1
|
Rezig IM, Yaduma WG, McInerny CJ. Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins. J Fungi (Basel) 2024; 10:154. [PMID: 38392827 PMCID: PMC10890238 DOI: 10.3390/jof10020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.
Collapse
Affiliation(s)
- Imane M Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| | - Wandiahyel G Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
- Department of Chemistry, School of Sciences, Adamawa State College of Education, Hong 640001, Adamawa State, Nigeria
| | - Christopher J McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Marsalek L, Gruber C, Altmann F, Aleschko M, Mattanovich D, Gasser B, Puxbaum V. Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris. Biotechnol J 2017; 12. [PMID: 28230321 DOI: 10.1002/biot.201600584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022]
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis-sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography-mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.
Collapse
Affiliation(s)
- Lukas Marsalek
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Clemens Gruber
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Markus Aleschko
- BIOMIN Research Center, Technologiezentrum Tulln, Tulln, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Verena Puxbaum
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28174581 DOI: 10.3389/fpls.2017.00036.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany; Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| |
Collapse
|
4
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:36. [PMID: 28174581 PMCID: PMC5258727 DOI: 10.3389/fpls.2017.00036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
- *Correspondence: Stephan Pollmann
| |
Collapse
|
5
|
Chen Y, Zhou F, Zou S, Yu S, Li S, Li D, Song J, Li H, He Z, Hu B, Björn LO, Lipatova Z, Liang Y, Xie Z, Segev N. A Vps21 endocytic module regulates autophagy. Mol Biol Cell 2014; 25:3166-77. [PMID: 25143401 PMCID: PMC4196867 DOI: 10.1091/mbc.e14-04-0917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vps21 plays a role in autophagy in addition to its role in endocytosis. Individual deletions of members of the endocytic Vps21 module, including a GEF and four effectors, result in autophagy defects and accumulation of autophagosomal clusters. Therefore the endocytic Vps21 module regulates autophagy. In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shenshen Zou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sidney Yu
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dan Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingzhen Song
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyi He
- Electron Microscope Demonstrating Co. Lab of Nanjing Agriculture University and Tianmei High-Tech Corporation, Nanjing 210095, China
| | - Bing Hu
- Electron Microscope Demonstrating Co. Lab of Nanjing Agriculture University and Tianmei High-Tech Corporation, Nanjing 210095, China
| | - Lars Olof Björn
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiping Xie
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
6
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
7
|
Balderhaar HJK, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16. [PMID: 23645161 DOI: 10.1242/jcs.107805] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Collapse
Affiliation(s)
- Henning J kleine Balderhaar
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
8
|
Avraham N, Soifer I, Carmi M, Barkai N. Increasing population growth by asymmetric segregation of a limiting resource during cell division. Mol Syst Biol 2013; 9:656. [PMID: 23591772 PMCID: PMC3658268 DOI: 10.1038/msb.2013.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/01/2013] [Indexed: 12/15/2022] Open
Abstract
We report that when budding yeast are transferred to low-metal environment, they adopt a proliferation pattern in which division is restricted to the subpopulation of mother cells which were born in rich conditions, before the shift. Mother cells continue to divide multiple times following the shift, generating at each division a single daughter cell, which arrests in G1. The transition to a mother-restricted proliferation pattern is characterized by asymmetric segregation of the vacuole to the mother cell and requires the transcription repressor Whi5. Notably, while deletion of WHI5 alleviates daughter cell division arrest in low-zinc conditions, it results in a lower final population size, as cell division rate becomes progressively slower. Our data suggest a new stress-response strategy, in which the dilution of a limiting cellular resource is prevented by maintaining it within a subset of dividing cells, thereby increasing population growth.
Collapse
Affiliation(s)
- Nurit Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
9
|
Cabrera M, Arlt H, Epp N, Lachmann J, Griffith J, Perz A, Reggiori F, Ungermann C. Functional separation of endosomal fusion factors and the class C core vacuole/endosome tethering (CORVET) complex in endosome biogenesis. J Biol Chem 2012; 288:5166-75. [PMID: 23264632 DOI: 10.1074/jbc.m112.431536] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transport along the endolysosomal system requires multiple fusion events at early and late endosomes. Deletion of several endosomal fusion factors, including the Vac1 tether and the Class C core vacuole/endosome tethering (CORVET) complex-specific subunits Vps3 and Vps8, results in a class D vps phenotype. As these mutants have an apparently similar defect in endosomal transport, we asked whether CORVET and Vac1 could still act in distinct tethering reactions. Our data reveal that CORVET mutants can be rescued by Vac1 overexpression in the endocytic pathway but not in CPY or Cps1 sorting to the vacuole. Moreover, when we compared the ultrastructure, CORVET mutants were most similar to deletions of the Rab Vps21 and its guanine nucleotide exchange factor Vps9 and different from vac1 deletion, indicating separate functions. Likewise, CORVET still localized to endosomes even in the absence of Vac1, whereas Vac1 localization became diffuse in CORVET mutants. Importantly, CORVET localization requires the Rab5 homologs Vps21 and Ypt52, whereas Vac1 localization is strictly Vps21-dependent. In this context, we also uncover that Muk1 can compensate for loss of Vps9 in CORVET localization, indicating that two Rab5 guanine nucleotide exchange factors operate in the endocytic pathway. Overall, our study reveals a unique role of CORVET in the sorting of biosynthetic cargo to the vacuole/lysosome.
Collapse
Affiliation(s)
- Margarita Cabrera
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastr 13, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Epp N, Rethmeier R, Krämer L, Ungermann C. Membrane dynamics and fusion at late endosomes and vacuoles – Rab regulation, multisubunit tethering complexes and SNAREs. Eur J Cell Biol 2011; 90:779-85. [DOI: 10.1016/j.ejcb.2011.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
Bröcker C, Engelbrecht-Vandré S, Ungermann C. Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 2011; 20:R943-52. [PMID: 21056839 DOI: 10.1016/j.cub.2010.09.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein trafficking within eukaryotic cells depends on vesicular carriers that fuse with organelles to deliver their lipid and protein content. Cells have developed an elaborate system to capture vesicles at organelles that involves the action of Rab GTPases and tethers. Vesicle fusion then takes place with the help of SNARE proteins. In this review we focus on the role of multisubunit tethering complexes of eukaryotic cells. In particular, we discuss the tethering complexes of the secretory pathway and the endolysosomal system and highlight recent evidence for the role of these complexes in interaction with Rabs, coat recognition and cooperation with SNAREs during the fusion cascade.
