1
|
Kumar A, Daripa P, Penumutchu S, Maiti S, Jain N. Thermodynamic insights into N6-methyladenosine-modified ribonucleic acids and their interactions with the RNA recognition motif of heterogeneous nuclear ribonucleoprotein C. Int J Biol Macromol 2025; 312:144210. [PMID: 40373918 DOI: 10.1016/j.ijbiomac.2025.144210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
N6-methyladenosine (m6A) is a prevalent RNA modification that regulates key functions such as splicing, transport, translation, and stability across various RNA types, including mRNA, tRNA, rRNA, and lncRNA. Transcriptome-wide studies reveal that approximately one-third of mammalian mRNAs carry 3-5 m6A modifications, enriched in the consensus motif RRA*CH. While some studies suggest m6A induces structural changes in RNA to facilitate protein binding through an "m6A switch" mechanism, others propose it primarily primes RNA for enhanced protein interactions, emphasizing the need for further exploration of m6A's role. Here, we investigated how m6A influences the binding of heterogeneous nuclear ribonucleoprotein C (hnRNPC), which recognizes poly (U) tracts via its RNA recognition motif (RRM). Using naturally occurring m6A-modified RNAs, including lncRNA MALAT1, we examined the effects of m6A on RNA folding and protein binding. Biophysical experiments (UV melting, circular dichroism, and molecular dynamics simulations) revealed that m6A subtly alters RNA stability and folding. Binding studies using EMSA, Microscale Thermophoresis (MST), and Isothermal Titration Calorimetry (ITC) showed m6A primes RNA for hnRNPC recognition rather than inducing structural switches. These findings refine our understanding of m6A's role in RNA-protein interactions, highlighting its regulatory importance in RNA metabolism.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. PLANTS (BASEL, SWITZERLAND) 2025; 14:1402. [PMID: 40364430 PMCID: PMC12074014 DOI: 10.3390/plants14091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Tangying Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiyuan Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilin Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Linxuan Pan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H, Zhang L. Research Progress on the Structural and Functional Roles of hnRNPs in Muscle Development. Biomolecules 2023; 13:1434. [PMID: 37892116 PMCID: PMC10604023 DOI: 10.3390/biom13101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China; (Z.L.); (H.W.); (D.H.); (X.L.); (Y.G.); (X.D.); (H.G.)
| |
Collapse
|
4
|
Guo Q, Fan Y, Wang Q, Li B, Qiu W, Qi Y, Pan Z, Zhang S, Zhao S, Yang K, Xu H, Li M, Gao Z, Xu J, Wang H, Wang S, Tang Q, Qiu J, Guo X, Deng L, Zhang P, Zhao R, Xue H, Wang C, Li G. Glioblastoma upregulates SUMOylation of hnRNP A2/B1 to eliminate the tumor suppressor miR-204-3p, accelerating angiogenesis under hypoxia. Cell Death Dis 2023; 14:147. [PMID: 36810326 PMCID: PMC9944918 DOI: 10.1038/s41419-023-05663-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system in adults. The tumor microenvironment (TME) is related to poor prognosis in glioma patients. Glioma cells could sort miRNA into exosomes to modify TME. And hypoxia played an important role in this sorting process, but the mechanism is not clear yet. Our study was to find miRNAs sorted into glioma exosomes and reveal the sorting process. Sequencing analysis of glioma patients cerebrospinal fluid (CSF) and tissue showed that miR-204-3p tends to be sorted into exosomes. miR-204-3p suppressed glioma proliferation through the CACNA1C/MAPK pathway. hnRNP A2/B1 can accelerate exosome sorting of miR-204-3p by binding a specific sequence. Hypoxia plays an important role in exosome sorting of miR-204-3p. Hypoxia can upregulate miR-204-3p by upregulating the translation factor SOX9. Hypoxia promotes the transfer of hnRNP A2/B1 to the cytoplasm by upregulating SUMOylation of hnRNP A2/B1 to eliminate miR-204-3p. Exosomal miR-204-3p promoted tube formation of vascular endothelial cells through the ATXN1/STAT3 pathway. The SUMOylation inhibitor TAK-981 can inhibit the exosome-sorting process of miR-204-3p to inhibit tumor growth and angiogenesis. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma.
Collapse
Affiliation(s)
- Qindong Guo
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Yang Fan
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Qingtong Wang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Boyan Li
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Wei Qiu
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Yanhua Qi
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Ziwen Pan
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Shouji Zhang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Shulin Zhao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Kehui Yang
- grid.27255.370000 0004 1761 1174Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Hao Xu
- grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China ,grid.440323.20000 0004 1757 3171Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Ming Li
- grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China ,grid.410645.20000 0001 0455 0905Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong China
| | - Zijie Gao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Jianye Xu
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Huizhi Wang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Shaobo Wang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Qilin Tang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Jiawei Qiu
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Xing Guo
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Lin Deng
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Ping Zhang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Rongrong Zhao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Hao Xue
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
| |
Collapse
|
5
|
Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, Tietgens AJ. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci 2023; 10:1127690. [PMID: 36818045 PMCID: PMC9932599 DOI: 10.3389/fmolb.2023.1127690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Cells express hundreds of iron-dependent enzymes that rely on the iron cofactors heme, iron-sulfur clusters, and mono-or di-nuclear iron centers for activity. Cells require systems for both the assembly and the distribution of iron cofactors to their cognate enzymes. Proteins involved in the binding and trafficking of iron ions in the cytosol, called cytosolic iron chaperones, have been identified and characterized in mammalian cells. The first identified iron chaperone, poly C-binding protein 1 (PCBP1), has also been studied in mice using genetic models of conditional deletion in tissues specialized for iron handling. Studies of iron trafficking in mouse tissues have necessitated the development of new approaches, which have revealed new roles for PCBP1 in the management of cytosolic iron. These approaches can be applied to investigate use of other nutrient metals in mammals.
Collapse
|
6
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3'-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3'-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
Affiliation(s)
- Jianguo Feng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianlong Zhou
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yunxiao Lin
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| |
Collapse
|
7
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
8
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
9
|
Mo L, Meng L, Huang Z, Yi L, Yang N, Li G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res 2022; 10:19. [PMID: 35395937 PMCID: PMC8994388 DOI: 10.1186/s40364-022-00366-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins C (HnRNP C) is part of the hnRNP family of RNA-binding proteins. The relationship between hnRNP C and cancers has been extensively studied, and dysregulation of hnRNP C has been found in many cancers. According to existing public data, hnRNP C could promote the maturation of new heterogeneous nuclear RNAs (hnRNA s, also referred to as pre-mRNAs) into mRNAs and could stabilize mRNAs, controlling their translation. This paper reviews the regulation and dysregulation of hnRNP C in cancers. It interacts with some cancer genes and other biological molecules, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and double-stranded RNAs (dsRNAs). Even directly binds to them. The effects of hnRNP C on biological processes such as alternative cleavage and polyadenylation (APA) and N6-methyladenosine (m6A) modification differ among cancers. Its main function is regulating stability and level of translation of cancer genes, and the hnRNP C is regarded as a candidate biomarker and might be valuable for prognosis evaluation.
