1
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
2
|
Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ. Proc Natl Acad Sci U S A 2017; 114:E5256-E5265. [PMID: 28607044 DOI: 10.1073/pnas.1617270114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIβ promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIβ, which results in dissociation of the CaMKIIβ/F-actin complex. Defective function of the PKC-mediated CaMKIIβ phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IP3R1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIβ through the mGluR/IP3R1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells.
Collapse
|
3
|
Liu X, Shu S, Yu S, Lee DY, Piszczek G, Gucek M, Wang G, Korn ED. Biochemical and biological properties of cortexillin III, a component of Dictyostelium DGAP1-cortexillin complexes. Mol Biol Cell 2014; 25:2026-38. [PMID: 24807902 PMCID: PMC4072576 DOI: 10.1091/mbc.e13-08-0457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cortexillin III, a member of the α-actinin/spectrin subfamily of Dictyostelium calponin homology proteins, forms heterodimers with cortexillins I and II that bind to the GAP protein DGAP1 in vivo. Cortexillin III complexes may be negative regulators of cell growth, pinocytosis, and phagocytosis, as all are enhanced in cortexillin III–null cells. Cortexillins I–III are members of the α-actinin/spectrin subfamily of Dictyostelium calponin homology proteins. Unlike recombinant cortexillins I and II, which form homodimers as well as heterodimers in vitro, we find that recombinant cortexillin III is an unstable monomer but forms more stable heterodimers when coexpressed in Escherichia coli with cortexillin I or II. Expressed cortexillin III also forms heterodimers with both cortexillin I and II in vivo, and the heterodimers complex in vivo with DGAP1, a Dictyostelium GAP protein. Binding of cortexillin III to DGAP1 requires the presence of either cortexillin I or II; that is, cortexillin III binds to DGAP1 only as a heterodimer, and the heterodimers form in vivo in the absence of DGAP1. Expressed cortexillin III colocalizes with cortexillins I and II in the cortex of vegetative amoebae, the leading edge of motile cells, and the cleavage furrow of dividing cells. Colocalization of cortexillin III and F-actin may require the heterodimer/DGAP1 complex. Functionally, cortexillin III may be a negative regulator of cell growth, cytokinesis, pinocytosis, and phagocytosis, as all are enhanced in cortexillin III–null cells.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shuhua Yu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guanghui Wang
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Shu S, Liu X, Kriebel PW, Daniels MP, Korn ED. Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development. Mol Biol Cell 2011; 23:390-400. [PMID: 22114350 PMCID: PMC3258182 DOI: 10.1091/mbc.e11-09-0764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Double deletion of actin-binding proteins cortexillin I and II alters the actin cytoskeleton (bundled actin filaments accumulate in the cell cortex) of Dictyostelium, substantially inhibits all molecular responses to extracellular cAMP, and completely blocks cell streaming and development of cells into mature fruiting bodies. Starvation induces Dictyostelium amoebae to secrete cAMP, toward which other amoebae stream, forming multicellular mounds that differentiate and develop into fruiting bodies containing spores. We find that the double deletion of cortexillin (ctx) I and II alters the actin cytoskeleton and substantially inhibits all molecular responses to extracellular cAMP. Synthesis of cAMP receptor and adenylyl cyclase A (ACA) is inhibited, and activation of ACA, RasC, and RasG, phosphorylation of extracellular signal regulated kinase 2, activation of TORC2, and stimulation of actin polymerization and myosin assembly are greatly reduced. As a consequence, cell streaming and development are completely blocked. Expression of ACA–yellow fluorescent protein in the ctxI/ctxII–null cells significantly rescues the wild-type phenotype, indicating that the primary chemotaxis and development defect is the inhibition of ACA synthesis and cAMP production. These results demonstrate the critical importance of a properly organized actin cytoskeleton for cAMP-signaling pathways, chemotaxis, and development in Dictyostelium.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED. Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling. J Biol Chem 2010; 285:27713-25. [PMID: 20610381 DOI: 10.1074/jbc.m110.116277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We showed previously that phosphorylation of Tyr(53), or its mutation to Ala, inhibits actin polymerization in vitro with formation of aggregates of short filaments, and that expression of Y53A-actin in Dictyostelium blocks differentiation and development at the mound stage (Liu, X., Shu, S., Hong, M. S., Levine, R. L., and Korn, E. D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13694-13699; Liu, X., Shu, S., Hong, M. S., Yu, B., and Korn, E. D. (2010) J. Biol. Chem. 285, 9729-9739). We now show that expression of Y53A-actin, which does not affect cell growth, phagocytosis, or pinocytosis, inhibits the formation of head-to-tail cell streams during cAMP-induced aggregation, although individual amoebae chemotax normally. We show that expression of Y53A-actin causes a 50% reduction of cell surface cAMP receptors, and inhibits cAMP-induced increases in adenylyl cyclase A activity, phosphorylation of ERK2, and actin polymerization. Trafficking of vesicles containing adenylyl cyclase A to the rear of the cell and secretion of the ACA vesicles are also inhibited. The actin cytoskeleton of cells expressing Y53A-actin is characterized by numerous short filaments, and bundled and aggregated filaments similar to the structures formed by copolymerization of purified Y53A-actin and wild-type actin in vitro. This disorganized actin cytoskeleton may be responsible for the inhibition of intracellular and intercellular cAMP signaling in cells expressing F-Y53A-actin.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The movements of Dictyostelium discoideum amoebae translocating on a glass surface in the absence of chemoattractant have been reconstructed at 5-second intervals and motion analyzed by employing 3D-DIAS software. A morphometric analysis of pseudopods, the main cell body, and the uropod provides a comprehensive description of the basic motile behavior of a cell in four dimensions (4D), resulting in a list of 18 characteristics. A similar analysis of the myosin II phosphorylation mutant 3XASP reveals a role for the cortical localization of myosin II in the suppression of lateral pseudopods, formation of the uropod, cytoplasmic distribution of cytoplasm in the main cell body, and efficient motility. The results of the morphometric analysis suggest that pseudopods, the main cell body, and the uropod represent three motility compartments that are coordinated for efficient translocation. It provides a contextual framework for interpreting the effects of mutations, inhibitors, and chemoattractants on the basic motile behavior of D. discoideum. The generality of the characteristics of the basic motile behavior of D. discoideum must now be tested by similar 4D analyses of the motility of amoeboid cells of higher eukaryotic cells, in particular human polymorphonuclear leukocytes.