Collapse
Affiliation(s)
- Cornelia Bröcker
- University of Osnabrück, Department of Biology/Chemistry, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
12
|
Plemel RL, Lobingier BT, Brett CL, Angers CG, Nickerson DP, Paulsel A, Sprague D, Merz AJ. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol Biol Cell 2011; 22:1353-63. [PMID: 21325627 PMCID: PMC3078060 DOI: 10.1091/mbc.e10-03-0260] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Vps-C complexes, CORVET and HOPS, are key regulators of membrane traffic through late endosomes and lysosomes. In this study Vps-C intersubunit contacts, domain architecture, and interactions with Rab G proteins are systematically dissected using genetic and biochemical approaches. Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these large and intricate complexes, we performed interaction surveys to assemble domain-level interaction topologies for the eight Vps-C subunits. We identified numerous intersubunit interactions and up to six Rab-binding sites. Functional modules coordinate the major Rab interactions within CORVET and HOPS. The CORVET-specific subunits, Vps3 and Vps8, form a subcomplex and physically and genetically interact with the Rab5 orthologue Vps21. The HOPS-specific subunits, Vps39 and Vps41, also form a subcomplex. Both subunits bind the Rab7 orthologue Ypt7, but with distinct nucleotide specificities. The in vivo functions of four RING-like domains within Vps-C subunits were analyzed and shown to have distinct functions in endolysosomal transport. Finally, we show that the CORVET- and HOPS-specific subunits Vps3 and Vps39 bind the Vps-C core through a common region within the Vps11 C-terminal domain (CTD). Biochemical and genetic experiments demonstrate the importance of these regions, revealing the Vps11 CTD as a key integrator of Vps-C complex assembly, Rab signaling, and endosomal and lysosomal traffic.
Collapse
Affiliation(s)
- Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang J, Mast FD, Fagarasanu A, Rachubinski DA, Eitzen GA, Dacks JB, Rachubinski RA. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. ACTA ACUST UNITED AC 2009; 187:233-46. [PMID: 19822674 PMCID: PMC2768826 DOI: 10.1083/jcb.200902117] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pex3 links peroxisome formation and inheritance. By binding to class V myosin, biogenesis protein Pex3 also directs the organelles into daughter cells. In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
p21-activated kinases Cla4 and Ste20 regulate vacuole inheritance in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:560-72. [PMID: 19218422 DOI: 10.1128/ec.00111-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Each time Saccharomyces cerevisiae cells divide they ensure that both the mother and daughter cell inherit a vacuole by actively transporting a portion of the vacuole into the bud. As the mother cell begins budding, a tubular and vesicular segregation structure forms that is transported into the bud by the myosin V motor Myo2, which is bound to the vacuole-specific myosin receptor, Vac17 (41, 59, 70, 79). Upon arriving in the bud the segregation structure is resolved to found the daughter vacuole. The mechanism that regulates segregation structure resolution in a spatially dependent manner is unknown. In addition to resolving the segregation structure, Vac17 is degraded specifically in the bud to provide directionality to vacuole inheritance. It has been proposed that bud-specific degradation of Vac17 is promoted by proteins localized to or activated solely in the bud (77). The p21-activated kinases (PAKs) Cla4 and Ste20 are localized to and activated in the bud. Here we report that Cla4 is localized to the segregation structure just prior to segregation structure resolution, and cells lacking PAK function fail to resolve the segregation structure. Overexpression of either Cla4 or Ste20 inhibited vacuole inheritance and this inhibition was suppressed by the expression of nondegradable VAC17. Finally, PAK activity was required for Vac17 degradation in late M phase and CLA4 overexpression promoted Vac17 degradation. We propose that Cla4 and Ste20 are bud-specific proteins that play roles in both segregation structure resolution and the degradation of Vac17.
Collapse
|
15
|
The yeast lysosome-like vacuole: endpoint and crossroads. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:650-63. [PMID: 18786576 DOI: 10.1016/j.bbamcr.2008.08.003] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.
Collapse
|
16
|
Gustavsson M, Barmark G, Larsson J, Murén E, Ronne H. Functional genomics of monensin sensitivity in yeast: implications for post-Golgi traffic and vacuolar H+-ATPase function. Mol Genet Genomics 2008; 280:233-48. [PMID: 18612650 DOI: 10.1007/s00438-008-0359-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/13/2008] [Indexed: 11/24/2022]
Abstract
We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.
Collapse
Affiliation(s)
- Marie Gustavsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
17
|
Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7:801-10. [PMID: 18400565 DOI: 10.1016/j.dnarep.2008.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/04/2008] [Accepted: 02/08/2008] [Indexed: 11/23/2022]
Abstract
Mutation in response to most types of DNA damage is thought to be mediated by the error-prone sub-branch of post-replication repair and the associated translesion synthesis polymerases. To further understand the mutagenic response to DNA damage, we screened a collection of 4848 haploid gene deletion strains of Saccharomyces cerevisiae for decreased damage-induced mutation of the CAN1 gene. Through extensive quantitative validation of the strains identified by the screen, we identified ten genes, which included error-prone post-replication repair genes known to be involved in induced mutation, as well as two additional genes, FYV6 and RNR4. We demonstrate that FYV6 and RNR4 are epistatic with respect to induced mutation, and that they function, at least partially, independently of post-replication repair. This pathway of induced mutation appears to be mediated by an increase in dNTP levels that facilitates lesion bypass by the replicative polymerase Pol delta, and it is as important as error-prone post-replication repair in the case of UV- and MMS-induced mutation, but solely responsible for EMS-induced mutation. We show that Rnr4/Pol delta-induced mutation is efficiently inhibited by hydroxyurea, a small molecule inhibitor of ribonucleotide reductase, suggesting that if similar pathways exist in human cells, intervention in some forms of mutation may be possible.
Collapse
|
18
|
Pdr5-mediated multidrug resistance requires the CPY-vacuolar sorting protein Vps3: are xenobiotic compounds routed from the vacuole to plasma membrane transporters for efflux? Mol Genet Genomics 2008; 279:573-83. [PMID: 18327613 DOI: 10.1007/s00438-008-0334-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 02/21/2008] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae several members of the ATP-binding cassette transporter superfamily efflux a broad range of xenobiotic substrates from cells. The vacuole also plays a critical role in multidrug resistance. Mutations in genes such as VPS3 that are essential for vacuolar acidification and carboxypeptidase Y vacuolar protein-sorting are multidrug sensitive. A similar phenotype is also observed with deletions of VPS15, VPS34, and VPS38, which encode essential members of the carboxypeptidase Y vacuolar protein-sorting pathway. Prior to the work described herein, detoxification by transporters and the vacuole were presumed to function independently. We demonstrate that this is not the case. Significantly, Vps3 has an epistatic relationship with Pdr5, a major yeast multidrug transporter. Thus, a double pdr5, vps3 deletion mutant is no more multidrug sensitive than its isogenic single-mutant counterparts. Subcellular fractionation experiments and analysis of purified plasma membrane vesicles indicate, however, that a vps3 mutation does not affect the membrane-localization or ATPase activity of Pdr5 even though rhodamine 6G efflux is reduced significantly. This suggests that Vps3 and probably other members of the carboxypeptidase Y vacuolar protein-sorting pathway are required for relaying xenobiotic compounds to transporters in the membrane.
