1
|
Teramoto S, Ueno T, Aono F, Okubo T, Segawa T, Osada H, Shozu M. Anticentromere antibodies are the most potent antinuclear antibodies in reducing live birth outcomes after ICSI. Reprod Biomed Online 2024; 49:103864. [PMID: 38688121 DOI: 10.1016/j.rbmo.2024.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 05/02/2024]
Abstract
RESEARCH QUESTION How, and to what extent, do anticentromere antibodies (ACA) reduce live birth outcomes after ICSI? STUDY DESIGN Retrospective cohort study of infertile women aged 30-43 years who underwent ICSI between September 2016 and March 2021. Women with a history or current diagnosis of symptomatic connective tissue disease were excluded. Immunofluorescence staining detected antinuclear antibodies (ANA). Staining pattern and titre (cut-off, 1:160) were used to divide infertile women into three groups: positive for ACA (ACA+) (n = 28); positive for ANA other than ACA (ANA+) (n = 77); and negative for both ACA and ANA (control) (n = 3723). RESULTS Cumulative live birth rate (CLB) was lowest in ACA+ (7%, 31% and 46% in ACA+, ANA+ and control, respectively) (ACA+ versus control, P < 0.0001; ACA+ versus ANA+, P = 0.011; ANA+ versus control, P = 0.012). A small impairment in meiosis I and a larger impairment in meiosis II, fertilization and embryo cleavage caused the decrease. Multiple pronuclei formation increased (RR versus control, 5.33; 95% CI 4.26 to 6.65) and good-quality blastocyst development decreased (RR 0.34; 95% CI 0.22 to 0.53). Multiple logistic regression analysis showed that ACA was associated with CLB outcome (OR 0.08, 95% CI 0.02 to 0.36); the other four ANA staining patterns were not. CONCLUSIONS The effect of ACA on live birth outcomes is strongest after ICSI among ANA, primarily through the impairment of meiosis II and subsequent stages. Repeated ICSI failure and eggs with multiple pronuclei may warrant specific testing for ACA.
Collapse
Affiliation(s)
- Shokichi Teramoto
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Tsuyoshi Ueno
- Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Fumihito Aono
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Tsuyoshi Okubo
- Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Tomoya Segawa
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008.; Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Hisao Osada
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Makio Shozu
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008.; Evolution and Reproduction Biology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, Chiba Prefecture, Japan, 260-8673..
| |
Collapse
|
2
|
Pitfalls in establishing mouse model of female infertility by immunization with human centromere protein. Immunol Lett 2021; 239:20-22. [PMID: 34418489 DOI: 10.1016/j.imlet.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
|
3
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Immunization with CENP-C Causes Aberrant Chromosome Segregation during Oocyte Meiosis in Mice. J Immunol Res 2021; 2021:4610494. [PMID: 33604391 PMCID: PMC7868151 DOI: 10.1155/2021/4610494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Anticentromere antibodies (ACA) were associated with lower oocyte maturation rates and cleavage rates, while the mechanism was not clear. Aims of this study were to examine whether active immunization with centromere protein C could elicit the CENP-C autoantibody in mice and the impacts of the CENP-C autoantibody on oocyte meiosis. Mice were divided into two groups, one was the experimental group immunized with human centromere protein C and Freund's adjuvant (CFA), and the other was the control group injected with CFA only. Serum and oocytes of BALB/c mice immunized with human centromere protein C (CENP-C) in complete Freund's adjuvant (CFA) or injected with only CFA were studied for the development of the CENP-C antibody. Rates of germinal vesicle breakdown (GVBD), first polar body (Pb1) extrusion, abnormal spindle morphology, and chromosome misalignment were compared between the experimental group and the control group. The CENP-C antibody was only observed in serum and oocytes of mice immunized with the centromere protein C antigen. The first polar body (Pb1) extrusion rate was lower in the experimental group (P < 0.01). A higher percentage of spindle defects and chromosome congression failure were also detected in the experimental group (spindle defects: 64.67 ± 1.16% vs. 9.27 ± 2.28% control; chromosome misalignment: 50.80 ± 2.40% vs. 8.30 ± 1.16% control; P < 0.01 for both). Oocyte meiosis was severely impaired by the CENP-C antibody, which may be the main mechanism of adverse reproductive outcomes for ACA-positive women who have no clinical symptoms of any autoimmune diseases.
Collapse
|
5
|
Gahoi N, Syed P, Choudhary S, Epari S, Moiyadi A, Varma SG, Gandhi MN, Srivastava S. A Protein Microarray-Based Investigation of Cerebrospinal Fluid Reveals Distinct Autoantibody Signature in Low and High-Grade Gliomas. Front Oncol 2020; 10:543947. [PMID: 33415070 PMCID: PMC7784397 DOI: 10.3389/fonc.2020.543947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gliomas are one of the most aggressive primary brain tumors arising from neural progenitor cells. Delayed diagnosis, invasive biopsy, and diagnostic challenges stems the need for specific, minimally-invasive, and early diagnostic biomarkers. Tumor-associated (TA) autoantibodies are measurable in the biofluids long before the onset of the symptoms, suggesting their role in early diagnosis and clinical management of the patients. In the current study, cerebrospinal fluid (CSF) samples from patients with low-grade glioma (LGG) and the Glioblastoma multiforme (GBM) that characterizes advanced disease were compared with healthy control samples to identify putative TA autoantibodies, using protein microarrays. The CSF samples from LGGs (n = 10), GBM (n = 7) were compared with the control CSF samples (n = 6). Proteins showing significant antigenic response were cross-verified. Proteins NOL4 (a cancer-testis antigen) and KALRN showed an antigenic response in the CSF of GBM patients, whereas, UTP4 and CCDC28A showed an antigenic response in low grade gliomas when compared with the control samples. TA autoantibodies identified in this study from the CSF of the patients could supplement current screening modalities. Further validation of these TA autoantibodies on a larger clinical cohort could provide cues towards relevance of these proteins in early diagnosis of the disease.