Collapse
Affiliation(s)
- Liyi Mo
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lijuan Meng
- Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhicheng Huang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential. Proc Natl Acad Sci U S A 2021; 118:2104666118. [PMID: 34161287 DOI: 10.1073/pnas.2104666118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.
Collapse
|
11
|
Philpott CC, Patel SJ, Protchenko O. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118830. [PMID: 32835748 DOI: 10.1016/j.bbamcr.2020.118830] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Iron-containing proteins rely on the incorporation of a set of iron cofactors for activity. The cofactors must be synthesized or assembled from raw materials located within the cell. The chemical nature of this pool of raw material - referred to as the labile iron pool - has become clearer with the identification of micro- and macro-molecules that coordinate iron within the cell. These molecules function as a buffer system for the management of intracellular iron and are the focus of this review, with emphasis on the major iron chaperone protein coordinating the labile iron pool: poly C-binding protein 1.
Collapse
Affiliation(s)
| | - Sarju J Patel
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Tang S, Zhu W, Zheng F, Gui W, Zhang W, Lin X, Li H. The Long Noncoding RNA Blnc1 Protects Against Diet-Induced Obesity by Promoting Mitochondrial Function in White Fat. Diabetes Metab Syndr Obes 2020; 13:1189-1201. [PMID: 32368112 PMCID: PMC7173956 DOI: 10.2147/dmso.s248692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play critical regulatory roles in metabolic disorder. Whereas, the regulatory role of lncRNAs in mitochondrial function of white adipose tissue (WAT) is unknown. MATERIALS AND METHODS We investigated the role of Blnc1 in metabolic homeostasis and mitochondrial function of C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks, followed by multi-point injection of adenovirus carrying Blnc1 into epididymal fat (eWAT). In vitro, mitochondrial biogenesis and function were analyzed in 3T3-L1 pre-adipocytes with Blnc1 overexpression or knockdown. Mechanically, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) were used to highlight the molecular mechanism of Blnc1 in pre-adipocytes. RESULTS Gross eWAT weight was significantly decreased and insulin resistance was improved in HFD-Ad-Blnc1 mice. Mitochondrial biosynthesis was induced by Blnc1 in eWAT, as evidenced by an increased mitochondrial DNA and enhanced Mito-tracker staining. The expression of mitochondria-related genes was increased in eWAT, hepatic fatty acid oxidation was upregulated, and lipid deposition was reduced in HFD-Ad-Blnc1 mice. Knockdown of Blnc1 in 3T3-L1 pre-adipocytes resulted in mitochondrial dysfunction. The mechanistic investigation indicated that Blnc1 stimulated the transcription of Pgc1β via decoying hnRNPA1. CONCLUSION Therefore, eWAT-specific overexpression of Blnc1 improves hepatic steatosis and systemic insulin sensitivity, likely by enhancing mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Shengjie Tang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Weifen Zhu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Wenjing Zhang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
FTO controls reversible m 6Am RNA methylation during snRNA biogenesis. Nat Chem Biol 2019; 15:340-347. [PMID: 30778204 DOI: 10.1038/s41589-019-0231-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/12/2019] [Indexed: 01/31/2023]
Abstract
Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m1 and m2, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m1 isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m2 isoform (N6,2'-O-dimethyladenosine, m6Am). The relative m1 and m2 isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m2 isoform. We show FTO is inhibited by the oncometabolite D-2-hydroxyglutarate, resulting in increased m2-snRNA levels. Furthermore, cells that exhibit high m2-snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO controls a previously unknown central step of snRNA processing involving reversible methylation, and suggest that epitranscriptomic information in snRNA may influence mRNA splicing.
Collapse
|
14
|
Baralle M, Baralle FE. The splicing code. Biosystems 2017; 164:39-48. [PMID: 29122587 DOI: 10.1016/j.biosystems.2017.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
Abstract
This issue dedicated to the code of life tackles very challenging and open questions in Biology. The genetic code, brilliantly uncovered over 50 years ago is an example of a univocal biological code. In fact, except for very few and marginal variations, it is the same from bacteria to man, the RNA stretch: 5' GUGUUC 3' reads as the dipeptide: Val-Phe in bacteria, in yeast, in Arabidopsis, in zebra fish, in mouse and in human. A degree of ambiguity is possible if mutations are introduced in the tRNAs in a way that the anticodon reads one amino acid but the aminoacyl-transferase attaches a different one onto the tRNA. These were the very useful suppressor genes that aided greatly the study of bacterial genetics. Other biological codes however, are more akin to social codes and are less amenable to an unambiguous deciphering. Legal and ethical codes, weather we like it or not, are flexible and depend on the structure and history of the society that has produced them, as well as a specific point in time. The codes that govern RNA splicing have similar characteristics. In fact, the splicing code depends on a myriad of different factors that in part are influenced by the background in which they are read such as different cells, tissues or developmental stages. Given the complexity of the splicing process, the construction of an algorithm that can define exons or their fate with certainty has not yet been achieved. However a substantial amount of information towards the deciphering of the splicing code has been gathered and in this manuscript we summarize the point reached.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Italy.
| | | |
Collapse
|
15
|
Roy R, Huang Y, Seckl MJ, Pardo OE. Emerging roles of hnRNPA1 in modulating malignant transformation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28791797 DOI: 10.1002/wrna.1431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization. WIREs RNA 2017, 8:e1431. doi: 10.1002/wrna.1431 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yueyang Huang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
16
|
The Neuroprotective Marine Compound Psammaplysene A Binds the RNA-Binding Protein HNRNPK. Mar Drugs 2017; 15:md15080246. [PMID: 28783126 PMCID: PMC5577601 DOI: 10.3390/md15080246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022] Open
Abstract
In previous work, we characterized the strong neuroprotective properties of the marine compound Psammaplysene A (PA) in in vitro and in vivo models of neurodegeneration. Based on its strong neuroprotective activity, the current work attempts to identify the physical target of PA to gain mechanistic insight into its molecular action. Two distinct methods, used in parallel, to purify protein-binding partners of PA led to the identification of HNRNPK as a direct target of PA. Based on surface plasmon resonance, we find that the binding of PA to HNRNPK is RNA-dependent. These findings suggest a role for HNRNPK-dependent processes in neurodegeneration/neuroprotection, and warrant further study of HNRNPK in this context.