Collapse
|
19
|
Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 2008; 10:528-38. [PMID: 18177627 DOI: 10.1016/j.mib.2007.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 09/25/2007] [Accepted: 10/03/2007] [Indexed: 11/23/2022]
Abstract
The biochemical functions of eukaryotic cells are often compartmentalized into membrane-bound organelles to increase their overall efficiency. Although some organelles can be formed anew, cells have evolved elaborate mechanisms to ensure the faithful inheritance of their organelles. In contrast to cells that divide by fission, the budding yeast Saccharomyces cerevisiae must actively and vectorially deliver half of its organelles to the growing bud. To achieve this, proteins called formins are strategically localized to the bud, where they assemble an array of actin cables that radiate deep into the mother cell. Class V myosin motors use these cables as tracks to transport various organelles, including peroxisomes, a portion of the vacuole and elements of the endoplasmic reticulum and Golgi complex. By contrast, mitochondria do not engage a myosin motor for their movement but instead use Arp2/3-nucleated actin polymerization for their bud-directed motility. The translocation machineries work cooperatively with molecular devices that retain organelles within both mother cell and bud to ensure an equitable division of organelles between them. While organelle inheritance requires specific proteins tailored for the inheritance of each type of organelle, it is becoming apparent that a set of fundamental rules underlies the inheritance of all organelles.
Collapse
|
20
|
Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 2007; 12:739-50. [PMID: 17488625 DOI: 10.1016/j.devcel.2007.03.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/27/2006] [Accepted: 03/08/2007] [Indexed: 11/16/2022]
Abstract
The dynamic equilibrium between vesicle fission and fusion at Golgi, endosome, and vacuole/lysosome is critical for the maintenance of organelle identity. It depends, among others, on Rab GTPases and tethering factors, whose function and regulation are still unclear. We now show that transport among Golgi, endosome, and vacuole is controlled by two homologous tethering complexes, the previously identified HOPS complex at the vacuole and a novel endosomal tethering (CORVET) complex, which interacts with the Rab GTPase Vps21. Both complexes share the four class C Vps proteins: Vps11, Vps16, Vps18, and Vps33. The HOPS complex, in addition, contains Vps41/Vam2 and Vam6, whereas the CORVET complex has the Vps41 homolog Vps8 and the (h)Vam6 homolog Vps3. Strikingly, the CORVET and HOPS complexes can interconvert; we identify two additional intermediate complexes, both consisting of the class C core bound to Vam6-Vps8 or Vps3-Vps41. Our data suggest that modular assembled tethering complexes define organelle biogenesis in the endocytic pathway.
Collapse
Affiliation(s)
- Karolina Peplowska
- University of Osnabrück, Department of Biology, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
21
|
Barelle CJ, Richard ML, Gaillardin C, Gow NAR, Brown AJP. Candida albicans VAC8 is required for vacuolar inheritance and normal hyphal branching. EUKARYOTIC CELL 2006; 5:359-67. [PMID: 16467476 PMCID: PMC1405888 DOI: 10.1128/ec.5.2.359-367.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyphal growth is prevalent during most Candida albicans infections. Current cell division models, which are based on cytological analyses of C. albicans, predict that hyphal branching is intimately linked with vacuolar inheritance in this fungus. Here we report the molecular validation of this model, showing that a specific mutation that disrupts vacuolar inheritance also affects hyphal division. The armadillo repeat-containing protein Vac8p plays an important role in vacuolar inheritance in Saccharomyces cerevisiae. The VAC8 gene was identified in the C. albicans genome sequence and was resequenced. Homozygous C. albicans vac8Delta deletion mutants were generated, and their phenotypes were examined. Mutant vac8Delta cells contained fragmented vacuoles, and minimal vacuolar material was inherited by daughter cells in hyphal or budding forms. Normal rates of growth and hyphal extension were observed for the mutant hyphae on solid serum-containing medium. However, branching frequencies were significantly increased in the mutant hyphae. These observations are consistent with a causal relationship between vacuolar inheritance and the cell division cycle in the subapical compartments of C. albicans hyphae. The data support the hypothesis that cytoplasmic volume, rather than cell size, is critical for progression through G1.
Collapse
Affiliation(s)
- Caroline J Barelle
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Bowers K, Stevens TH. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:438-54. [PMID: 15913810 DOI: 10.1016/j.bbamcr.2005.04.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/15/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The late Golgi compartment is a major protein sorting station in the cell. Secreted proteins, cell surface proteins, and proteins destined for endosomes or lysosomes must be sorted from one another at this compartment and targeted to their correct destinations. The molecular details of protein trafficking pathways from the late Golgi to the endosomal system are becoming increasingly well understood due in part to information obtained by genetic analysis of yeast. It is now clear that proteins identified in yeast have functional homologues (orthologues) in higher organisms. We will review the molecular mechanisms of protein targeting from the late Golgi to endosomes and to the vacuole (the equivalent of the mammalian lysosome) of the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Katherine Bowers
- Cambridge Institute for Medical Research and Department of Clinical, Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
23
|
LaGrassa TJ, Ungermann C. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. ACTA ACUST UNITED AC 2005; 168:401-14. [PMID: 15684030 PMCID: PMC2171739 DOI: 10.1083/jcb.200407141] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.
Collapse
Affiliation(s)
- Tracy J LaGrassa
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Abstract
The vacuole/lysosome of the budding yeast Saccharomyces cerevisiae is actively divided between mother and daughter cells. Vacuole inheritance initiates early in the cell cycle and ends in G2, just prior to nuclear migration. The process begins with a portion of the vacuole extending into the emerging bud. This tubular-vesicular entity, the segregation structure, enables continued exchange of vacuole contents between mother and daughter vacuoles. Genetic, biochemical, and cytological analyses of vacuole inheritance have provided insight into the molecular basis of membrane movement, the spatial and temporal control of organelle transport, and the molecular basis of membrane fusion and fission.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
25
|
Duncan MC, Costaguta G, Payne GS. Yeast epsin-related proteins required for Golgi-endosome traffic define a gamma-adaptin ear-binding motif. Nat Cell Biol 2003; 5:77-81. [PMID: 12483220 DOI: 10.1038/ncb901] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 05/30/2002] [Accepted: 06/21/2002] [Indexed: 11/09/2022]
Abstract
Clathrin-coated vesicles (CCVs) are a central component of endocytosis and traffic between the trans-Golgi network (TGN) and endosomes. Although endocytic CCV formation is well characterized, much less is known about CCV formation at internal membranes. Here we describe two epsin amino-terminal homology (ENTH) domain-containing proteins, Ent3p and Ent5p, that are intimately involved in clathrin function at the Golgi. Both proteins associate with the clathrin adaptor Gga2p in vivo; Ent5p also interacts with the clathrin adaptor complex AP-1 and clathrin. A novel, conserved motif that mediates the interaction of Ent3p and Ent5p with gamma-ear domains of Gga2p and AP-1 is defined. Ent3p and Ent5p colocalize with clathrin, and cells lacking both Ent proteins exhibit defects in clathrin localization and traffic between the Golgi and endosomes. The findings suggest that Ent3p and Ent5p constitute a functionally related pair that co-operate with Gga proteins and AP-1 to recruit clathrin and promote formation of clathrin coats at the Golgi/endosomes. On the basis of our results and the established roles of epsin and epsin-related proteins in endocytosis, we propose that ENTH-domain-containing proteins are a universal component of CCV formation.