Collapse
|
7
|
Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc Natl Acad Sci U S A 2008; 105:16882-7. [PMID: 18971336 DOI: 10.1073/pnas.0805513105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many proteins have been shown to undergo conformational changes in response to externally applied force in vitro, but whether the force-induced protein conformational changes occur in vivo remains unclear. To reveal the force-induced conformational changes, or strains, within proteins in living cells, we have developed a genetically encoded fluorescent "strain sensor," by combining the proximity imaging (PRIM) technique, which uses spectral changes of 2 GFP molecules that are in direct contact, and myosin-actin as a model system. The developed PRIM-based strain sensor module (PriSSM) consists of the tandem fusion of a normal and circularly permuted GFP. To apply strain to PriSSM, it was inserted between 2 motor domains of Dictyostelium myosin II. In the absence of strain, the 2 GFP moieties in PriSSM are in contact, whereas when the motor domains are bound to F-actin, PriSSM has a strained conformation, leading to the loss of contact and a concomitant spectral change. Using the sensor system, we found that the position of the lever arm in the rigor state was affected by mutations within the motor domain. Moreover, the sensor was used to visualize the interaction between myosin II and F-actin in Dictyostelium cells. In normal cells, myosin was largely detached from F-actin, whereas ATP depletion or hyperosmotic stress increased the fraction of myosin bound to F-actin. The PRIM-based strain sensor may provide a general approach for studying force-induced protein conformational changes in cells.
Collapse
|
8
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
9
|
Shu S, Mahadeo DC, Liu X, Liu W, Parent CA, Korn ED. S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration. Proc Natl Acad Sci U S A 2006; 103:19788-93. [PMID: 17172447 PMCID: PMC1750865 DOI: 10.1073/pnas.0609385103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 11/18/2022] Open
Abstract
Chemotaxis of bacteria requires regulated methylation of chemoreceptors. However, despite considerable effort in the 1980s, transmethylation has never been established as a component of eukaryotic cell chemotaxis. S-adenosylhomocysteine (SAH), the product formed when the methyl group of the universal donor S-adenosylmethionine (SAM) is transferred to an acceptor molecule, is a potent inhibitor of all transmethylation reactions. In eukaryotic cells, this inhibition is relieved by hydrolysis of SAH to adenosine and homocysteine catalyzed by SAH hydrolase (SAHH). We now report that SAHH, which is diffuse in the cytoplasm of nonmotile Dictyostelium amoebae and human neutrophils, concentrates with F-actin in pseudopods at the front of motile, chemotaxing cells, but is not present in filopodia or at the very leading edge. Tubercidin, an inhibitor of SAHH, inhibits both chemotaxis and chemotaxis-dependent cell streaming of Dictyostelium, and chemotaxis of neutrophils at concentrations that have little effect on cell viability. Tubercidin does not inhibit starvation-induced expression of the cAMP receptor, cAR1, or G protein-mediated stimulation of adenylyl cyclase activity and actin polymerization in Dictyostelium. Tubercidin has no effect on either capping of Con A receptors or phagocytosis in Dictyostelium. These results add SAHH to the list of proteins that redistribute in response to chemotactic signals in Dictyostelium and neutrophils and strongly suggest a role for transmethylation in chemotaxis of eukaryotic cells.
Collapse
Affiliation(s)
- Shi Shu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Dana C. Mahadeo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiong Liu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Wenli Liu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D. Korn
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| |
Collapse
|
10
|
Wu D, Asiedu M, Adelstein RS, Wei Q. A novel guanine nucleotide exchange factor MyoGEF is required for cytokinesis. Cell Cycle 2006; 5:1234-9. [PMID: 16721066 PMCID: PMC2034313 DOI: 10.4161/cc.5.11.2815] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cleavage furrow is created by an actomyosin contractile ring that is regulated by small GTPase proteins such as Rac1 and RhoA. Guanine nucleotide exchange factors (GEFs) are positive regulators of the small GTPase proteins and have been implicated as important factors in regulating cytokinesis. However, it is still unclear how GEFs regulate the contractile ring during cytokinesis in mammalian cells. Here we report that a novel GEF, which is termed MyoGEF (myosin-interacting GEF), interacts with non-muscle myosin II and exhibits activity toward RhoA. MyoGEF and non-muscle myosin II colocalize to the cleavage furrow in early anaphase cells. Disruption of MyoGEF expression in U2OS cells by RNA interference (RNAi) results in the formation of multinucleated cells. These results suggest that MyoGEF, RhoA, and non-muscle myosin II act as a functional unit at the cleavage furrow to advance furrow ingression during cytokinesis.
