1
|
Barrie KR, Rebowski G, Dominguez R. Mechanism of actin filament severing and capping by gelsolin. Nat Struct Mol Biol 2025; 32:237-242. [PMID: 39448849 PMCID: PMC11832341 DOI: 10.1038/s41594-024-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Gelsolin is the prototypical member of a family of Ca2+-activated F-actin severing and capping proteins. Here we report structures of Ca2+-bound human gelsolin at the barbed end of F-actin. One structure reveals gelsolin's six domains (G1G6) and interdomain linkers wrapping around F-actin, while another shows domains G1G3-a fragment observed during apoptosis-binding on both sides of F-actin. Conformational changes that trigger severing occur on one side of F-actin with G1G6 and on both sides with G1G3. Gelsolin remains bound after severing, blocking subunit exchange.
Collapse
Affiliation(s)
- Kyle R Barrie
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Barrie KR, Rebowski G, Dominguez R. Mechanism of Actin Filament Severing and Capping by Gelsolin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612341. [PMID: 39345426 PMCID: PMC11430012 DOI: 10.1101/2024.09.10.612341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gelsolin is the prototypical member of a family of Ca 2+ -dependent F-actin severing and capping proteins. A structure of Ca 2+ -bound full-length gelsolin at the barbed end shows domains G1G6 and the inter-domain linkers wrapping around F-actin. Another structure shows domains G1G3, a fragment produced during apoptosis, on both sides of F-actin. Conformational changes that trigger severing occur on one side of F-actin with G1G6 and on both sides with G1G3. Gelsolin remains bound after severing, blocking subunit exchange.
Collapse
|
3
|
Cui Y, Megawati D, Lin J, Rehard DG, Grant DG, Liu P, Jurkevich A, Reid WR, Mooney BP, Franz AW. Cytoskeleton-associated gelsolin responds to the midgut distention process in saline meal-fed Aedes aegypti and affects arbovirus dissemination from the midgut. FASEB J 2024; 38:e23764. [PMID: 39042395 PMCID: PMC11268798 DOI: 10.1096/fj.202302684rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Dewi Megawati
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Microbiology and Parasitology, School of Medicine, Warmadewa University, Bali, Indonesia
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - David G. Rehard
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - DeAna G. Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - William R. Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Brian P. Mooney
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri, USA
| | - Alexander W.E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
De Silva E, Paul M, Kim H. Apoptosis in platelets is independent of the actin cytoskeleton. PLoS One 2022; 17:e0276584. [PMID: 36378629 PMCID: PMC9665360 DOI: 10.1371/journal.pone.0276584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Homeostasis between platelet production and clearance is essential for human health. A critical facet of the balance that facilitates platelet clearance from the circulation is apoptosis (programmed cell death). The precise cellular mechanisms that underpin platelet apoptosis are not defined. In nucleated cells, reorganization of the actin cytoskeleton is known to regulate platelet apoptosis. However, the role of the actin cytoskeleton in regulating apoptosis in platelets has not been extensively studied as they are anucleate and exhibit a distinctive physiology. Here, apoptosis was induced in washed human platelets using ABT-737, a BH3-mimetic drug. Mitochondrial depolarization was measured using the ratiometric dye JC-1; surface phosphatidylserine (PS) exposure was measured by annexin V binding; caspase-3 activation was measured by Western blotting. All three apoptotic markers were unaffected by the presence of either the actin depolymerizing drug cytochalasin D or the actin polymerizing drug jasplakinolide. Moreover, platelets were isolated from wild-type (WT) mice and mice deficient in gelsolin (Gsn), an actin-binding protein that is essential for normal cytoskeletal remodeling. In response to ABT-737, gelsolin-null (Gsn-/-) platelets initially showed accelerated PS exposure relative to WT platelets, however, both WT and Gsn-/- platelets exhibited similar levels of mitochondrial depolarization and caspase-3 activation in response to ABT-737. We conclude that ABT-737 induces established markers of platelet apoptosis in an actin-independent manner.
Collapse
Affiliation(s)
- Enoli De Silva
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
5
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Nakajima K, Arora PD, Plaha A, McCulloch CA. Role of the small GTPase activating protein IQGAP1 in collagen phagocytosis. J Cell Physiol 2020; 236:1270-1280. [PMID: 32643295 DOI: 10.1002/jcp.29933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023]
Abstract
Many adult connective tissues undergo continuous remodeling to maintain matrix homeostasis. Physiological remodeling involves the degradation of collagen fibers by the intracellular cathepsin-dependent phagocytic pathway. We considered that a multidomain, small GTPase activating protein, IQGAP1, which is involved in the generation of cell extensions, is required for collagen phagocytosis, possibly arising from its interactions with cdc42 and the actin-binding protein Flightless I (FliI). We examined the role of IQGAP1 in collagen phagocytosis by human gingival fibroblasts (HGFs) and by IQGAP1+/+ and IQGAP1-/- mouse embryonic fibroblasts. IQGAP1 was strongly expressed by HGFs, localized to vinculin-stained cell adhesions and sites where cell extensions are initiated, and colocalized with FliI. Immunoprecipitation showed that IQGAP1 associated with FliI. HGFs showed 10-fold increases of collagen binding, 6-fold higher internalization, and 3-fold higher β1 integrin activation between 30 and 180 min after incubation with collagen. Compared with IQGAP1+/+ fibroblasts, deletion of IQGAP1 reduced collagen binding (1.4-fold), collagen internalization (3-fold), β1 integrin activation (2-fold), and collagen degradation (1.8-fold). We conclude that IQGAP1 affects collagen remodeling through its regulation of phagocytic degradation pathways, which may involve the interaction of IQGAP1 with FliI.
Collapse
Affiliation(s)
- Kei Nakajima
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamela D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Ajay Plaha
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Novel inter-domain Ca2+-binding site in the gelsolin superfamily protein fragmin. J Muscle Res Cell Motil 2019; 41:153-162. [DOI: 10.1007/s10974-019-09571-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/14/2019] [Indexed: 12/30/2022]
|
8
|
Dinsdale RJ, Hazeldine J, Al Tarrah K, Hampson P, Devi A, Ermogenous C, Bamford AL, Bishop J, Watts S, Kirkman E, Dalle Lucca JJ, Midwinter M, Woolley T, Foster M, Lord JM, Moiemen N, Harrison P. Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury. Br J Surg 2019; 107:391-401. [PMID: 31502663 PMCID: PMC7079039 DOI: 10.1002/bjs.11310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/21/2019] [Accepted: 06/08/2019] [Indexed: 01/25/2023]
Abstract
Background Circulating cell‐free DNA (cfDNA) is not found in healthy subjects, but is readily detected after thermal injury and may contribute to the risk of multiple organ failure. The hypothesis was that a postburn reduction in DNase protein/enzyme activity could contribute to the increase in cfDNA following thermal injury. Methods Patients with severe burns covering at least 15 per cent of total body surface area were recruited to a prospective cohort study within 24 h of injury. Blood samples were collected from the day of injury for 12 months. Results Analysis of blood samples from 64 patients revealed a significant reduction in DNase activity on days 1–28 after injury, compared with healthy controls. DNase protein levels were not affected, suggesting the presence of an enzyme inhibitor. Further analysis revealed that actin (an inhibitor of DNase) was present in serum samples from patients but not those from controls, and concentrations of the actin scavenging proteins gelsolin and vitamin D‐binding protein were significantly reduced after burn injury. In a pilot study of ten military patients with polytrauma, administration of blood products resulted in an increase in DNase activity and gelsolin levels. Conclusion The results of this study suggest a novel biological mechanism for the accumulation of cfDNA following thermal injury by which high levels of actin released by damaged tissue cause a reduction in DNase activity. Restoration of the actin scavenging system could therefore restore DNase activity, and reduce the risk of cfDNA‐induced host tissue damage and thrombosis.
