by disturbing these gradients and causing cytoplasmic acidification.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mina Vasileva
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Corrado Viotti
- Department of Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jef Swerts
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Matyáš Fendrych
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Fausto Andres Ortiz-Morea
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kiril Mishev
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Simon Delang
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Scholl
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Xavier Zarza
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University, 06120 Halle, Germany
| | - Jiorgos Kourelis
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jaroslaw Kasprowicz
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Isabelle Van Houtte
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Anna-Mária Szatmári
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gary Baisa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | | | - Christa Testerink
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Teun Munnik
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University, 06120 Halle, Germany
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Johan Winne
- Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
19
|
Guo S, Zhang X, Zheng M, Zhang X, Min C, Wang Z, Cheon SH, Oak MH, Nah SY, Kim KM. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2101-10. [PMID: 26055893 DOI: 10.1016/j.bbamem.2015.05.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/23/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022]
Abstract
Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation.
Collapse
Affiliation(s)
- Shuohan Guo
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Mei Zheng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Chengchun Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Seung Hoon Cheon
- Department of Medicinal Chemistry, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanamdo 534-729, Republic of Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea.
| |
Collapse
|
20
|
Johannes L, Parton RG, Bassereau P, Mayor S. Building endocytic pits without clathrin. Nat Rev Mol Cell Biol 2015; 16:311-21. [PMID: 25857812 DOI: 10.1038/nrm3968] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
How endocytic pits are built in clathrin- and caveolin-independent endocytosis still remains poorly understood. Recent insight suggests that different forms of clathrin-independent endocytosis might involve the actin-driven focusing of membrane constituents, the lectin-glycosphingolipid-dependent construction of endocytic nanoenvironments, and Bin-Amphiphysin-Rvs (BAR) domain proteins serving as scaffolding modules. We discuss the need for different types of internalization processes in the context of diverse cellular functions, the existence of clathrin-independent mechanisms of cargo recruitment and membrane bending from a biological and physical perspective, and finally propose a generic scheme for the formation of clathrin-independent endocytic pits.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Centre National de la Recherche Scientifique UMR3666, 75005 Paris, France; and INSERM U1143, 75005 Paris, France
| | - Robert G Parton
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia QLD 4072, Australia
| | - Patricia Bassereau
- Institut Curie, PSL Research University, Membrane and Cell Functions Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Centre National de la Recherche Scientifique UMR168, 75005 Paris, France; and Université Pierre et Marie Curie, 75252 Paris, France
| | - Satyajit Mayor
- National Centre for Biological Sciences, Cellular Organization and Signaling Group, and at Institute for Stem Cell Biology and Regenerative Medicine, UAS-GKVK Campus, 560 065 Bangalore, India
| |
Collapse
|
21
|
Robinson DG, Hedrich R. Vacuolar Lucifer Yellow Uptake in Plants: Endocytosis or Anion Transport; A Critical Opinion. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00227.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Andersen H, Parhamifar L, Moein Moghimi S. Uptake and Intracellular Trafficking of Nanocarriers. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zebrafish Dynamin is required for maintenance of enveloping layer integrity and the progression of epiboly. Dev Biol 2013; 385:52-66. [PMID: 24161849 DOI: 10.1016/j.ydbio.2013.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/21/2022]
Abstract
Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.
Collapse
|
25
|
Sakai H, Li G, Hino Y, Moriura Y, Kawawaki J, Sawada M, Kuno M. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia. J Physiol 2013; 591:5851-66. [PMID: 24081153 DOI: 10.1113/jphysiol.2013.263558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated proton channels (H(+) channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H(+) channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H(+) channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H(+) channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H(+) channel conductance were probably due to the decreases in H(+) channels available at the plasma membrane. The decreases in the H(+) channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H(+) channels, pHi increases by these H(+)-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H(+) channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H(+) channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis.