Collapse
Affiliation(s)
- Nikita Gahoi
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Parvez Syed
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Inme Oy, Turku, Finland
| | - Saket Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai, India
| | - Aliasgar Moiyadi
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Santosh G Varma
- Deptartment of Biochemistry, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, India.,Department of Biochemistry, BJ Medical College and Sassoon Hospital, Pune, India
| | - Mayuri N Gandhi
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Senécal JL, Hoa S, Yang R, Koenig M. Pathogenic roles of autoantibodies in systemic sclerosis: Current understandings in pathogenesis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:103-129. [PMID: 35382028 PMCID: PMC8922609 DOI: 10.1177/2397198319870667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 09/12/2023]
Abstract
The potential pathogenic role for autoantibodies in systemic sclerosis has captivated researchers for the past 40 years. This review answers the question whether there is yet sufficient knowledge to conclude that certain serum autoantibodies associated with systemic sclerosis contribute to its pathogenesis. Definitions for pathogenic, pathogenetic and functional autoantibodies are formulated, and the need to differentiate these autoantibodies from natural autoantibodies is emphasized. In addition, seven criteria for the identification of pathogenic autoantibodies are proposed. Experimental evidence is reviewed relevant to the classic systemic sclerosis antinuclear autoantibodies, anti-topoisomerase I and anticentromere, and to functional autoantibodies to endothelin 1 type A receptor, angiotensin II type 1 receptor, muscarinic receptor 3, platelet-derived growth factor receptor, chemokine receptors CXCR3 and CXCR4, estrogen receptor α, and CD22. Pathogenic evidence is also reviewed for anti-matrix metalloproteinases 1 and 3, anti-fibrillin 1, anti-IFI16, anti-eIF2B, anti-ICAM-1, and anti-RuvBL1/RuvBL2 autoantibodies. For each autoantibody, objective evidence for a pathogenic role is scored qualitatively according to the seven pathogenicity criteria. It is concluded that anti-topoisomerase I is the single autoantibody specificity with the most evidence in favor of a pathogenic role in systemic sclerosis, followed by anticentromere. However, these autoantibodies have not been demonstrated yet to fulfill completely the seven proposed criteria for pathogenicity. Their contributory roles to the pathogenesis of systemic sclerosis remain possible but not yet conclusively demonstrated. With respect to functional autoantibodies and other autoantibodies, only a few criteria for pathogenicity are fulfilled. Their common presence in healthy and disease controls suggests that major subsets of these immunoglobulins are natural autoantibodies. While some of these autoantibodies may be pathogenetic in systemic sclerosis, establishing that they are truly pathogenic is a work in progress. Experimental data are difficult to interpret because high serum autoantibody levels may be due to polyclonal B-cell activation. Other limitations in experimental design are the use of total serum immunoglobulin G rather than affinity-purified autoantibodies, the confounding effect of other systemic sclerosis autoantibodies present in total immunoglobulin G and the lack of longitudinal studies to determine if autoantibody titers fluctuate with systemic sclerosis activity and severity. These intriguing new specificities expand the spectrum of autoantibodies observed in systemic sclerosis. Continuing elucidation of their potential mechanistic roles raises hope of a better understanding of systemic sclerosis pathogenesis leading to improved therapies.
Collapse
Affiliation(s)
- Jean-Luc Senécal
- Scleroderma Research Chair, Université de Montréal, Montreal, QC, Canada
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Sabrina Hoa
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Roger Yang
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Martial Koenig
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Division of Internal Medicine, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
8
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
9
|
Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: Opportunities for Early Cancer Detection. Trends Cancer 2017; 3:198-213. [PMID: 28718432 DOI: 10.1016/j.trecan.2017.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
Cancer cells can induce an immunological response resulting in the production of tumor-associated (TA) autoantibodies. These serum immunobiomarkers have been detected for a range of cancers at an early stage before the development of clinical symptoms. Their measurement is minimally invasive and cost effective using established technologies. TA autoantibodies are present in a clinically significant number of individuals and could supplement current screening modalities to aid early diagnosis of high-risk populations and assist the clinical management of patients. Here we review their production, discovery, and validation as biomarkers for cancer and their current and future potential as clinical tools.
Collapse
|
10
|
McIntosh JR, Hays T. A Brief History of Research on Mitotic Mechanisms. BIOLOGY 2016; 5:E55. [PMID: 28009830 PMCID: PMC5192435 DOI: 10.3390/biology5040055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
Abstract
This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Thomas Hays
- Department of Genetics, Cell Biology and Development, Medical School and College of Biological Sciences, University of Minnesota, Saint Paul, MN 55455, USA.
| |
Collapse
|
11
|
Joglekar AP. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. BIOLOGY 2016; 5:biology5040044. [PMID: 27869759 PMCID: PMC5192424 DOI: 10.3390/biology5040044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022]
Abstract
The spindle assembly checkpoint (SAC) is a quality control mechanism that ensures accurate chromosome segregation during cell division. It consists of a mechanochemical signal transduction mechanism that senses the attachment of chromosomes to the spindle, and a signaling cascade that inhibits cell division if one or more chromosomes are not attached. Extensive investigations of both these component systems of the SAC have synthesized a comprehensive understanding of the underlying molecular mechanisms. This review recounts the milestone results that elucidated the SAC, compiles a simple model of the complex molecular machinery underlying the SAC, and highlights poorly understood facets of the biochemical design and cell biological operation of the SAC that will drive research forward in the near future.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Wood L, Booth DG, Vargiu G, Ohta S, deLima Alves F, Samejima K, Fukagawa T, Rappsilber J, Earnshaw WC. Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biol 2016; 6:150230. [PMID: 26791246 PMCID: PMC4736828 DOI: 10.1098/rsob.150230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most studies using knockout technologies to examine protein function have relied either on shutting off transcription (conventional conditional knockouts with tetracycline-regulated gene expression or gene disruption) or destroying the mature mRNA (RNAi technology). In both cases, the target protein is lost at a rate determined by its intrinsic half-life. Thus, protein levels typically fall over at least 1-3 days, and cells continue to cycle while exposed to a decreasing concentration of the protein. Here we characterise the kinetochore proteome of mitotic chromosomes isolated from a cell line in which the essential kinetochore protein CENP-T is present as an auxin-inducible degron (AID) fusion protein that is fully functional and able to support the viability of the cells. Stripping of the protein from chromosomes in early mitosis via targeted proteasomal degradation reveals the dependency of other proteins on CENP-T for their maintenance in kinetochores. We compare these results with the kinetochore proteome of conventional CENP-T/W knockouts. As the cell cycle is mostly formed from G1, S and G2 phases a gradual loss of CENP-T/W levels is more likely to reflect dependencies associated with kinetochore assembly pre-mitosis and upon entry into mitosis. Interestingly, a putative super-complex involving Rod-Zw10-zwilch (RZZ complex), Spindly, Mad1/Mad2 and CENP-E requires the function of CENP-T/W during kinetochore assembly for its stable association with the outer kinetochore, but once assembled remains associated with chromosomes after stripping of CENP-T during mitosis. This study highlights the different roles core kinetochore components may play in the assembly of kinetochores (upon entry into mitosis) versus the maintenance of specific components (during mitosis).