Collapse
|
17
|
Yadav S, Shekhawat M, Jahagirdar D, Kumar Sharma N. Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biol Med 2017; 14:242-253. [PMID: 28884041 PMCID: PMC5570601 DOI: 10.20892/j.issn.2095-3941.2017.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Since the failure of traditional therapy, gene therapy using functional DNA sequence and small RNA/DNA molecules (oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes. Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
Collapse
Affiliation(s)
- Sunny Yadav
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Mamta Shekhawat
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
18
|
Mihailovic MK, Chen A, Gonzalez-Rivera JC, Contreras LM. Defective Ribonucleoproteins, Mistakes in RNA Processing, and Diseases. Biochemistry 2017; 56:1367-1382. [PMID: 28206738 DOI: 10.1021/acs.biochem.6b01134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribonucleoproteins (RNPs) are vital to many cellular events. To this end, many neurodegenerative diseases and cancers have been linked to RNP malfunction, particularly as this relates to defective processing of cellular RNA. The connection of RNPs and diseases has also propagated a shift of focus onto RNA targeting from traditional protein targeting treatments. However, therapeutic development in this area has been limited by incomplete molecular insight into the specific contributions of RNPs to disease. This review outlines the role of several RNPs in diseases, focusing on molecular defects in processes that affect proper RNA handling in the cell. This work also evaluates the contributions of recently developed methods to understanding RNP association and function. We review progress in this area by focusing on molecular malfunctions of RNPs associated with the onset and progression of several neurodegenerative diseases and cancer and conclude with a brief discussion of RNA-based therapeutic efforts.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases. Front Mol Biosci 2016; 3:43. [PMID: 27597947 PMCID: PMC4992684 DOI: 10.3389/fmolb.2016.00043] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Serena Pantalone
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | | |
Collapse
|
20
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 746] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
21
|
Di Luca A, Henry M, Meleady P, O'Connor R. Label-free LC-MS analysis of HER2+ breast cancer cell line response to HER2 inhibitor treatment. ACTA ACUST UNITED AC 2015; 23:40. [PMID: 26238995 PMCID: PMC4524286 DOI: 10.1186/s40199-015-0120-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human epidermal growth-factor receptor (HER)-2 is overexpressed in 25 % of breast-cancers and is associated with an aggressive form of the disease with significantly shortened disease free and overall survival. In recent years, the use of HER2-targeted therapies, monoclonal-antibodies and small molecule tyrosine-kinase inhibitors has significantly improved the clinical outcome for HER2-positive breast-cancer patients. However, only a fraction of HER2-amplified patients will respond to therapy and the use of these treatments is often limited by tumour drug insensitivity or resistance and drug toxicities. Currently there is no way to identify likely responders or rational combinations with the potential to improve HER2-focussed treatment outcome. METHODS In order to further understand the molecular mechanisms of treatment-response with HER2-inhibitors, we used a highly-optimised and reproducible quantitative label-free LC-MS strategy to characterize the proteomes of HER2-overexpressing breast-cancer cell-lines (SKBR3, BT474 and HCC1954) in response to drug-treatment with HER2-inhibitors (lapatinib, neratinib or afatinib). RESULTS Following 12 ours treatment with different HER2-inhibitors in the BT474 cell-line; compared to the untreated cells, 16 proteins changed significantly in abundance following lapatinib treatment (1 μM), 21 proteins changed significantly following neratinib treatment (150 nM) and 38 proteins changed significantly following afatinib treatment (150 nM). Whereas following 24 hours treatment with neratinib (200 nM) 46 proteins changed significantly in abundance in the HCC1954 cell-line and 23 proteins in the SKBR3 cell-line compared to the untreated cells. Analysing the data we found that, proteins like trifunctional-enzyme subunit-alpha, mitochondrial; heterogeneous nuclear ribonucleoprotein-R and lamina-associated polypeptide 2, isoform alpha were up-regulated whereas heat shock cognate 71 kDa protein was down-regulated in 3 or more comparisons. CONCLUSION This proteomic study highlights several proteins that are closely associated with early HER2-inhibitor response and will provide a valuable resource for further investigation of ways to improve efficacy of breast-cancer treatment.
Collapse
Affiliation(s)
- Alessio Di Luca
- National Institute for Cellular Biotechnology, DCU, Glasnevin, Dublin 9, Dublin, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, DCU, Glasnevin, Dublin 9, Dublin, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, DCU, Glasnevin, Dublin 9, Dublin, Ireland.
| | - Robert O'Connor
- National Institute for Cellular Biotechnology, DCU, Glasnevin, Dublin 9, Dublin, Ireland. .,School of Nursing and Human Sciences, DCU, Glasnevin, Dublin 9, Dublin, Ireland.
| |
Collapse
|
22
|
Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 2014; 20:623-31. [PMID: 25262537 PMCID: PMC4252818 DOI: 10.1016/j.molmed.2014.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/03/2023]
Abstract
The expression of lncRNAs in the immune system is cell type- and context-dependent. Several lncRNAs identified to date regulate immune gene expression. LncRNAs play crucial role in host–pathogen interactions. The majority of disease-associated SNPs lie in regulatory regions of the genome.
All cells of the immune system rely on a highly integrated and dynamic gene expression program that is controlled by both transcriptional and post-transcriptional mechanisms. Recently, non-coding RNAs, including long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological contexts. lncRNAs control gene expression in the nucleus by modulating transcription or via post-transcriptional mechanisms targeting the splicing, stability, or translation of mRNAs. Our knowledge of lncRNA biogenesis, their cell type-specific expression, and their versatile molecular functions is rapidly progressing in all areas of biology. We discuss here these exciting new regulators and highlight an emerging paradigm of lncRNA-mediated control of gene expression in the immune system.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013; 14:18999-9024. [PMID: 24065100 PMCID: PMC3794818 DOI: 10.3390/ijms140918999] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells express a large variety of RNA binding proteins (RBPs), with diverse affinities and specificities towards target RNAs. These proteins play a crucial role in almost every aspect of RNA biogenesis, expression and function. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a complex and diverse family of RNA binding proteins. hnRNPs display multiple functions in the processing of heterogeneous nuclear RNAs into mature messenger RNAs. hnRNP A1 is one of the most abundant and ubiquitously expressed members of this protein family. hnRNP A1 plays multiple roles in gene expression by regulating major steps in the processing of nascent RNA transcripts. The transcription, splicing, stability, export through nuclear pores and translation of cellular and viral transcripts are all mechanisms modulated by this protein. The diverse functions played by hnRNP A1 are not limited to mRNA biogenesis, but extend to the processing of microRNAs, telomere maintenance and the regulation of transcription factor activity. Genomic approaches have recently uncovered the extent of hnRNP A1 roles in the development and differentiation of living organisms. The aim of this review is to highlight recent developments in the study of this protein and to describe its functions in cellular and viral gene expression and its role in human pathologies.