Collapse
Affiliation(s)
- Hiromu Sakai
- M. Kuno: Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sandvig K, Skotland T, van Deurs B, Klokk TI. Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 2013; 140:317-26. [PMID: 23765164 DOI: 10.1007/s00418-013-1111-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2013] [Indexed: 12/13/2022]
Abstract
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
27
|
Li Z, Shuai C, Li X, Li X, Xiang J, Li G. Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells. J Biomed Mater Res A 2013; 101:2846-50. [DOI: 10.1002/jbm.a.34580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/12/2012] [Accepted: 01/02/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Zheng Li
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education; Key Laboratory of Carcinogenesis of Ministry of Health; Central South University; Changsha 410078; People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing; Central South University; Changsha 410083; People's Republic of China
| | - Xiayu Li
- Third Xiangya Hospital; Central South University; Changsha 410013; People's Republic of China
| | - Xiaoling Li
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education; Key Laboratory of Carcinogenesis of Ministry of Health; Central South University; Changsha 410078; People's Republic of China
| | - Juanjuan Xiang
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education; Key Laboratory of Carcinogenesis of Ministry of Health; Central South University; Changsha 410078; People's Republic of China
| | - Guiyuan Li
- Cancer Research Institute; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education; Key Laboratory of Carcinogenesis of Ministry of Health; Central South University; Changsha 410078; People's Republic of China
| |
Collapse
|
28
|
Jursky F, Baliova M. Expression and purification of recombinant calpain-derived N-terminal peptides from glycine transporter GlyT2. Protein Expr Purif 2013; 88:143-9. [DOI: 10.1016/j.pep.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/15/2022]
|
29
|
Vázquez-Calvo Á, Sobrino F, Martín-Acebes MA. Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus. PLoS One 2012; 7:e45172. [PMID: 23028825 PMCID: PMC3460999 DOI: 10.1371/journal.pone.0045172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/17/2012] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2, is a phospholipid which plays important roles in clathrin-mediated endocytosis. To investigate the possible role of this lipid on viral entry, two viruses important for animal health were selected: the enveloped vesicular stomatitis virus (VSV) − which uses a well characterized clathrin mediated endocytic route − and two different variants of the non-enveloped foot-and-mouth disease virus (FMDV) with distinct receptor specificities. The expression of a dominant negative dynamin, a PI(4,5)P2 effector protein, inhibited the internalization and infection of VSV and both FMDV isolates. Depletion of PI(4,5)P2 from plasma membrane using ionomycin or an inducible system, and inhibition of its de novo synthesis with 1-butanol revealed that VSV as well as FMDV C-S8c1, which uses integrins as receptor, displayed a high dependence on PI(4,5)P2 for internalization. Expression of a kinase dead mutant (KD) of phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K-Iα), an enzyme responsible for PI(4,5)P2 synthesis that regulates clathrin-dependent endocytosis, also impaired entry and infection of VSV and FMDV C-S8c1. Interestingly FMDV MARLS variant that uses receptors other than integrins for cell entry was less sensitive to PI(4,5)P2 depletion, and was not inhibited by the expression of the KD PIP5K-Iα mutant suggesting the involvement of endocytic routes other than the clathrin-mediated on its entry. These results highlight the role of PI(4,5)P2 and PIP5K-Iα on clathrin-mediated viral entry.