Collapse
Affiliation(s)
- R J Dinsdale
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - K Al Tarrah
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - P Hampson
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A Devi
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C Ermogenous
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A L Bamford
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - J Bishop
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - S Watts
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - E Kirkman
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - J J Dalle Lucca
- Translational Medical Division, Department of Chemical and Biological Technologies, Defense Threat Reduction Agency, Fort Belvoir, Virginia, USA
| | - M Midwinter
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - T Woolley
- ICT Centre, Birmingham Research Park, Birmingham, UK.,Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - M Foster
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J M Lord
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - N Moiemen
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - P Harrison
- Scar Free Foundation, Birmingham Centre for Burns Research, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, Elortza F, García Arnáez I, Gurruchaga M, Goñi I, Suay J. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. BIOFOULING 2017; 33:98-111. [PMID: 28005415 DOI: 10.1080/08927014.2016.1259414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Titanium dental implants are commonly used due to their biocompatibility and biochemical properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this study, physico-chemical characterisation revealed important differences in roughness, chemical composition and hydrophilicity, but no differences were found in cellular in vitro studies (proliferation and mineralization). However, the deposition of proteins onto the implant surface might affect in vivo osseointegration. To test that hypothesis, protein layers formed on discs of both surface type after incubation with human serum were analysed. Using mass spectrometry (LC/MS/MS), 218 proteins were identified, 30 of which were associated with bone metabolism. Interestingly, Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-etched Ti, whereas the proteins of the complement system (C3) were found predominantly on smooth Ti surfaces. These results suggest that physico-chemical characteristics could be responsible for the differences observed in the adsorbed protein layer.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - N C Gomes
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Joaquin Ródenas
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - Ana Sánchez
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Mikel Azkargorta
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Ibon Iloro
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Felix Elortza
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Iñaki García Arnáez
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Mariló Gurruchaga
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Isabel Goñi
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Julio Suay
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| |
Collapse
|
10
|
Qian D, Nan Q, Yang Y, Li H, Zhou Y, Zhu J, Bai Q, Zhang P, An L, Xiang Y. Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily. PLoS One 2015; 10:e0143174. [PMID: 26587673 PMCID: PMC4654503 DOI: 10.1371/journal.pone.0143174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2015] [Indexed: 02/08/2023] Open
Abstract
The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yueming Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qifeng Bai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Arora PD, Wang Y, Bresnick A, Janmey PA, McCulloch CA. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol Biol Cell 2015; 26:2279-97. [PMID: 25877872 PMCID: PMC4462945 DOI: 10.1091/mbc.e14-11-1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
The role of the actin-capping protein flightless I in collagen remodeling by mouse fibroblasts is examined. Flightless and nonmuscle myosin IIA cooperate to enable collagen phagocytosis. We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
12
|
Vilahur G, Cubedo J, Padró T, Casaní L, Juan-Babot O, Crespo J, Bendjama K, Lawton M, Badimon L. Roflumilast-induced Local Vascular Injury Is Associated with a Coordinated Proteome and Microparticle Change in the Systemic Circulation in Pigs. Toxicol Pathol 2014; 43:569-80. [PMID: 25311372 DOI: 10.1177/0192623314551971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced vascular injury (DIVI) is commonly associated with phosphodiesterase (PDE) inhibitors. Despite histological characterization, qualified biomarkers for DIVI detection are lacking. We investigated whether a single administration of roflumilast (PDE-IV inhibitor) induces vascular damage and identified novel surrogate biomarkers of acute vascular injury. Pigs received postoperative 250, 375, or 500 μg of roflumilast or placebo/control. After 1.5 hr, coronary reactivity was determined by catheter-based administration of acetylcholine and sodium nitroprusside (SNP) in the coronary sinus. Immunohistochemical analysis of vessel integrity (von Willebrand factor [vWF]) and fibrin(ogen) deposition was performed in the coronary artery and aorta. Peripheral blood was collected for differential proteomics and microparticles analysis. Circulating interleukin (IL)-6 was analyzed. Roflumilast-treated animals displayed higher vasodilation to acetylcholine and SNP versus controls (p < .05). Roflumilast-treated animals showed a dose-dependent (p < .05) decrease in vessel integrity and dose-dependent increase in fibrin deposition forming a continuous layer at roflumilast-500 μg. Peripheral blood of roflumilast-500-μg-treated animals showed increased levels of total and endothelial-derived microparticles and exhibited a coordinated change in proteins kininogen-1, endothelin-1, gelsolin, apolipoprotein A-I, and apolipoprotein-J associated with vascular injury (p < .05 vs. controls). IL-6 remained unaltered. Roflumilast-induced vascular injury can be detected by novel markers in peripheral blood. Validation of these surrogate markers in human samples seems required.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casaní
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | - Michael Lawton
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
13
|
Peddada N, Sagar A, Rathore YS, Choudhary V, Pattnaik UBK, Khatri N, Garg R, Ashish. Global shapes of F-actin depolymerization-competent minimal gelsolins: insight into the role of g2-g3 linker in pH/Ca2+ insensitivity of the first half. J Biol Chem 2013; 288:28266-82. [PMID: 23940055 DOI: 10.1074/jbc.m113.463224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Because of its ability to rapidly depolymerize F-actin, plasma gelsolin has emerged as a therapeutic molecule in different disease conditions. High amounts of exogenous gelsolin are, however, required to treat animal models of different diseases. Knowing that the F-actin depolymerizing property of gelsolin resides in its N terminus, we made several truncated versions of plasma gelsolin. The smaller versions, particularly the one composed of the first 28-161 residues, depolymerized the F-actin much faster than the native gelsolin and other truncates at the same molar ratios. Although G1-G3 loses its dependence on Ca(2+) or low pH for the actin depolymerization function, interestingly, G1-G2 and its smaller versions were found to regain this requirement. Small angle x-ray scattering-based shape reconstructions revealed that G1-G3 adopts an open shape in both the presence and the absence of Ca(2+) as well as low pH, whereas G1-G2 and residues 28-161 prefer collapsed states in Ca(2+)-free conditions at pH 8. The mutations in the g2-g3 linker resulted in the calcium sensitivity of the mutant G1-G3 for F-actin depolymerization activity, although the F-actin-binding sites remained exposed in the mutant G1-G3 as well as in the smaller truncates even in the Ca(2+)-free conditions at pH 8. Furthermore, unlike wild type G1-G3, calcium-sensitive mutants of G1-G3 acquired closed shapes in the absence of free calcium, implying a role of g2-g3 linker in determining the open F-actin depolymerizing-competent shape of G1-G3 in this condition. We demonstrate that the mobility of the G1 domain, essential for F-actin depolymerization, is indirectly regulated by the gelsolin-like sequence of g2-g3 linker.