Collapse
Affiliation(s)
- Di Wu
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
| | - Michael Asiedu
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
| | | | - Qize Wei
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
- *Correspondence to: Qize Wei, Ph.D.; Department of Biochemistry; Kansas State University; 104 Willard Hall; Manhattan, Kansas 66506 USA; Tel.: 785.532.6736; Fax: 785.532.7278,
| |
Collapse
|
11
|
Liu X, Shu S, Kovács M, Korn ED. Biological, biochemical, and kinetic effects of mutations of the cardiomyopathy loop of Dictyostelium myosin II: importance of ALA400. J Biol Chem 2005; 280:26974-83. [PMID: 15897189 PMCID: PMC1201472 DOI: 10.1074/jbc.m504453200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiomyopathy (CM)-loop of the heavy chain of class-II myosins begins with a highly conserved Arg residue (whose mutation in human beta-cardiac myosin II results in familial hypertrophic cardiomyopathy). The CM-loop of Dictyostelium myosin II (Arg397-Gln407) is essential for its biological functions and biochemical activities. We found that the CM-loop of smooth muscle myosin II substituted partially, and the CM-loop of beta-cardiac myosin II less well, for growth, capping of surface receptors and development, and the actin-activated MgATPase and in vitro motility activities of purified myosins. There was little correlation between the biochemical and biological activities of the two chimeras and 19 point mutants, but only the five mutants with k cat/K actin values equivalent to wild-type myosin supported essentially full biological function. The three point mutations of Arg397 equivalent to those that result in hypertrophic cardiomyopathy in humans had minimal biological effects and different biochemical effects. The A400V mutation rendered full-length wild-type myosin almost completely inactive, both in vitro and in vivo, and the reverse V400A mutation in the cardiac CM-loop chimera restored almost full activity, even though the sequence still differed from wild-type in 7 of 11 positions. Transient kinetic studies of acto-subfragment-1 (S1) showed that the chimeras and the Ala/Val, Val/Ala mutations do not affect the equilibrium or the association and dissociation rate constants for either ATP or ADP binding to acto-S1 or the rate of ATP-induced dissociation of acto-S1. We conclude that the Ala/Val, Val/Ala mutations affect the release of Pi from acto-S1.ADP.Pi. In addition, Val at position 400 substantially reduces the affinity of actin for S1 in the absence of nucleotide.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
12
|
Shu S, Liu X, Korn ED. Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proc Natl Acad Sci U S A 2005; 102:1472-7. [PMID: 15671182 PMCID: PMC547870 DOI: 10.1073/pnas.0409528102] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blebbistatin, a cell-permeable inhibitor of class-II myosins, was developed to provide a tool for studying the biologic roles of myosin II. Consistent with this use, we find that blebbistatin inhibits three myosin II-dependent processes in Dictyostelium (growth in suspension culture, capping of Con A receptors, and development to fruiting bodies) and does not inhibit growth on plates, which does not require myosin II. As expected, macropinocytosis (myosin I-dependent), contractile vacuole activity (myosin V-dependent), and phagocytosis (myosin VII-dependent), none of which requires myosin II, are not inhibited by blebbistatin in myosin II-null cells, but, unexpectedly, blebbistatin does inhibit macropinocytosis and phagocytosis by cells expressing myosin II. Expression of catalytically inactive myosin II in myosin II-null cells also inhibits macropinocytosis and phagocytosis. Both blebbistatin-inhibited myosin II and catalytically inactive myosin II form cytoplasmic aggregates, which may be why they inhibit myosin II-independent processes, but neither affects the distribution of actin filaments in vegetative cells or actin and myosin distribution in dividing or polarized cells. Blebbistatin also inhibits cell streaming and plaque expansion in myosin II-null cells. Our results are consistent with myosin II being the only Dictyostelium myosin that is inhibited by blebbistatin but also show that blebbistatin-inactivated myosin II inhibits some myosin II-independent processes and that blebbistatin inhibits other activities in the absence of myosin II.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Abstract
The movements of eukaryotic cell division depend upon the conversion of chemical energy into mechanical work, which in turn involves the actions of motor proteins, molecular transducers that generate force and motion relative cytoskeletal elements. In animal cells, microtubule-based motor proteins of the mitotic apparatus are involved in segregating chromosomes and perhaps in organizing the mitotic apparatus itself, while microfilament-based motors in the contractile ring generate the forces that separate daughter cells during cytokinesis. This review outlines recent advances in our understanding of the roles of molecular motors in mitosis and cytokinesis.
Collapse
Affiliation(s)
- K E Sawin
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
14
|
Uyeda TQP, Nagasaki A, Yumura S. Multiple Parallelisms in Animal Cytokinesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:377-432. [PMID: 15548417 DOI: 10.1016/s0074-7696(04)40004-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of cytokinesis in animal cells is usually presented as a relatively simple picture: A cleavage plane is first positioned in the equatorial region by the astral microtubules of the anaphase mitotic apparatus, and a contractile ring made up of parallel filaments of actin and myosin II is formed and encircles the cortex at the division site. Active sliding between the two filament systems constricts the perimeter of the cortex, leading to separation of two daughter cells. However, recent studies in both animal cells and lower eukaryotic model organisms have demonstrated that cytokinesis is actually far more complex. It is now obvious that the three key processes of cytokinesis, cleavage plane determination, equatorial furrowing, and scission, are driven by different mechanisms in different types of cells. In some cases, moreover, multiple pathways appear to have redundant functions in a single cell type. In this review, we present a novel hypothesis that incorporates recent observations on the activities of mitotic microtubules and the biochemistry of Rho-type GTPase proteins and postulates that two different sets of microtubules are responsible for the two known mechanisms of cleavage plane determination and also for two distinct mechanisms of equatorial furrowing.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- Gene Function Research Center, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | |
Collapse
|
15
|
De la Roche MA, Smith JL, Betapudi V, Egelhoff TT, Côté GP. Signaling pathways regulating Dictyostelium myosin II. J Muscle Res Cell Motil 2003; 23:703-18. [PMID: 12952069 DOI: 10.1023/a:1024467426244] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dictyostelium myosin II is a conventional, two-headed myosin that consists of two copies each of a myosin heavy chain (MHC), an essential light chain (ELC) and a regulatory light chain (RLC). The MHC is comprised of an amino-terminal motor domain, a neck region that binds the RLC and ELC and a carboxyl-terminal alpha-helical coiled-coil tail. Electrostatic interactions between the tail domains mediate the self-assembly of myosin II into bipolar filaments that are capable of interacting with actin filaments to generate a contractile force. In this review we discuss the regulation of Dictyostelium myosin II by a myosin light chain kinase (MLCK-A) that phosphorylates the RLC and increases motor activity and by MHC kinases (MHCKs) that phosphorylate the tail and prevent filament assembly. Dictyostelium may express as many as four MHCKs (MHCK A-D) consisting of an atypical alpha-kinase catalytic domain and a carboxyl-terminal WD repeat domain that targets myosin II filaments. A previously reported MHCK, termed MHC-PKC, now seems more likely to be a diacylglycerol kinase (DgkA). The relationship of the MHCKs to the larger family of alpha-kinases is discussed and key features of the structure of the alpha-kinase catalytic domain are reviewed. Potential upstream regulators of myosin II are described, including DgkA, cGMP, cAMP and PAKa, a target for Rac GTPases. Recent results point to a complex network of signaling pathways responsible for controling the activity and localization of myosin II in the cell.