Collapse
Affiliation(s)
- Jacques Jean-Philippe
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|
25
|
Iwamori T, Lin YN, Ma L, Iwamori N, Matzuk MM. Identification and characterization of RBM44 as a novel intercellular bridge protein. PLoS One 2011; 6:e17066. [PMID: 21364893 PMCID: PMC3045441 DOI: 10.1371/journal.pone.0017066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/15/2011] [Indexed: 12/19/2022] Open
Abstract
Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.
Collapse
Affiliation(s)
- Tokuko Iwamori
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yi-Nan Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lang Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naoki Iwamori
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sytnikova YA, Kubarenko AV, Schäfer A, Weber ANR, Niehrs C. Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS One 2011; 6:e14500. [PMID: 21249130 PMCID: PMC3017548 DOI: 10.1371/journal.pone.0014500] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/09/2010] [Indexed: 01/06/2023] Open
Abstract
Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle.
Collapse
Affiliation(s)
- Yuliya A. Sytnikova
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
| | - Andriy V. Kubarenko
- Division of Toll-like Receptors and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andrea Schäfer
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
| | - Alexander N. R. Weber
- Division of Toll-like Receptors and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- * E-mail:
| |
Collapse
|
27
|
Jeffries CD, Perkins DO, Guan X. Gene processing control loops suggested by sequencing, splicing, and RNA folding. BMC Bioinformatics 2010; 11:602. [PMID: 21167075 PMCID: PMC3009692 DOI: 10.1186/1471-2105-11-602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/20/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Small RNAs are known to regulate diverse gene expression processes including translation, transcription, and splicing. Among small RNAs, the microRNAs (miRNAs) of 17 to 27 nucleotides (nts) undergo biogeneses including primary transcription, RNA excision and folding, nuclear export, cytoplasmic processing, and then bioactivity as regulatory agents. We propose that analogous hairpins from RNA molecules that function as part of the spliceosome might also be the source of small, regulatory RNAs (somewhat smaller than miRNAs). RESULTS Deep sequencing technology has enabled discovery of a novel 16-nt RNA sequence in total RNA from human brain that we propose is derived from RNU1, an RNA component of spliceosome assembly. Bioinformatic alignments compel inquiring whether the novel 16-nt sequence or its precursor have a regulatory function as well as determining aspects of how processing intersects with the miRNA biogenesis pathway. Specifically, our preliminary in silico investigations reveal the sequence could regulate splicing factor Arg/Ser rich 1 (SFRS1), a gene coding an essential protein component of the spliceosome. All 16-base source sequences in the UCSC Human Genome Browser are within the 14 instances of RNU1 genes listed in wgEncodeGencodeAutoV3. Furthermore, 10 of the 14 instances of the sequence are also within a common 28-nt hairpin-forming subsequence of RNU1. CONCLUSIONS An abundant 16-nt RNA sequence is sourced from a spliceosomal RNA, lies in a stem of a predicted RNA hairpin, and includes reverse complements of subsequences of the 3'UTR of a gene coding for a spliceosome protein. Thus RNU1 could function both as a component of spliceosome assembly and as inhibitor of production of the essential, spliceosome protein coded by SFRS1. Beyond this example, a general procedure is needed for systematic discovery of multiple alignments of sequencing, splicing, and RNA folding data.
Collapse
Affiliation(s)
- Clark D Jeffries
- Eshelman School of Pharmacy and Renaissance Computing Institute, University of North Carolina at Chapel Hill, NC, USA.
| | | | | |
Collapse
|
28
|
Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol 2010; 24:195-216. [PMID: 20143452 DOI: 10.1002/jbt.20325] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the discovery of small ncRNAs (noncoding RNAs) has unveiled a slew of powerful riboregulators of gene expression. So far, many different types of small ncRNAs have been described. Of these, miRNAs (microRNAs), siRNAs (small interfering RNAs), and piRNAs (Piwi-interacting RNAs) have been studied in more detail. A significant fraction of genes in most organisms and tissues is targets of these small ncRNAs. Because these tiny RNAs are turning out to be important regulators of gene and genome expression, their aberrant expression profiles are expected to be associated with cellular dysfunction and disease. In fact, an ever-increasing number of studies have implicated miRNAs and siRNAs in human health and disease ranging from metabolic disorders to diseases of various organ systems as well as various forms of cancer. Nevertheless, despite the flurry of research on these small ncRNAs, many aspects of their biology still remain to be understood. The following discussion focuses on some aspects of the biogenesis and function of small ncRNAs with major emphasis on miRNAs since these are the most widespread endogenous small ncRNAs that have been called "micromanagers" of gene expression. Their emerging significance in toxicology is also discussed.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Center for Food Safety and Applied Nutrition, Division of Biotechnology and GRAS Notice Review, U.S. Food and Drug Administration, College Park, MD 20740, USA.
| |
Collapse
|
29
|
Chaudhury A, Chander P, Howe PH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles. RNA (NEW YORK, N.Y.) 2010; 16:1449-62. [PMID: 20584894 PMCID: PMC2905745 DOI: 10.1261/rna.2254110] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins. The complexity and diversity associated with the hnRNPs render them multifunctional, involved not only in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, but also acting as trans-factors in regulating gene expression. Heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1), a subgroup of hnRNPs, is a KH-triple repeat containing RNA-binding protein. It is encoded by an intronless gene arising from hnRNP E2 through a retrotransposition event. hnRNP E1 is ubiquitously expressed and functions in regulating major steps of gene expression, including pre-mRNA processing, mRNA stability, and translation. Given its wide-ranging functions in the nucleus and cytoplasm and interaction with multiple proteins, we propose a post-transcriptional regulon model that explains hnRNP E1's widespread functional diversity.