Collapse
Affiliation(s)
- Nagesh Peddada
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Isoforms of gelsolin from lobster striated muscles differ in Calcium-dependence. Arch Biochem Biophys 2013; 536:38-45. [DOI: 10.1016/j.abb.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022]
|
15
|
Pan JW, He LN, Xiao F, Shen J, Zhan RY. Plasma gelsolin levels and outcomes after aneurysmal subarachnoid hemorrhage. Crit Care 2013; 17:R149. [PMID: 23880145 PMCID: PMC4057205 DOI: 10.1186/cc12828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022] Open
Abstract
Introduction Lower gelsolin levels have been associated with the severity and poor outcome of critical illness. Nevertheless, their link with clinical outcomes of aneurysmal subarachnoid hemorrhage is unknown. Therefore, we aimed to investigate the relationship between plasma gelsolin levels and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage. Methods A total of 262 consecutive patients and 150 healthy subjects were included. Plasma gelsolin levels were measured by enzyme-linked immunosorbent assay. Mortality and poor long-term outcome (Glasgow Outcome Scale score of 1-3) at 6 months were recorded. Results Plasma gelsolin levels on admission were substantially lower in patients than in healthy controls (66.9 (26.4) mg/L vs. 126.4 (35.4) mg/L, P < 0.001), and negatively associated with World Federation of Neurological Surgeons score (r = -0.554, P < 0.001) and Fisher score (r = -0.538, P < 0.001), and identified as an independent predictor of poor functional outcome (odds ratio, 0.957; 95% confidence interval (CI), 0.933-0.983; P = 0.001) and death (odds ratio, 0.953; 95% CI, 0.917-0.990; P = 0.003) after 6 months. The areas under the ROC curve of gelsolin for functional outcome and mortality were similar to those of World Federation of Neurological Surgeons score and Fisher score (all P > 0.05). Gelsolin improved the predictive values of World Federation of Neurological Surgeons score and Fisher score for functional outcome (both P < 0.05), but not for mortality (both P > 0.05). Conclusions Gelsolin levels are a useful, complementary tool to predict functional outcome and mortality 6 months after aneurysmal subarachnoid hemorrhage.
Collapse
|
16
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
17
|
Liu Z, Ono S. Regulatory role of the second gelsolin-like domain of Caenorhabditis elegans gelsolin-like protein 1 (GSNL-1) in its calcium-dependent conformation and actin-regulatory activities. Cytoskeleton (Hoboken) 2013; 70:228-39. [PMID: 23475707 DOI: 10.1002/cm.21103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is an unconventional member of the gelsolin family of actin-regulatory proteins. Unlike typical gelsolin-related proteins with three or six G domains, GSNL-1 has four gelsolin-like (G) domains (G1-G4) and exhibits calcium-dependent actin filament severing and capping activities. The first G domain (G1) of GSNL-1 is necessary for its actin-regulatory activities. However, how other domains in GSNL-1 participate in regulation of its functions is not understood. Here, we report biochemical evidence that the second G domain (G2) of GSNL-1 has a regulatory role in its calcium-dependent conformation and actin-regulatory activities. Comparison of the sequences of gelsolin-related proteins from various species indicates that sequences of G2 are highly conserved. Among the conserved residues in G2, we focused on D162 of GSNL-1, since equivalent residues in gelsolin and severin are part of the calcium-binding sites and is a pathogenic mutation site in human gelsolin causing familial amyloidosis, Finish-type. The D162N mutation does not alter the inactive and fully calcium-activated states of GSNL-1 for actin filament severing (at 20 nM GSNL-1) and capping activities (at 50 nM GSNL-1). However, under these conditions, the mutant shows reduced calcium sensitivity for activation. By contrast, the D162N mutation strongly enhances susceptibility of GSNL-1 to chymotrypsin digestion only at high calcium concentrations but not at low calcium concentrations. The mutation also reduces affinity of GSNL-1 with actin monomers. These results suggest that G2 of GSNL-1 functions as a regulatory domain for its calcium-dependent actin-regulatory activities by mediating conformational changes of the GSNL-1 molecule.
Collapse
Affiliation(s)
- Zhongmei Liu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
18
|
Cowin AJ, Lei N, Franken L, Ruzehaji N, Offenhäuser C, Kopecki Z, Murray RZ. Lysosomal secretion of Flightless I upon injury has the potential to alter inflammation. Commun Integr Biol 2013; 5:546-9. [PMID: 23336022 PMCID: PMC3541319 DOI: 10.4161/cib.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Collapse
Affiliation(s)
- Allison J Cowin
- Women's and Children's Health Research Institute; North Adelaide; SA Australia ; Discipline of Paediatrics; The University of Adelaide; Adelaide, SA Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Jin Y, Li BY, Qiu LL, Ling YR, Bai ZQ. Decreased plasma gelsolin is associated with 1-year outcome in patients with traumatic brain injury. J Crit Care 2012; 27:527.e1-6. [PMID: 22386223 DOI: 10.1016/j.jcrc.2012.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 12/12/2011] [Accepted: 01/04/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE Decreased plasma gelsolin level has been associated with 1-month mortality after traumatic brain injury (TBI). Thus, we investigated the ability of gelsolin to predict 1-year mortality and functional outcome in these patients. METHODS One hundred fourteen healthy controls and 114 patients with acute severe TBI were included in this study. Plasma gelsolin concentration on admission was measured by ELISA. RESULTS Fifty-five patients (48.2%) had unfavorable outcome (Glasgow Outcome Scale score of 1-3) and 38 patients (33.3%) died in 1 year after TBI. Upon admission, plasma gelsolin level in patients was substantially lower than that in healthy controls. A multivariate analysis selected plasma gelsolin level as an independent predictor for 1-year unfavorable outcome and mortality of patients. A receiver operating characteristic curve analysis showed plasma gelsolin level predicted 1-year unfavorable outcome and mortality statistically significantly. The predictive value of the gelsolin concentration was thus similar to that of Glasgow Coma Scale (GCS) score. In a combined logistic-regression model, gelsolin did not statistically significantly improve the area under curve of GCS score. CONCLUSIONS Plasma gelsolin level is a useful, complementary tool to predict functional outcome and mortality 1 year after TBI.