Collapse
Affiliation(s)
- Marc A De la Roche
- Department of Biochemistry, Botterell Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
16
|
Shu S, Liu X, Korn ED. Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells. Proc Natl Acad Sci U S A 2003; 100:6499-504. [PMID: 12748387 PMCID: PMC164475 DOI: 10.1073/pnas.0732155100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How myosin II localizes to the cleavage furrow of dividing cells is largely unknown. We show here that a 283-residue protein, assembly domain (AD)1, corresponding to the AD in the tail of Dictyostelium myosin II assembles into bundles of long tubules when expressed in myosin II-null cells and localizes to the cleavage furrow of dividing cells. AD1 mutants that do not polymerize in vitro do not go to the cleavage furrow in vivo. An assembly-competent polypeptide corresponding to the C-terminal 256 residues of Acanthamoeba myosin II also goes to the cleavage furrow of Dictyostelium myosin II-null cells. When overexpressed in wild-type cells, AD1 colocalizes with endogenous myosin II (possibly as a copolymer) in interphase, motile, and dividing cells and under caps of Con A receptors but has no effect on myosin II-dependent functions. These results suggest that neither a specific sequence, other than that required for polymerization, nor interaction with other proteins is required for localization of myosin II to the cleavage furrow.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Nagasaki A, Itoh G, Yumura S, Uyeda TQP. Novel myosin heavy chain kinase involved in disassembly of myosin II filaments and efficient cleavage in mitotic dictyostelium cells. Mol Biol Cell 2002; 13:4333-42. [PMID: 12475956 PMCID: PMC138637 DOI: 10.1091/mbc.e02-04-0228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.
Collapse
Affiliation(s)
- Akira Nagasaki
- Gene Function Research Laboratory, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan.
| | | | | | | |
Collapse
|
18
|
Shu S, Liu X, Parent CA, Uyeda TQP, Korn ED. Tail chimeras of Dictyostelium myosin II support cytokinesis and other myosin II activities but not full development. J Cell Sci 2002; 115:4237-49. [PMID: 12376556 DOI: 10.1242/jcs.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium lacking myosin II cannot grow in suspension culture, develop beyond the mound stage or cap concanavalin A receptors and chemotaxis is impaired. Recently, we showed that the actin-activated MgATPase activity of myosin chimeras in which the tail domain of Dictyostelium myosin II heavy chain is replaced by the tail domain of either Acanthamoeba or chicken smooth muscle myosin II is unregulated and about 20 times higher than wild-type myosin. The Acanthamoeba chimera forms short bipolar filaments similar to, but shorter than, filaments of Dictyostelium myosin and the smooth muscle chimera forms much larger side-polar filaments. We now find that the Acanthamoeba chimera expressed in myosin null cells localizes to the periphery of vegetative amoeba similarly to wild-type myosin but the smooth muscle chimera is heavily concentrated in a single cortical patch. Despite their different tail sequences and filament structures and different localization of the smooth muscle chimera in interphase cells, both chimeras support growth in suspension culture and concanavalin A capping and colocalize with the ConA cap but the Acanthamoeba chimera subsequently disperses more slowly than wild-type myosin and the smooth muscle chimera apparently not at all. Both chimeras also partially rescue chemotaxis. However, neither supports full development. Thus, neither regulation of myosin activity, nor regulation of myosin polymerization nor bipolar filaments is required for many functions of Dictyostelium myosin II and there may be no specific sequence required for localization of myosin to the cleavage furrow.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Mulvihill DP, Barretto C, Hyams JS. Localization of fission yeast type II myosin, Myo2, to the cytokinetic actin ring is regulated by phosphorylation of a C-terminal coiled-coil domain and requires a functional septation initiation network. Mol Biol Cell 2001; 12:4044-53. [PMID: 11739799 PMCID: PMC60774 DOI: 10.1091/mbc.12.12.4044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myo2 truncations fused to green fluorescent protein (GFP) defined a C-terminal domain essential for the localization of Myo2 to the cytokinetic actin ring (CAR). The localization domain contained two predicted phosphorylation sites. Mutation of serine 1518 to alanine (S(1518)A) abolished Myo2 localization, whereas Myo2 with a glutamic acid at this position (S(1518)E) localized to the CAR. GFP-Myo2 formed rings in the septation initiation kinase (SIN) mutant cdc7-24 at 25 degrees C but not at 36 degrees C. GFP-Myo2S(1518)E rings persisted at 36 degrees C in cdc7-24 but not in another SIN kinase mutant, sid2-250. To further examine the relationship between Myo2 and the SIN pathway, the chromosomal copy of myo2(+) was fused to GFP (strain myo2-gc). Myo2 ring formation was abolished in the double mutants myo2-gc cdc7.24 and myo2-gc sid2-250 at the restrictive temperature. In contrast, activation of the SIN pathway in the double mutant myo2-gc cdc16-116 resulted in the formation of Myo2 rings which subsequently collapsed at 36 degrees C. We conclude that the SIN pathway that controls septation in fission yeast also regulates Myo2 ring formation and contraction. Cdc7 and Sid2 are involved in ring formation, in the case of Cdc7 by phosphorylation of a single serine residue in the Myo2 tail. Other kinases and/or phosphatases may control ring contraction.
