1
|
Lee H, Kang H, Kang M, Han C, Yi J, Kwon Y, Park J. Heterogeneous Subcellular Origin of Exosome-Mimetic Nanovesicles Engineered from Cells. ACS Biomater Sci Eng 2020; 6:6063-6068. [PMID: 33449634 DOI: 10.1021/acsbiomaterials.0c01157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-engineered nanovesicles (CNVs) are considered as an alternative to exosomes, because they can be produced efficiently on a large scale and have been successfully reported in several applied research studies. However, CNVs may originate from various organelles, i.e., some of them may cause adverse effects on recipient cells, and their origin has not yet been identified. In this study, we air-sprayed human embryonic kidney 293 (HEK293) cells into lipid-bilayer CNVs. To identify the subcellular origin of the CNVs, we prepared nine different HEK293 cell lines by transfection with organelle-specific fluorescent protein plasmids that target the plasma membrane, peroxisome, lysosome, early endosome, late endosome, nucleus, mitochondrion, Golgi apparatus, and endoplasmic reticulum. The origin of CNVs were identified by measuring fluorescence expressions for organelle-specific markers using fluorescence nanoparticle tracking analysis (NTA). In the results, we found that CNVs derived from the plasma membrane constituted the largest portion, but CNVs derived from the other organelles comprised a non-negligible portion as well. This information will be useful to guide advanced research on outer membrane vesicles and exosome-mimetic nanovesicles engineered from cells.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Hyejin Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Minsu Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Chungmin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Johan Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Yongmin Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| |
Collapse
|
2
|
Rosselló CA, Lindström L, Glindre J, Eklund G, Alvarado-Kristensson M. Gamma-tubulin coordinates nuclear envelope assembly around chromatin. Heliyon 2016; 2:e00166. [PMID: 27699285 PMCID: PMC5037270 DOI: 10.1016/j.heliyon.2016.e00166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/10/2016] [Accepted: 09/16/2016] [Indexed: 10/29/2022] Open
Abstract
The cytosolic role of γ-tubulin as a microtubule organizer has been studied thoroughly, but its nuclear function is poorly understood. Here, we show that γ-tubulin is located throughout the chromatin of demembranated Xenopus laevis sperm and, as the nucleus is formed, γ-tubulin recruits lamin B3 and nuclear membranes. Immunodepletion of γ-tubulin impairs X. laevis assembly of both the lamina and the nuclear membrane. During nuclear formation in mammalian cell lines, γ-tubulin establishes a cellular protein boundary around chromatin that coordinates nuclear assembly of the daughter nuclei. Furthermore, expression of a γ-tubulin mutant that lacks the DNA-binding domain forms chromatin-empty nuclear like structures and demonstrate that a constant interplay between the chromatin-associated and the cytosolic pools of γ-tubulin is required and, when the balance between pools is impaired, aberrant nuclei are formed. We therefore propose that the nuclear protein meshwork formed by γ-tubulin around chromatin coordinates nuclear formation in eukaryotic cells.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Division of Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502. Sweden
| | - Lisa Lindström
- Division of Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502. Sweden
| | - Johan Glindre
- Division of Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502. Sweden
| | - Greta Eklund
- Division of Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502. Sweden
| | - Maria Alvarado-Kristensson
- Division of Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502. Sweden
| |
Collapse
|
3
|
Svitin A, Chesnokov I. Study of DNA replication in Drosophila using cell free in vitro system. Cell Cycle 2010; 9:815-9. [PMID: 20139730 DOI: 10.4161/cc.9.4.10730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using Drosophila early egg extracts we have developed an optimized cell free system to study DNA replication. The efficiency of replication depends on a cold treatment of Drosophila embryos before the extract preparation and a formation of nuclei facilitated by the addition of membrane fractions to the extracts. In vitro DNA replication is ORC and CDC6 dependent, as a removal of these proteins from the extracts abolishes DNA replication. The N-terminal part of Orc1 protein, which is important for non-replicative functions of ORC, is dispensable for the replication in vitro. We also show that the conserved ATP ase motif of CDC6 is crucial for the replication. Our studies indicate that a Drosophila cell free system proves to be an extremely useful tool for a functional dissection of the processes and factors involved in DNA replication in metazoans.
Collapse
Affiliation(s)
- Anton Svitin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | | |
Collapse
|
4
|
Zhang XH, Zhao C, Ma ZA. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR. J Cell Sci 2007; 120:4134-43. [PMID: 18032786 PMCID: PMC2915541 DOI: 10.1242/jcs.015834] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca(2+)-independent-phospholipase A(2) (iPLA(2)). We previously reported that inhibition of iPLA(2) arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA(2) induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA(2). The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA(2)-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway.
Collapse
Affiliation(s)
- Xu Hannah Zhang
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Chunying Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Zhongmin Alex Ma
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
5
|
Harkness TAA. Decondensation of Xenopus sperm chromatin using Saccharomyces cerevisiae whole-cell extracts. Can J Physiol Pharmacol 2006; 84:451-8. [PMID: 16902590 DOI: 10.1139/y05-042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biochemical studies using highly condensed Xenopus sperm chromatin and protein extracts prepared from multiple systems have lead to the identification of conserved proteins involved in chromosome decondensation. However, mutations to these proteins are unavailable as the systems used are not amenable to genetic studies. We took a genetic approach to isolating chromosome decondensation mutants by incubating Xenopus sperm chromatin with whole-cell extracts prepared from the Hartwell library of random temperature sensitive (ts) yeast cells. We show that decondensation of Xenopus sperm chromatin using wild type yeast extracts was rapid, ATP- and extract-dependent, and resistant to heat, N-ethylmaleimide, protease K, RNase A, and micrococcal nuclease. From 100 mutant extracts screened, we obtained one strain, referred to as rmc4, that was chromosome decondensation defective. The mutant was slow growing and exhibited germination defects. Low concentrations of rmc4 extract would eventually decondense sperm heads, and fractionation of the mutant extract produced a decondensation competent fraction, suggesting the presence of an overactive inhibitor in rmc4 cells. We performed a multicopy suppressor screen that identified PDE2, a gene encoding a protein that inhibits protein kinase A (PKA) activity. As PKA was previously shown in human cells to maintain condensed chromatin, our results suggest that PKA activity is elevated in rmc4 cells, causing a decondensation defect. Thus, our experiments reveal that yeast encodes an evolutionarily conserved chromosome decondensation activity that can be genetically manipulated.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, B313 Health Sciences Building, Saskatoon, Canada.
| |
Collapse
|
6
|
Abstract
Compared to sperm nuclei, nuclei from adult somatic cells replicate inefficiently in frog egg extract. In this issue of Cell, Lemaitre et al. (2005) show that pre-exposure of erythrocyte nuclei to a mitotic extract removes this difference, reorganizes the chromatin into shorter loops, and allows replication at much shorter intervals along the DNA. Remarkably, these observations also explain an old mystery of why serial nuclear transplantation was so successful for cloning frogs.