Collapse
Affiliation(s)
- Yong Jin
- Department of Neurosurgery, Affiliated Taizhou Municipal Hospital, Taizhou University, Jiaojiang District, Taizhou 318000, China.
| | | | | | | | | |
Collapse
|
20
|
Liu Z, Kanzawa N, Ono S. Calcium-sensitive activity and conformation of Caenorhabditis elegans gelsolin-like protein 1 are altered by mutations in the first gelsolin-like domain. J Biol Chem 2011; 286:34051-9. [PMID: 21840993 DOI: 10.1074/jbc.m111.237404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gelsolin family of actin regulatory proteins is activated by Ca(2+) to sever and cap actin filaments. Gelsolin has six homologous gelsolin-like domains (G1-G6), and Ca(2+)-dependent conformational changes regulate its accessibility to actin. Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) has only four gelsolin-like domains (G1-G4) and still exhibits Ca(2+)-dependent actin filament-severing and -capping activities. We found that acidic residues (Asp-83 and Asp-84) in G1 of GSNL-1 are important for its Ca(2+) activation. These residues are conserved in GSNL-1 and gelsolin and previously implicated in actin-severing activity of the gelsolin family. We found that alanine mutations at Asp-83 and Asp-84 (D83A/D84A mutation) did not disrupt actin-severing or -capping activity. Instead, the mutants exhibited altered Ca(2+) sensitivity when compared with wild-type GSNL-1. The D83A/D84A mutation enhanced Ca(2+) sensitivity for actin severing and capping and its susceptibility to proteolytic digestion, suggesting a conformational change. Single mutations caused minimal changes in its activity, whereas Asp-83 and Asp-84 were required to stabilize Ca(2+)-free and Ca(2+)-bound conformations, respectively. On the other hand, the D83A/D84A mutation suppressed sensitivity of GSNL-1 to phosphatidylinositol 4,5-bisphosphate inhibition. The structure of an inactive form of gelsolin shows that the equivalent acidic residues are in close contact with G3, which may maintain an inactive conformation of the gelsolin family.
Collapse
Affiliation(s)
- Zhongmei Liu
- Department of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
21
|
Arora PD, Wang Y, Janmey PA, Bresnick A, Yin HL, McCulloch CA. Gelsolin and non-muscle myosin IIA interact to mediate calcium-regulated collagen phagocytosis. J Biol Chem 2011; 286:34184-98. [PMID: 21828045 DOI: 10.1074/jbc.m111.247783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Bacabac RG, Van Loon JJWA. Stress Response by Bone Cells and Implications on Microgravity Environment. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Kasza K, Broedersz C, Koenderink G, Lin Y, Messner W, Millman E, Nakamura F, Stossel T, MacKintosh F, Weitz D. Actin filament length tunes elasticity of flexibly cross-linked actin networks. Biophys J 2010; 99:1091-100. [PMID: 20712992 PMCID: PMC2920742 DOI: 10.1016/j.bpj.2010.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/16/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Networks of the cytoskeletal biopolymer actin cross-linked by the compliant protein filamin form soft gels that stiffen dramatically under shear stress. We demonstrate that the elasticity of these networks shows a strong dependence on the mean length of the actin polymers, unlike networks with small, rigid cross-links. This behavior is in agreement with a model of rigid filaments connected by multiple flexible linkers.
Collapse
Affiliation(s)
- K.E. Kasza
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - C.P. Broedersz
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - G.H. Koenderink
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Foundation for Fundamental Research on Matter Institute, AMOLF, Amsterdam, The Netherlands
| | - Y.C. Lin
- Department of Physics, Harvard University, Cambridge, Massachusetts
| | - W. Messner
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - E.A. Millman
- Department of Physics, Harvard University, Cambridge, Massachusetts
| | - F. Nakamura
- Translational Medicine Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - T.P. Stossel
- Translational Medicine Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - F.C. MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - D.A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Department of Physics, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
24
|
Liu Z, Klaavuniemi T, Ono S. Distinct roles of four gelsolin-like domains of Caenorhabditis elegans gelsolin-like protein-1 in actin filament severing, barbed end capping, and phosphoinositide binding. Biochemistry 2010; 49:4349-60. [PMID: 20392036 PMCID: PMC2898540 DOI: 10.1021/bi100215b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is a new member of the gelsolin family of actin regulatory proteins [Klaavuniemi, T., Yamashiro, S., and Ono, S. (2008) J. Biol. Chem. 283, 26071-26080]. It is an unconventional gelsolin-related protein with four gelsolin-like (G) domains (G1-G4), unlike typical gelsolin-related proteins with three or six G domains. GSNL-1 severs actin filaments and caps the barbed end in a calcium-dependent manner similar to that of gelsolin. In contrast, GSNL-1 has properties different from those of gelsolin in that it remains bound to F-actin and does not nucleate actin polymerization. To understand the mechanism by which GSNL-1 regulates actin dynamics, we investigated the domain-function relationship of GSNL-1 by analyzing activities of truncated forms of GSNL-1. G1 and the linker between G1 and G2 were sufficient for actin filament severing, whereas G1 and G2 were required for barbed end capping. The actin severing activity of GSNL-1 was inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and a PIP2-sensitive domain was mapped to G1 and G2. At least two actin-binding sites were detected: a calcium-dependent G-actin-binding site in G1 and a calcium-independent G- and F-actin-binding site in G3 and G4. These results reveal both conserved and different utilization of G domains between C. elegans GSNL-1 and mammalian gelsolin for actin regulatory functions.
Collapse
Affiliation(s)
- Zhongmei Liu
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta Georgia 30322
| | | | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta Georgia 30322
| |
Collapse
|
25
|
Van den Abbeele A, De Clercq S, De Ganck A, De Corte V, Van Loo B, Soror SH, Srinivasan V, Steyaert J, Vandekerckhove J, Gettemans J. A llama-derived gelsolin single-domain antibody blocks gelsolin-G-actin interaction. Cell Mol Life Sci 2010; 67:1519-35. [PMID: 20140750 PMCID: PMC11115616 DOI: 10.1007/s00018-010-0266-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 12/24/2022]
Abstract
RNA interference has tremendously advanced our understanding of gene function but recent reports have exposed undesirable side-effects. Recombinant Camelid single-domain antibodies (VHHs) provide an attractive means for studying protein function without affecting gene expression. We raised VHHs against gelsolin (GsnVHHs), a multifunctional actin-binding protein that controls cellular actin organization and migration. GsnVHH-induced delocalization of gelsolin to mitochondria or the nucleus in mammalian cells reveals distinct subpopulations including free gelsolin and actin-bound gelsolin complexes. GsnVHH 13 specifically recognizes Ca(2+)-activated gelsolin (K (d) approximately 10 nM) while GsnVHH 11 binds gelsolin irrespective of Ca(2+) (K (d) approximately 5 nM) but completely blocks its interaction with G-actin. Both GsnVHHs trace gelsolin in membrane ruffles of EGF-stimulated MCF-7 cells and delay cell migration without affecting F-actin severing/capping or actin nucleation activities by gelsolin. We conclude that VHHs represent a potent way of blocking structural proteins and that actin nucleation by gelsolin is more complex than previously anticipated.