Collapse
Affiliation(s)
- Mara C Duncan
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
26
|
Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002; 7:75-90. [PMID: 11856375 DOI: 10.1046/j.1356-9597.2001.00499.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded through direct engulfment by the vacuole in a process known as micropexophagy, but the mechanism of micropexophagy is not known. RESULTS To gain molecular insights into micropexophagy, we used fluorescence time-lapse microscopy, coupled with gene-tagging mutagenesis to isolate P. pastoris mutants defective in micropexophagy. The relevant genes have been designated PAZ genes. Morphological and genetic analyses enabled us to postulate a schematic model for micropexophagy. This new model invokes the generation of new vacuolar compartments as an intermediate structure during micropexophagy. Different classes of paz mutants arrest micropexophagy at distinct stages of the process. Most of APG-related paz mutants ceased micropexophagy at Stage 1c and that GCN-family paz mutants ceased micropexophagy at Stage 2. The paz2Delta strain shows a unique phenotype. Paz2 is the homologue of Saccharomyces cerevisiae Apg8, which is necessary for macroautophagy in that yeast. Our analysis revealed that in P. pastoris, Paz2 plays a key role in repressing the engulfment of peroxisomes by the vacuole before the onset of micropexophagy. Paz2 is proteolytically processed by another autophagy-related Paz protein Paz8, but this processing is not required for the ability of Paz2 to suppress aberrant micropexophagy. CONCLUSION Micropexophagy has been dissected into a multistep reaction that involves 14 identified Paz gene products. Our studies indicate that Paz2 controls the engulfment of peroxisomes by the vacuole, pointing to a novel early function of this protein.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Todorow Z, Spang A, Carmack E, Yates J, Schekman R. Active recycling of yeast Golgi mannosyltransferase complexes through the endoplasmic reticulum. Proc Natl Acad Sci U S A 2000; 97:13643-8. [PMID: 11095735 PMCID: PMC17629 DOI: 10.1073/pnas.250472397] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mnn9p is a component of two distinct multiprotein complexes in the Saccharomyces cerevisiae cis-Golgi that have both been shown to have alpha-1,6-mannosyltransferase activity in vitro. In one of these complexes, Mnn9p associates with four other membrane proteins, Anp1p, Mnn10p, Mnn11p, and Hoc1p, whereas the other complex consists of Mnn9p and Van1p. Members of the Mnn9p-containing complexes were incorporated into COPII vesicles made in vitro from endoplasmic reticulum (ER) membranes isolated from cycloheximide-treated cells. This behavior is consistent with an active Golgi to ER recycling process. To examine this path in vivo, we monitored retrograde transport of subunits of the complex in cells blocked in anterograde transport from the ER. In this situation, specific relocation of the proteins from the Golgi to the ER was observed in the absence of new protein synthesis. Conversely, when retrograde transport was blocked in vivo, subunits of the mannosyltransferase complex accumulated in the vacuole. Packaging of Mnn9p in COPI-coated vesicles from purified Golgi membranes was also investigated using a coatomer-dependent vesicle budding assay. Gradient fractionation experiments showed that Mnn9p and the retrograde v-SNARE, Sec22p, were incorporated into COPI-coated vesicles. These observations indicate that the Mnn9p-containing mannosyltransferase complexes cycle back and forth between the ER and Golgi.
Collapse
Affiliation(s)
- Z Todorow
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
28
|
Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R. Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 2000; 253:237-47. [PMID: 10940562 DOI: 10.1016/s0378-1119(00)00261-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The final step of cysteine biosynthesis in plants is catalyzed by O-acetylserine (thiol) lyase (OAS-TL), which occurs as several isoforms found in the cytosol, the plastids and the mitochondria. Genomic DNA blot hybridization and isolation of genomic clones indicate single copy genes (oasA1, oasA2, oasB and oasC) that encode the activities of OAS-TL A, B and C found in separate subcellular compartments in the model plant Arabidopsis thaliana. Sequence analysis reveals that the newly discovered oasA2 gene represents a pseudogene that is still transcribed, but is not functionally translated. The comparison of gene structures suggests that oasA1/oasA2 and oasB/oasC are closely related and may be derived from a common ancestor by subsequent duplications. OAS-TL A, B and C were overexpressed in an Escherichia coli mutant lacking cysteine synthesis and exhibited bifunctional OAS-TL and beta-cyanoalanine synthase (CAS) activities. However, all three proteins represent true OAS-TLs according to kinetic analysis and are unlikely to function in cyanide detoxification or secondary metabolism. In addition, it was demonstrated that the mitochondrial OAS-TL C exhibits in vivo protein-protein interaction capabilities with respect to cysteine synthase complex formation similar to cytosolic OAS-TL A and plastid OAS-TL B. Multiple database accessions for each of the A. thaliana OAS-TL isoforms can thus be attributed to a specified number of oas genes to which functionally defined gene products are assigned, and which are responsible for compartment-specific cysteine synthesis.
Collapse
Affiliation(s)
- R Jost
- Institute for Plant Genetics and Crop Plant Research (IPK), Molecular Cell Biology Department, 06466, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The mechanisms ensuring accurate partitioning of yeast vacuoles and mitochondria are distinct, yet they share common elements. Both organelles move along actin filaments, and both organelles require fusion and fission to maintain normal morphology. Recent studies have revealed that while vacuolar inheritance requires a processive myosin motor, mitochondrial inheritance requires controlled actin polymerization. Distinct sets of proteins required for the fusion and fission of each organelle have also been identified.
Collapse
Affiliation(s)
- N L Catlett
- Department of Biochemistry, University of Iowa, Iowa City, 52242, USA.
| | | |
Collapse
|
30
|
Houten SM, Romeijn GJ, Koster J, Gray RG, Darbyshire P, Smit GP, de Klerk JB, Duran M, Gibson KM, Wanders RJ, Waterham HR. Identification and characterization of three novel missense mutations in mevalonate kinase cDNA causing mevalonic aciduria, a disorder of isoprene biosynthesis. Hum Mol Genet 1999; 8:1523-8. [PMID: 10401001 DOI: 10.1093/hmg/8.8.1523] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mevalonic aciduria is a rare autosomal recessive metabolic disorder, characterized by psychomotor retardation, failure to thrive, hepatosplenomegaly, anemia and recurrent febrile crises. The disorder is caused by a deficient activity of mevalonate kinase due to mutations in the encoding gene. Thus far, only two disease-causing mutations have been identified. We now report four different missense mutations including three novel ones, which were identified by sequence analysis of mevalonate kinase cDNA from three mevalonic aciduria patients. All mutations affect conserved amino acids. Heterologous expression of the corresponding mutant mevalonate kinases as fusion proteins with glutathione S -transferase in Escherichia coli showed a profound effect of each of the mutations on enzyme activity. In addition, immunoblot analysis of fibroblast lysates from patients using specific antibodies against mevalonate kinase identified virtually no protein. These results demonstrate that the mutations affect not only the activity but also the stability of the mutant proteins.