Collapse
Affiliation(s)
- Ron Laskey
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom.
| |
Collapse
|
7
|
Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Méchali M. Mitotic Remodeling of the Replicon and Chromosome Structure. Cell 2005; 123:787-801. [PMID: 16325575 DOI: 10.1016/j.cell.2005.08.045] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/20/2005] [Accepted: 08/29/2005] [Indexed: 01/28/2023]
Abstract
Animal cloning by nuclear-transfer experiments frequently fails due to the inability of transplanted nuclei to support normal embryonic development. We show here that the formation of mitotic chromosomes in the egg context is crucial for adapting differentiated nuclei for early development. Differentiated erythrocyte nuclei replicate inefficiently in Xenopus eggs but do so as rapidly as sperm nuclei if a prior single mitosis is permitted. This mitotic remodeling involves a topoisomerase II-dependent shortening of chromatin loop domains and an increased recruitment of replication initiation factors onto chromatin, leading to a short interorigin spacing characteristic of early developmental stages. It also occurs within each early embryonic cell cycle and dominantly regulates initiation of DNA replication for the subsequent S phase. These results indicate that mitotic conditioning is crucial to reset the chromatin structure of differentiated adult donor cells for embryonic DNA replication and suggest that it is an important step in nuclear cloning.
Collapse
Affiliation(s)
- Jean-Marc Lemaitre
- Genome Dynamics and Development, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | |
Collapse
|
8
|
Kovtun IV, Thornhill AR, McMurray CT. Somatic deletion events occur during early embryonic development and modify the extent of CAG expansion in subsequent generations. Hum Mol Genet 2004; 13:3057-68. [PMID: 15496421 DOI: 10.1093/hmg/ddh325] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in trinucleotide repeat length during transmission are important in the pathophysiology of Huntington's disease (HD). However, it is not well understood where, when and by what mechanism expansion occurs. We have followed the fate of CAG repeats during development in mice that can [hHD(-/+)/Msh2(+/+)] or cannot [hHD(-/+)/Msh2(-/-)] expand their repeats. Here we show that long repeats are shortened during somatic replication early in the embryo of the progeny. Our data point to different mechanisms for expansion and deletion. Deletions arise during replication, do not depend on the presence of Msh2 and are largely restricted to early development. In contrast, expansions depend on strand break repair, require the presence of Msh2 and occur later in development. Overall, these results suggest that deletions in early development serve as a safeguard of the genome and protect against expansion of the disease-range repeats during transmission.
Collapse
Affiliation(s)
- I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
9
|
Thayanithy V, Venugopal T, Anathy V, Kirankumar S, Pandian TJ. Growth enhancement and food conversion efficiency of transgenic fishLabeo rohita. ACTA ACUST UNITED AC 2004; 301:477-90. [PMID: 15181642 DOI: 10.1002/jez.a.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three family lines of fast growing transgenic rohu Labeo rohita (rohu) were generated by electroporated-sperm-mediated transfer of the vectors harboring CMV promoter or grass carp beta-actin promoter fused to endogenous rohu GH (rGH) cDNA. The gene transfer efficiency was 25%. The transgenic rohu (family line 1) with CMV promoter showed a growth enhancement of four times normal size, whereas those (family lines 2 and 3) generated with beta-actin promoter grew 4.5 and 5.8 times faster than their respective control siblings. Southern analysis confirmed the transgene extrachromosomal (Te) persistence until the 60th week in family 1. The individuals of family lines 2 and 3, however, showed integration (Ti), as well as persistence as extrachromosomal copies (Te) until the age of 30 weeks. Mosaicism of the transgene was shown at the levels of its presence and expression. The ectopic expression of rGH mRNA was confirmed by RT-PCR. Feeding experiments revealed that the transgenic rohu ate food at a lower rate but grew more efficiently than their control siblings.
Collapse
Affiliation(s)
- Venugopal Thayanithy
- Department of Genetics, Center for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021 India
| | | | | | | | | |
Collapse
|
10
|
Sun WH, Hola M, Baldwin N, Pedley K, Brooks RF. Heterogeneity in nuclear transport does not affect the timing of DNA synthesis in quiescent mammalian nuclei induced to replicate in Xenopus egg extracts. Cell Prolif 2001; 34:55-67. [PMID: 11284919 PMCID: PMC6495702 DOI: 10.1046/j.1365-2184.2001.00196.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intact G0 nuclei from quiescent mammalian cells initiate DNA synthesis asynchronously in Xenopus egg extracts, despite exposure to the same concentration of replication factors. This indicates that individual nuclei differ in their ability to respond to the inducers of DNA replication. Since the induction of DNA synthesis requires the accumulation of replication factors by active nuclear transport, any variation in the rate of transport among nuclei could contribute to the variability of DNA replication. Using the naturally fluorescent protein allophycocyanin (APC) coupled with the nuclear localization sequence (NLS) of SV40 T antigen, as a marker of nuclear uptake, we show here that individual G0 nuclei differ in their rate of transport over a range of more than 20-fold. Surprisingly, this variation has no direct influence on the timing or extent of DNA synthesis. Similar results were obtained by monitoring the uptake of nucleoplasmin, a nuclear protein present at high levels in egg extracts. These experiments show that the initiation of DNA synthesis is not driven merely by the accumulation of replication factors to some threshold concentration. Instead, some other explanation is needed to account for the timing of initiation.
Collapse
Affiliation(s)
- W H Sun
- Guy's, King's and St Thomas' School of Biomedical Sciences, King's College London, UK
| | | | | | | | | |
Collapse
|
11
|
Anglana M, Debatisse M. Dual control of replication timing. Stochastic onset but programmed completion of mammalian chromosome duplication. J Biol Chem 2001; 276:36639-46. [PMID: 11454865 DOI: 10.1074/jbc.m104501200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, DNA replication proceeds according to a precise temporal order during the S phase, but how this program is controlled remains poorly understood. We analyzed the replication-dependent bromodeoxyuridine banding of chromosomes in Chinese hamster cells treated with the spindle poison nocodazole. In these cells, nocodazole induces a transient mitotic arrest, followed by DNA re-replication without intervening cell division. Nuclear fragmentation is often observed in tetraploid derivatives, and previous studies suggest that replication timing of chromosomes could be affected when they are segregated into different micronuclei. Here we show that the onset of replication is frequently asynchronous on individual chromosomes during the re-replication process. Moreover, fluorescence in situ hybridization analysis revealed that replication synchrony is equally altered in fragmented and non-fragmented nuclei, indicating that asynchronous onset of replication is not dependent on physical separation of the chromosomes into isolated compartments. We also show that the ordered program of replication is always preserved along individual chromosomes. Our results demonstrate that the onset of replication of individual chromosomes in the same nuclear compartment can be uncoupled from the time of S-phase entry and from the programmed replication of chromosome sub-domains, revealing that multi-level controls contribute to establish replication timing in mammalian cells.