Collapse
Affiliation(s)
- Laura Wood
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Daniel G Booth
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Shinya Ohta
- Center for Innovative and Translational Medicine, Kochi University, Kochi, Japan
| | - Flavia deLima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Suita 565-0871, Japan
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Institute of Bioanalytics, Department of Biotechnology, Technische Universität Berlin, Berlin 13353, Germany
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
13
|
Perosa F, Prete M, Di Lernia G, Ostuni C, Favoino E, Valentini G. Anti-centromere protein A antibodies in systemic sclerosis: Significance and origin. Autoimmun Rev 2015; 15:102-9. [PMID: 26455561 DOI: 10.1016/j.autrev.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/04/2015] [Indexed: 02/03/2023]
Abstract
Systemic sclerosis (SSc) is systemic, autoimmune, connective tissue disorder characterized by vascular abnormalities, collagen deposition (fibrosis), and the production of autoantibodies to nuclear proteins. About 20%-40% of patients have antibodies to centromere protein (CENP)-A or -B. Despite the known association of anti-CENP antibodies with certain clinical features of SSc, the role of these antibodies in SSc physiopathology is still poorly understood. To better understand the clinical significance and origin of these antibodies, we and others have been studying the epitopic motifs (amino acid contact sites) on CENP-A with the aim of determining whether other proteins can prime or be targeted by them. Here, we review published and ongoing studies aimed at defining the fine specificity and origin of anti-CENP-A antibodies. We describe progress made in identifying the CENP-A epitopic motif amino acids, and the discovery of one of these motifs in forkhead box protein E3 (FOXE-3), a transcription factor previously studied only for its role in the development of lens fiber cells. Moreover, we discuss preliminary evidence for a possible role of FOXE-3 in SSc pathogenesis and for the association of different subsets of anti-CENP-A antibodies, heterogeneously expressed among SSc patients, with some clinical correlates.
Collapse
Affiliation(s)
- Federico Perosa
- Department of Biomedical Sciences and Human Oncology (DIMO), Section of Systemic Rheumatic and Autoimmune Diseases, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology (DIMO), Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Giuseppe Di Lernia
- Department of Biomedical Sciences and Human Oncology (DIMO), Section of Systemic Rheumatic and Autoimmune Diseases, University of Bari Medical School, Bari, Italy
| | - Carmela Ostuni
- Department of Biomedical Sciences and Human Oncology (DIMO), Section of Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Elvira Favoino
- Department of Biomedical Sciences and Human Oncology (DIMO), Section of Systemic Rheumatic and Autoimmune Diseases, University of Bari Medical School, Bari, Italy
| | - Gabriele Valentini
- Department of Clinical and Experimental Internal Medicine "F. Magrassi, A. Lanzara", Rheumatology Section, Second University of Naples, Naples, Italy
| |
Collapse
|
14
|
Bronze-da-Rocha E, Lin CM, Shimura T, Aladjem MI. Interactions of MCP1 with components of the replication machinery in mammalian cells. Int J Biol Sci 2011; 7:193-208. [PMID: 21383955 PMCID: PMC3048848 DOI: 10.7150/ijbs.7.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/12/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | | | | | | |
Collapse
|
15
|
Abstract
Although autoantibodies have been recognized as participants in pathogenesis of tissue injury, the collateral role of autoantibodies as reporters from the immune system identifying cellular participants in tumorigenesis has not been fully appreciated. The immune system appears to be capable of sensing aberrant structure, distribution, and function of certain cellular components involved in tumorigenesis and making autoantibody responses to the tumor-associated antigens (TAAs). Autoantibodies to TAAs can report malignant transformation before standard clinical studies and may be useful as early detection biomarkers. The autoantibody response also provides insights into factors related to how cellular components may be rendered immunogenic. As diagnostic biomarkers, specific TAA miniarrays for identifying autoantibody profiles could have sufficient sensitivity in differentiating between types of tumors. Such anti-TAA profiles could also be used to monitor response to therapy. The immune system of cancer patients reveals the immune interactive sites or the autoepitopes of participants in tumorigenesis, and this information should be used in the design of immunotherapy.
Collapse
Affiliation(s)
- Eng M Tan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
16
|
Lisi S, Sisto M, Soleti R, Saponaro C, Scagliusi P, D'Amore M, Saccia M, Maffione AB, Mitolo V. Fcgamma receptors mediate internalization of anti-Ro and anti-La autoantibodies from Sjögren's syndrome and apoptosis in human salivary gland cell line A-253. J Oral Pathol Med 2007; 36:511-23. [PMID: 17850433 DOI: 10.1111/j.1600-0714.2007.00563.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The presence of serum anti-Ro and anti-La autoantibodies directed against the ribonucleoproteins Ro and La has been associated with Sjögren's syndrome (SS), an autoimmune rheumatic disease that targets salivary and lachrymal glands. There is increasing evidence of the direct involvement of autoantibodies in the pathogenesis of tissue injury and correlation of their presence with clinical manifestations in SS. The focus of this work was to explore the cellular apoptotic pathway triggered by binding and penetration of anti-Ro and anti-La autoantibodies in human salivary gland cell line A-253 and to identify the membrane receptors through which anti-Ro and anti-La could exert their effect. METHODS Anti-Ro and anti-La autoantibodies were purified from IgG fractions, obtained from eleven healthy volunteers and patients with primary Sjögren's syndrome, using Sepharose 4B-Ro and Sepharose 4B-La affinity columns. Flow cytometry, RT-PCR, western blot and confocal microscopy analysis were used to visualize the FCgammaRI, FCgammaRII and FCgammaRIII receptors on the A-253 cell membrane. DNA laddering and western blot analysis of caspases activation were studied to evaluate in A-253 cells treated with anti-Ro and anti-La autoantibodies. RESULTS The results yeilded the evidence of the presence of members of the Fcgamma receptors (FcgammaRs) family on the cell membrane of the human salivary gland cell line A-253. Furthermore, we demonstrated that, in the A-253 cell line, anti-Ro and anti-La autoantibodies can access the cells probably through Fcgamma receptors, and trigger apoptotis. CONCLUSIONS We conclude that anti-Ro and anti-La autoantibodies have pathogenic effects that could depend on binding to Fcgamma receptors.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Human Anatomy and Histology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Robitaille G, Hénault J, Christin MS, Senécal JL, Raymond Y. The nuclear autoantigen CENP-B displays cytokine-like activities toward vascular smooth muscle cells. ACTA ACUST UNITED AC 2007; 56:3814-26. [DOI: 10.1002/art.22972] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Gassmann R, Kline SL, Carvalho A, Desai A. Analysis of kinetochore assembly and function in Caenorhabditis elegans embryos and human cells. Methods 2006; 41:177-89. [PMID: 17189860 DOI: 10.1016/j.ymeth.2006.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 11/22/2022] Open
Abstract
All eukaryotes rely on multi-protein assemblies, called kinetochores, to direct the segregation of their chromosomes in mitosis. The list of known kinetochore components has been growing rapidly in the post-genomic era: in animal cells, there are presently more than 80 proteins that show either exclusive or partial localization at kinetochores during mitosis. The future challenge is to elucidate how these proteins contribute to kinetochore structure, spindle microtubule attachment, regulation of microtubule dynamics, and the detection, signaling, and correction of microtubule attachment errors. Cultured human tumor cells, especially HeLa cells, are widely used for the study of kinetochores. Recently, the experimental advantages offered by the nematode Caenorhabditis elegans have been exploited for functional analysis of kinetochore components in the first embryonic division. Here, we discuss basic methods, largely based on fluorescence imaging, to study kinetochore structure and function in these two metazoan model systems.