Collapse
Affiliation(s)
- S M Houten
- Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vida T, Gerhardt B. A cell-free assay allows reconstitution of Vps33p-dependent transport to the yeast vacuole/lysosome. J Cell Biol 1999; 146:85-98. [PMID: 10402462 PMCID: PMC2199724 DOI: 10.1083/jcb.146.1.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 06/08/1999] [Indexed: 11/22/2022] Open
Abstract
We report a cell-free system that measures transport-coupled maturation of carboxypeptidase Y (CPY). Yeast spheroplasts are lysed by extrusion through polycarbonate filters. After differential centrifugation, a 125,000-g pellet is enriched for radiolabeled proCPY and is used as "donor" membranes. A 15,000-g pellet, harvested from nonradiolabeled cells and enriched for vacuoles, is used as "acceptor" membranes. When these membranes are incubated together with ATP and cytosolic extracts, approximately 50% of the radiolabeled proCPY is processed to mature CPY. Maturation was inhibited by dilution of donor and acceptor membranes during incubation, showed a 15-min lag period, and was temperature sensitive. Efficient proCPY maturation was possible when donor membranes were from a yeast strain deleted for the PEP4 gene (which encodes the principal CPY processing enzyme, proteinase A) and acceptor membranes from a PEP4 yeast strain, indicating intercompartmental transfer. Cytosol made from a yeast strain deleted for the VPS33 gene was less efficient at driving transport. Moreover, antibodies against Vps33p (a Sec1 homologue) and Vam3p (a Q-SNARE) inhibited transport >90%. Cytosolic extracts from yeast cells overexpressing Vps33p restored transport to antibody-inhibited assays. This cell-free system has allowed the demonstration of reconstituted intercompartmental transport coupled to the function of a VPS gene product.
Collapse
Affiliation(s)
- T Vida
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
32
|
Tall GG, Hama H, DeWald DB, Horazdovsky BF. The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell 1999; 10:1873-89. [PMID: 10359603 PMCID: PMC25384 DOI: 10.1091/mbc.10.6.1873] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.
Collapse
Affiliation(s)
- G G Tall
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9038, USA
| | | | | | | |
Collapse
|
33
|
Li Y, Kane T, Tipper C, Spatrick P, Jenness DD. Yeast mutants affecting possible quality control of plasma membrane proteins. Mol Cell Biol 1999; 19:3588-99. [PMID: 10207082 PMCID: PMC84152 DOI: 10.1128/mcb.19.5.3588] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/1998] [Accepted: 01/30/1999] [Indexed: 11/20/2022] Open
Abstract
Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.
Collapse
Affiliation(s)
- Y Li
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | | | | | |
Collapse
|
34
|
Conibear E, Stevens TH. Multiple sorting pathways between the late Golgi and the vacuole in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:211-30. [PMID: 9714809 DOI: 10.1016/s0167-4889(98)00058-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Newly synthesized proteins that reach the last compartment of the Golgi complex can be sorted into pathways leading either to the cell surface or to the vacuole. It now appears that there are at least two routes from the Golgi to the vacuole: the 'CPY pathway', which involves transit through an endosomal/prevacuolar compartment (PVC), and a recently discovered 'ALP pathway', which bypasses the PVC, but may involve other as yet unidentified intermediate compartments. No cytosolic signal has been identified that directs the entry of membrane proteins into the CPY pathway. In contrast, the transport of ALP through the ALP pathway is saturable and signal mediated. Much recent work has focused on the identification of proteins that regulate trafficking to the vacuole. A number of genes have been identified that are specific for either the CPY or ALP sorting pathways, while other genes affect both types of transport and may therefore act at or after a point of convergence. Progress has also been made in further elucidating the members of the SNARE complexes that act in Golgi-to-PVC transport as well as those that mediate fusion with the vacuole.
Collapse
Affiliation(s)
- E Conibear
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | |
Collapse
|
35
|
Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 1998; 62:230-47. [PMID: 9529893 PMCID: PMC98912 DOI: 10.1128/mmbr.62.1.230-247.1998] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Delivery of proteins to the vacuole of the yeast Saccharomyces cerevisiae provides an excellent model system in which to study vacuole and lysosome biogenesis and membrane traffic. This organelle receives proteins from a number of different routes, including proteins sorted away from the secretory pathway at the Golgi apparatus and endocytic traffic arising from the plasma membrane. Genetic analysis has revealed at least 60 genes involved in vacuolar protein sorting, numerous components of a novel cytoplasm-to-vacuole transport pathway, and a large number of proteins required for autophagy. Cell biological and biochemical studies have provided important molecular insights into the various protein delivery pathways to the yeast vacuole. This review describes the various pathways to the vacuole and illustrates how they are related to one another in the vacuolar network of S. cerevisiae.
Collapse
Affiliation(s)
- N J Bryant
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
36
|
Voos W, Stevens TH. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J Cell Biol 1998; 140:577-90. [PMID: 9456318 PMCID: PMC2140161 DOI: 10.1083/jcb.140.3.577] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1997] [Revised: 12/02/1997] [Indexed: 02/06/2023] Open
Abstract
The dynamic vesicle transport processes at the late-Golgi compartment of Saccharomyces cerevisiae (TGN) require dedicated mechanisms for correct localization of resident membrane proteins. In this study, we report the identification of a new gene, GRD19, involved in the localization of the model late-Golgi membrane protein A-ALP (consisting of the cytosolic domain of dipeptidyl aminopeptidase A [DPAP A] fused to the transmembrane and lumenal domains of the alkaline phosphatase [ALP]), which localizes to the yeast TGN. A grd19 null mutation causes rapid mislocalization of the late-Golgi membrane proteins A-ALP and Kex2p to the vacuole. In contrast to previously identified genes involved in late-Golgi membrane protein localization, grd19 mutations cause only minor effects on vacuolar protein sorting. The recycling of the carboxypeptidase Y sorting receptor, Vps10p, between the TGN and the prevacuolar compartment is largely unaffected in grd19Delta cells. Kinetic assays of A-ALP trafficking indicate that GRD19 is involved in the process of retrieval of A-ALP from the prevacuolar compartment. GRD19 encodes a small hydrophilic protein with a predominantly cytosolic distribution. In a yeast mutant that accumulates an exaggerated form of the prevacuolar compartment (vps27), Grd19p was observed to localize to this compartment. Using an in vitro binding assay, Grd19p was found to interact physically with the cytosolic domain of DPAP A. We conclude that Grd19p is a component of the retrieval machinery that functions by direct interaction with the cytosolic tails of certain TGN membrane proteins during the sorting/budding process at the prevacuolar compartment.