Collapse
Affiliation(s)
- M Anglana
- UMR147, Batiment Trouillet-Rossignol, Institut Curie/CNRS, 26 Rue d'Ulm, 75248 Paris, France
| | | |
Collapse
|
12
|
Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts. Exp Cell Res 2001; 269:23-34. [PMID: 11525636 DOI: 10.1006/excr.2001.5304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear functions in erythrocytes are almost completely extinct. There is no RNA polymerase I transcription, although a remnant nucleolar structure is still present. The remnant nucleolus of Xenopus laevis erythrocytes maintains a morphologically organized structure, nearly exclusively fibrillar. In this inactive nucleolar remnant, we revealed the presence of a modified form of transcription factor UBF. Several proteins of the processing machinery such as fibrillarin, nucleolin and B23/NO38, snoRNAs U3 and U8, and partially processed preribosomal RNAs colocalized in these remnant structures. Attempts to reprogram these erythrocyte nuclei in Xenopus egg extract showed that import of several nucleolar proteins was induced while the nucleolar remnant was disorganized. UBF became abundant and showed a necklace-like distribution on the decondensed ribosomal genes. Fibrillarin, nucleolin, and snoRNAs U3 and U8, also largely imported from the extract, were associated in large prenuclear bodies scattered in the nucleoplasm. B23/NO38 was present in different small bodies formed only in the most decondensed nuclei. In these remodeled erythrocyte nuclei, there was no imported preribosomal RNA and the initial presence of a residual nucleolar structure containing several partners of ribosome biogenesis was not sufficient to promote reassembly of newly imported nucleolar machineries. These nuclei, which reproduce the early events of nucleogenesis are also transcriptionally silent and thus compare to the early embryonic nuclei of Xenopus laevis.
Collapse
Affiliation(s)
- C Verheggen
- Institut Jacques Monod, UMR 7592, Paris, France
| | | | | | | |
Collapse
|
13
|
Zhao Y, Liu X, Wu M, Tao W, Zhai Z. In vitro nuclear reconstitution could be induced in a plant cell-free system. FEBS Lett 2000; 480:208-12. [PMID: 11034330 DOI: 10.1016/s0014-5793(00)01938-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A cell-free system derived from carrot cell cytosol extract has been developed for reassembling nuclear structure around the added demembranated sperm chromatin of Xenopus. Morphological evidence suggests that reassembled nuclei display the typical characteristics of normal eukaryotic nuclei, such as double-layered nuclear membrane and nuclear pores. Micrococcal nuclease treatment indicates that remodeling of the demembranated sperm chromatin has occurred and the structure of nucleosome is formed during nuclear reconstitution. These data indicate that the nuclear reconstitution can be induced in cell-free systems from plants, and the self-assembly of the nucleus is ubiquitous in both animal and plant cells.
Collapse
Affiliation(s)
- Y Zhao
- College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
14
|
Abstract
We discuss nuclear chaperones that bind correctly folded protein subunits and mediate molecular interactions, particularly between proteins and nucleic acids. The charge of these chaperones helps to prevent non-specific electrostatic interactions between the components. Thus, an ordered assembly of macromolecular complexes is mediated, most notably in the formation and maintenance of chromatin, though similar principles are likely to apply in ribonucleoprotein assembly. Here, we discuss roles for nuclear chaperones in mediating nucleosome assembly and remodelling during DNA replication and transcription, and upon fertilisation.
Collapse
Affiliation(s)
- A Philpott
- Department of Oncology, University of Cambridge, Wellcome Trust Centre for the Study of Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
15
|
Lu ZH, Xu H, Leno GH. DNA replication in quiescent cell nuclei: regulation by the nuclear envelope and chromatin structure. Mol Biol Cell 1999; 10:4091-106. [PMID: 10588645 PMCID: PMC25745 DOI: 10.1091/mbc.10.12.4091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiated Xenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H1(0) are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.
Collapse
Affiliation(s)
- Z H Lu
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
16
|
Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 1999; 4:983-93. [PMID: 10635323 DOI: 10.1016/s1097-2765(00)80227-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian chromosomal domains replicate at defined, developmentally regulated times during S phase. The positions of these domains in Chinese hamster nuclei were established within 1 hr after nuclear envelope formation and maintained thereafter. When G1 phase nuclei were incubated in Xenopus egg extracts, domains were replicated in the proper temporal order with nuclei isolated after spatial repositioning, but not with nuclei isolated prior to repositioning. Mcm2 was bound both to early- and late-replicating chromatin domains prior to this transition whereas specification of the dihydrofolate reductase replication origin took place several hours thereafter. These results identify an early G1 phase point at which replication timing is determined and demonstrate a provocative temporal coincidence between the establishment of nuclear position and replication timing.
Collapse
Affiliation(s)
- D S Dimitrova
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, University of Cincinnati Medical Center, Ohio 45267, USA
| | | |
Collapse
|
18
|
Abstract
Differentiation of mammalian cells implies cessation of DNA replication and cell proliferation; the potential controls of this coupling are examined here. It is clear that the known or proposed mechanisms of down-regulation of replicative cellular activities vary in different lineages of cell differentiation, and occur in all phases of the cell cycle. In G1 these regulators include p21/Cip1 or p27/Kip1, pRb, and p53; the novel, recently reported mechanisms of their action are summarized. In S phase the availability of nucleotide precursors, the origin recognition complex (ORC), and other replication proteins may be important in differentiation, and in G2 phase the cdc2/cyclin B complex and replication licensing factors determine normal G2 traverse versus an arrest or polyploidisation. Other replication-related mechanisms include transcription factors, e.g., Sp1, telomerase, and nuclear matrix changes. Thus, differentiation alters the activity not only of the various checkpoint proteins, but also of the components of the replicative machinery itself.
Collapse
Affiliation(s)
- F D Coffman
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103, USA.
| | | |
Collapse
|
19
|
Abstract
Numerous regulatory mechanisms contribute to the control of eukaryotic transcription. These controls are manifested through higher-order protein-DNA structure within the nucleus. In vitro assays have proven extremely useful in deciphering the potential regulatory roles of chromatin and nuclear structure in transcription. Embryonic egg extracts of Xenopus with their vast maternal stores and rapid cell-cycle oscillations can be exploited to recapitulate multiple layers of nuclear regulation. Incubation of cloned DNA templates in Xenopus egg extracts promotes a self-ordered assembly of physiologically spaced nucleosomes and synthetic nuclei structure formation. Interaction of membrane vesicles with chromatin leads to formation of a bilayer nuclear envelope encapsulating the DNA. These synthetic nuclei are functional organelles capable of active protein transport and a single round of semiconservative DNA synthesis. This system can be used to directly test the mechanisms by which trans-acting factors promote transcription on nucleosomal DNA, either during chromatin assembly or postassembly or in conjunction with remodeling machinery and/or DNA replication. The functional consequences of trans-acting factor interaction within synthetic nuclei are determined by a coupled in vitro transcription analysis. Immobilizing biotin end-labeled DNA templates on paramagnetic streptavidin beads greatly improves the flexibility of the system. The ease of chromatin-assembled template recovery allows the introduction of wash steps, buffer changes, and specific reaction optimization. These methods for reconstituting gene regulatory mechanisms in vitro are an attempt to strike a balance between biochemical accessibility and physiological relevance.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Center, 231 Bethesda Avenue, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
20
|
Lemaitre JM, Géraud G, Méchali M. Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication. J Cell Biol 1998; 142:1159-66. [PMID: 9732278 PMCID: PMC2149347 DOI: 10.1083/jcb.142.5.1159] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During Xenopus laevis early development, the genome is replicated in less than 15 min every 30 min. We show that during this period, DNA replication proceeds in an atypical manner. Chromosomes become surrounded by a nuclear membrane lamina forming micronuclei or karyomeres. This genomic organization permits that prereplication centers gather on condensed chromosomes during anaphase and that DNA replication initiates autonomously in karyomeres at early telophase before nuclear reconstruction and mitosis completion. The formation of karyomeres is not dependent on DNA replication but requires mitotic spindle formation and the normal segregation of chromosomes. Thus, during early development, chromosomes behave as structurally and functionally independent units. The formation of a nuclear envelope around each chromosome provides an in vivo validation of its role in regulating initiation of DNA replication, enabling the rate of replication to accelerate and S phase to overlap M phase without illegitimate reinitiation. The abrupt disappearance of this atypical organization within one cell cycle after thirteen divisions defines a novel developmental transition at the blastula stage, which may affect both the replication and the transcription programs of development.