Collapse
Affiliation(s)
- Arindam Chaudhury
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
30
|
Ma L, Xie B, Hong Z, Verma DPS, Zhang Z. A novel RNA-binding protein associated with cell plate formation. PLANT PHYSIOLOGY 2008; 148:223-34. [PMID: 18621982 PMCID: PMC2528124 DOI: 10.1104/pp.108.120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/07/2008] [Indexed: 05/20/2023]
Abstract
Building a cell plate during cytokinesis in plant cells requires the participation of a number of proteins in a multistep process. We previously identified phragmoplastin as a cell plate-specific protein involved in creating a tubulovesicular network at the cell plate. We report here the identification and characterization of a phragmoplastin-interacting protein, PHIP1, in Arabidopsis (Arabidopsis thaliana). It contains multiple functional motifs, including a lysine-rich domain, two RNA recognition motifs, and three CCHC-type zinc fingers. Polypeptides with similar motif structures were found only in plant protein databases, but not in the sequenced prokaryotic, fungal, and animal genomes, suggesting that PHIP1 represents a plant-specific RNA-binding protein. In addition to phragmoplastin, two Arabidopsis small GTP-binding proteins, Rop1 and Ran2, are also found to interact with PHIP1. The zinc fingers of PHIP1 were not required for its interaction with Rop1 and phragmoplastin, but they may participate in its binding with the Ran2 mRNA. Immunofluorescence, in situ RNA hybridization, and green fluorescent protein tagging experiments showed the association of PHIP1 with the forming cell plate during cytokinesis. Taken together, our data suggest that PHIP1 is a novel RNA-binding protein and may play a unique role in the polarized mRNA transport to the vicinity of the cell plate.
Collapse
Affiliation(s)
- Lian Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
31
|
Aoyama J, Akazawa Y, Kasahara K, Higashiyama Y, Kikuchi I, Fukumoto Y, Saburi S, Nakayama Y, Fukuda MN, Yamaguchi N. Nuclear localization of magphinins, alternative splicing products of the human trophinin gene. J Cell Biochem 2008; 103:765-77. [PMID: 17559068 DOI: 10.1002/jcb.21446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human magphinin proteins are translation products of differentially spliced transcripts from the 5' region of the human trophinin gene (TRO), whose 3' region encodes trophinin, a unique cell adhesion molecule involved in human embryo implantation. Magphinins belong to the MAGE (melanoma-associated antigen) family, and a previous study of mouse magphinins showed their expression in male and female germ cells, suggesting a role in germ cell development. Here, we characterized the structure and subcellular localization of human magphinins. Confocal microscopy analysis of ectopically expressed magphinins revealed that magphinin-alpha and -beta localize in the cytoplasm, whereas magphinin-gamma lacking the peptide encoded by exon-3 is nuclear. Following Triton X-100 extraction, DNA digestion, and high salt extraction magphinin-gamma remained nuclear, suggesting strong association with the nuclear matrix. A series of magphinin-gamma deletion mutants were generated and assayed for localization, which showed that the N-terminal region of the MAGE homology domain is necessary for nuclear localization. When magphinin-gamma was expressed in NIH3T3 cells, cells underwent G1 arrest. These results suggest that human magphinin-gamma inhibits cell cycle progression through nuclear activity.
Collapse
Affiliation(s)
- Junya Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yugami M, Kabe Y, Yamaguchi Y, Wada T, Handa H. hnRNP-U enhances the expression of specific genes by stabilizing mRNA. FEBS Lett 2006; 581:1-7. [PMID: 17174306 PMCID: PMC7130276 DOI: 10.1016/j.febslet.2006.11.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/20/2006] [Accepted: 11/24/2006] [Indexed: 11/18/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to be involved in pre-mRNA processing. hnRNP-U, also termed scaffold attachment factor A (SAF-A), binds to pre-mRNA and nuclear matrix/scaffold attachment region DNA elements. However, its role in the regulation of gene expression is as yet poorly understood. In the present study, we show that hnRNP-U specifically enhances the expression of tumor necrosis factor alpha mRNA by increasing its stability, possibly through binding to the 3' untranslated region. We also show that hnRNP-U enhances the expression of several other genes as well, including GADD45A, HEXIM1, HOXA2, IER3, NHLH2, and ZFY, by binding to and stabilizing these mRNAs. These results suggest that hnRNP-U enhances the expression of specific genes by regulating mRNA stability.
Collapse
Affiliation(s)
- Masato Yugami
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
33
|
Kress A, Selwood L. Marsupial Hypoblast: Formation and Differentiation of the Bilaminar Blastocyst in Sminthopsis macroura. Cells Tissues Organs 2006; 182:155-70. [PMID: 16914918 DOI: 10.1159/000093965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2006] [Indexed: 11/19/2022] Open
Abstract
Hypoblast formation in Sminthopsis macroura starts in blastocysts with a size between 1.0 and 1.4 mm, in which cells appear to be similar to each other, and finishes at the complete 2.6- or 2.7-mm bilaminar blastocyst, which is fully lined with hypoblast cells. When hypoblast cells begin allocation, the pluriblast region progressively differentiates from the trophoblast. Some pluriblast cells, which are otherwise undistinguished, lying on one side near the boundary of the circular pluriblast, move to the inside as hypoblast cells by mitosis or migration. They initially line the pluriblast and then the trophoblast. Hypoblast cells continue to leave the pluriblast/epiblast and intercalate into the underlying hypoblast layer until the advanced stages of bilaminar blastocysts. Associated with the origin of the hypoblast cells, the residual surface epiblast cells become less flatted and more cuboidal or rounded in shape. Characteristics are increased density of ribosomes, granular endoplasmic reticulum and a marked apical-basal polarity related to apical microvilli and endocytosis and more vesicles with flocculent content and a loss of the crystalloid deposits that were typical for earlier stages. Trophoblast cells become flat and elongated with only few vesicles, and they transform into extra-embryonic ectoderm cells, which are broader, rather square and with a higher density of ribosomes. Hypoblast cells are characterized by a relatively high level of ribosomes and endoplasmic reticulum, fewer small vesicles and no noticeable endocytotic processes and initially form a reticulum because the cells preferentially migrate along cell-cell boundaries by extension of long filopodia. Once hypoblast cells reach the boundary of the embryonic area and extend to line the trophoblast, they progressively consolidate into a squamous epithelium. It is suggested that the origin of the hypoblast from one side of the pluriblast and its invasion under the trophoblast from proliferating centres at the edge of the embryonic area provide mechanisms for patterning epiblast, hypoblast, trophoblast and extra-embryonic ectoderm.