Collapse
Affiliation(s)
- W Voos
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
37
|
Gomes De Mesquita DS, Shaw J, Grimbergen JA, Buys MA, Dewi L, Woldringh CL. Vacuole segregation in the Saccharomyces cerevisiae vac2-1 mutant: structural and biochemical quantification of the segregation defect and formation of new vacuoles. Yeast 1997; 13:999-1008. [PMID: 9290204 DOI: 10.1002/(sici)1097-0061(19970915)13:11<999::aid-yea151>3.0.co;2-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The conditional vacuolar segregation mutant vac2-1 [Shaw and Wickner (1991) EMBO J. 10, 1741-1748] shifted to non-permissive temperature (37 degrees C), forms large-budded cells without a vacuole in the bud, and daughter cells without an apparent vacuole. Some cells still contain normal segregation structures. Structural and biochemical quantification of the segregation defect showed that (i) about 10% of the full-grown buds did not contain a vacuole, (ii) about 15% of the small cells washed out of a population growing in an elutriation chamber at 37 degrees C, did not contain a visible vacuole, and (iii) 15% of the cells per generation lost carboxypeptidase Y activity after proteinase A depletion. Thus, 10-15% of the daughter cells did not inherit vacuolar structures or vacuolar proteolytic activity from the mother cell. To investigate the fate of vacuole-less daughters, these cells were isolated by optical trapping. The isolated cells formed colonies on agar plates that consisted of cells with normal vacuoles, both at 23 and 37 degrees C. Thus, the vacuole-less cells that failed to inherit proteolytic activities from the mother cell apparently give rise to progeny containing structurally normal vacuoles. Time-lapse experiments showed that vacuole-less daughter cells formed vacuolar vesicles that fused into a new vacuole within 30 min. Although new buds only emerged after a vacuole had formed in the mother cell, the temporary lack of a vacuole had little effect on growth rate. The results suggest that an alternative pathway for vacuole formation exists, and that yeast cells may require a vacuole of some minimal size to initiate a new round of budding.
Collapse
Affiliation(s)
- D S Gomes De Mesquita
- Department of Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Piper RC, Bryant NJ, Stevens TH. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 1997; 138:531-45. [PMID: 9245784 PMCID: PMC2141640 DOI: 10.1083/jcb.138.3.531] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1997] [Revised: 06/05/1997] [Indexed: 02/04/2023] Open
Abstract
Membrane trafficking intermediates involved in the transport of proteins between the TGN and the lysosome-like vacuole in the yeast Saccharomyces cerevisiae can be accumulated in various vps mutants. Loss of function of Vps45p, an Sec1p-like protein required for the fusion of Golgi-derived transport vesicles with the prevacuolar/endosomal compartment (PVC), results in an accumulation of post-Golgi transport vesicles. Similarly, loss of VPS27 function results in an accumulation of the PVC since this gene is required for traffic out of this compartment. The vacuolar ATPase subunit Vph1p transits to the vacuole in the Golgi-derived transport vesicles, as defined by mutations in VPS45, and through the PVC, as defined by mutations in VPS27. In this study we demonstrate that, whereas VPS45 and VPS27 are required for the vacuolar delivery of several membrane proteins, the vacuolar membrane protein alkaline phosphatase (ALP) reaches its final destination without the function of these two genes. Using a series of ALP derivatives, we find that the information to specify the entry of ALP into this alternative pathway to the vacuole is contained within its cytosolic tail, in the 13 residues adjacent to the transmembrane domain, and loss of this sorting determinant results in a protein that follows the VPS-dependent pathway to the vacuole. Using a combination of immunofluorescence localization and pulse/chase immunoprecipitation analysis, we demonstrate that, in addition to ALP, the vacuolar syntaxin Vam3p also follows this VPS45/27-independent pathway to the vacuole. In addition, the function of Vam3p is required for membrane traffic along the VPS-independent pathway.
Collapse
Affiliation(s)
- R C Piper
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
39
|
Horazdovsky BF, Davies BA, Seaman MN, McLaughlin SA, Yoon S, Emr SD. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 1997; 8:1529-41. [PMID: 9285823 PMCID: PMC276174 DOI: 10.1091/mbc.8.8.1529] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of the Saccharomyces cerevisiae vacuolar protein-sorting (vps) mutants exhibit an altered vacuolar morphology. Unlike wild-type cells that contain 1-3 large vacuolar structures, the class B vps5 and vps17 mutant cells contain 10-20 smaller vacuole-like compartments. To explore the role of these VPS gene products in vacuole biogenesis, we cloned and sequenced VPS5 and characterized its protein products. The VPS5 gene is predicted to encode a very hydrophilic protein of 675 amino acids that shows significant sequence homology with mammalian sorting nexin-1. Polyclonal antiserum directed against the VPS5 gene product detects a single, cytoplasmic protein that is phosphorylated specifically on a serine residue(s). Subcellular fractionation studies indicate that Vps5p is associated peripherally with a dense membrane fraction distinct from Golgi, endosomal, and vacuolar membranes. This association was found to be dependent on the presence of another class B VPS gene product, Vps17p. Biochemical cross-linking studies demonstrated that Vps5p and Vps17p physically interact. Gene disruption experiments show that the VPS5 genes product is not essential for cell viability; however, cells carrying the null allele contain fragmented vacuoles and exhibit defects in vacuolar protein-sorting similar to vps17 null mutants. More than 95% of carboxypeptidase Y is secreted from these cells in its Golgi-modified p2 precursor form. Additionally, the Vps10p vacuolar protein-sorting receptor is mislocalized to the vacuole in vps5 mutant cells. On the basis of these and other observations, we propose that the Vps17p protein complex may participate in the intracellular trafficking of the Vps10p-sorting receptor, as well as other later-Golgi proteins.
Collapse
Affiliation(s)
- B F Horazdovsky
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038, USA
| | | | | | | | | | | |
Collapse
|
40
|
Burd CG, Peterson M, Cowles CR, Emr SD. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 1997; 8:1089-104. [PMID: 9201718 PMCID: PMC305716 DOI: 10.1091/mbc.8.6.1089] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The vacuolar protein-sorting (VPS) pathway of Saccharomyces cerevisiae mediates localization of proteins from the trans-Golgi to the vacuole via a prevacuolar endosome compartment. Mutations in class D vacuolar protein-sorting (vps) genes affect vesicle-mediated Golgi-to-endosome transport and result in secretion of vacuolar proteins. Temperature-sensitive-for-function (tsf) and dominant negative mutations in PEP12, encoding a putative SNARE vesicle receptor on the endosome, and tsf mutations in VAC1, a gene implicated in vacuole inheritance and vacuolar protein sorting, were constructed and used to demonstrate that Pep12p and Vac1p are components of the VPS pathway. The sequence of Vac1p contains two putative zinc-binding RING motifs, a zinc finger motif, and a coiled-coil motif. Site-directed mutations in the carboxyl-terminal RING motif strongly affected vacuolar protein sorting. Vac1p was found to be tightly associated with membranes as a monomer and in a large SDS-resistant complex. By using Pep12p affinity chromatography, we found that Vac1p, Vps45p (SEC1 family member), and Sec18p (yeast N-ethyl maleimide-sensitive factor, NSF) bind Pep12p. Consistent with a functional role for this complex in vacuolar protein sorting, double pep12tsfvac1tsf and pep12tsf vps45tsf mutants exhibited synthetic Vps- phenotypes, the tsf phenotype of the vac1tsf mutant was rescued by overexpression of VPS45 or PEP12, overexpression of a dominant pep12 allele in a sec18-1 strain resulted in a severe synthetic growth defect that was rescued by deletion of PEP12 or VAC1, and subcellular fractionation of vac1 delta cells revealed a striking change in the fractionation of Pep12p and Vps21p, a rab family GTPase required for vacuolar protein sorting. The functions of Pep12p, Vps45p, and Vps21p indicate that key aspects of Golgi-to-endosome trafficking are similar to other vesicle-mediated transport steps, although the role of Vac1p suggests that there are also novel components of the VPS pathway.