Collapse
Affiliation(s)
- J M Lemaitre
- Institut Jacques Monod, Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Embryologie Moléculaire, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
21
|
Munshi R, Leno GH. Replication of nuclei from cycling and quiescent mammalian cells in 6-DMAP-treated Xenopus egg extract. Exp Cell Res 1998; 240:321-32. [PMID: 9597005 DOI: 10.1006/excr.1998.4019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear membrane permeabilization is required for replication of quiescent (G0) cell nuclei in Xenopus egg extract. We now demonstrate that establishment of replication competence in G0 nuclei is dependent upon a positive activity present in the soluble egg extract. Our hypothesis is that G0 nuclei lose the license to replicate following growth arrest and that this positive activity is required for relicensing DNA for replication. To determine if G0 nuclei contain licensed DNA, we used the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), to prepare egg extracts that are devoid of licensing activity. Intact nuclei, isolated from mammalian cells synchronized in G1-phase (licensed), G2-phase (unlicensed), and G0 were permeabilized and assayed for replication in 6-DMAP-treated and untreated extracts supplemented with [alpha-32P]dATP or biotinylated-dUTP. Very little radioactivity was incorporated into nascent DNA in each nuclear population; however, nearly all nuclei in each population incorporated biotin in 6-DMAP extract. The pattern of biotin incorporation within these nuclei was strikingly similar to the punctate pattern observed within nuclei incubated in aphidicolin-treated extract, suggesting that initiation events occur within most replication factories in 6-DMAP extract. However, density substitution and alkaline gel analyses indicate that the incorporated biotin within these nuclei arises from a small number of active origins which escape 6-DMAP inhibition. We conclude that 6-DMAP-treated egg extract cannot differentiate licensed from unlicensed mammalian somatic cell nuclei and, therefore, cannot be used to determine the "licensed state" of G0 nuclei using the assays described here.
Collapse
Affiliation(s)
- R Munshi
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | |
Collapse
|
22
|
Lu ZH, Sittman DB, Romanowski P, Leno GH. Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin. Mol Biol Cell 1998; 9:1163-76. [PMID: 9571247 PMCID: PMC25338 DOI: 10.1091/mbc.9.5.1163] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.
Collapse
Affiliation(s)
- Z H Lu
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Using Xenopus egg extracts, we have developed a completely soluble system for eukaryotic chromosomal DNA replication. In the absence of a nuclear envelope, a single, complete round of ORC-dependent DNA replication is catalyzed by cytosolic and nuclear extracts added sequentially to demembranated sperm chromatin or prokaryotic plasmid DNA. The absence of rereplication is explained by an activity present in the nucleus that prevents the binding of MCM to chromatin. Our results indicate that the role of the nuclear envelope in DNA replication is to concentrate activators and inhibitors of replication inside the nucleus. In addition, they provide direct evidence that metazoans use the same strategy as yeast to activate DNA replication and to restrict it to a single round per cell cycle.
Collapse
Affiliation(s)
- J Walter
- Department of Biology, University of California, San Diego La Jolla 92093-0347, USA
| | | | | |
Collapse
|
24
|
Shumaker DK, Vann LR, Goldberg MW, Allen TD, Wilson KL. TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. Cell Calcium 1998; 23:151-64. [PMID: 9601611 DOI: 10.1016/s0143-4160(98)90114-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used Xenopus egg extracts to examine the effects of TPEN, a chelator with strong affinities for Zn2+, Fe2+, and Mn2+, on nuclear assembly in vitro. At concentrations above 1 mM, TPEN blocked the assembly of the nuclear lamina and produced nuclei that were profoundly sensitive to stress-induced balloon-like 'shedding' of nuclear membranes away from chromatin-associated membranes. TPEN-arrested nuclei were also defective for DNA replication, which could be explained as secondary to the lack of a lamina. Imaging of TPEN-arrested nuclei by field emission in-lens scanning electron microscopy (FEISEM) revealed clustered, structurally-perturbed nuclear pore complexes. TPEN-arrested nuclei were defective in the accumulation of fluorescent karyophilic proteins. All detectable effects caused by TPEN were downstream of the effects of BAPTA, a Ca2+/Zn2+ chelator that blocks pore complex assembly at two distinct early stages. Surprisingly, TPEN-arrested nuclei, but not control nuclei, remained active for replication in apoptotic extracts, as assayed by [32P]-dCTP incorporation into high molecular weight DNA, suggesting that TPEN blocks a metal-binding protein(s) required for nuclear destruction during programmed cell death.
Collapse
Affiliation(s)
- D K Shumaker
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
25
|
Duronio RJ, Bonnette PC, O'Farrell PH. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol 1998; 18:141-51. [PMID: 9418862 PMCID: PMC121467 DOI: 10.1128/mcb.18.1.141] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 10/27/1997] [Indexed: 02/05/2023] Open
Abstract
Activation of heterodimeric E2F-DP transcription factors can drive the G1-S transition. Mutation of the Drosophila melanogaster dE2F gene eliminates transcriptional activation of several replication factors at the G1-S transition and compromises DNA replication. Here we describe a mutation in the Drosophila dDP gene. As expected for a defect in the dE2F partner, this mutation blocks G1-S transcription of DmRNR2 and cyclin E as previously described for mutations of dE2F. Mutation of dDP also causes an incomplete block of DNA replication. When S phase is compromised by reducing the activity of dE2F-dDP by either a dE2F or dDP mutation, the first phenotype detected is a reduction in the intensity of BrdU incorporation and a prolongation of the labeling. Notably, in many cells, there was no detected delay in entry into this compromised S phase. In contrast, when cyclin E function was reduced by a hypomorphic allele combination, BrdU incorporation was robust but the timing of S-phase entry was delayed. We suggest that dE2F-dDP contributes to the expression of two classes of gene products: replication factors, whose abundance has a graded effect on replication, and cyclin E, which triggers an all-or-nothing transition from G1 to S phase.