Collapse
Affiliation(s)
- Reto Gassmann
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, UCSD School of Medicine, CMM-East, Rm 3080, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
19
|
Leslie M. Passenger proteins check in. J Biophys Biochem Cytol 2006. [PMCID: PMC2063642 DOI: 10.1083/jcb1723fta2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Cobb BS, Smale ST. Ikaros-family proteins: in search of molecular functions during lymphocyte development. Curr Top Microbiol Immunol 2005; 290:29-47. [PMID: 16480038 DOI: 10.1007/3-540-26363-2_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulatory steps that lead to the differentiation of hematopoietic cells from a multipotential stem cell remain largely unknown. A beginning to the understanding of these steps has come from the study of DNA-binding proteins that are thought to regulate the expression of genes required for specific developmental events. Ikaros is the founding member of a small family of DNA-binding proteins required for lymphocyte development, but the members of this family differ from other key regulators of lymphopoiesis in that direct target genes have not been conclusively identified, and reasonable support has been presented for only a few potential targets. Therefore, the molecular mechanisms that Ikaros uses for regulating lymphocyte development remain largely unknown. Current data suggest that, in some instances, Ikaros may function as a typical transcription factor. However, recent results suggest that it may function more broadly, perhaps in the formation of silent and active chromatin structures. In this review, our current knowledge of the molecular functions of Ikaros will be discussed.
Collapse
Affiliation(s)
- B S Cobb
- Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
21
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
22
|
Fowler KJ, Wong LH, Griffiths BK, Sibson MC, Reed S, Choo KHA. Centromere protein b-null mice display decreasing reproductive performance through successive generations of breeding due to diminishing endometrial glands. Reproduction 2004; 127:367-77. [PMID: 15016956 DOI: 10.1530/rep.1.00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Centromere protein B is a highly conserved constitutive protein found at centromeres. Gene knockout studies in mice have unexpectedly identified Cenpb as a candidate gene involved in uterine function. The present study further explores the role of Cenpb in mice by intermating Cenpb-null mice over several generations. Breeding studies and analysis of uterine tissue indicate that Cenpb-null mice lose reproductive fitness over a number of generations due to a significant reduction in endometrial glands. These results suggest that Cenpb may play an important function in the short- and long-term maintenance of uterine integrity.
Collapse
Affiliation(s)
- K J Fowler
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Brinkley BR, Ouspenski I, Zinkowski RP. Structure and molecular organization of the centromere-kinetochore complex. Trends Cell Biol 2004; 2:15-21. [PMID: 14731633 DOI: 10.1016/0962-8924(92)90139-e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For over a century, the terms centromere and kinetochore have been used interchangeably to describe a complex locus on eukaryotic chromosomes that attaches chromosomes to spindle fibres and facilitates chromosome movement in mitosis and meiosis. This region has become the focus of research aimed at defining the mechanism of chromosome segregation. A variety of new molecular probes and vastly improved optical-imaging technology have provided much new information on the structure of this locus and raised new hopes that an understanding of its function may soon be at hand.
Collapse
Affiliation(s)
- B R Brinkley
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
24
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
25
|
Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T. CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2002; 2:463-76. [PMID: 11970896 DOI: 10.1016/s1534-5807(02)00144-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We identified a novel essential centromere protein, CENP-I, which shows sequence similarity with fission yeast Mis6 protein, and we showed that CENP-I is a constitutive component of the centromere that colocalizes with CENP-A, -C, and -H throughout the cell cycle in vertebrate cells. To determine the precise function of CENP-I, we examined its role in centromere function by generating a conditional loss-of-function mutant in the chicken DT40 cell line. In the absence of CENP-I, cells arrested at prometaphase with misaligned chromosomes for long periods of time. Eventually, cells exited mitosis without undergoing cytokinesis. Immunocytochemical analysis of CENP-I-deficient cells demonstrated that both CENP-I and CENP-H are necessary for localization of CENP-C but not CENP-A to the centromere.
Collapse
Affiliation(s)
- Ai Nishihashi
- PRESTO, The Japan Science and Technology Corporation, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, 411-8540, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Adams RR, Maiato H, Earnshaw WC, Carmena M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 2001; 153:865-80. [PMID: 11352945 PMCID: PMC2192373 DOI: 10.1083/jcb.153.4.865] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have performed a biochemical and double-stranded RNA-mediated interference (RNAi) analysis of the role of two chromosomal passenger proteins, inner centromere protein (INCENP) and aurora B kinase, in cultured cells of Drosophila melanogaster. INCENP and aurora B function is tightly interlinked. The two proteins bind to each other in vitro, and DmINCENP is required for DmAurora B to localize properly in mitosis and function as a histone H3 kinase. DmAurora B is required for DmINCENP accumulation at centromeres and transfer to the spindle at anaphase. RNAi for either protein dramatically inhibited the ability of cells to achieve a normal metaphase chromosome alignment. Cells were not blocked in mitosis, however, and entered an aberrant anaphase characterized by defects in sister kinetochore disjunction and the presence of large amounts of amorphous lagging chromatin. Anaphase A chromosome movement appeared to be normal, however cytokinesis often failed. DmINCENP and DmAurora B are not required for the correct localization of the kinesin-like protein Pavarotti (ZEN-4/CHO1/MKLP1) to the midbody at telophase. These experiments reveal that INCENP is required for aurora B kinase function and confirm that the chromosomal passengers have essential roles in mitosis.