Collapse
Affiliation(s)
- D P Mulvihill
- Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
20
|
Yumura S. Myosin II dynamics and cortical flow during contractile ring formation in Dictyostelium cells. J Cell Biol 2001; 154:137-46. [PMID: 11448996 PMCID: PMC2196877 DOI: 10.1083/jcb.200011013] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2000] [Revised: 05/30/2001] [Accepted: 06/05/2001] [Indexed: 11/22/2022] Open
Abstract
Myosin II is a major component of a contractile ring. To examine if myosin II turns over in contractile rings, fluorescence of GFP-myosin II expressed in Dictyostelium cells was bleached locally by laser illumination, and the recovery was monitored. The fluorescence recovered with a half time of 7.01 +/- 2.62 s. This recovery was not caused by lateral movement of myosin II from the nonbleached area, but by an exchange with endoplasmic myosin II. Similar experiments were performed in cells expressing GFP-3ALA myosin II, of which three phosphorylatable threonine residues were replaced with alanine residues. In this case, recovery was not detected within a comparable time range. These results indicate that myosin II in the contractile ring performs dynamic turnover via its heavy chain phosphorylation. Because GFP-3ALA myosin II did not show the recovery, it served as a useful marker of myosin II movement, which enabled us to demonstrate cortical flow of myosin II toward the equator for the first time. Thus, cortical flow accompanies the dynamic exchange of myosin II during the formation of contractile rings.
Collapse
Affiliation(s)
- S Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.
| |
Collapse
|
21
|
Xu XS, Lee E, Chen T, Kuczmarski E, Chisholm RL, Knecht DA. During multicellular migration, myosin ii serves a structural role independent of its motor function. Dev Biol 2001; 232:255-64. [PMID: 11254362 DOI: 10.1006/dbio.2000.0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that cells lacking myosin II are impaired in multicellular motility. We now extend these results by determining whether myosin contractile function is necessary for normal multicellular motility and shape control. Myosin from mutants lacking the essential (mlcE(-)) myosin light chain retains the ability to form bipolar filaments that bind actin, but shows no measurable in vitro or in vivo contractile function. The contractile function is necessary for cell shape control since mlcE(-) cells, like myosin heavy-chain null mutants (mhcA(-)), were defective in their ability to control their three-dimensional shape. When mixed with wild-type cells in chimeric aggregation streams, the mlcE(-) cells were able to move normally, unlike mhcA(-) cells which accumulated at the edges of the stream and became distorted by their interactions with wild-type cells. When mhcA(-) cells were mixed with mlcE(-) streams, the mhcA(-) cells were excluded. The normal behavior of the mlcE(-) cells in this assay suggests that myosin II, in the absence of motor function, is sufficient to allow movement in this constrained, multicellular environment. We hypothesize that myosin II is a major contributor to cortical integrity even in the absence of contractile function.
Collapse
Affiliation(s)
- X S Xu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | | | | | | | | | |
Collapse
|
22
|
Steimle PA, Naismith T, Licate L, Egelhoff TT. WD repeat domains target dictyostelium myosin heavy chain kinases by binding directly to myosin filaments. J Biol Chem 2001; 276:6853-60. [PMID: 11106661 DOI: 10.1074/jbc.m008992200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin heavy chain kinase (MHCK) A phosphorylates mapped sites at the C-terminal tail of Dictyostelium myosin II heavy chain, driving disassembly of myosin filaments both in vitro and in vivo. MHCK A is organized into three functional domains that include an N-terminal coiled-coil region, a central kinase catalytic domain unrelated to conventional protein kinases, and a WD repeat domain at the C terminus. MHCK B is a homologue of MHCK A that possesses structurally related catalytic and WD repeat domains. In the current study, we explored the role of the WD repeat domains in defining the activities of both MHCK A and MHCK B using recombinant bacterially expressed truncations of these kinases either with or without their WD repeat domains. We demonstrate that substrate targeting is a conserved function of the WD repeat domains of both MHCK A and MHCK B and that this targeting is specific for Dictyostelium myosin II filaments. We also show that the mechanism of targeting involves direct binding of the WD repeat domains to the myosin substrate. To our knowledge, this is the first report of WD repeat domains physically targeting attached kinase domains to their substrates. The examples presented here may serve as a paradigm for enzyme targeting in other systems.
Collapse
Affiliation(s)
- P A Steimle
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
23
|
Yumura S, Uyeda TQ. Myosin II can be localized to the cleavage furrow and to the posterior region of Dictyostelium amoebae without control by phosphorylation of myosin heavy and light chains. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:313-22. [PMID: 9096954 DOI: 10.1002/(sici)1097-0169(1997)36:4<313::aid-cm2>3.0.co;2-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To elucidate the role of phosphorylation in regulation of intracellular distribution of myosin II, we have characterized mutant Dictyostelium cells expressing myosin II that could not be regulated by the phosphorylation on the mapped heavy chain sites, the light chain site, or both sites. Immunofluorescence microscopy demonstrated that all three mutant myosin IIs were localized in the furrow region of dividing cells and in the tail region of migrating cells, similar to wild-type cells. Thus, regulation by phosphorylation is not required to direct myosin II toward the furrow region and the tail region in Dictyostelium. However, myosins that were deficient in heavy chain phosphorylation were distributed only in the cortical region of interphase cells, whereas some myosin IIs were present throughout the endoplasm in wild-type cells. Video microscopy showed that the rate of cell migration was significantly lower in cells that were deficient in heavy chain phosphorylation- than in light chain phosphorylation-deficient cells, myosin null cells and wild-type cells. Chemotactic behavior of cells that were deficient in heavy chain phosphorylation was also retarded. These results suggest that loss of regulation by heavy chain phosphorylation results in excessive myosin in the cortex, which leads to retarded motility.