Collapse
Affiliation(s)
- Ángela Vázquez-Calvo
- Centro de Biología Molecular “Severo Ochoa” (UAM/CSIC), Cantoblanco, Madrid Spain
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (UAM/CSIC), Cantoblanco, Madrid Spain
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
- * E-mail:
| | | |
Collapse
|
30
|
Iversen TG, Frerker N, Sandvig K. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J Nanobiotechnology 2012; 10:33. [PMID: 22849338 PMCID: PMC3466139 DOI: 10.1186/1477-3155-10-33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/23/2012] [Indexed: 12/23/2022] Open
Abstract
Background There is a huge effort in developing ligand-mediated targeting of nanoparticles to diseased cells and tissue. The plant toxin ricin has been shown to enter cells by utilizing both dynamin-dependent and -independent endocytic pathways. Thus, it is a representative ligand for addressing the important issue of whether even a relatively small ligand-nanoparticle conjugate can gain access to the same endocytic pathways as the free ligand. Results Here we present a systematic study concerning the internalization mechanism of ricinB:Quantum dot (QD) nanoparticle conjugates in HeLa cells. Contrary to uptake of ricin itself, we found that internalization of ricinB:QDs was inhibited in HeLa cells expressing dominant-negative dynamin. Both clathrin-, Rho-dependent uptake as well as a specific form of macropinocytosis involve dynamin. However, the ricinB:QD uptake was not affected by siRNA-mediated knockdown of clathrin or inhibition of Rho-dependent uptake caused by treating cells with the Clostridium C3 transferase. RicinB:QD uptake was significantly reduced by cholesterol depletion with methyl-β-cyclodextrin and by inhibitors of actin polymerization such as cytochalasin D. Finally, we found that uptake of ricinB:QDs was blocked by the amiloride analog EIPA, an inhibitor of macropinocytosis. Upon entry, the ricinB:QDs co-localized with dextran, a marker for fluid-phase uptake. Thus, internalization of ricinB:QDs in HeLa cells critically relies on a dynamin-dependent macropinocytosis-like mechanism. Conclusions Our results demonstrate that internalization of a ligand-nanoparticle conjugate can be dependent on other endocytic mechanisms than those used by the free ligand, highlighting the challenges of using ligand-mediated targeting of nanoparticles-based drug delivery vehicles to cells of diseased tissues.
Collapse
Affiliation(s)
- Tore Geir Iversen
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
31
|
Ben-Dov N, Korenstein R. Enhancement of cell membrane invaginations, vesiculation and uptake of macromolecules by protonation of the cell surface. PLoS One 2012; 7:e35204. [PMID: 22558127 PMCID: PMC3340387 DOI: 10.1371/journal.pone.0035204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/10/2012] [Indexed: 01/04/2023] Open
Abstract
The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake.
Collapse
Affiliation(s)
- Nadav Ben-Dov
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
32
|
Kang HC, Samsonova O, Kang SW, Bae YH. The effect of environmental pH on polymeric transfection efficiency. Biomaterials 2011; 33:1651-62. [PMID: 22130563 DOI: 10.1016/j.biomaterials.2011.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/07/2011] [Indexed: 11/15/2022]
Abstract
Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers.
Collapse
Affiliation(s)
- Han Chang Kang
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
33
|
von Kleist L, Haucke V. At the crossroads of chemistry and cell biology: inhibiting membrane traffic by small molecules. Traffic 2011; 13:495-504. [PMID: 21951680 DOI: 10.1111/j.1600-0854.2011.01292.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/12/2023]
Abstract
Intracellular membrane traffic regulates cell physiology at multiple levels ranging from cell growth and development to the function of the nervous and immune systems. Multiple endocytic routes are used by distinct cargoes including ligands bound to their receptors but also viruses and pathogens to gain access to the cell interior. Within the endosomal system, proteins and lipids are sorted for degradation or recycling allowing cells to dynamically respond to environmental signals and to regulate cell shape and morphology. Some receptors or toxins are sorted along the retrograde pathway from endosomes to the Golgi complex, where they intersect with secretory cargo destined for exocytosis. Genetic manipulations of these pathways frequently cause problems with regard to data interpretation as the resulting phenotypes may be indirect consequences resulting from perturbation of multiple steps or trafficking routes. Hence, novel approaches are needed to acutely and reversibly perturb intracellular membrane traffic, e.g., by small molecule inhibitors. Such drugs may also be pharmacologically important as they offer new avenues to fight human diseases. Here, we provide an overview of the small molecules available to interfere with intracellular membrane traffic and outline strategies for future research.