Collapse
Affiliation(s)
- Annetrudi Kress
- Department of Anatomy, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
34
|
Abstract
Ultrastructural studies of human mast cells (HMCs) and basophils (HBs) are reviewed. Sources of HMCs include biopsies of tissue sites and in situ study of excised diseased organs; isolated, partially purified samples from excised organs; and growth-factor-stimulated mast cells that develop de novo in cultures of cord blood cells. Sources of HBs for study include partially purified peripheral blood basophils, basophils in tissue biopsies, and specific growth factor-stimulated basophils arising de novo from cord blood cells. The ultrastructural studies reviewed deal with identity, secretion, vesicles, recovery, and synthesis issues related to the biology of these similar cells.
Collapse
Affiliation(s)
- Ann M Dvorak
- Department of Pathology/East Campus, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Dvorak AM, Morgan ES. The case for extending storage and secretion functions of human mast cell granules to include synthesis. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 37:231-318. [PMID: 12134574 DOI: 10.1016/s0079-6336(02)80006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ultrastructural studies using standard procedures have for years indicated close associations of ribosomes and secretory granules in human mast cells. These descriptive studies have informed new studies, using established and new ultrastructural methods based on different principles, designed to investigate the possible role of RNA metabolism in secretory granules of human mast cells. In aggregate, these studies indicate human mast cell secretory granule associations with ribosomes, the protein synthetic machine of cells, with ribosomal proteins, with RNA, with poly(A)-positive mRNA and with various long-lived, or short-lived, uridine-rich, and poly(A)-poor RNA species with key roles in RNA processing and splicing. These studies indicate that secretory-storage granules in human mast cells may also be synthetic granules.
Collapse
Affiliation(s)
- Ann M Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, (East Campus), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Antica M, Kusic B, Hranilovic D, Dietz AB, Vuk-Pavlovic S. Cloning the cDNA for murine U2 snRNP-A' gene and its differential expression in lymphocyte development. Immunol Lett 2002; 82:217-23. [PMID: 12036604 DOI: 10.1016/s0165-2478(02)00064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied genes differentially transcribed during development of murine thymocytes. By the use of differential display of mRNA by polymerase chain reaction (DD-PCR) we identified a cDNA for U2snRNP-A' from a transcript abundant in precursor thymocytes, but rare in mature T cells. The transcript was fully cloned and found to be 97% homologous to the human cDNA for U2 snRNP-A'. We found the gene most abundantly transcribed on day 15 of gestation and in adult prothymocytes, spleen, testis and liver. Further characterization of snRNP proteins in the mouse is warranted in an effort to establish animal models of autoimmunity relevant for studies of connective tissue diseases or systemic lupus erythematosus, where patients harbor autoantibodies reactive to snRNP.
Collapse
|
37
|
|
38
|
Dvorak AM, Morgan ES. Ultrastructural immunogold cytochemistry with autoimmune human sera and an antibody to uridine implicate human mast cell granules in RNA biology. ACTA ACUST UNITED AC 2001; 32:685-96. [PMID: 11272809 DOI: 10.1023/a:1004119500801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human mast cells are professional secretory cells that store synthetic products in large granules filling their cytoplasm. Unlike many secretory cells, the principal synthetic organelle, ribosome-rich endoplasmic reticulum, is a minor component of their cytoplasm. Sightings of nonmembrane-bound ribosomes in and near their secretory granules stimulated detailed ultrastructural studies of various RNA species to implicate secretory-storage granules in RNA biology. In the work reported here, postembedding immunogold ultrastructural cytochemistry indicates that human mast cells contain uridine, an integral ingredient of RNA, and ribonucleoproteins, known to associate with small nuclear RNAs important for splicing RNA precursors, several ribonucleoproteins with possible functions in other aspects of RNA biology and ribonucleoproteins known to associate with ribosomes. These findings should catalyse future work toward establishing the full functional repertoire of secretory-storage granules.
Collapse
Affiliation(s)
- A M Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
39
|
Ai LS, Chau LY. Post-transcriptional regulation of H-ferritin mRNA. Identification of a pyrimidine-rich sequence in the 3'-untranslated region associated with message stability in human monocytic THP-1 cells. J Biol Chem 1999; 274:30209-14. [PMID: 10514512 DOI: 10.1074/jbc.274.42.30209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that phorbol myristate acetate (PMA) up-regulates H-ferritin gene expression in myeloid cells by stabilization of its message. In the present report, we showed that insertion of the 3'-untranslated region (3'-UTR) of H-ferritin mRNA at the 3'-end of luciferase coding sequence significantly reduced the stability of luciferase mRNA in human monocytic THP-1 cells. However, the half-life of the chimeric transcript was markedly prolonged after PMA treatment. A cytosolic protein factor from THP-1 cells was found to specifically bind to H-ferritin 3'-UTR. PMA treatment of THP-1 cells resulted in the reduction of the RNA binding activity in a time-dependent manner. Deletion analysis and RNase T1 mapping revealed a pyrimidine-rich sequence within the 3'-UTR which interacts with the protein factor. Competition experiments with homoribopolymers further demonstrated the importance of uridines for the binding activity. Point mutations in uridines of the pyrimidine-rich sequence reduced the protein binding to 3'-UTR, while increasing the stability of the chimeric luciferase transcript. Together, these results demonstrate that the pyrimidine-rich sequence in the 3'-UTR is involved in post-transcriptional regulation of H-ferritin gene expression in myeloid cells.