Collapse
Affiliation(s)
- C G Burd
- Division of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla 92093-0668, USA
| | | | | | | |
Collapse
|
41
|
da Silva Conceição A, Marty-Mazars D, Bassham DC, Sanderfoot AA, Marty F, Raikhel NV. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. THE PLANT CELL 1997; 9:571-582. [PMID: 9144962 DOI: 10.1105/tpc.9.4.571] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soluble proteins are transported to the plant vacuole through the secretory pathway via membrane-bound vesicles. Targeting of vesicles to appropriate organelles requires several membrane-bound and soluble factors that have been characterized in yeast and mammalian systems. For example, the yeast PEP12 protein is a syntaxin homolog that is involved in protein transport to the yeast vacuole. Previously, we isolated an Arabidopsis thaliana homolog of PEP12 by functional complementation of the yeast pep12 mutant. Antibodies raised against the cytoplasmic portion of AtPEP12 have been prepared and used for intracellular localization of this protein. Biochemical analysis indicates that AtPEP12 does not localize to the endoplasmic reticulum, Golgi apparatus, plasma membrane, or tonoplast in Arabidopsis plants; furthermore, based on biochemical and electron microscopy immunogold labeling analyses, AtPEP12 is likely to be localized to a post-Golgi compartment in the vacuolar pathway.
Collapse
|
42
|
Horazdovsky BF, Cowles CR, Mustol P, Holmes M, Emr SD. A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization. J Biol Chem 1996; 271:33607-15. [PMID: 8969229 DOI: 10.1074/jbc.271.52.33607] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genetic analyses of vacuolar protein sorting in Saccharomyces cerevisiae have uncovered a large number of mutants (vps) that missort and secrete soluble vacuolar hydrolases. Here we report the characterization of the gene product affected in one of these mutants, Vps8p. Polyclonal antiserum raised against a trpE-Vps8 fusion protein specifically detects a 134-kDa protein in labeled yeast cell extracts. Subcellular fractionation studies demonstrate that Vps8p is distributed between a low speed membrane pellet fraction and a high speed membrane pellet fraction. The lack of a hydrophobic domain in Vps8p suggests that Vps8p peripherally associates with a membrane(s). This association was found to depend on the function of Vps21p, a member of the Rab/Ypt/Sec4 family of small GTPases. In vps21 null mutant cells, Vps8p is found in the cytosol. In addition, overexpression of Vps21p partially suppresses a vps8 null mutant, indicating that Vps8p and Vps21p functionally interact. Vps8p contains a C-terminal cysteine-rich region that conforms to the H2 variant of the RING finger Zn2+ binding motif. Truncation of this C-terminal region partially compromises Vps8p function. While vps8 null mutant strains missort and secrete soluble vacuolar hydrolases, the integral vacuolar membrane protein, alkaline phosphatase (ALP), is sorted to the vacuole and matured normally. In addition, when vps8 mutants are combined with endocytic or late secretory pathway mutants (end3 or sec1, respectively), ALP is still delivered to the vacuole. These observations indicate that ALP is sorted to the vacuole in a Vps8p-independent manner, possibly via an alternative vesicle carrier.
Collapse
Affiliation(s)
- B F Horazdovsky
- Department of Biochemistry, Texas Southwestern Medical Center, Dallas, Texas 75235-9038, USA
| | | | | | | | | |
Collapse
|
43
|
Hill KL, Catlett NL, Weisman LS. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 1996; 135:1535-49. [PMID: 8978821 PMCID: PMC2133941 DOI: 10.1083/jcb.135.6.1535] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that mediate this event are unknown, the vacuole's rapid and directed movements suggest cytoskeleton involvement. To identify cytoskeletal components that function in this process, vacuole inheritance was examined in a collection of actin mutants. Six strains were identified as being defective in vacuole inheritance. Tetrad analysis verified that the defect cosegregates with the mutant actin gene. One strain with a deletion in a myosin-binding region was analyzed further. The vacuole inheritance defect in this strain appears to result from the loss of a specific actin function; the actin cytoskeleton is intact and protein targeting to the vacuole is normal. Consistent with these findings, a mutation in the actin-binding domain of Myo2p, a class V unconventional myosin, abolishes vacuole inheritance. This suggests that Myo2p serves as a molecular motor for vacuole transport along actin filaments. The location of actin and Myo2p relative to the vacuole membrane is consistent with this model. Additional studies suggest that the actin filaments used for vacuole transport are dynamic, and that profilin plays a critical role in regulating their assembly. These results present the first demonstration that specific cytoskeletal proteins function in vacuole inheritance.
Collapse
Affiliation(s)
- K L Hill
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
44
|
Abstract
We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y. were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division.
Collapse
Affiliation(s)
- A D Roeder
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
45
|
Wang YX, Zhao H, Harding TM, Gomes de Mesquita DS, Woldringh CL, Klionsky DJ, Munn AL, Weisman LS. Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol Biol Cell 1996; 7:1375-89. [PMID: 8885233 PMCID: PMC275988 DOI: 10.1091/mbc.7.9.1375] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Saccharomyces cerevisiae the vacuoles are partitioned from mother cells to daughter cells in a cell-cycle-coordinated process. The molecular basis of this event remains obscure. To date, few yeast mutants had been identified that are defective in vacuole partitioning (vac), and most such mutants are also defective in vacuole protein sorting (vps) from the Golgi to the vacuole. Both the vps mutants and previously identified non-vps vac mutants display an altered vacuolar morphology. Here, we report a new method to monitor vacuole inheritance and the isolation of six new non-vps vac mutants. They define five complementation groups (VAC8-VAC12). Unlike mutants identified previously, three of the complementation groups exhibit normal vacuolar morphology. Zygote studies revealed that these vac mutants are also defective in intervacuole communication. Although at least four pathways of protein delivery to the vacuole are known, only the Vps pathway seems to significantly overlap with vacuole partitioning. Mutants defective in both vacuole partitioning and endocytosis or vacuole partitioning and autophagy were not observed. However, one of the new vac mutants was additionally defective in direct protein transport from the cytoplasm to the vacuole.