Collapse
Affiliation(s)
- Anske Van den Abbeele
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sarah De Clercq
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Ariane De Ganck
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Veerle De Corte
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Berlinda Van Loo
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sameh Hamdy Soror
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Vasundara Srinivasan
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joël Vandekerckhove
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Jan Gettemans
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
26
|
|
27
|
Lee H, Ferrer JM, Nakamura F, Lang MJ, Kamm RD. Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater 2010; 6:1207-18. [PMID: 19883801 DOI: 10.1016/j.actbio.2009.10.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/16/2009] [Accepted: 10/27/2009] [Indexed: 11/17/2022]
Abstract
Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure.
Collapse
Affiliation(s)
- Hyungsuk Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
28
|
Kondrikov D, Fonseca FV, Elms S, Fulton D, Black SM, Block ER, Su Y. Beta-actin association with endothelial nitric-oxide synthase modulates nitric oxide and superoxide generation from the enzyme. J Biol Chem 2010; 285:4319-27. [PMID: 19946124 PMCID: PMC2836036 DOI: 10.1074/jbc.m109.063172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions represent an important post-translational mechanism for endothelial nitric-oxide synthase (eNOS) regulation. We have previously reported that beta-actin is associated with eNOS oxygenase domain and that association of eNOS with beta-actin increases eNOS activity and nitric oxide (NO) production. In the present study, we found that beta-actin-induced increase in NO production was accompanied by decrease in superoxide formation. A synthetic actin-binding sequence (ABS) peptide 326 with amino acid sequence corresponding to residues 326-333 of human eNOS, one of the putative ABSs, specifically bound to beta-actin and prevented eNOS association with beta-actin in vitro. Peptide 326 also prevented beta-actin-induced decrease in superoxide formation and increase in NO and L-citrulline production. A modified peptide 326 replacing hydrophobic amino acids leucine and tryptophan with neutral alanine was unable to interfere with eNOS-beta-actin binding and to prevent beta-actin-induced changes in NO and superoxide formation. Site-directed mutagenesis of the actin-binding domain of eNOS replacing leucine and tryptophan with alanine yielded an eNOS mutant that exhibited reduced eNOS-beta-actin association, decreased NO production, and increased superoxide formation in COS-7 cells. Disruption of eNOS-beta-actin interaction in endothelial cells using ABS peptide 326 resulted in decreased NO production, increased superoxide formation, and decreased endothelial monolayer wound repair, which was prevented by PEG-SOD and NO donor NOC-18. Taken together, this novel finding indicates that beta-actin binding to eNOS through residues 326-333 in the eNOS protein results in shifting the enzymatic activity from superoxide formation toward NO production. Modulation of NO and superoxide formation from eNOS by beta-actin plays an important role in endothelial function.
Collapse
Affiliation(s)
| | | | | | - David Fulton
- From the Department of Pharmacology and Toxicology
- Vascular Biology Center, and
| | | | - Edward R. Block
- the Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Yunchao Su
- From the Department of Pharmacology and Toxicology
- Department of Medicine
- Vascular Biology Center, and
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia 30912 and
| |
Collapse
|
29
|
Phenylephrine induces elevated RhoA activation and smooth muscle alpha-actin expression in Pkd2+/- vascular smooth muscle cells. Hypertens Res 2009; 33:37-42. [PMID: 19893564 DOI: 10.1038/hr.2009.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanisms underlying vascular complications in autosomal-dominant polycystic kidney disease (ADPKD) have not been fully elucidated. However, molecular components altered in Pkd mutant vascular smooth muscle cells (VSMCs) are gradually being identified. Pkd2(+/-) arterial smooth muscles show elevated levels of (1) phenylephrine (PE)-induced, Ca(2+)-independent vasocontraction and (2) smooth muscle alpha-actin (SMA) expression. As these two processes are heavily influenced by RhoA signaling and by cellular filamentous-to-globular (F/G)-actin dynamics, we examined PE-induced changes in RhoA activation and the F/G-SMA ratio in wild-type (wt) and Pkd2(+/-) VSMCs; we further tested the hypothesis that the abnormal response to PE and the resultant elevation in the F/G-SMA ratio contribute to the exuberant SMA expression in Pkd2(+/-) VSMCs. GTP-RhoA and F/G-SMA in mouse aortic media and primary cultured VSMCs were determined using RhoA activation and in vivo F-to-G-actin assays. Myocardin-related transcription factor-A (MRTF-A) (SMA transcription coactivator) was localized by immunofluorescence, nuclear MRTF-A quantified by western analysis using nuclear extracts and SMA expression by luciferase reporter assay. PE induced a >3-fold higher RhoA activation in Pkd2(+/-) than in wt VSMCs and higher levels of downstream p-LIMK and p-cofilin. Moreover, Pkd2(+/-) VSMCs showed a higher baseline and PE-induced F/G-SMA ratio. The F/G-SMA elevation enhanced nuclear translocation of MRTF-A, which upregulated SMA transcription. In summary, PE-induced RhoA hyperactivation and defects in F-to-G SMA balance likely have a role in the abnormal vasocontraction and SMA expression in Pkd2(+/-) arteries. These defects could potentially contribute to the genesis of vascular complications in ADPKD, thus providing new areas for further research and therapeutic targeting.
Collapse
|
30
|
Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA. An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci U S A 2009; 106:15192-7. [PMID: 19667200 PMCID: PMC2741227 DOI: 10.1073/pnas.0903974106] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Indexed: 12/31/2022] Open
Abstract
We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.
Collapse
Affiliation(s)
- Gijsje H. Koenderink
- Department of Physics and Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- FOM Institute for Atomic and Molecular Physics, Amsterdam 1098 SJ, The Netherlands
| | - Zvonimir Dogic
- Rowland Institute, Harvard University, Cambridge, MA 02142
- Physics Department, Brandeis University, Waltham, MA 02454
| | - Fumihiko Nakamura
- Translational Medicine Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | | | | | - John H. Hartwig
- Translational Medicine Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Thomas P. Stossel
- Translational Medicine Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - David A. Weitz
- Department of Physics and Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
31
|
Kasza KE, Koenderink GH, Lin YC, Broedersz CP, Messner W, Nakamura F, Stossel TP, MacKintosh FC, Weitz DA. Nonlinear elasticity of stiff biopolymers connected by flexible linkers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041928. [PMID: 19518277 DOI: 10.1103/physreve.79.041928] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/13/2009] [Indexed: 05/27/2023]
Abstract
Networks of the biopolymer actin, cross-linked by the compliant protein filamin, form soft gels. They can, however, withstand large shear stresses due to their pronounced nonlinear elastic behavior. The nonlinear elasticity can be controlled by varying the number of cross-links per actin filament. We propose and test a model of rigid filaments decorated by multiple flexible linkers that is in quantitative agreement with experiment. This allows us to estimate loads on individual cross-links, which we find to be less than 10 pN.