Collapse
Affiliation(s)
- R J Duronio
- Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
26
|
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
27
|
Leno GH, Munshi R. Reactivation of DNA replication in nuclei from terminally differentiated cells: nuclear membrane permeabilization is required for initiation in Xenopus egg extract. Exp Cell Res 1997; 232:412-9. [PMID: 9168820 DOI: 10.1006/excr.1997.3520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used Xenopus egg extract to investigate the requirements for reactivation of DNA replication in nuclei isolated from terminally differentiated chicken erythrocytes. Previous work has shown that reactivation of erythrocyte nuclei in egg extract is accompanied by chromatin decondensation, nuclear envelope reformation, and the accumulation of egg lamin, LIII. However, in those studies, erythrocyte nuclei were prepared by methods that were not designed to maintain the selective permeability of the nuclear membrane, and as such, it is not clear if loss of nuclear membrane integrity played a role in the reactivation process. Therefore, the purpose of this study was to determine if changes in nuclear membrane permeability are required for reactivation of erythrocyte nuclei in egg extract. Nuclei with intact nuclear membranes were prepared from erythrocytes with streptolysin O and permeable nuclei by treatment of intact nuclei with the detergent Nonidet-P40. Like permeable nuclei, most intact nuclei decondensed, imported nuclear protein, and accumulated lamin LIII from the extract. However, unlike permeable nuclei, which replicated extensively in the extract, few intact nuclei initiated replication under the same conditions. These data demonstrate that permeabilization of the nuclear membrane is required for reactivation of DNA replication in terminally differentiated erythrocyte nuclei by egg extract and suggest that loss of nuclear membrane integrity may be a general requirement for replication of quiescent cell nuclei by this system.
Collapse
Affiliation(s)
- G H Leno
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | |
Collapse
|
28
|
Liu J, Lin H, Lopez JM, Wolfner MF. Formation of the male pronuclear lamina in Drosophila melanogaster. Dev Biol 1997; 184:187-96. [PMID: 9133429 DOI: 10.1006/dbio.1997.8523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Upon fertilization, a sperm nucleus reorganizes to become a male pronucleus. This reorganization includes breakdown and reformation of the nuclear envelope of the male pronucleus. In this study, we used a maternally encoded nuclear lamina protein, YA, in parallel with another lamina protein, lamin Dm, as probes to study the formation of the male pronuclear lamina in Drosophila melanogaster. Ectopically expressed YA is present in the nuclear envelopes of spermatocytes, but not in mature sperm, similar to endogenous lamin Dm. This suggests that the nuclear envelope of Drosophila sperm differs from that of somatic cells. Upon fertilization, YA and lamin Dm are recruited to the periphery of the male-derived nucleus before or during the early stages of migration by the male pronucleus. Using a paternal effect mutation, snky, we found that recruitment of lamina proteins to the male pronucleus requires, and probably accompanies, reorganization of the sperm nucleus. In order to identify factors that affect the recruitment of nuclear lamina proteins to the male pronucleus, we examined the subcellular localization of YA and lamin Dm in mutant embryos defective for the function of either the male pronucleus (mh, K81, and pal or both pronuclei (gnu, png, and plu). None of these mutations affect the recruitment of YA or lamin Dm to the male pronuclear envelope, suggesting that the mutations affect processes independent of, or after, reorganization of the nuclear envelope. Double mutant analyses between Ya and gnu suggest that YA plays a role in the nuclear envelope permissive for rounds of DNA replication.
Collapse
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
29
|
Ferreira J, Carmo-Fonseca M. Genome replication in early mouse embryos follows a defined temporal and spatial order. J Cell Sci 1997; 110 ( Pt 7):889-97. [PMID: 9133676 DOI: 10.1242/jcs.110.7.889] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial and temporal organisation of replication sites during early mouse embryogenesis was analysed using high resolution confocal and video fluorescence microscopy. The results show that distinct replication patterns occur in the transcriptionally inactive pronuclei of 1-cell embryos as well as in the transcriptionally active nuclei from 2- and 16/32-cell embryos. This indicates that specific chromatin regions are replicated at different times during S-phase and provides the first evidence that mechanisms controlling the temporal and spatial replication of DNA are already present in the haploid pronuclei of the mammalian zygote. Furthermore the data demonstrate that the male and female pronuclei in one-cell embryos replicate their genomes asynchronously. Finally, we observe changes in the dynamics of embryonic genome replication during early development which correlate with gross chromatin structure transitions detected at the electron microscope level. Taken together these results indicate that DNA synthesis in the mouse zygote follows a defined four-dimensional order which may evolve during development and differentiation.
Collapse
Affiliation(s)
- J Ferreira
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | | |
Collapse
|
30
|
Abstract
We have used Xenopus egg extracts to investigate the effects of the antitumor drug daunomycin on DNA replication in vitro. Xenopus sperm nuclei replicated nearly synchronously in our egg extracts, thereby allowing us to determine the effects of the drug on both replication initiation and elongation. Titration experiments demonstrated that daunomycin effectively inhibited replication in the extract, with 50% inhibition at a total drug concentration of 2.7 microM. However, a high concentration of daunomycin (50 microM) also inhibited nuclear envelope assembly, a prerequisite for the initiation of replication in this system. Therefore, to bypass the effects of daunomycin on nuclear envelope assembly, sperm nuclei were preassembled in extract prior to drug addition. Initiation of replication in preassembled nuclei was also inhibited by daunomycin, with 50% inhibition at a drug concentration of 3.6 microM. At low drug concentrations, where replication did occur, the synchrony of initiations within individual nuclei was lost. This drug-induced disruption of initiation events may provide important clues regarding the mechanism(s) by which these events are coordinated in eukaryotic cells. Daunomycin also inhibited replication elongation in preassembled, preinitiated nuclei. However, the concentration of drug required for 50% inhibition of elongation was nearly fourfold higher than the required for inhibition of initiation. Taken together, these data demonstrate that Xenopus egg extract can be used to investigate the effects of DNA-binding antitumor drugs on a number of interrelated cellular processes, many of which are less tractable in whole cell systems.
Collapse
Affiliation(s)
- F Leng
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | |
Collapse
|
31
|
Mel'nikov SM, Yoshikawa K. First-order phase transition in large single duplex DNA induced by a nonionic surfactant. Biochem Biophys Res Commun 1997; 230:514-7. [PMID: 9015352 DOI: 10.1006/bbrc.1996.5993] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of the nonionic surfactant Triton X-100 on the conformational behavior of large T4DNA was studied. Through single-molecule observation using fluorescence microscopy, we found that T4DNA macromolecules exhibit a discrete coil-globule transition with an increase in the Triton X-100 concentration. At low surfactant concentrations, all of the DNAs exhibited an elongated coil state, whereas only compacted globular DNAs were observed at high molar fractions of Triton X-100. The formation of DNA globules was not detected at relatively low Triton X-100 concentrations, even above the CMC; DNA collapse occurred in 50-90% solutions of Triton X-100. The increase in osmotic pressure in concentrated Triton X-100 solutions is considered to be the driving force for the compaction of single T4DNAs.
Collapse
Affiliation(s)
- S M Mel'nikov
- Graduate School of Human Informatics, Nagoya University, Japan
| | | |
Collapse
|
32
|
Fang J, Benbow RM. Nuclear proteins of quiescent Xenopus laevis cells inhibit DNA replication in intact and permeabilized nuclei. J Cell Biol 1996; 133:955-69. [PMID: 8655587 PMCID: PMC2120854 DOI: 10.1083/jcb.133.5.955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.
Collapse
Affiliation(s)
- J Fang
- Department of Zoology and Genetics, Iowa State University, Ames, 50011, USA
| | | |
Collapse
|
33
|
Iyengar A, Müller F, Maclean N. Regulation and expression of transgenes in fish -- a review. Transgenic Res 1996; 5:147-66. [PMID: 8673142 DOI: 10.1007/bf01969704] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transgenic fish, owing to a number of advantages which they offer over other species, are proving to be valuable model systems for the study of gene regulation and development genetics in addition to being useful targets for the genetic manipulation of commercially important traits. Despite having begun only a decade ago, the production of transgenic fish has become commonplace in a number of laboratories world-wide and considerable progress has been made. In this review, we initially consider the various regulatory elements and coding genes which have been used in fish, and subsequently discuss and compare both the transient and long-term fate and expression patterns of injected DNA sequences in the context of the different factors which are likely to have an effect on the expression of transgenes.