Collapse
Affiliation(s)
- Lisa von Kleist
- Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | | |
Collapse
|
34
|
Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F. Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell 2011; 21:231-44. [PMID: 21782526 DOI: 10.1016/j.devcel.2011.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 12/11/2022]
Abstract
Protein toxins such as Ricin and Pseudomonas exotoxin (PE) pose major public health challenges. Both toxins depend on host cell machinery for internalization, retrograde trafficking from endosomes to the ER, and translocation to cytosol. Although both toxins follow a similar intracellular route, it is unknown how much they rely on the same genes. Here we conducted two genome-wide RNAi screens identifying genes required for intoxication and demonstrating that requirements are strikingly different between PE and Ricin, with only 13% overlap. Yet factors required by both toxins are present from the endosomes to the ER, and, at the morphological level, the toxins colocalize in multiple structures. Interestingly, Ricin, but not PE, depends on Golgi complex integrity and colocalizes significantly with a medial Golgi marker. Our data are consistent with two intertwined pathways converging and diverging at multiple points and reveal the complexity of retrograde membrane trafficking in mammalian cells.
Collapse
Affiliation(s)
- Dimitri Moreau
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
35
|
Methods to analyze subcellular localization and intracellular trafficking of Claudin-16. Methods Mol Biol 2011. [PMID: 21717354 DOI: 10.1007/978-1-61779-185-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The integral tight junction protein Claudin-16 (Cldn16) is predominantly expressed in renal epithelial cells of the thick ascending limb of Henle's loop where, together with claudin-19, it forms a cation-selective pore that allows influx of Na+ from the interstitial fluid into the lumen of the kidney tubule. This leads to an electrochemical gradient that drives the reabsorbtion of Mg2+ and Ca2+ ions from the renal filtrate. Mutations in the Cldn16 gene have been identified in patients suffering from familial hypomagnesemia with hypercalciuria and nephrocalcinosis, with excessive renal wastage of Mg2+ and Ca2+ being a hallmark of this condition. Studies into the mechanism by which mutations impair Cldn16 function have shown that although several mutations affect paracellular ion transport, many interfere with intracellular trafficking of Cldn16, ultimately compromising its localization to TJs. Here, we describe the experimental approaches that can be used to monitor intracellular localization and trafficking of Cldn16. These methods can easily be adapted to study other claudins, provided suitable antibodies are available.
Collapse
|
36
|
Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 2011; 23:413-20. [PMID: 21466956 DOI: 10.1016/j.ceb.2011.03.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
Abstract
It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since a large fraction of the clathrin-independent uptake is dynamin-independent. Today, two decades later, the field has developed considerably. New techniques have enabled a detailed analysis of several clathrin-independent endocytic mechanisms, and caveolae have been found to be mostly stable structures having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
37
|
Chen S, Tan Z, Li N, Wang R, He L, Shi Y, Jiang L, Li P, Zhu X. Highly Efficient Intracellular Drug Delivery with a Negatively Charged Hyperbranched Polysulfonamine. Macromol Biosci 2011; 11:828-38. [DOI: 10.1002/mabi.201000473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/30/2011] [Indexed: 01/16/2023]
|
38
|
Chen CXJ, Soto I, Guo YL, Liu Y. Control of secondary granule release in neutrophils by Ral GTPase. J Biol Chem 2011; 286:11724-33. [PMID: 21282111 DOI: 10.1074/jbc.m110.154203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.