Collapse
Affiliation(s)
- K E Kasza
- Department of Physics and SEAS, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Decreased levels of the gelsolin plasma isoform in patients with rheumatoid arthritis. Arthritis Res Ther 2008; 10:R117. [PMID: 18822171 PMCID: PMC2592804 DOI: 10.1186/ar2520] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/01/2008] [Accepted: 09/27/2008] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of 200 +/- 50 mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis. METHODS Circulating and intra-articular levels of plasma gelsolin were measured in 78 patients with rheumatoid arthritis using a functional (pyrene-actin nucleation) assay and compared with 62 age- and gender-matched healthy controls. RESULTS Circulating plasma gelsolin levels were significantly lower in patients with rheumatoid arthritis compared with healthy controls (141 +/- 32 versus 196 +/- 40 mg/L, P = 0.0002). The patients' intra-articular plasma gelsolin levels were significantly lower than in the paired plasma samples (94 +/- 24 versus 141 +/- 32 mg/L, P = 0.0001). Actin was detected in the synovial fluids of all but four of the patients, and immunoprecipitation experiments identified gelsolin-actin complexes. CONCLUSIONS The plasma isoform of gelsolin is decreased in the plasma of patients with rheumatoid arthritis compared with healthy controls. The reduced plasma concentrations in combination with the presence of actin and gelsolin-actin complexes in synovial fluids suggest a local consumption of this potentially anti-inflammatory protein in the inflamed joint.
Collapse
|
34
|
Klaavuniemi T, Yamashiro S, Ono S. Caenorhabditis elegans gelsolin-like protein 1 is a novel actin filament-severing protein with four gelsolin-like repeats. J Biol Chem 2008; 283:26071-80. [PMID: 18640981 DOI: 10.1074/jbc.m803618200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The gelsolin family of proteins is a major class of actin regulatory proteins that sever, cap, and nucleate actin filaments in a calcium-dependent manner and are involved in various cellular processes. Typically, gelsolin-related proteins have three or six repeats of gelsolin-like (G) domain, and each domain plays a distinct role in severing, capping, and nucleation. The Caenorhabditis elegans gelsolin-like protein-1 (gsnl-1) gene encodes an unconventional gelsolin-related protein with four G domains. Sequence alignment suggests that GSNL-1 lacks two G domains that are equivalent to fourth and fifth G domains of gelsolin. In vitro, GSNL-1 severed actin filaments and capped the barbed end in a calcium-dependent manner. However, unlike gelsolin, GSNL-1 remained bound to the side of F-actin with a submicromolar affinity and did not nucleate actin polymerization, although it bound to G-actin with high affinity. These results indicate that GSNL-1 is a novel member of the gelsolin family of actin regulatory proteins and provide new insight into functional diversity and evolution of gelsolin-related proteins.
Collapse
Affiliation(s)
- Tuula Klaavuniemi
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
35
|
Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc Natl Acad Sci U S A 2008; 105:9221-6. [PMID: 18591676 DOI: 10.1073/pnas.0706124105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin-binding proteins (ABPs) regulate the assembly of actin filaments (F-actin) into networks and bundles that provide the structural integrity of the cell. Two of these ABPs, filamin and alpha-actinin, have been extensively used to model the mechanical properties of actin networks grown in vitro; however, there is a lack in the understanding of how the molecular interactions between ABPs and F-actin regulate the dynamic properties of the cytoskeleton. Here, we present a native-like assay geometry to test the rupture force of a complex formed by an ABP linking two quasiparallel actin filaments. We readily demonstrate the adaptability of this assay by testing it with two different ABPs: filamin and alpha-actinin. For filamin/actin and alpha-actinin/actin, we measured similar rupture forces of 40-80 pN for loading rates between 4 and 50 pN/s. Both ABP unfolding and conformational transition events were observed, demonstrating that both are important and may be a significant mechanism for the temporal regulation of the mechanical properties of the actin cytoskeleton. With this modular, single-molecule assay, a wide range of ABP/actin interactions can be studied to better understand cytoskeletal and cell dynamics.
Collapse
|
36
|
Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W. Basal Caspase Activity Promotes Migration and Invasiveness in Glioblastoma Cells. Mol Cancer Res 2007; 5:1232-40. [DOI: 10.1158/1541-7786.mcr-07-0343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Chan MWC, Arora PD, McCulloch CA. Cyclosporin inhibition of collagen remodeling is mediated by gelsolin. Am J Physiol Cell Physiol 2007; 293:C1049-58. [PMID: 17615162 DOI: 10.1152/ajpcell.00027.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclosporin A (CsA) inhibits collagen remodeling by interfering with the collagen-binding step of phagocytosis. In rapidly remodeling connective tissues such as human periodontium this interference manifests as marked tissue overgrowth and loss of function. Previous data have shown that CsA inhibits integrin-induced release of Ca(2+) from internal stores, which is required for the binding step of collagen phagocytosis. Because gelsolin is a Ca(2+)-dependent actin-severing protein that mediates collagen phagocytosis, we determined whether gelsolin is a CsA target. Compared with vehicle controls, CsA treatment of wild-type mice increased collagen accumulation by 60% in periodontal tissues; equivalent increases were seen in vehicle-treated gelsolin-null mice. Collagen degradation by phagocytosis in cultured gelsolin wild-type fibroblasts was blocked by CsA, comparable to levels of vehicle-treated gelsolin-null fibroblasts. In wild-type cells treated with CsA, collagen binding was similar to that of gelsolin-null fibroblasts transfected with a gelsolin-severing mutant and treated with vehicle. CsA blocked collagen-induced Ca(2+) fluxes subjacent to bound collagen beads, gelsolin recruitment, and actin assembly at bead sites. CsA reduced gelsolin-dependent severing of actin in wild-type cells to levels similar to those in gelsolin-null fibroblasts. We conclude that CsA-induced accumulation of collagen in the extracellular matrix involves disruption of the actin-severing properties of gelsolin, thereby inhibiting the binding step of collagen phagocytosis.