Collapse
Affiliation(s)
- A Iyengar
- Department of Biology, School of Biological Sciences, University of Southampton, UK
| | | | | |
Collapse
|
34
|
Abstract
Lamin B2 modification in synchronously dividing populations of human diploid fibroblasts was determined by 2-dimensional gel electrophoresis and [32P]orthophosphate labelling. In quiescent (G0) and G1 cultures of HDF, lamin B2 migrated as 2 spots on 2-dimensional gels. In contrast, in S-phase populations of HDF lamin B2 migrated as a single basic species. The level of lamin B2 phosphorylation was determined after immunoisolation from [32P]orthophosphate labelled cells. The results of these experiments indicated a 2-3-fold increase in the steady state level of lamin B2 phosphorylation in S-phase HDF compared with G0 HDF. Consistent with this evidence, tryptic peptide maps revealed the presence of a phosphopeptide in S-phase lamin B2 which was absent from G0 lamin B2. Since all of the phosphate incorporated into S-phase and G0 lamin B2 was recovered in serine residues we conclude that the S-phase specific phosphopeptide did not represent either of the cdc2 sites associated with entry nuclear lamina breakdown.
Collapse
Affiliation(s)
- I R Kill
- Department of Biological Sciences, University of Dundee, Scotland, UK
| | | |
Collapse
|
35
|
Goldberg M, Jenkins H, Allen T, Whitfield WG, Hutchison CJ. Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J Cell Sci 1995; 108 ( Pt 11):3451-61. [PMID: 8586657 DOI: 10.1242/jcs.108.11.3451] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus egg extracts which assemble replication competent nuclei in vitro were depleted of lamin B3 using monoclonal antibody L6 5D5 linked to paramagnetic beads. After depletion, the extracts were still capable of assembling nuclei around demembranated sperm heads. Using field emission in lens scanning electron microscopy (FEISEM) we show that most nuclei assembled in lamin B3-depleted extracts have continuous nuclear envelopes and well formed nuclear pores. However, several consistent differences were observed. Most nuclei were small and only attained diameters which were half the size of controls. In a small number of nuclei, nuclear pore baskets, normally present on the inner aspect of the nuclear envelope, appeared on its outer surface. Finally, the assembly of nuclear pores was slower in lamin B3-depleted extracts, indicating a slower overall rate of nuclear envelope assembly. The results of FEISEM were confirmed using conventional TEM thin sections, where again the majority of nuclei assembled in lamin B3-depleted extracts had well formed double unit membranes containing a high density of nuclear pores. Since nuclear envelope assembly was mostly normal but slow in these nuclei, the lamin content of 'depleted' extracts was investigated. While lamin B3 was recovered efficiently from cytosolic and membrane fractions by our procedure, a second minor lamin isoform, which has characteristics similar to those of the somatic lamin B2, remained in the extract. Thus it is likely that this lamin is necessary for nuclear envelope assembly. However, while lamin B2 did not co-precipitate with lamin B3 during immunodepletion experiments, several protein species did specifically associate with lamin B3 on paramagnetic immunobeads. The major protein species associated with lamin B3 migrated with molecular masses of 102 kDa and 57 kDa, respectively, on one-dimensional polyacrylamide gels. On two-dimensional O'Farrell gels the mobility of the 102 kDa protein was identical to the mobility of a major nuclear matrix protein, indicating a specific association between lamin B3 and other nuclear matrix proteins. Nuclei assembled in lamin B3-depleted extracts did not assemble a lamina, judged by indirect immunofluorescence, and failed to initiate semi-conservative DNA replication. However, by reinoculating depleted extracts with purified lamin B3, nuclear lamina assembly and DNA replication could both be rescued. Thus it seems likely that the inability of lamin-depleted extracts to assemble a replication competent nucleus is a direct consequence of a failure to assemble a lamina.
Collapse
Affiliation(s)
- M Goldberg
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|
36
|
Zuelke KA, Perreault SD. Carbendazim (MBC) disrupts oocyte spindle function and induces aneuploidy in hamsters exposed during fertilization (meiosis II). Mol Reprod Dev 1995; 42:200-9. [PMID: 8562065 DOI: 10.1002/mrd.1080420209] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peri-fertilization exposure to Carbendazim (MBC; a microtubule poison) induces infertility and early pregnancy loss in hamsters. Presently, both in vivo and in vitro techniques were employed to characterize the effects of MBC on cellular aspects of fertilization in hamsters. Exposure to MBC during either in vivo or in vitro fertilization (IVF) induced identical morphological abnormalities in the maternal chromatin of zygotes and embryos. These abnormalities included either multiple second polar bodies (PB2), and/or multiple small female pronuclei (PN), or meiotic arrest. Multiple PB2, multiple female PN, multiple PB2 with multiple female PN, or meiotic arrest were exhibited by approximately 31%, 15%, 12%, and 2% of the in vivo zygotes; and 3%, 16%, 36%, and 20% of IVF zygotes, respectively. The effects of MBC persisted to day 2 of pregnancy as indicated by decreased (P < 0.05) embryo development to the two-cell stage and the presence of micronuclei in 6% of two-cell embryos from MBC-treated females. Immunofluorescence analysis of microtubules (MTs) confirmed that MBC disrupted spindle MTs during IVF. Numerical chromosome analysis revealed that a single dose of MBC administered during in vivo fertilization induced aneuploidy in the resulting pronuclear-stage zygotes. The present data point to two mechanisms by which peri-fertilization MBC exposure may induce early pregnancy loss: 1) arrested meiosis with no zygotic cleavage; or 2) induction of zygotic aneuploidy with subsequent developmental arrest.
Collapse
Affiliation(s)
- K A Zuelke
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
37
|
Ullman KS, Forbes DJ. RNA polymerase III transcription in synthetic nuclei assembled in vitro from defined DNA templates. Mol Cell Biol 1995; 15:4873-83. [PMID: 7651406 PMCID: PMC230733 DOI: 10.1128/mcb.15.9.4873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although much is known of the basic control of transcription, little is understood of the way in which the structural organization of the nucleus affects transcription. Synthetic nuclei, assembled de novo in extracts of Xenopus eggs, would be predicted to have a large potential for approaching the role of nuclear structure in RNA biogenesis. Synthetic nuclei provide a system in which the genetic content of the nuclei, as well as the structural and enzymatic proteins within the nuclei, can be manipulated. In this study, we have begun to examine transcription in such nuclei by using the most simple of templates, RNA polymerase III (pol III)-transcribed genes. DNA encoding tRNA or 5S genes was added to an assembly extract, and nuclei were formed entirely from the pol III templates. Conditions which allowed nuclear assembly and pol III transcription to take place efficiently and simultaneously in the assembly extract were found. To examine whether pol III transcription could initiate within synthetic nuclei, or instead was inhibited in nuclei and initiated only on rare unincorporated templates, we identified transcriptional inhibitors that were excluded from nuclei. We found that these inhibitors, heparin and dextran sulfate, blocked pol III transcription in the absence of assembly but did not do so following nuclear assembly. At the concentrations used, the inhibitors had no deleterious effect on nuclear structure itself or on nuclear import. We conclude that pol III transcription is active in synthetic nuclei, and this conclusion is further strengthened by the finding that pol III transcripts could be coisolated with synthetic nuclei. The rapid and direct transcriptional analysis possible with pol III templates, coupled with the simple experimental criteria developed in this study for distinguishing between nuclear and non-nuclear transcription, should now allow a molecular analysis of the effect of nuclear structure on transcriptional and posttranscriptional control.