Collapse
Affiliation(s)
- Celia X-J Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
39
|
Zhang Z, Nguyen KT, Barrett EF, David G. Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 2010; 68:1097-108. [PMID: 21172612 PMCID: PMC3021129 DOI: 10.1016/j.neuron.2010.11.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (∼ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
40
|
Missirlis D, Krogstad DV, Tirrell M. Internalization of p53(14-29) peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death. Mol Pharm 2010; 7:2173-84. [PMID: 20822110 PMCID: PMC2997927 DOI: 10.1021/mp100193h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo peptide inhibition of tumor suppressor p53 binding to the protein MDM2 is hampered by inefficient delivery of the peptide. Our approach to couple a hydrophobic lipid-like tail on the inhibitory peptide p53(14-29) allowed its intracellular delivery in vitro, in a panel of different cell lines. The constructed chimeric molecules, termed peptide amphiphiles, further self-assembled into supramolecular structures, identified as elongated wormlike micelles. Internalization of peptides occurred following micelle disassembly, partly via clathrin-mediated endocytosis of monomers. Incubation of SJSA-1 cells in hypertonic culture media, aimed to disrupt endocytic vesicles, resulted in peptide amphiphile-mediated cell death. Our results provide the basis for the construction of novel therapeutic supramolecular nanoparticles and suggest hydrophobic modification of peptides as a promising strategy for enhancing delivery of impermeable peptides.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Daniel V. Krogstad
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Matthew Tirrell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Materials Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
41
|
Howes MT, Kirkham M, Riches J, Cortese K, Walser PJ, Simpson F, Hill MM, Jones A, Lundmark R, Lindsay MR, Hernandez-Deviez DJ, Hadzic G, McCluskey A, Bashir R, Liu L, Pilch P, McMahon H, Robinson PJ, Hancock JF, Mayor S, Parton RG. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol 2010; 190:675-91. [PMID: 20713605 PMCID: PMC2928008 DOI: 10.1083/jcb.201002119] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/26/2010] [Indexed: 01/05/2023] Open
Abstract
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Mark T. Howes
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew Kirkham
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James Riches
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katia Cortese
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Piers J. Walser
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiona Simpson
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michelle M. Hill
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alun Jones
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard Lundmark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Margaret R. Lindsay
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Delia J. Hernandez-Deviez
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gordana Hadzic
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rumasia Bashir
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3HP, England, UK
| | - Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Paul Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Harvey McMahon
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Phillip J. Robinson
- Children’s Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - John F. Hancock
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bangalore 560 065, India
| | - Robert G. Parton
- The Institute for Molecular Bioscience and The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett 2010; 584:2626-34. [DOI: 10.1016/j.febslet.2010.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/07/2010] [Indexed: 01/07/2023]
|
43
|
Köck K, Koenen A, Giese B, Fraunholz M, May K, Siegmund W, Hammer E, Völker U, Jedlitschky G, Kroemer HK, Grube M. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J Biol Chem 2010; 285:11336-47. [PMID: 20159975 DOI: 10.1074/jbc.m109.056457] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Members of the organic anion transporting polypeptide (OATP) family are involved in various pharmacological, pathophysiological, and physiological processes, such as hepatic drug uptake, progress of cancer, or transport of hormones. Although variability in expression and function of OATPs has been investigated in detail, data concerning regulation are rather limited. Here, we report a novel mechanism for rapid regulation of OATP2B1 mediated by protein kinase C (PKC) resulting in significant changes of transport activity. PKC activation by the phorbol ester (phorbol 12-myristate 13-acetate, PMA) resulted in increased phosphorylation of OATP2B1 as well as reduced OATP2B1 transport activity with a decrease in V(max) of E(1)S uptake (288 +/- 21 (control) versus 165 +/- 16 pmol/min/mg of protein (PMA)). This effect was sensitive to the PKC inhibitor bisindolylmaleimide I (BIM-I). Confocal microscopy, fluorescence-based internalization assay, and live-cell imaging using green fluorescent protein-tagged OATP2B1 revealed that transport inhibition was due to internalization of the transporter. Furthermore, colocalization with LAMP-2 and chloroquine-sensitive degradation of OATP2B1 suggest that the internalized protein is targeted to a lysosomal degradation pathway. With regard to the underlying mechanism inhibition of caveolin/lipid raft-mediated endocytosis failed to prevent OATP2B1 internalization, whereas inhibition of clathrin-mediated processes blocked OATP2B1 sequestration. However, small interfering RNA-mediated clathrin knock-down affected general trafficking of OATP2B1 and resulted in intracellular accumulation in the absence of PMA. In conclusion, our data demonstrate that OATP2B1 function is regulated by PKC-mediated, clathrin-dependent internalization and followed by lysosomal degradation. Furthermore, internalization could be shown in an ex vivo placenta perfusion. Our findings represent a new, rapid mechanism in regulation of human OATPs.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. ACTA ACUST UNITED AC 2010; 188:547-63. [PMID: 20156964 PMCID: PMC2828922 DOI: 10.1083/jcb.200908086] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inhibitors of Na+/H+ exchange proteins block macropinocytosis by lowering the pH near the plasma membrane, which in turn inhibits actin remodeling by Rho family GTPases. Macropinocytosis is differentiated from other types of endocytosis by its unique susceptibility to inhibitors of Na+/H+ exchange. Yet, the functional relationship between Na+/H+ exchange and macropinosome formation remains obscure. In A431 cells, stimulation by EGF simultaneously activated macropinocytosis and Na+/H+ exchange, elevating cytosolic pH and stimulating Na+ influx. Remarkably, although inhibition of Na+/H+ exchange by amiloride or HOE-694 obliterated macropinocytosis, neither cytosolic alkalinization nor Na+ influx were required. Instead, using novel probes of submembranous pH, we detected the accumulation of metabolically generated acid at sites of macropinocytosis, an effect counteracted by Na+/H+ exchange and greatly magnified when amiloride or HOE-694 were present. The acidification observed in the presence of the inhibitors did not alter receptor engagement or phosphorylation, nor did it significantly depress phosphatidylinositol-3-kinase stimulation. However, activation of the GTPases that promote actin remodelling was found to be exquisitely sensitive to the submembranous pH. This sensitivity confers to macropinocytosis its unique susceptibility to inhibitors of Na+/H+ exchange.
Collapse
Affiliation(s)
- Mirkka Koivusalo
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Claudins and Renal Magnesium Handling. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
46
|
Dhanikula RS, Hammady T, Hildgen P. On the Mechanism and Dynamics of Uptake and Permeation of Polyether-Copolyester Dendrimers Across an In Vitro Blood–Brain Barrier Model. J Pharm Sci 2009; 98:3748-60. [DOI: 10.1002/jps.21669] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Ramachandran R, Pucadyil TJ, Liu YW, Acharya S, Leonard M, Lukiyanchuk V, Schmid SL. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol Biol Cell 2009; 20:4630-9. [PMID: 19776347 DOI: 10.1091/mbc.e09-08-0683] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The GTPase dynamin catalyzes the scission of deeply invaginated clathrin-coated pits at the plasma membrane, but the mechanisms governing dynamin-mediated membrane fission remain poorly understood. Through mutagenesis, we have altered the hydrophobic nature of the membrane-inserting variable loop 1 (VL1) of the pleckstrin homology (PH) domain of dynamin-1 and demonstrate that its stable insertion into the lipid bilayer is critical for high membrane curvature generation and subsequent membrane fission. Dynamin PH domain mutants defective in curvature generation regain function when assayed on precurved membrane templates in vitro, but they remain defective in the scission of clathrin-coated pits in vivo. These results demonstrate that, in concert with dynamin self-assembly, PH domain membrane insertion is essential for fission and vesicle release in vitro and for clathrin-mediated endocytosis in vivo.