Collapse
Affiliation(s)
- Richard R. Adams
- Wellcome Center for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Helder Maiato
- Wellcome Center for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - William C. Earnshaw
- Wellcome Center for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Mar Carmena
- Wellcome Center for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
27
|
Bronze-da-Rocha E, Nóvoa A, Cunha C, do Carmo-Fonseca M, Staines NA, Sunkel CE. The human autoantigen MCP1 is required during early stages of DNA replication. Chromosome Res 2001; 8:699-711. [PMID: 11196133 DOI: 10.1023/a:1012097704355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metaphase chromosome protein 1 (MCP1) is a nuclear autoantigen that is associated with condensed chromosomes throughout mitosis. During interphase, this antigen shows a speckle distribution in the nucleus, excluding the nucleolus. Additionally, MCP1 binds tightly to the scaffold/matrix component of nuclei and isolated chromosomes. In order to determine the in-vivo localization of the antigen, we have expressed MCP1 fused to EGFP in tissue culture cells. The results demonstrate that MCP1 is located in the nucleus during interphase and during mitosis associates tightly to condensed chromosomes. Furthermore, microinjection of specific antibody confirms these results. We have used a specific monoclonal antibody (mAb 402) against MCP1 to assess the function of this antigen during cell cycle progression. HeLa and Ptk-2 cells that were microinjected into the nucleus and/or cytoplasm at G1/S and very early S phase were not able to progress and complete DNA replication. However, injection of mAb 402 at mid or late S phase does not prevent completion of DNA replication and subsequent progression into mitosis. Microinjection of mAb 402 in Ptk-2 cells synchronized in mitosis did not interfere with progression of mitosis and cells divided. Our results suggest that MCP1 is required at the G1/S transition and during early S phase.
Collapse
Affiliation(s)
- E Bronze-da-Rocha
- Laboratório de Genética Molecular da Mitose, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
28
|
Lomonte P, Sullivan KF, Everett RD. Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem 2001; 276:5829-35. [PMID: 11053442 DOI: 10.1074/jbc.m008547200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells infected by herpes simplex virus type 1 in the G2 phase of the cell cycle become stalled at an unusual stage of mitosis defined as pseudoprometaphase. This block correlates with the viral immediate-early protein ICP0-induced degradation of the centromere protein CENP-C. However, the observed pseudoprometaphase phenotype of infected mitotic cells suggests that the stability of other centromere proteins may also be affected. Here, we demonstrate that ICP0 also induces the proteasome-dependent degradation of the centromere protein CENP-A. By a series of Western blot and immunofluorescence experiments we show that the endogenous 17-kDa CENP-A and an exogenous tagged version of CENP-A are lost from centromeres and degraded in infected and transfected cells as a result of ICP0 expression. CENP-A is a histone H3-like protein associated with nucleosome structures in the inner plate of the kinetochore. Unlike fully transcribed lytic viral DNA, the transcriptionally repressed latent herpes simplex virus type 1 genome has been reported to have a nucleosomal structure similar to that of cellular chromatin. Because ICP0 plays an essential part in controlling the balance between the lytic and latent outcomes of infection, the ICP0-induced degradation of CENP-A is an intriguing feature connecting different aspects of viral and/or cellular genome regulation.
Collapse
Affiliation(s)
- P Lomonte
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | |
Collapse
|
29
|
Funabiki H, Murray AW. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 2000; 102:411-24. [PMID: 10966104 DOI: 10.1016/s0092-8674(00)00047-7] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
At anaphase, the linkage betweeh sister chromatids is dissolved and the separated sisters move toward opposite poles of the spindle. We developed a method to purify metaphase and anaphase chromosomes from frog egg extracts and identified proteins that leave chromosomes at anaphase using a new form of expression screening. This approach identified Xkid, a Xenopus homolog of human Kid (kinesin-like DNA binding protein) as a protein that is degraded in anaphase by ubiquitin-mediated proteolysis. Immunodepleting Xkid from egg extracts prevented normal chromosome alignment on the metaphase spindle. Adding a mild excess of wild-type or nondegradable Xkid to egg extracts prevented the separated chromosomes from moving toward the poles. We propose that Xkid provides the metaphase force that pushes chromosome arms toward the equator of the spindle and that its destruction is needed for anaphase chromosome movement.
Collapse
Affiliation(s)
- H Funabiki
- Department of Physiology, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
30
|
Abstract
The onset of cellular polyploidy is recognized in all differentiated mammalian tissues. Polyploidy has been noted frequently in the normal liver, as well as in pathophysiological states of the liver. As insights into the significance of polyploidy accumulate gradually, it is becoming clear that cells belonging to high ploidy classes exhibit advancement toward terminal differentiation and cellular senescence with greater probabilities of apoptosis. Involvement of specific genetic abnormalities, such as impaired DNA repair, may lead to hepatocellular polyploidy. Working models indicate that extensive polyploidy could lead to organ failure, as well as to oncogenesis with activation of precancerous cell clones.
Collapse
Affiliation(s)
- S Gupta
- Marion Bessin Liver Research Center, and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
31
|
Lomonte P, Everett RD. Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol 1999; 73:9456-67. [PMID: 10516054 PMCID: PMC112980 DOI: 10.1128/jvi.73.11.9456-9467.1999] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early protein Vmw110 stimulates the onset of virus infection in a multiplicity-dependent manner and is required for efficient reactivation from latency. Recent work has shown that Vmw110 is able to interact with or modify the stability of several cellular proteins. In this report we analyze the ability of Vmw110 to inhibit the progression of cells through the cell cycle. We show by fluorescence-activated cell sorter and/or confocal microscopy analysis that an enhanced green fluorescent protein-tagged Vmw110 possesses the abilities both to prevent transfected cells moving from G(1) into S phase and to block infected cells at an unusual stage of mitosis defined as pseudo-prometaphase. The latter property correlates with the Vmw110-induced proteasome-dependent degradation of CENP-C, a centromeric protein component of the inner plate of human kinetochores. We also show that whereas Vmw110 is not the only viral product implicated in the block of infected cells at the G(1)/S border, the mitotic block is a specific property of Vmw110 and more particularly of its RING finger domain. These data explain the toxicity of Vmw110 when expressed alone in transfected cells and provide an explanation for the remaining toxicity of replication-defective mutants of HSV-1 expressing Vmw110. In addition to contributing to our understanding of the effects of Vmw110 on the cell, our results demonstrate that Vmw110 expression is incompatible with the proliferation of a dividing cell population. This factor is of obvious importance to the design of gene therapy vectors based on HSV-1.