Collapse
Affiliation(s)
- L S Ai
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
40
|
Bandyopadhyay RS, Faller DV. Establishment of order in the flow of genetic information in cells. Cell Biochem Biophys 1999; 30:35-70. [PMID: 10099822 DOI: 10.1007/bf02737884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The activities related to the flow of genetic information encoded in DNA in a cell are very orderly. This order, in a living cell, is achieved through specific, but noncovalent, interactions of varieties of structurally dynamic macromolecules under constantly changing physiological conditions. Hence, it is expected that there should be some force that can stabilize the multicomponent reaction processes and establish (or maintain) order in genetic regulatory functions under far-from-equilibrium conditions. The genetic regulatory functions in a cell, however, are believed to be energetically coupled. Expression of genes in a cell is often modulated under changing environmental conditions, raising the possibility of a state controlled nature of the genetic regulatory functions. Adenosine triphosphate (ATP) is the major free-energy contributor for these energy-consuming cellular activities. Enzymatic transfer of high-energy phosphate group from ATP to other reactive components is considered to be the chief mode of energy-transduction in a cell for various biosynthetic processes, as well as other activities related to the flow of information. In an effort to find a solution of the paradox, we assessed the contribution of physiological state of a cell in the process of maintaining order in genetic regulatory functions. As an approach, we systematically perturbed the normal energy flow of a cellular system (bovine aortic endothelial [BAE] cell) by a protein kinase inhibitor (staurosporine), and then followed the expression patterns of several constitutively-expressed protein-encoding genes to measure the effects. Staurosporine, as a function of its concentration, disintegrated the membrane structure of these cells, and eventually caused their death. These secondary consequences of staurosporine treatment offered two additional grossly altered physiological states of the cell to study. Under all of these dramatically altered energy states of the system, an extreme degree of functional coherence prevailed at every level of genetic regulatory function. Integrity at the level of gene transcription remained unaffected. Degradation rate of specific mRNA remained unaltered. Translational activities involving varieties of mRNA species continued in an well-ordered manner. Other state changes, resulting from nutrient and metabolic starvation, or inhibition of oxidative phosphorylation, in addition to the staurosporine treatments, also failed to disintegrate these ordered activities. The steady-state levels of specific mRNA underwent certain changes in these conditions, however, without maintaining any proportional relationships with the staurosporine concentrations applied or the ATP levels in the cell. These results thus led us to propose that the internal energy or a certain intrinsic property of the participating components, rather than the physiological state of the cell, acts as the dominant force in maintaining order and stability of genetic regulatory functions in a cell. Kinetic analyses under different energy states of the cell also supported the hypothesis, and further demonstrated the autoregulatory nature of the genetic order establishment. All of these results suggest a process of molecular self-organization as the fundamental principle for genetic regulation in a cellular system.
Collapse
Affiliation(s)
- R S Bandyopadhyay
- Cancer Research Center, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
41
|
Rincón-Guzmán A, Beltrán-Peña E, Ortíz-López A, Sánchez de Jiménez E. Ribonucleoprotein particles of quiescent maize embryonic axes. PLANT MOLECULAR BIOLOGY 1998; 38:357-364. [PMID: 9747844 DOI: 10.1023/a:1006020121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Certain RNA molecules are known to be sequestered and stored as ribonucleoprotein particles (RNPs) in many different tissues, particularly at some stages of metabolic quiescence. In this research RNPs from embryonic axes of mature maize seeds were isolated by sucrose and CsCl gradient centrifugation and characterized based on their RNA and protein contents. Two types of RNP particles of non-ribosomal nature were identified by northern blot analysis with specific probes: the 7S RNP and the signal recognition particle (SRP) particles which contain 5S rRNA and 7S RNA respectively. The proteins associated to these RNA molecules were the transcription factor TFIIIA-homologous protein associated to 7S RNP, and the p72, p68 and p54-GTPase proteins associated to SRP.
Collapse
Affiliation(s)
- A Rincón-Guzmán
- Departamento de Bioquímica, Conjunto E, Facultad de Química, Universidad Nacional Autónoma de México, México, DF
| | | | | | | |
Collapse
|
42
|
Eggert M, Michel J, Schneider S, Bornfleth H, Baniahmad A, Fackelmayer FO, Schmidt S, Renkawitz R. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J Biol Chem 1997; 272:28471-8. [PMID: 9353307 DOI: 10.1074/jbc.272.45.28471] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that is able to modulate gene activity by binding to its response element, interacting with other transcription factors, and contacting several accessory proteins such as coactivators. Here we show that GRIP120, one of the factors we have identified to interact with the glucocorticoid receptor, is identical to the heterogeneous nuclear ribonucleoprotein U (hnRNP U), a nuclear matrix protein binding to RNA as well as to scaffold attachment regions. GR.hnRNP U complexes were identified by blotting and coimmunoprecipitation. The subnuclear distribution of GR and hnRNP U was characterized by indirect immunofluorescent labeling and confocal laser microscopy demonstrating a colocalization of both proteins. Using a nuclear transport-deficient deletion of hnRNP U, nuclear translocation was seen to be dependent on GR and dexamethasone. Transient transfections were used to identify possible interaction domains. Overexpressed hnRNP U interfered with glucocorticoid induction, and the COOH-terminal domains of both proteins were sufficient in mediating the transcriptional interference. A possible functional role for this GR binding-protein in addition to its binding to the nuclear matrix, to RNA, and to scaffold attachment regions is discussed.
Collapse
Affiliation(s)
- M Eggert
- Genetisches Institut der Justus-Liebig-Universität, Heinrich-Buff-Ring 58-62, D-35392, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hanson RJ, Sun J, Willis DG, Marzluff WF. Efficient extraction and partial purification of the polyribosome-associated stem-loop binding protein bound to the 3' end of histone mRNA. Biochemistry 1996; 35:2146-56. [PMID: 8652556 DOI: 10.1021/bi9521856] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Replication-dependent histone mRNAs end in a highly conserved stem-loop sequence rather than a polyA sequence. A 45-kDa stem-loop binding protein (SLBP), which specifically binds the stem-loop of histone mRNA, is present in both polyribosomes and nuclei. An identical 45-kDa protein, as determined by partial protease digestion, is cross-linked to a 30 nt RNA containing the 3' stem-loop from both nuclei and polyribosomes. The SLBP can also be detected by a Northwestern blot procedure using the 30 nt RNA as a probe. As judged from the Northwestern assay, more than 90% of the SLBP in the cell is found in the polyribosomes with the remaining SLBP localized to the nucleus. Only 5-10% of the SLBP could be extracted from the polyribosomes with salt. Treatment of the polyribosomes with micrococcal nuclease prior to salt extraction solubilized 5-10 times more SLBP as an RNA-protein complex. The SLBP could be subsequently partially purified from this complex.
Collapse
Affiliation(s)
- R J Hanson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
44
|
Czyzyk-Krzeska MF, Beresh JE. Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3'-untranslated region of the tyrosine hydroxylase mRNA. J Biol Chem 1996; 271:3293-9. [PMID: 8621733 DOI: 10.1074/jbc.271.6.3293] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reduced tension of O2 slows the degradation rate of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, in the pheochromocytoma (PC12) clonal cell line. The observed increase in half-life (30 h versus 10 h) correlates with enhanced binding of a 66-kDa protein (hypoxia inducible protein) to the pyrimidine-rich tract located between bases 1552 1578 in the 3 -untranslated region of TH mRNA (hypoxia-inducible protein binding site (HIPBS)). The present study investigates the protein binding site within the 27-base HIPBS, first by using specific cleavages of HIPBS and its flanking sequences with antisense oligodeoxynucleotides and RNase H and then by using mutational analysis of the binding properties. We found that the 27-base HIPBS oligoribonucleotide was sufficient to bind the protein in vitro in a hypoxia-stimulated manner. We further identified the optimal hypoxia-inducible protein binding site that is represented by the motif (U/C)(C/U)CCCU, where the core binding site is indicated by the underlined cytidines. Substitutions of either one of the cytidines with purine or uridine abolished the protein binding. The mutations within HIPBS, which partially reduced binding, did not prevent stimulation of protein binding for extracts from hypoxic cells. The hypoxia-induced increase in complex formation was proportional to the strength of binding using proteins from normoxic cells. The HIPBS element is conserved in TH mRNAs derived from different species.