Collapse
Affiliation(s)
- Rajesh Ramachandran
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Baba T, Nakamoto Y, Mukaida N. Crucial contribution of thymic Sirp alpha+ conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3053-3063. [PMID: 19675159 DOI: 10.4049/jimmunol.0900438] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thymic dendritic cells (DCs) as well as thymic epithelial cells are presumed to be major sentinels in central tolerance by inducing the apoptosis of autoreactive T progenitor cells. The thymic DC population is composed of heterogeneous subsets including CD11c(+)B220(+) plasmacytoid DCs, CD11c(+)B220(-)CD8alpha(+) signal regulatory protein alpha (Sirpalpha)(-) and CD11c(+)B220(-)CD8alpha(-)Sirpalpha(+) conventional DCs (cDCs). However, the distinctive role of each DC subset remains undefined. We show herein that Sirpalpha(+) cDCs, a minor subpopulation, was disseminated in the thymic cortical area with some of them uniquely localized inside perivascular regions and nearby small vessels in the thymus. The Sirpalpha(+) but not Sirpalpha(-) cDC subset can selectively capture blood-circulating Ags. Moreover, in CCR2-deficient mice, the thymic Sirpalpha(+) cDC subset, but not other thymic cell components, was moderately decreased especially in the perivascular regions. Concomitantly, these mice exhibited a modest impairment in intrathymic negative selection against blood-borne Ags, with the reduced capacity to uptake blood-borne Ags. Given their intrathymic cortical localization, CD11c(+)B220(-)CD8alpha(-)Sirpalpha(+) cDCs can have a unique role in the development of central tolerance against circulating peripheral Ags, at least partially in a CCR2-dependent manner.
Collapse
Affiliation(s)
- Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | |
Collapse
|
49
|
Skånland SS, Wälchli S, Brech A, Sandvig K. SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 2009; 4:e5935. [PMID: 19529763 PMCID: PMC2691479 DOI: 10.1371/journal.pone.0005935] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
Background Sorting nexins (SNXs) constitute a family of proteins classified by their phosphatidylinositol (PI) binding Phox homology (PX) domain. Some members regulate intracellular trafficking. We have here investigated mechanisms underlying SNX4 mediated endosome to Golgi transport. Methodology/Principal Findings We show that SNX4 forms complexes with clathrin and dynein. The interactions were inhibited by wortmannin, a PI3-kinase inhibitor, suggesting that they form when SNX4 is associated with PI(3)P on endosomes. We further localized the clathrin interacting site on SNX4 to a clathrin box variant. A short peptide containing this motif was sufficient to pull down both clathrin and dynein. Knockdown studies demonstrated that clathrin is not required for the SNX4/dynein interaction. Moreover, clathrin knockdown led to increased Golgi transport of the toxin ricin, as well as redistribution of endosomes. Conclusions/Significance We discuss the possibility of clathrin serving as a regulator of SNX4-dependent transport. Upon clathrin release, dynein may bind SNX4 and mediate retrograde movement.
Collapse
Affiliation(s)
- Sigrid S. Skånland
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
50
|
Chappie JS, Acharya S, Liu YW, Leonard M, Pucadyil TJ, Schmid SL. An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol Biol Cell 2009; 20:3561-71. [PMID: 19515832 DOI: 10.1091/mbc.e09-04-0318] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamin exhibits a high basal rate of GTP hydrolysis that is enhanced by self-assembly on a lipid template. Dynamin's GTPase effector domain (GED) is required for this stimulation, though its mechanism of action is poorly understood. Recent structural work has suggested that GED may physically dock with the GTPase domain to exert its stimulatory effects. To examine how these interactions activate dynamin, we engineered a minimal GTPase-GED fusion protein (GG) that reconstitutes dynamin's basal GTPase activity and utilized it to define the structural framework that mediates GED's association with the GTPase domain. Chemical cross-linking of GG and mutagenesis of full-length dynamin establishes that the GTPase-GED interface is comprised of the N- and C-terminal helices of the GTPase domain and the C-terminus of GED. We further show that this interface is essential for structural stability in full-length dynamin. Finally, we identify mutations in this interface that disrupt assembly-stimulated GTP hydrolysis and dynamin-catalyzed membrane fission in vitro and impair the late stages of clathrin-mediated endocytosis in vivo. These data suggest that the components of the GTPase-GED interface act as an intramolecular signaling module, which we term the bundle signaling element, that can modulate dynamin function in vitro and in vivo.
Collapse
Affiliation(s)
- Joshua S Chappie
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|