Collapse
Affiliation(s)
- S Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Japan
| | | |
Collapse
|
24
|
Affiliation(s)
- J E Hughes
- Department of Biology, Utah State University, Logan 84322-5305, USA
| | | |
Collapse
|
25
|
Motegi F, Nakano K, Mabuchi I. Molecular mechanism of myosin-II assembly at the division site in Schizosaccharomyces pombe. J Cell Sci 2000; 113 ( Pt 10):1813-25. [PMID: 10769212 DOI: 10.1242/jcs.113.10.1813] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by virtue of the F-actin-based contractile ring (F-actin ring). Two myosin-II heavy chains, Myo2 and Myp2/Myo3, have been localized to the F-actin ring. Here, we investigated the mechanism of myosin-II assembly at the division site in S. pombe cells. First, we showed that Cdc4, an EF-hand protein, appears to be a common myosin light chain associated with both Myo2 and Myo3. Loss of function of both Myo2 and Myo3 caused a defect in F-actin assembly at the division site, like the phenotype of cdc4 null cells. It is suggested that Myo2, Myo3 and Cdc4 function in a cooperative manner in the formation of the F-actin ring during mitosis. Next, we investigated the dynamics of myosin-II during mitosis in S. pombe cells. In early mitosis when accumulation of F-actin cables in the medial region was not yet observed, Myo2 was detected primarily as dots widely located in the medial cortex. Myo2 fibers also became visible following the appearance of the dots. The Myo2 dots and fibers then fused with each other to form a medial cortical network. Some Myo2 dots appeared to be localized with F-actin cables which are also accumulated in the medial region. Finally these structures were packed into a thin contractile ring. In mutant cells that cannot form the F-actin ring such as cdc3(ts), cdc8(ts) and cdc12(ts), Myo2 was able to accumulate as dots in the medial cortex, whereas no accumulation of Myo2 dots was detected in cdc4(ts) cells. Moreover, disruption of F-actin in the cell by applying latrunculin-A did not affect the accumulation of Myo2 dots, suggesting that F-actin is not required for their accumulation. A truncated Myo2 which lacks putative Cdc4-binding sites (Myo2dIQs) was able to rescue myo2 null cells, myo3 null cells, cdc4(ts) mutant cells and cdc4 null cells. The Myo2dIQs could assemble into a normal-shaped ring in these cells. Therefore, its assembly at the division site does not require the function of either Cdc4 or Myo3.
Collapse
Affiliation(s)
- F Motegi
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Abstract
The cellular slime mold Dictyostelium discoideum is amenable to biochemical, cell biological, and molecular genetic analyses, and offers a unique opportunity for multifaceted approaches to dissect the mechanism of cytokinesis. One of the important questions that are currently under investigation using Dictyostelium is to understand how cleavage furrows or contractile rings are assembled in the equatorial region. Contractile rings consist of a number of components including parallel filaments of actin and myosin II. Phenotypic analyses and in vivo localization studies of cells expressing mutant myosin IIs have demonstrated that myosin II's transport to and localization at the equatorial region does not require regulation by phosphorylation of myosin II, specific amino acid sequences of myosin II, or the motor activity of myosin II. Rather, the transport appears to depend on a myosin II-independent flow of cortical cytoskeleton. What drives the flow of cortical cytoskeleton is still elusive. However, a growing number of mutants that affect assembly of contractile rings have been accumulated. Analyses of these mutations, identification of more cytokinesis-specific genes, and information deriving from other experimental systems, should allow us to understand the mechanism of contractile ring formation and other aspects of cytokinesis.
Collapse
Affiliation(s)
- T Q Uyeda
- Biomolecular Research Group, National Institute for Advanced Interdisciplinary Research, Tsukuba, Ibaraki 305-8562, Japan.
| | | |
Collapse
|
27
|
Abstract
Myosins constitute a large superfamily of actin-dependent molecular motors. Phylogenetic analysis currently places myosins into 15 classes. The conventional myosins which form filaments in muscle and non-muscle cells form class II. There has been extensive characterization of these myosins and much is known about their function. With the exception of class I and class V myosins, little is known about the structure, enzymatic properties, intracellular localization and physiology of most unconventional myosin classes. This review will focus on myosins from class IV, VI, VII, VIII, X, XI, XII, XIII, XIV and XV. In addition, the function of myosin II in non-muscle cells will also be discussed.
Collapse
Affiliation(s)
- J R Sellers
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 8N202, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Liang W, Warrick HM, Spudich JA. A structural model for phosphorylation control of Dictyostelium myosin II thick filament assembly. J Cell Biol 1999; 147:1039-48. [PMID: 10579723 PMCID: PMC2169343 DOI: 10.1083/jcb.147.5.1039] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Myosin II thick filament assembly in Dictyostelium is regulated by phosphorylation at three threonines in the tail region of the molecule. Converting these three threonines to aspartates (3 x Asp myosin II), which mimics the phosphorylated state, inhibits filament assembly in vitro, and 3 x Asp myosin II fails to rescue myosin II-null phenotypes. Here we report a suppressor screen of Dictyostelium myosin II-null cells containing 3 x Asp myosin II, which reveals a 21-kD region in the tail that is critical for the phosphorylation control. These data, combined with new structural evidence from electron microscopy and sequence analyses, provide evidence that thick filament assembly control involves the folding of myosin II into a bent monomer, which is unable to incorporate into thick filaments. The data are consistent with a structural model for the bent monomer in which two specific regions of the tail interact to form an antiparallel tetrameric coiled-coil structure.