Collapse
Affiliation(s)
- K S Ullman
- Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
38
|
Wangh LJ, DeGrace D, Sanchez JA, Gold A, Yeghiazarians Y, Wiedemann K, Daniels S. Efficient reactivation of Xenopus erythrocyte nuclei in Xenopus egg extracts. J Cell Sci 1995; 108 ( Pt 6):2187-96. [PMID: 7673338 DOI: 10.1242/jcs.108.6.2187] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.
Collapse
Affiliation(s)
- L J Wangh
- Department of Biology, Brandeis University, Waltham, MA 02254, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Murphy J, Crompton CM, Hainey S, Codd GA, Hutchison CJ. The role of protein phosphorylation in the assembly of a replication competent nucleus: investigations in Xenopus egg extracts using the cyanobacterial toxin microcystin-LR. J Cell Sci 1995; 108 ( Pt 1):235-44. [PMID: 7738100 DOI: 10.1242/jcs.108.1.235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-free extracts of Xenopus eggs support nuclear assembly and DNA replication in vitro. Extracts supplemented with the protein phosphatase inhibitor microcystin-LR displayed various inhibitory effects at different concentrations of the toxin. In the presence of cycloheximide, additions of microcystin did not induce histone H1-kinase activity. Nevertheless, increasing concentrations of microcystin did sequentially prevent DNA replication, nuclear lamina assembly and nuclear envelope assembly. DNA replication was prevented when microcystin was added at 250 nM. Furthermore, this effect could be reversed after the addition of the catalytic sub-unit of protein phosphatase 2A to inhibited extracts. At a concentration of 250 nM microcystin, nuclear membrane assembly, nuclear lamina assembly and nuclear transport all occurred in egg extracts. In addition single-stranded M13 DNA replication was also permitted. However, it appeared that replicase assembly was not completed, since nuclei assembled in microcystin-treated extracts displayed an unusual distribution of proliferating cell nuclear antigen (PCNA). Although PCNA was located at sites that resembled pre-replication foci, this nuclear protein was readily solubilised when nuclei were isolated and extracted sequentially with Triton, nucleases and salts. Despite this, nuclei containing pre-assembled replication forks could synthesise DNA when transferred into microcystin-treated extracts.
Collapse
Affiliation(s)
- J Murphy
- Department of Biological Sciences, University of Dundee, Scotland
| | | | | | | | | |
Collapse
|
40
|
Istfan NW, Wan J, Chen ZY. Fish oil and cell proliferation kinetics in a mammary carcinoma tumor model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 375:149-56. [PMID: 7645425 DOI: 10.1007/978-1-4899-0949-7_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In vivo bromodeoxyuridine (BrdUrd) labelling and bivariate BrdUrd/DNA analysis was used to evaluate cell cycle kinetics in a rat tumor model known to be sensitive to dietary fatty acid manipulation. Fish oil supplementation significantly reduced the rate of BrdUrd movement relative to DNA content, indicating prolongation of the DNA replication time. This finding, which accounted for most of the decrease in tumor growth rate in the fish oil-fed group, represents the first description of an alteration in S phase duration by an extrinsic factor. The significance of this finding is discussed in relation to current understanding of cell cycle regulation. Fish oil feeding is associated with slower growth rate in certain tumors (1,2). According to current concepts of cellular proliferation (3), regulation of growth by extrinsic factors is thought to precede the S phase. This statement is based on the notion that, within a given cell type, DNA replication time (S phase duration) is constant (4-6). Extensive evidence also supports an on/off mechanism of cell cycle regulation at the level of entry into the S phase (3). In this report, we present evidence showing, for the first time, that the S phase duration of fat-responsive tumor cells can be altered by dietary manipulation of fatty acids. Furthermore, these differences in S phase duration appear to account for all the in vivo variation in tumor growth resulting from fish oil feeding. Although the mechanism of this phenomenon remains unclear, our observations support increasing evidence for a regulatory step at the level of the nucleus. They are also important for understanding the relationship between dietary fat and tumor growth.
Collapse
Affiliation(s)
- N W Istfan
- Clinical Nutrition Unit, Boston University Medical Center Hospital, Massachusetts 02118, USA
| | | | | |
Collapse
|
41
|
Rubenstein DS, Thomasma DC, Schon EA, Zinaman MJ. Germ-line therapy to cure mitochondrial disease: protocol and ethics of in vitro ovum nuclear transplantation. Camb Q Healthc Ethics 1995; 4:316-39. [PMID: 7551145 DOI: 10.1017/s0963180100006071] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The combination of genuine ethical concerns and fear of learning to use germ-line therapy for human disease must now be confronted. Until now, no established techniques were available to perform this treatment on a human. Through an integration of several fields of science and medicine, we have developed a nine step protocol at the germ-line level for the curative treatment of a genetic disease. Our purpose in this paper is to provide the first method to apply germ-line therapy to treat those not yet born, who are destined to have a life threatening, or a severely debilitating genetic disease. We hope this proposal will initiate the process of a thorough analysis from both the scientific and ethical communities. As such, this proposal can be useful for official groups studying the advantages and disadvantages of germ-line therapy.
Collapse
|
42
|
Hutchison CJ, Bridger JM, Cox LS, Kill IR. Weaving a pattern from disparate threads: lamin function in nuclear assembly and DNA replication. J Cell Sci 1994; 107 ( Pt 12):3259-69. [PMID: 7706384 DOI: 10.1242/jcs.107.12.3259] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major residual structure that remains associated with the nuclear envelope following extraction of isolated nuclei or oocyte germinal vesicles with non-ionic detergents, nucleases and high salt is the lamina (Fawcett, 1966; Aaronson and Blobel, 1975; Dwyer and Blobel, 1976). The nuclear lamina is composed of intermediate filament proteins, termed lamins (Gerace and Blobel, 1980; Shelton et al., 1980), which polymerise to form a basket-weave lattice of fibrils, which covers the entire inner surface of the nuclear envelope and interlinks nuclear pores (Aebi et al., 1986; Stewart and Whytock, 1988; Goldberg and Allen, 1992). At mitosis, the nuclear envelope and the lamina both break down to allow chromosome segregation. As a consequence, each structure has to be rebuilt during anaphase and telophase, allowing cells an opportunity to reposition chromosomes (Heslop-Harrison and Bennett, 1990) and to reorganise looped chromatin domains (Franke, 1974; Franke et al., 1981; Hochstrasser et al., 1986), which may in turn control the use of subsets of genes. Because of the position that it occupies, its dynamics during mitosis and the fact that it is an essential component of proliferating cells, the lamina has been assigned a number of putative roles both in nuclear metabolism and in nuclear envelope assembly (Burke and Gerace, 1986; Nigg, 1989). However, to date there is little clear cut evidence that satisfactorily explains the function of the lamina in relation to its structure. In this Commentary we will describe some of the recent work that addresses this problem and attempt to provide a unified model for the role of lamins in nuclear envelope assembly and for the lamina in the initiation of DNA replication.