Collapse
Affiliation(s)
- P Lomonte
- MRC Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|
32
|
Moore LL, Morrison M, Roth MB. HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J Cell Biol 1999; 147:471-80. [PMID: 10545493 PMCID: PMC2151185 DOI: 10.1083/jcb.147.3.471] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1999] [Accepted: 09/29/1999] [Indexed: 11/22/2022] Open
Abstract
To learn more about holocentric chromosome structure and function, we generated a monoclonal antibody (mAb), 6C4, that recognizes the poleward face of mitotic chromosomes in Caenorhabditis elegans. Early in mitosis, mAb 6C4 stains dots throughout the nucleoplasm. Later in prophase, mAb 6C4 stains structures on opposing faces of chromosomes which orient towards the centrosomes at metaphase. Colocalization with an antibody against a centromeric histone H3-like protein and the MPM-2 antibody, which identifies a kinetochore-associated phosphoepitope present in a variety of organisms, shows that the mAb 6C4 staining is present adjacent to the centromere. Expression screening using mAb 6C4 identified a protein in C. elegans that we named HCP-1 (for holocentric protein 1). We also identified a second protein from the C. elegans genome sequence database, HCP-2, that is 54% similar to HCP-1. When expression of HCP-1 is reduced by RNA interference (RNAi), staining with mAb 6C4 is eliminated, indicating that hcp-1 encodes the major mAb 6C4 antigen. RNAi with hcp-1 and hcp-2 together results in aberrant anaphases and embryonic arrest at approximately 100 cells with different amounts of DNA in individual nuclei. These results suggest that HCP-1 is a centromere-associated protein that is involved in the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Landon L. Moore
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mike Morrison
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark B. Roth
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
33
|
Maney T, Ginkel LM, Hunter AW, Wordeman L. The kinetochore of higher eucaryotes: a molecular view. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:67-131. [PMID: 10494625 DOI: 10.1016/s0074-7696(08)62395-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes results concerning the molecular nature of the higher eucaryotic kinetochore. The first major section of this review includes kinetochore proteins whose general functions remain to be determined, precluding their entry into a discrete functional category. Many of the proteins in this section, however, are likely to be involved in kinetochore formation or structure. The second major section is concerned with how microtubule motor proteins function to cause chromosome movement. The microtubule motors dynein, CENP-E, and MCAK have all been observed at the kinetochore. While their precise functions are not well understood, all three are implicated in chromosome movement during mitosis. Finally, the last section deals with kinetochore components that play a role in the spindle checkpoint; a checkpoint that delays mitosis until all kinetochores have attached to the mitotic spindle. Brief reviews of kinetochore morphology and of an important technical breakthrough that enabled the molecular dissection of the kinetochore are also included.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
34
|
Sigal SH, Rajvanshi P, Gorla GR, Sokhi RP, Saxena R, Gebhard DR, Reid LM, Gupta S. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G1260-72. [PMID: 10330018 DOI: 10.1152/ajpgi.1999.276.5.g1260] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In understanding mechanisms of liver repopulation with transplanted hepatocytes, we studied the consequences of hepatic polyploidization in the two-thirds partial hepatectomy model of liver regeneration. Liver repopulation studies using genetically marked rodent hepatocytes showed that the number of previously transplanted hepatocytes did not increase in the liver with subsequential partial hepatectomy. In contrast, recipients undergoing partial hepatectomy before cells were transplanted showed proliferation in transplanted hepatocytes, with kinetics of DNA synthesis differing in transplanted and host hepatocytes. Also, partial hepatectomy caused multiple changes in the rat liver, including accumulation of polyploid hepatocytes along with prolonged depletion of diploid hepatocytes, as well as increased senescence-associated beta-galactosidase and p21 expression. Remnant hepatocytes in the partially hepatectomized liver showed increased autofluorescence and cytoplasmic complexity on flow cytometry, which are associated with lipofuscin accumulation during cell aging, and underwent apoptosis more frequently. Moreover, hepatocytes from the partially hepatectomized liver showed attenuated proliferative capacity in cell culture. These findings were compatible with decreased proliferative potential of hepatocytes experiencing partial hepatectomy compared with hepatocytes from the unperturbed liver. Attenuation of proliferative capacity and other changes in hepatocytes experiencing partial hepatectomy offer novel perspectives concerning liver regeneration in the context of cell ploidy.
Collapse
Affiliation(s)
- S H Sigal
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Everett RD, Earnshaw WC, Findlay J, Lomonte P. Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 1999; 18:1526-38. [PMID: 10075924 PMCID: PMC1171241 DOI: 10.1093/emboj/18.6.1526] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Examination of cells at the early stages of herpes simplex virus type 1 infection revealed that the viral immediate-early protein Vmw110 (also known as ICP0) formed discrete punctate accumulations associated with centromeres in both mitotic and interphase cells. The RING finger domain of Vmw110 (but not the C-terminal region) was essential for its localization at centromeres, thus distinguishing the Vmw110 sequences required for centromere association from those required for its localization at other discrete nuclear structures known as ND10, promyelocytic leukaemia (PML) bodies or PODs. We have shown recently that Vmw110 can induce the proteasome-dependent loss of several cellular proteins, including a number of probable SUMO-1-conjugated isoforms of PML, and this results in the disruption of ND10. In this study, we found some striking similarities between the interactions of Vmw110 with ND10 and centromeres. Specifically, centromeric protein CENP-C was lost from centromeres during virus infection in a Vmw110- and proteasome-dependent manner, causing substantial ultrastructural changes in the kinetochore. In consequence, dividing cells either became stalled in mitosis or underwent an unusual cytokinesis resulting in daughter cells with many micronuclei. These results emphasize the importance of CENP-C for mitotic progression and suggest that Vmw110 may be interfering with biochemical mechanisms which are relevant to both centromeres and ND10.
Collapse
Affiliation(s)
- R D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, UK.
| | | | | | | |
Collapse
|
36
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
37
|
Craig JM, Earnshaw WC, Vagnarelli P. Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp Cell Res 1999; 246:249-62. [PMID: 9925740 DOI: 10.1006/excr.1998.4278] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The centromere is a specialized region of the eukaryotic chromosome that is responsible for directing chromosome movements in mitosis and for coordinating the progression of mitotic events at the crucial transition between metaphase and anaphase. In this review, we will focus on recent advances in the understanding of centromere composition at the protein and DNA level and of the role of centromeres in sister-chromatid cohesion and mitotic checkpoint control.
Collapse
Affiliation(s)
- J M Craig
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, United Kingdom
| | | | | |
Collapse
|
38
|
Affiliation(s)
- L Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
39
|
Taylor WR, Agarwal ML, Agarwal A, Stacey DW, Stark GR. p53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene 1999; 18:283-95. [PMID: 9927185 DOI: 10.1038/sj.onc.1202516] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human and mouse fibroblasts with normal p53 fail to enter mitosis when DNA synthesis is blocked by aphidicolin or hydroxyurea. Isogenic p53-null fibroblasts do enter mitosis with incompletely replicated DNA, revealing that p53 contributes to a checkpoint that ensures that mitosis does not occur until DNA synthesis is complete. When treated with N-(phosphonacetyl)-L-aspartate (PALA), which inhibits pyrimidine nucleotide synthesis, leading to synthesis of damaged DNA from highly unbalanced dNTP pools, p53-null cells enter mitosis after they have completed DNA replication, but cells with wild-type p53 do not, revealing that p53 also mediates a checkpoint that monitors the quality of newly replicated DNA.