Collapse
Affiliation(s)
- Wenchuan Liang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Hans M. Warrick
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| |
Collapse
|
29
|
Chung CY, Firtel RA. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J Cell Biol 1999; 147:559-76. [PMID: 10545500 PMCID: PMC2151188 DOI: 10.1083/jcb.147.3.559] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified a Dictyostelium discoideum gene encoding a serine/threonine kinase, PAKa, a putative member of the Ste20/PAK family of p21-activated kinases, with a kinase domain and a long NH(2)-terminal regulatory domain containing an acidic segment, a polyproline domain, and a CRIB domain. PAKa colocalizes with myosin II to the cleavage furrow of dividing cells and the posterior of polarized, chemotaxing cells via its NH(2)-terminal domain. paka null cells are defective in completing cytokinesis in suspension. PAKa is also required for maintaining the direction of cell movement, suppressing lateral pseudopod extension, and proper retraction of the posterior of chemotaxing cells. paka null cells are defective in myosin II assembly, as the myosin II cap in the posterior of chemotaxing cells and myosin II assembly into cytoskeleton upon cAMP stimulation are absent in these cells, while constitutively active PAKa leads to an upregulation of myosin II assembly. PAKa kinase activity against histone 2B is transiently stimulated and PAKa incorporates into the cytoskeleton with kinetics similar to those of myosin II assembly in response to chemoattractant signaling. However, PAKa does not phosphorylate myosin II. We suggest that PAKa is a major regulator of myosin II assembly, but does so by negatively regulating myosin II heavy chain kinase.
Collapse
Affiliation(s)
- Chang Y. Chung
- Department of Biology, Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0634
| | - Richard A. Firtel
- Department of Biology, Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0634
| |
Collapse
|
30
|
Umeda M, Emoto K. Membrane phospholipid dynamics during cytokinesis: regulation of actin filament assembly by redistribution of membrane surface phospholipid. Chem Phys Lipids 1999; 101:81-91. [PMID: 10810927 DOI: 10.1016/s0009-3084(99)00057-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.
Collapse
Affiliation(s)
- M Umeda
- Department of Molecular Biodynamics, The Tokyo Metropolitan Institute of Medical Science (RINSHOKEN), Japan.
| | | |
Collapse
|
31
|
Shu S, Lee RJ, LeBlanc-Straceski JM, Uyeda TQ. Role of myosin II tail sequences in its function and localization at the cleavage furrow in Dictyostelium. J Cell Sci 1999; 112 ( Pt 13):2195-201. [PMID: 10362549 DOI: 10.1242/jcs.112.13.2195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic myosin II accumulates in the cleavage furrow and provides the force for cytokinesis in animal and amoeboid cells. One model proposes that a specific domain in the myosin II tail is responsible for its localization, possibly by interacting with a factor concentrated in the equatorial region. To test this possibility, we have expressed myosins carrying mutations in the tail domain in a strain of Dictyostelium cells from which the endogenous myosin heavy chain gene has been deleted. The mutations used in this study include four internal tail deletions: Mydelta824-941, Mydelta943-1464, Mydelta943-1194 and Mydelta1156-1464. Contrary to the prediction of the hypothesis, immunofluorescence staining demonstrated that all mutant myosins were able to move toward the furrow region. Chimeric myosins, which consisted of a Dictyostelium myosin head and chicken skeletal myosin tail, also efficiently localized to the cleavage furrow. All these deletion and chimeric mutant myosins, except for Mydelta943-1464, the largest deletion mutant, were able to support cytokinesis in suspension. Our data suggest that there is no single specific domain in the tail of Dictyostelium myosin II that is required for its functioning at and localization to the cleavage furrow.
Collapse
Affiliation(s)
- S Shu
- Biomolecular Research Group, National Institute for Advanced Interdisciplinary Research, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | |
Collapse
|
32
|
Shu S, Uyeda TQP, Liu A, Liu G, Yen L. Effect of internal deletion of Myosin II on growth and development ofDictyostelium discoideum. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf02885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Silveira LA, Smith JL, Tan JL, Spudich JA. MLCK-A, an unconventional myosin light chain kinase from Dictyostelium, is activated by a cGMP-dependent pathway. Proc Natl Acad Sci U S A 1998; 95:13000-5. [PMID: 9789030 PMCID: PMC23685 DOI: 10.1073/pnas.95.22.13000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dictyostelium myosin II is activated by phosphorylation of its regulatory light chain by myosin light chain kinase A (MLCK-A), an unconventional MLCK that is not regulated by Ca2+/calmodulin. MLCK-A is activated by autophosphorylation of threonine-289 outside of the catalytic domain and by phosphorylation of threonine-166 in the activation loop by an unidentified kinase, but the signals controlling these phosphorylations are unknown. Treatment of cells with Con A results in quantitative phosphorylation of the regulatory light chain by MLCK-A, providing an opportunity to study MLCK-A's activation mechanism. MLCK-A does not alter its cellular location upon treatment of cells with Con A, nor does it localize to the myosin-rich caps that form after treatment. However, MLCK-A activity rapidly increases 2- to 13-fold when Dictyostelium cells are exposed to Con A. This activation can occur in the absence of MLCK-A autophosphorylation. cGMP is a promising candidate for an intracellular messenger mediating Con A-triggered MLCK-A activation, as addition of cGMP to fresh Dictyostelium lysates increases MLCK-A activity 3- to 12-fold. The specific activity of MLCK-A in cGMP-treated lysates is 210-fold higher than that of recombinant MLCK-A, which is fully autophosphorylated, but lacks threonine-166 phosphorylation. Purified MLCK-A is not directly activated by cGMP, indicating that additional cellular factors, perhaps a kinase that phosphorylates threonine-166, are involved.