Collapse
Affiliation(s)
- C J Hutchison
- Department of Biological Sciences, The University, Dundee, UK
| | | | | | | |
Collapse
|
43
|
Istfan NW, Wan JM, Bistrian BR, Chen ZY. DNA replication time accounts for tumor growth variation induced by dietary fat in a breast carcinoma model. Cancer Lett 1994; 86:177-86. [PMID: 7982205 DOI: 10.1016/0304-3835(94)90076-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Female Fischer rats were pair-fed on diets containing either safflower oil (SO) or fish oil (FO) for 6 weeks. Implanted breast 13762 MAT tumors had a doubling times of 35.4 and 55.5 h in SO and FO rats, respectively (P < 0.001). Proliferation kinetics were measured in vivo by bromedeoxyuridine (BrdUrd) labeling and bivariate DNA/BrdUrd analysis by flow cytometry. After 1 h of pulsing, the labeling index was similar in both groups. However, 6 h later, tumor cells from FO rats had significantly lower relative movement of BrdUrd-labeled cells (0.78 vs. 0.91, P < 0.001). These results reflected a significantly longer S phase duration (15.0 vs. 9.1 h, P < 0.001) in FO rats and accounted for all the difference in tumor growth rates. This mechanism, which has not previously been reported, implies a significant role for fatty acids in DNA replication.
Collapse
Affiliation(s)
- N W Istfan
- Department of Medicine, New England Deaconess Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
44
|
Jung S, Hollingsworth R. Structures and stereochemistry of the very long alpha, omega-bifunctional alkyl species in the membrane of Sarcina ventriculi indicate that they are formed by tail-to-tail coupling of normal fatty acids. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Hola M, Castleden S, Howard M, Brooks RF. Initiation of DNA synthesis by nuclei from scrape-ruptured quiescent mammalian cells in high-speed supernatants of Xenopus egg extracts. J Cell Sci 1994; 107 ( Pt 11):3045-53. [PMID: 7699004 DOI: 10.1242/jcs.107.11.3045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Demembranated sperm heads, detergent-isolated somatic nuclei and even naked DNA are efficiently replicated in cytoplasmic extracts of activated amphibian eggs, but only after nuclear assembly and the formation of an intact nuclear envelope. DNA synthesis has not previously been shown to be initiated in high-speed (200,000 g) supernatants of egg cytoplasm because they are depleted of the vesicular material required to support nuclear envelope formation. Here we show that mammalian nuclei prepared by scrape-rupture are able to initiate DNA replication in such high-speed supernatants. These nuclei begin DNA synthesis asynchronously. This asynchrony cannot be attributed to differences in the time taken for nuclear assembly. Instead, we suggest that the asynchrony reflects intrinsic differences between nuclei and that these differences are a major cause of cell cycle variability. Our demonstration of initiation in high-speed supernatants now enables the initiation of eukaryotic DNA synthesis to be studied independently of nuclear assembly.
Collapse
Affiliation(s)
- M Hola
- Division of Biomedical Sciences, King's College, Randall Institute, London, UK
| | | | | | | |
Collapse
|
46
|
Abstract
Regulated gene expression within a complex chromosomal locus requires multiple nuclear processes. We have analyzed the transcriptional properties of the cloned chick beta-globin gene family when assembled into synthetic nuclei made by use of Xenopus egg extracts. Assembly in an erythroid protein environment correctly recapitulates tissue-specific chromatin structure and long-range promoter-enhancer interaction within the chromosomal locus, resulting in beta-globin gene activation. Nucleosome-repressed beta-globin templates can be transcriptionally activated by double-stranded DNA replication in the presence of staged erythroid proteins by remodeling of the chromatin structure within the promoter region and establishment of distal promoter-enhancer communication. The programmed transcriptional state of a gene, as encoded by its chromatin structure and long-range promoter-enhancer interactions, is stable to nuclear decondensation and DNA replication unless active remodeling occurs in the presence of specific DNA-binding proteins.
Collapse
Affiliation(s)
- M C Barton
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | | |
Collapse
|
47
|
Leno GH, Munshi R. Initiation of DNA replication in nuclei from quiescent cells requires permeabilization of the nuclear membrane. J Cell Biol 1994; 127:5-14. [PMID: 7929570 PMCID: PMC2120183 DOI: 10.1083/jcb.127.1.5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have investigated the replication capacity of intact nuclei from quiescent cells using Xenopus egg extract. Nuclei, with intact nuclear membranes, were isolated from both exponentially growing and contact-inhibited BALB/c 3T3 fibroblasts by treatment of the cells with streptolysin-O. Flow cytometry showed that > 90% of all contact-inhibited cells and approximately 50% of the exponential cells were in G0/G1-phase at the time of nuclear isolation. Intact nuclei were assayed for replication in the extract by incorporation of [alpha-32P]dATP or biotin-dUTP into nascent DNA. Most nuclei from exponential cells replicated in the egg extract, consistent with previous results showing that intact G1 nuclei from HeLa cells replicate in this system. In contrast, few nuclei from quiescent cells replicated in parallel incubations. However, when the nuclear membranes of these intact quiescent nuclei were permeabilized with lysophosphatidylcholine prior to addition to the extract, nearly all the nuclei replicated under complete cell cycle control in a subsequent incubation. The ability of LPC-treated quiescent nuclei to undergo DNA replication was reversed by resealing permeable nuclear membranes with Xenopus egg membranes prior to extract incubation demonstrating that the effect of LPC treatment is at the level of the nuclear membrane. These results indicate that nuclei from G1-phase cells lose their capacity to initiate DNA replication following density-dependent growth arrest and suggest that changes in nuclear membrane permeability may be required for the initiation of replication upon re-entry of the quiescent cell into the cell cycle.
Collapse
Affiliation(s)
- G H Leno
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216-4505
| | | |
Collapse
|
48
|
Abstract
DNA replication occurs only once in each normal mitotic cell cycle. To explain this strict control, a 'licensing factor' was proposed to enter the nucleus periodically as the nuclear envelope disintegrates and reassembles at the end of mitosis. Inactivation of licensing factor immediately following initiation of DNA synthesis would prevent reinitiation until after the next mitosis. The MCM2-3-5 proteins of Saccharomyces cerevisiae may be yeast's equivalent of licensing factor: they are present in the nucleus only between M and S phase, bind to chromatin and are important for the initiation of DNA replication.
Collapse
Affiliation(s)
- B K Tye
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Affiliation(s)
- L S Cox
- Department of Biochemistry, University of Dundee, Scotland
| | | |
Collapse
|
50
|
Kubota Y, Takisawa H. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts. J Biophys Biochem Cytol 1993; 123:1321-31. [PMID: 8253833 PMCID: PMC2290898 DOI: 10.1083/jcb.123.6.1321] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase-like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M-phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine-treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation.
Collapse
Affiliation(s)
- Y Kubota
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | |
Collapse
|