Collapse
|
38
|
Hirko AC, Meyer EM, King MA, Hughes JA. Peripheral transgene expression of plasma gelsolin reduces amyloid in transgenic mouse models of Alzheimer's disease. Mol Ther 2007; 15:1623-9. [PMID: 17609655 DOI: 10.1038/sj.mt.6300253] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The accumulation and deposition of the 40-42-amino acid peptide amyloid beta (Abeta) is thought to be a critical event in the pathology of Alzheimer's disease (AD). Both passive and active immunizations against Abeta in amyloid-depositing transgenic mice have reduced Abeta pathology and improved memory-related behavior. Peripheral treatments with other amyloid-binding agents have also reduced Abeta pathology. The present study demonstrates that peripheral delivery of plasmid DNA coding for the amyloid-binding protein plasma gelsolin reduces brain Abeta in two separate amyloid-depositing transgenic mouse models of AD when inter-litter variability is accounted for. The reduction in Abeta pathology observed is accompanied by an apparent increase in activated and reactive microglia and soluble oligomeric forms of amyloid. These findings demonstrate that peripheral expression of plasma gelsolin may be a suitable gene-therapeutic approach for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Aaron C Hirko
- Department of Pharmaceutics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Gelsolin is a calcium-activated actin filament severing and capping protein found in many cell types and as a secreted form in the plasma of vertebrates. Mutant mice for gelsolin as well as clinical studies have shown that gelsolin is linked to a number of pathological conditions such as inflammation, cancer and amyloidosis. The tight regulation of gelsolin by calcium is crucial for its physiological role and constitutive activation leads to apoptosis. In the following we will give an overview on how gelsolin is regulated by calcium, and which clinical conditions have been linked to lack or misregulation of gelsolin.
Collapse
Affiliation(s)
- L Spinardi
- Direzione Scientifica, IRCCS Fondazione Ospedale Policlinico, Mangiagalli e Regina Elena, Via Francesco Sforza 28, 20122 Milano, Italy.
| | | |
Collapse
|
40
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of Phospholipase C-γ1 with Villin Regulates Epithelial Cell Migration. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Zhang Y, Vorobiev SM, Gibson BG, Hao B, Sidhu GS, Mishra VS, Yarmola EG, Bubb MR, Almo SC, Southwick FS. A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing. EMBO J 2006; 25:4458-67. [PMID: 16977317 PMCID: PMC1589989 DOI: 10.1038/sj.emboj.7601323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/02/2006] [Indexed: 11/08/2022] Open
Abstract
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84-91 (severing domain) and 124-137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1-S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2-S3 complex by an extended arm consisting of amino acids 118-137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing.
Collapse
Affiliation(s)
- Y Zhang
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Bruce G Gibson
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Binghua Hao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Gurjit S Sidhu
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Vishnu S Mishra
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elena G Yarmola
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael R Bubb
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Ullmann Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: +1 718 430 2746; Fax: +1 718 430 8565; E-mail:
| | - Frederick S Southwick
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Medicine/Infectious Diseases, University of Florida, College of Medicine, Box 100277, 1600 Archer Road, Gainesville, FL 32610, USA. Tel.: +1 352 392 4058; Fax: +1 352 392 6481; E-mail:
| |
Collapse
|
43
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of phospholipase C-gamma1 with villin regulates epithelial cell migration. J Biol Chem 2006; 281:31972-86. [PMID: 16921170 DOI: 10.1074/jbc.m604323200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tyrosine-phosphorylated villin regulates actin dynamics, cell morphology, and cell migration. Previously, we identified four tyrosine phosphorylation sites in the amino-terminal domain of villin. In this study we report six new sites in the carboxyl-terminal region of the villin core. With this study we document all phosphorylatable tyrosine residues in villin and map them to functions of villin. In this study, we identify for the first time the functional relevance of the carboxyl-terminal domains of the villin core. Expression of the carboxyl-terminal phosphorylation site mutant, as well as the villin truncation mutant S1-S3, inhibited cell migration in HeLa and Madin-Darby canine kidney Tet-Off cells, confirming the role of the carboxyl-terminal phosphorylation sites in villin-induced cell migration. The carboxyl-terminal phosphorylation sites were found to be critical for the interaction of villin with its ligand phospholipase C-gamma1 and for its localization to the developing lamellipodia in a motile cell. The results presented here elucidate the molecular basis for tyrosine-phosphorylated villin-induced changes in cell motility.
Collapse
Affiliation(s)
- Alok Tomar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
44
|
Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A 2006; 103:1762-7. [PMID: 16446458 PMCID: PMC1413620 DOI: 10.1073/pnas.0504777103] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditions is a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces.
Collapse
Affiliation(s)
- M. L. Gardel
- Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - F. Nakamura
- Hematology Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115; and
| | - J. H. Hartwig
- Hematology Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115; and
| | - J. C. Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - T. P. Stossel
- Hematology Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115; and
| | - D. A. Weitz
- Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- To whom correspondence should be addressed at:
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138. E-mail:
| |
Collapse
|
45
|
Arora PD, Chan MWC, Anderson RA, Janmey PA, McCulloch CA. Separate functions of gelsolin mediate sequential steps of collagen phagocytosis. Mol Biol Cell 2005; 16:5175-90. [PMID: 16120646 PMCID: PMC1266417 DOI: 10.1091/mbc.e05-07-0648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Collagen phagocytosis is a critical mediator of extracellular matrix remodeling. Whereas the binding step of collagen phagocytosis is facilitated by Ca2+-dependent, gelsolin-mediated severing of actin filaments, the regulation of the collagen internalization step is not defined. We determined here whether phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] regulation of gelsolin is required for collagen internalization. In gelsolin null fibroblasts transfected with gelsolin severing mutants, actin severing and collagen binding were strongly impaired but internalization and actin monomer addition at collagen bead sites were much less affected. PI(4,5)P2 accumulated around collagen during internalization and was associated with gelsolin. Cell-permeable peptides mimicking the PI(4,5)P2 binding site of gelsolin blocked actin monomer addition, the association of gelsolin with actin at phagosomes, and collagen internalization but did not affect collagen binding. Collagen beads induced recruitment of type 1 gamma phosphatidylinositol phosphate kinase (PIPK1gamma661) to internalization sites. Dominant negative constructs and RNA interference demonstrated a requirement for catalytically active PIPK1gamma661 for collagen internalization. We conclude that separate functions of gelsolin mediate sequential stages of collagen phagocytosis: Ca2+-dependent actin severing facilitates collagen binding, whereas PI(4,5)P2-dependent regulation of gelsolin promotes the actin assembly required for internalization of collagen fibrils.
Collapse
Affiliation(s)
- P D Arora
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | |
Collapse
|
46
|
Archer SK, Claudianos C, Campbell HD. Evolution of the gelsolin family of actin-binding proteins as novel transcriptional coactivators. Bioessays 2005; 27:388-96. [PMID: 15770676 DOI: 10.1002/bies.20200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gelsolin gene family encodes a number of higher eukaryotic actin-binding proteins that are thought to function in the cytoplasm by severing, capping, nucleating or bundling actin filaments. Recent evidence, however, suggests that several members of the gelsolin family may have adopted unexpected nuclear functions including a role in regulating transcription. In particular, flightless I, supervillin and gelsolin itself have roles as coactivators for nuclear receptors, despite the fact that their divergence appears to predate the evolutionary appearance of nuclear receptors. Flightless I has been shown to bind both actin and the actin-related BAF53a protein, which are subunits of SWI/SNF-like chromatin remodelling complexes. The primary sequences of some actin-related proteins such as BAF53a exhibit conservation of residues that, in actin itself, are known to interact with gelsolin-related proteins. In summary, there is a growing body of evidence supporting a biological role in the nucleus for actin, Arps and actin-binding proteins and, in particular, the gelsolin family of actin-binding proteins.