Collapse
Affiliation(s)
- W R Taylor
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
40
|
Dorée M, Le Peuch C, Morin N. Onset of chromosome segregation at the metaphase to anaphase transition of the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:309-18. [PMID: 9552373 DOI: 10.1007/978-1-4615-1809-9_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome segregation is one of the most important acts in the life of the cell. Unequal inheritance of chromosomes (aneuploidy) is a cause of a number of disorders, particularly in humans, even though eukaryotic cells can arrest or delay the transition from metaphase to anaphase if an event critical to the completion of metaphase is impaired. In this report, we review recent advances in our knowledge of how the complex process of chromosome segregation is coupled with cell cycle progression, and starts at onset of anaphase with sister chromatids separation of the replicated chromosomes.
Collapse
Affiliation(s)
- M Dorée
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 9008, Montpellier, France
| | | | | |
Collapse
|
41
|
Wordeman L. Mechanisms of chromosome segregation in metazoan cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:319-27. [PMID: 9552374 DOI: 10.1007/978-1-4615-1809-9_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite over 100 year of research, the mechanisms that cells use to ensure the proper segregation of chromosomes during mitosis are still surprisingly obscure. However, recent high resolution video light microscopic studies of dividing cells are telling us new and important information about chromosome behavior. Molecular genetics is enabling us to build a more complete list of the components involved in chromosome segregation. And in vitro assays for chromosome segregation are providing information about the signals that control the equipartitioning of sister chromatids during cell division.
Collapse
Affiliation(s)
- L Wordeman
- Department of Physiology and Biophysics, University of Washington Medical School, Seattle 98195, USA
| |
Collapse
|
42
|
Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Hill J, Wreford NG, de Kretser DM, Cancilla MR, Howman E, Hii L, Cutts SM, Irvine DV, Choo KH. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 1998; 141:309-19. [PMID: 9548711 PMCID: PMC2148459 DOI: 10.1083/jcb.141.2.309] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CENP-B is a constitutive centromere DNA-binding protein that is conserved in a number of mammalian species and in yeast. Despite this conservation, earlier cytological and indirect experimental studies have provided conflicting evidence concerning the role of this protein in mitosis. The requirement of this protein in meiosis has also not previously been described. To resolve these uncertainties, we used targeted disruption of the Cenpb gene in mouse to study the functional significance of this protein in mitosis and meiosis. Male and female Cenpb null mice have normal body weights at birth and at weaning, but these subsequently lag behind those of the heterozygous and wild-type animals. The weight and sperm content of the testes of Cenpb null mice are also significantly decreased. Otherwise, the animals appear developmentally and reproductively normal. Cytogenetic fluorescence-activated cell sorting and histological analyses of somatic and germline tissues revealed no abnormality. These results indicate that Cenpb is not essential for mitosis or meiosis, although the observed weight reduction raises the possibility that Cenpb deficiency may subtly affect some aspects of centromere assembly and function, and result in reduced rate of cell cycle progression, efficiency of microtubule capture, and/or chromosome movement. A model for a functional redundancy of this protein is presented.
Collapse
Affiliation(s)
- D F Hudson
- The Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mackay AM, Ainsztein AM, Eckley DM, Earnshaw WC. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J Cell Biol 1998; 140:991-1002. [PMID: 9490714 PMCID: PMC2132686 DOI: 10.1083/jcb.140.5.991] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1997] [Revised: 01/09/1998] [Indexed: 02/06/2023] Open
Abstract
INCENP is a tightly bound chromosomal protein that transfers to the spindle midzone at the metaphase/anaphase transition. Here, we show that an INCENP truncation mutant (INCENP382-839) associates with microtubules but does not bind to chromosomes, and coats the entire spindle throughout mitosis. Furthermore, an INCENP truncation mutant (INCENP43-839) previously shown not to transfer to the spindle at anaphase (Mackay, A.M., D.M. Eckley, C. Chue, and W.C. Earnshaw. 1993. J. Cell Biol. 123:373-385), is shown here to bind chromosomes, but is unable to target to the centromere. Thus, association with the chromosomes, and specifically with centromeres, appears to be essential for INCENP targeting to the correct spindle subdomain at anaphase. An INCENP truncation mutant (INCENP1-405) that targets to centromeres but lacks the microtubule association region acquires strong dominant-negative characteristics. INCENP1-405 interferes with both prometaphase chromosome alignment and the completion of cytokinesis. INCENP1-405 apparently exerts its effect by displacing the endogenous protein from centromeres. These experiments provide evidence of an unexpected link between this chromosomal protein and cytokinesis, and suggest that one function of INCENP may be to integrate the chromosomal and cytoskeletal events of mitosis.
Collapse
Affiliation(s)
- A M Mackay
- Department of Cell Biology and Anatomy, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
44
|
Bao L, Varden CE, Zimmer WE, Balczon R. Localization of autoepitopes on the PCM-1 autoantigen using scleroderma sera with autoantibodies against the centrosome. Mol Biol Rep 1998; 25:111-9. [PMID: 9540072 DOI: 10.1023/a:1006814217037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Characterization of epitope domains of autoantigens is important for deducing the cellular functions of autoantigens and may be important for understanding the autoimmune response. In the reported studies, epitope analysis of the centrosome autoantigen PCM-1 was performed. For these investigations, portion of the PCM-1 cDNA were subcloned into the pMAL expression plasmid, fusion proteins were induced, and aliquots of the extracts were probed by immunoblot analysis using two human autoimmune anticentrosome autoantisera. Immunoblotting identified three individual autoepitopes of 26-40 amino acid residues, amino acids 506-545, 1434-1465, and 1661-1686, within the PCM-1 protein. ELISA assays using non-denatured proteins did not identity any additional autoepitopes in the remainder of the PCM-1 molecule. To analyze the identified autoepitopes further, synthetic peptides were generated that covered each of the three autoepitopes and the synthetic peptides then were probed using the scleroderma sera. Peptides that covered the antigenic regions from amino acids 506-545 and 1434-1465 failed to react with the anticentrosome autoantisera suggesting that overall protein conformation may be important for the formation of those two autoepitopes. Peptides derived from the sequence of the third autoepitope were recognized by autoantibodies present in the anticentrosome autoantisera allowing the identification of the tripeptide KDC as the autoepitope in this region of the PCM-1 molecule. These studies lay the foundation for future investigations of the autoimmune response in scleroderma patients that are producing anticentrosome autoantibodies and should allow an investigation of the cellular role of the PCM-1 protein.