Collapse
Affiliation(s)
- Y X Wang
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lussier M, Sdicu AM, Camirand A, Bussey H. Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J Biol Chem 1996; 271:11001-8. [PMID: 8631921 DOI: 10.1074/jbc.271.18.11001] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic glycan structures are progressively elaborated in the secretory pathway. Following the addition of a core N-linked carbohydrate in the endoplasmic reticulum, glycoproteins move to the Golgi complex where the elongation of O-linked sugar chains and processing of complex N-linked oligosaccharide structures take place. In order to better define how such post-translational modifications occur, we have been studying a yeast gene family in which at least one member, KRE2/MNT1, is involved in protein glycosylation. The family currently contains five other members: YUR1, KTR1, KTR2, KTR3 and KTR4 (Mallet, L., Bussereau, F., and Jacquet, M. (1994) Yeast 10, 819-831). All encode putative type II membrane proteins with a short cytoplasmic N terminus, a membrane-spanning region, and a highly conserved catalytic lumenal domain. Kre2p/Mnt1p is a alpha 1,2-mannosyltransferase involved in O- and N-linked glycosylation (Häusler, A., Ballou, L., Ballou, C.E., and Robbins, P.W. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6846-6850); however, the role of the other proteins has not yet been established. We have carried out a functional analysis of Ktr1p, Ktr2p, and Yur1p. By in vitro assays, Ktr1p, Ktr2p, and Yur1p have been shown to be mannosyltransferase but, in vivo, do not appear to be involved in O-glycosylation. Examination of the electrophoretic mobility of the N-linked modified protein invertase in null mutant strains indicates that Ktr1p, Ktr2p, and Yur1p are involved in N-linked glycosylation, possibly as redundant enzymes. As found with Kre2p (Hill, K., Boone, C., Goebl, M., Puccia, R., Sdicu, A.-M., and Bussey, H. (1992) Genetics 130, 273-283), Ktr1p, Ktr2p, and Yur1p also seem to be implicated in the glycosylation of cell wall mannoproteins, since yeast cells containing different gene disruptions become K1 killer toxin-resistant. Immunofluorescence microscopy reveals that like Kre2p; Ktr1p, Ktr2p and Yur1p are localized in the Golgi complex.
Collapse
Affiliation(s)
- M Lussier
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
47
|
Lussier M, Sdicu AM, Ketela T, Bussey H. Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1,2-mannosyltransferase to a medial-Golgi compartment. J Biophys Biochem Cytol 1995; 131:913-27. [PMID: 7490293 PMCID: PMC2200012 DOI: 10.1083/jcb.131.4.913] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The yeast Kre2p/Mnt1p alpha 1,2-mannosyltransferase is a type II membrane protein with a short cytoplasmic amino terminus, a membrane-spanning region, and a large catalytic luminal domain containing one N-glycosylation site. Anti-Kre2p/Mnt1p antibodies identify a 60-kD integral membrane protein that is progressively N-glycosylated in an MNN1-dependent manner. Kre2p/Mnt1p is localized in a Golgi compartment that overlaps with that containing the medial-Golgi mannosyltransferase Mnn1p, and distinct from that including the late Golgi protein Kex1p. To determine which regions of Kre2p/Mnt1p are required for Golgi localization, Kre2p/Mnt1p mutant proteins were assembled by substitution of Kre2p domains with equivalent sequences from the vacuolar proteins DPAP B and Pho8p. Chimeric proteins were tested for correct topology, in vitro and in vivo activity, and were localized intracellularly by indirect immunofluorescence. The results demonstrate that the NH2-terminal cytoplasmic domain is necessary for correct Kre2p Golgi localization whereas, the membrane-spanning and stem domains are dispensable. However, in a test of targeting sufficiency, the presence of the entire Kre2p cytoplasmic tail, plus the transmembrane domain and a 36-amino acid residue luminal stem region was required to localize a Pho8p reporter protein to the yeast Golgi.
Collapse
Affiliation(s)
- M Lussier
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
48
|
Piper RC, Cooper AA, Yang H, Stevens TH. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol 1995; 131:603-17. [PMID: 7593183 PMCID: PMC2120612 DOI: 10.1083/jcb.131.3.603] [Citation(s) in RCA: 325] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Newly synthesized vacuolar hydrolases such as carboxypeptidase Y (CPY) are sorted from the secretory pathway in the late-Golgi compartment and reach the vacuole after a distinct set of membrane-trafficking steps. Endocytosed proteins are also delivered to the vacuole. It has been proposed that these pathways converge at a "prevacuolar" step before delivery to the vacuole. One group of genes has been described that appears to control both of these pathways. Cells carrying mutations in any one of the class E VPS (vacuolar protein sorting) genes accumulate vacuolar, Golgi, and endocytosed proteins in a novel compartment adjacent to the vacuole termed the "class E" compartment, which may represent an exaggerated version of the physiological prevacuolar compartment. We have characterized one of the class E VPS genes, VPS27, in detail to address this question. Using a temperature-sensitive allele of VPS27, we find that upon rapid inactivation of Vps27p function, the Golgi protein Vps10p (the CPY-sorting receptor) and endocytosed Ste3p rapidly accumulate in a class E compartment. Upon restoration of Vps27p function, the Vps10p that had accumulated in the class E compartment could return to the Golgi apparatus and restore correct sorting of CPY. Likewise, Ste3p that had accumulated in the class E compartment en route to the vacuole could progress to the vacuole upon restoration of Vps27p function indicating that the class E compartment can act as a functional intermediate. Because both recycling Golgi proteins and endocytosed proteins rapidly accumulate in a class E compartment upon inactivation of Vps27p, we propose that Vps27p controls membrane traffic through the prevacuolar/endosomal compartment in wild-type cells.
Collapse
Affiliation(s)
- R C Piper
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | | | | | |
Collapse
|
49
|
Lum PY, Wright R. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. J Biophys Biochem Cytol 1995; 131:81-94. [PMID: 7559789 PMCID: PMC2120600 DOI: 10.1083/jcb.131.1.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells.
Collapse
Affiliation(s)
- P Y Lum
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
50
|
Liu H, Tan X, Russell KA, Veenhuis M, Cregg JM. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 1995; 270:10940-51. [PMID: 7738036 DOI: 10.1074/jbc.270.18.10940] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PER genes are essential for the biogenesis of peroxisomes in the yeast Pichia pastoris. Here we describe the cloning of PER3 and functional characterization of its product Per3p. The PER3 sequence predicts that Per3p is a 713-amino acid (81-kDa) hydrophobic protein with at least three potential membrane-spanning domains. We show that Per3p is a membrane protein of the peroxisome. Methanol- or oleate-induced cells of per3-1, a mutant strain generated by chemical mutagenesis, lack normal peroxisomes but contain numerous abnormal vesicular structures. The vesicles contain thiolase, a PTS2 protein, but only a small portion of several other peroxisomal enzymes, including heterologously expressed luciferase, a PTS1 protein. These results suggest that the vesicles in per3-1 cells are peroxisomal remnants similar to those observed in cells of patients with the peroxisomal disorder Zellweger syndrome, and that the mutant is deficient in PTS1 but not PTS2 import. In a strain in which most of PER3 was deleted, peroxisomes as well as peroxisomal remnants appeared to be completely absent, and both PTS1- and PTS2-containing enzymes were located in the cytosol. We propose that Per3p is an essential component of the machinery required for import of all peroxisomal matrix proteins and is composed of independent domains involved in the import of specific PTS groups.
Collapse
Affiliation(s)
- H Liu
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|