Collapse
Affiliation(s)
- Stuart K Archer
- Molecular Genetics and Evolution Group and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
47
|
Beaulieu V, Da Silva N, Pastor-Soler N, Brown CR, Smith PJS, Brown D, Breton S. Modulation of the actin cytoskeleton via gelsolin regulates vacuolar H+-ATPase recycling. J Biol Chem 2004; 280:8452-63. [PMID: 15591047 DOI: 10.1074/jbc.m412750200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The role of the actin cytoskeleton in regulating membrane protein trafficking is complex and depends on the cell type and protein being examined. Using the epididymis as a model system in which luminal acidification is crucial for sperm maturation and storage, we now report that modulation of the actin cytoskeleton by the calcium-activated actin-capping and -severing protein gelsolin plays a key role in regulating vacuolar H(+)-ATPase (V-ATPase) recycling. Epididymal clear cells contain abundant V-ATPase in their apical pole, and an increase in their cell-surface V-ATPase expression correlates with an increase in luminal proton secretion. We have shown that apical membrane accumulation of V-ATPase is triggered by an elevation in cAMP following activation of bicarbonate-regulated soluble adenylyl cyclase in response to alkaline luminal pH (Pastor-Soler, N., Beaulieu, V., Litvin, T. N., Da Silva, N., Chen, Y., Brown, D., Buck, J., Levin, L. R., and Breton, S. (2003) J. Biol. Chem. 278, 49523-49529). Here, we show that clear cells express high levels of gelsolin, indicating a potential role in the functional activity of these cells. When jasplakinolide was used to overcome the severing action of gelsolin by polymerizing actin, complete inhibition of the alkaline pH- and cAMP-induced apical membrane accumulation of V-ATPase was observed. Conversely, when gelsolin-mediated actin filament elongation was inhibited using a 10-residue peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate-binding region (phosphoinositide-binding domain 2) of gelsolin, significant V-ATPase apical membrane mobilization was induced, even at acidic luminal pH. In contrast, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) and the phospholipase C inhibitor U-73122 inhibited the alkaline pH-induced V-ATPase apical accumulation. Thus, maintenance of the actin cytoskeleton in a depolymerized state by gelsolin facilitates calcium-dependent apical accumulation of V-ATPase in response to luminal pH alkalinization. Gelsolin is present in other cell types that express the V-ATPase in their plasma membrane and recycling vesicles, including kidney intercalated cells and osteoclasts. Therefore, modulation of the actin cortex by this severing and capping protein may represent a common mechanism by which these cells regulate their rate of proton secretion.
Collapse
Affiliation(s)
- Valérie Beaulieu
- Program in Membrane Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Drøbak BK, Franklin-Tong VE, Staiger CJ. The role of the actin cytoskeleton in plant cell signaling. THE NEW PHYTOLOGIST 2004; 163:13-30. [PMID: 33873778 DOI: 10.1111/j.1469-8137.2004.01076.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant actin cytoskeleton provides a dynamic cellular component which is involved in the maintenance of cell shape and structure. It has been demonstrated recently that the actin cytoskeleton and its associated elements provide a key target in many signaling events. In addition to acting as a target, the actin cytoskeleton can also act as a transducer of signal information. In this review we describe some newly discovered aspects of the roles of the actin cytoskeleton in plant cell signaling. In addition to a summary of the roles played by actin-binding proteins, we also briefly review the progress made in understanding how the actin cytoskeleton participates in the self-incompatibility response in pollen tubes. Finally, the emerging importance of the actin cytoskeleton in the perception and responses to stimuli such as gravity, touch and cold stress exposure are discussed. Contents I. Introduction - the actin cytoskeleton 13 II. Actin-binding proteins 14 III. The actin cytoskeleton as a target and mediator of plant cell signaling 20 IV. Summary and conclusion 25 References 25 Acknowledgements 25.
Collapse
Affiliation(s)
- B K Drøbak
- Cell Signaling Group, Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - V E Franklin-Tong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - C J Staiger
- Purdue Motility Group, Department of Biological Sciences, Purdue University, 333 Hansen Life Sciences Building, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| |
Collapse
|
49
|
Huang S, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ. A Gelsolin-like Protein from Papaver rhoeas Pollen (PrABP80) Stimulates Calcium-regulated Severing and Depolymerization of Actin Filaments. J Biol Chem 2004; 279:23364-75. [PMID: 15039433 DOI: 10.1074/jbc.m312973200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoskeleton is a key regulator of plant morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. During the self-incompatibility response of Papaver rhoeas L. (field poppy) pollen, the actin filament network is rapidly depolymerized by a flood of cytosolic free Ca2+ that results in cessation of tip growth and prevention of fertilization. Attempts to model this dramatic cytoskeletal response with known pollen actin-binding proteins (ABPs) revealed that the major G-actin-binding protein profilin can account for only a small percentage of the measured depolymerization. We have identified an 80-kDa, Ca(2+)-regulated ABP from poppy pollen (PrABP80) and characterized its biochemical properties in vitro. Sequence determination by mass spectrometry revealed that PrABP80 is related to gelsolin and villin. The molecular weight, lack of filament cross-linking activity, and a potent severing activity are all consistent with PrABP80 being a plant gelsolin. Kinetic analysis of actin assembly/disassembly reactions revealed that substoichiometric amounts of PrABP80 can nucleate actin polymerization from monomers, block the assembly of profilin-actin complex onto actin filament ends, and enhance profilin-mediated actin depolymerization. Fluorescence microscopy of individual actin filaments provided compelling, direct evidence for filament severing and confirmed the actin nucleation and barbed end capping properties. This is the first direct evidence for a plant gelsolin and the first example of efficient severing by a plant ABP. We propose that PrABP80 functions at the center of the self-incompatibility response by creating new filament pointed ends for disassembly and by blocking barbed ends from profilin-actin assembly.
Collapse
Affiliation(s)
- Shanjin Huang
- Department of Biological Sciences and The Purdue Motility Group, Purdue University, West Lafayette, Indiana 47907-2064, USA
| | | | | | | | | |
Collapse
|
50
|
Patkowski A, Seils J, Dorfmüller T, Hinssen H. Size, shape parameters, and Ca2+-induced conformational change of the gelsolin molecule: A dynamic light scattering study. Biopolymers 2004. [DOI: 10.1002/bip.360300320] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|