Collapse
Affiliation(s)
- L Bao
- Department of Structural and Cellular Biology, University of South Alabama, Mobile 36688, USA
| | | | | | | |
Collapse
|
45
|
Bronze-da-Rocha E, Catita JA, Sunkel CE. Molecular cloning of metaphase chromosome protein 1 (MCP1), a novel human autoantigen that associates with condensed chromosomes during mitosis. Chromosome Res 1998; 6:85-95. [PMID: 9543011 DOI: 10.1023/a:1009230811398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.
Collapse
Affiliation(s)
- E Bronze-da-Rocha
- Laboratório de Genética Molecular, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
| | | | | |
Collapse
|
46
|
Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 1997; 139:1373-82. [PMID: 9396744 PMCID: PMC2132614 DOI: 10.1083/jcb.139.6.1373] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Revised: 10/10/1997] [Indexed: 02/05/2023] Open
Abstract
CENP-E is a kinesin-like protein that binds to kinetochores and may provide functions that are critical for normal chromosome motility during mitosis. To directly test the in vivo function of CENP-E, we microinjected affinity-purified antibodies to block the assembly of CENP-E onto kinetochores and then examined the behavior of these chromosomes. Chromosomes lacking CENP-E at their kinetochores consistently exhibited two types of defects that blocked their alignment at the spindle equator. Chromosomes positioned near a pole remained mono-oriented as they were unable to establish bipolar microtubule connections with the opposite pole. Chromosomes within the spindle established bipolar connections that supported oscillations and normal velocities of kinetochore movement between the poles, but these bipolar connections were defective because they failed to align the chromosomes into a metaphase plate. Overexpression of a mutant that lacked the amino-terminal 803 amino acids of CENP-E was found to saturate limiting binding sites on kinetochores and competitively blocked endogenous CENP-E from assembling onto kinetochores. Chromosomes saturated with the truncated CENP-E mutant were never found to be aligned but accumulated at the poles or were strewn within the spindle as was the case when cells were microinjected with CENP-E antibodies. As the motor domain was contained within the portion of CENP-E that was deleted, the chromosomal defect is likely attributed to the loss of motor function. The combined data show that CENP-E provides kinetochore functions that are essential for monopolar chromosomes to establish bipolar connections and for chromosomes with connections to both spindle poles to align at the spindle equator. Both of these events rely on activities that are provided by CENP-E's motor domain.
Collapse
Affiliation(s)
- B T Schaar
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| | | | | | | | | |
Collapse
|
47
|
Choo KH. Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet 1997; 61:1225-33. [PMID: 9399915 PMCID: PMC1716064 DOI: 10.1086/301657] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
MESH Headings
- Animals
- Autoantigens
- Centromere/metabolism
- Centromere/ultrastructure
- Centromere Protein A
- Chromatin/genetics
- Chromosomal Proteins, Non-Histone/physiology
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/ultrastructure
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- DNA/genetics
- DNA/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Satellite/physiology
- Fungal Proteins/physiology
- Humans
- Repetitive Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- K H Choo
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
48
|
Chen Y, Riley DJ, Chen PL, Lee WH. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 1997; 17:6049-56. [PMID: 9315664 PMCID: PMC232454 DOI: 10.1128/mcb.17.10.6049] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein encoded by the human gene HEC (highly expressed in cancer) contains 642 amino acids and a long series of leucine heptad repeats at its C-terminal region. HEC protein is expressed most abundantly in the S and M phases of rapidly dividing cells but not in terminal differentiated cells. It localizes to the nuclei of interphase cells, and a portion distributes to centromeres during M phase. Inactivation of HEC by microinjection of specific monoclonal antibodies into cells during interphase severely disturbs the subsequent mitoses. Disordered sister chromatid alignment and separation, as well as the formation of nonviable cells with multiple, fragmented micronuclei, are common features observed. These results suggest that the HEC protein may play an important role in chromosome segregation during M phase.
Collapse
Affiliation(s)
- Y Chen
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | |
Collapse
|
49
|
du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 1997; 16:144-53. [PMID: 9171825 DOI: 10.1038/ng0697-144] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently described a human marker chromosome containing a functional neo-centromere that binds anti-centromere antibodies, but is devoid of centromeric alpha-satellite repeats and derived from a hitherto non-centromeric region of chromosome 10q25. Chromosome walking using cloned single-copy DNA from this region enabled us to identify the antibody-binding domain of this centromere. Extensive restriction mapping indicates that this domain has an identical genomic organization to the corresponding normal chromosomal region, suggesting a mechanism for the origin of this centromere through the activation of a latent centromere that exists within 10q25.
Collapse
Affiliation(s)
- D du Sart
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL. The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 1997; 110 ( Pt 4):421-9. [PMID: 9067594 DOI: 10.1242/jcs.110.4.421] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exit from mitosis in animal cells is substantially delayed when spindle assembly is inhibited, spindle bipolarity is disrupted, or when a monopolar spindle is formed. These observations have led to the proposal that animal cells have a ‘spindle assembly’ checkpoint for the metaphase-anaphase transition that monitors bipolar spindle organization. However, the existence of such a checkpoint is uncertain because perturbations in spindle organization can produce unattached kinetochores, which by themselves are known to delay anaphase onset. In this study we have tested if cells monitor bipolar spindle organization, independent of kinetochore attachment, by analyzing the duration of mitosis in sea urchin zygotes and vertebrate somatic cells containing multipolar spindles in which all kinetochores are attached to spindle poles. We found that sea urchin zygotes containing tripolar or tetrapolar spindles progressed from nuclear envelope breakdown to anaphase onset with normal timing. We also found that the presence of supernumerary, unpaired spindle poles did not greatly prolong mitosis. Observation of untreated PtK1 cells that formed tripolar or tetrapolar spindles revealed that they progressed through mitosis, on average, at the normal rate. More importantly, the interval between the bipolar attachment of the last monooriented chromosome and anaphase onset was normal. Thus, neither of these cell types can detect the presence of gross aberrations in spindle architecture that inevitably lead to aneuploidy. We conclude that animal cells do not have a checkpoint for the metaphase-anaphase transition that monitors defects in spindle architecture independent of the checkpoint that monitors kinetochore attachment to the spindle. For dividing cells in which spindle microtubule assembly is not experimentally compromised, we propose that the completion of kinetochore attachment is the event which limits the time of the metaphase-anaphase transition.
Collapse
Affiliation(s)
- G Sluder
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | | | | | |
Collapse
|