Collapse
Affiliation(s)
- M F Czyzyk-Krzeska
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0576, USA
| | | |
Collapse
|
45
|
Abstract
Interspersed RNA is an abundant class of cytoplasmic poly(A)+ RNA which contains repetitive elements within mostly heterogeneous single copy sequences. In spite of its quantitative importance in oocytes or eggs (two-thirds of the total poly(A)+ RNA), very little is known about its synthesis, its interaction with other molecules, and its functional significance. Here, we analysed a prevalent family of interspersed RNA (XR family) during Xenopus oogenesis. We found that XR interspersed RNA, unlike extracted interspersed RNA, did not form RNA duplexes in vivo. In small oocytes (stage III), XR RNA interacted with proteins forming rapidly sedimenting ribonucleoprotein particles (RNPs) with a median sedimentation constant of 80S. However, towards the end of oogenesis (stage VI), these XR RNPs changed into smaller particles with a median sedimentation constant of 40S. By analysing the proteins associated with XR RNA sequence, we have identified a 42 kilodalton protein in small oocytes, which was replaced by a 45 kilodalton protein at stage V of oogenesis.
Collapse
Affiliation(s)
- C Liu
- Department of Developmental and Cell Biology, University of California at Irvine, USA
| | | |
Collapse
|
46
|
Pruzan R, Flint SJ. Transcription of adenovirus RNA polymerase III genes. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):201-26. [PMID: 7555055 DOI: 10.1007/978-3-642-79496-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Pruzan
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
47
|
Pamnani V, Haas B, Pühler G, Sänger HL, Baumeister W. Proteasome-associated RNAs are non-specific. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:511-9. [PMID: 7525280 DOI: 10.1111/j.1432-1033.1994.00511.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA isolated from RNase-treated proteasome preparations from human erythrocytes, HeLa cells, the archaeon Thermoplasma acidophilum and also from recombinant proteasomes of T. acidophilum expressed in Escherichia coli was characterized. The RNA associated with structurally similar protein particles, namely with the two molecular chaperones, groEL from E. coli and with the thermosome from T. acidophilum, served as controls. Electrophoretic analysis on polyacrylamide gels of the radioactively end-labelled RNA revealed a very similar size distribution pattern, irrespectively of the protein particles from which they had been isolated. The predominant RNA species were in the size ranges 80 nucleotides and 120 nucleotides, respectively. Partial sequencing of their terminal regions by mobility-shift analysis revealed that, of the proteasomes from human erythrocytes, the approximately 80-nucleotide-long RNA consists of a heterogenous population of mostly tRNA species because they carried the tRNA-specific 3'-terminal sequence motif 5'-CCA-3'. The RNA in the size range 120 nucleotides isolated from the proteasomes of human erythrocytes and of T. acidophilum was also heterogeneous and displayed, in the terminal regions, a remarkable sequence similarity to the corresponding regions of the 5S rRNA from the same and different organisms. The total content of RNA of all the protein particles was quantified and found to be consistently sub-stoichiometric. All these findings strongly suggest that RNA associated with the proteasomes and with the molecular chaperones originate from the abundant cellular pool of the tRNAs and 5S rRNAs which bind non-specifically to these large protein particles.
Collapse
Affiliation(s)
- V Pamnani
- Max-Planck-Institut für Biochemie, Abteilung für Molekulare Strukturbiologie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
In eukaryotic cells, a multitude of RNA-binding proteins play key roles in the posttranscriptional regulation of gene expression. Characterization of these proteins has led to the identification of several RNA-binding motifs, and recent experiments have begun to illustrate how several of them bind RNA. The significance of these interactions is reflected in the recent discoveries that several human and other vertebrate genetic disorders are caused by aberrant expression of RNA-binding proteins. The major RNA-binding motifs are described and examples of how they may function are given.
Collapse
Affiliation(s)
- C G Burd
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
49
|
Althoff S, Selinger D, Wise JA. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res 1994; 22:1933-47. [PMID: 7518075 PMCID: PMC308104 DOI: 10.1093/nar/22.11.1933] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location analogous to the binding site of the guanine nucleotide dissociation stimulator (GDS) for E. coli EF-Tu. The conservation of this sequence, in combination with the results of earlier genetic and biochemical studies of the SRP cycle, leads us to hypothesize that a component of the Srp68/72p heterodimer serves as the GDS for both Srp54p and SR alpha. Using an iterative alignment procedure, we demonstrate similarity between Srp68p and sequence motifs conserved among GDS proteins for small Ras-related GTPases. The conservation of SRP cycle components in organisms from all three major branches of the phylogenetic tree suggests that this pathway for protein export is of ancient evolutionary origin.
Collapse
Affiliation(s)
- S Althoff
- University of Illinois, Department of Biochemistry, Urbana 61801
| | | | | |
Collapse
|
50
|
Siomi H, Choi M, Siomi MC, Nussbaum RL, Dreyfuss G. Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell 1994; 77:33-9. [PMID: 8156595 DOI: 10.1016/0092-8674(94)90232-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The KH domain is an evolutionarily conserved sequence motif present in many RNA-binding proteins, including the pre-mRNA-binding (hnRNP) K protein and the fragile X mental retardation gene product (FMR1). We assessed the role of KH domains in RNA binding by mutagenesis of KH domains in hnRNP K and FMR1. Conserved residues of all three hnRNP K KH domains are required for its wild-type RNA binding. Interestingly, while fragile X syndrome is usually caused by lack of FMR1 expression, a previously reported mutation in a highly conserved residue of one of its two KH domains (Ile-304-->Asn) also results in mental retardation. We found that the binding of this mutant protein to RNA is severely impaired. These results demonstrate an essential role for KH domains in RNA binding. Furthermore, they strengthen the connection between fragile X syndrome and loss of the RNA binding activity of FMR1.
Collapse
Affiliation(s)
- H Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | | | | | | | |
Collapse
|