Collapse
Affiliation(s)
- L A Silveira
- Department of Biochemistry, Beckman Center, Stanford University Medical School, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
34
|
Shen K, Teruel MN, Subramanian K, Meyer T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 1998; 21:593-606. [PMID: 9768845 DOI: 10.1016/s0896-6273(00)80569-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase that regulates long-term potentiation and other forms of neuronal plasticity. Functional differences between the neuronal CaMKIIalpha and CaMKIIbeta isoforms are not yet known. Here, we use green fluorescent protein-tagged (GFP-tagged) CaMKII isoforms and show that CaMKIIbeta is bound to F-actin in dendritic spines and cell cortex while CaMKIIalpha is largely a cytosolic enzyme. When expressed together, the two isoforms form large heterooligomers, and a small fraction of CaMKIIbeta is sufficient to dock the predominant CaMKIIalpha to the actin cytoskeleton. Thus, CaMKIIbeta functions as a targeting module that localizes a much larger number of CaMKIIalpha isozymes to synaptic and cytoskeletal sites of action.
Collapse
Affiliation(s)
- K Shen
- Department of Cell Biology, Duke University Medical Center Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
35
|
Sasaki N, Shimada T, Sutoh K. Mutational analysis of the switch II loop of Dictyostelium myosin II. J Biol Chem 1998; 273:20334-40. [PMID: 9685384 DOI: 10.1074/jbc.273.32.20334] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A loop comprising residues 454-459 of Dictyostelium myosin II is structurally and functionally equivalent to the switch II loop of the G-protein family. The consensus sequence of the "switch II loop" of the myosin family is DIXGFE. In order to determine the functions of each of the conserved residues, alanine scanning mutagenesis was carried out on the Dictyostelium myosin II heavy chain gene. Examination of in vivo and in vitro motor functions of the mutant myosins revealed that the I455A and S456A mutants retained those functions, whereas the D454A, G457A, F458A and E459A mutants lost them. Biochemical analysis of the latter myosins showed that the G457A and E459A mutants lost the basal ATPase activity by blocking of the isomerization and hydrolysis steps of the ATPase cycle, respectively. The F458A mutant, however, lost the actin-activated ATPase activity without loss of the basal ATPase activity. These results are discussed in terms of the crystal structure of the Dictyostelium myosin motor domain.
Collapse
Affiliation(s)
- N Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153, Japan
| | | | | |
Collapse
|
36
|
Moores SL, Spudich JA. Conditional loss-of-myosin-II-function mutants reveal a position in the tail that is critical for filament nucleation. Mol Cell 1998; 1:1043-50. [PMID: 9651587 DOI: 10.1016/s1097-2765(00)80104-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myosin-II must be assembled into filaments to perform its cellular functions. Two conditional loss-of-myosin-II-function mutants were recovered from a previous genetic screen with defects that were mapped to the coiled-coil tail region of Dictyostelium myosin-II. Strikingly, both tail mutations affected the same arginine residue at position 1880. A single amino acid substitution, R1880P, disrupted both the dimerization and tetramerization steps of filament nucleation. Even a single charge reversal at this position, R1880D, was sufficient to inhibit filament assembly, while other single charge reversals in the region of antiparallel contract suppressed these filament assembly mutants. The considerable impact of small electrostatic forces on nucleation suggests that these steps are delicately balanced and easily reversible.
Collapse
Affiliation(s)
- S L Moores
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
37
|
Neujahr R, Heizer C, Albrecht R, Ecke M, Schwartz JM, Weber I, Gerisch G. Three-dimensional patterns and redistribution of myosin II and actin in mitotic Dictyostelium cells. J Biophys Biochem Cytol 1997; 139:1793-804. [PMID: 9412473 PMCID: PMC2132646 DOI: 10.1083/jcb.139.7.1793] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myosin II is not essential for cytokinesis in cells of Dictyostelium discoideum that are anchored on a substrate (Neujahr, R., C. Heizer, and G. Gerisch. 1997. J. Cell Sci. 110:123-137), in contrast to its importance for cell division in suspension (DeLozanne, A., and J.A. Spudich. 1987. Science. 236:1086-1091; Knecht, D.A., and W.F. Loomis. 1987. Science. 236: 1081-1085.). These differences have prompted us to investigate the three-dimensional distribution of myosin II in cells dividing under one of three conditions: (a) in shaken suspension, (b) in a fluid layer on a solid substrate surface, and (c) under mechanical stress applied by compressing the cells. Under the first and second conditions outlined above, myosin II does not form patterns that suggest a contractile ring is established in the furrow. Most of the myosin II is concentrated in the regions that flank the furrow on both sides towards the poles of the dividing cell. It is only when cells are compressed that myosin II extensively accumulates in the cleavage furrow, as has been previously described (Fukui, Y., T.J. Lynch, H. Brzeska, and E.D. Korn. 1989. Nature. 341:328-331), i.e., this massive accumulation is a response to the mechanical stress. Evidence is provided that the stress-associated translocation of myosin II to the cell cortex is a result of the dephosphorylation of its heavy chains. F-actin is localized in the dividing cells in a distinctly different pattern from that of myosin II. The F-actin is shown to accumulate primarily in protrusions at the two poles that ultimately form the leading edges of the daughter cells. This distribution changes dynamically as visualized in living cells with a green fluorescent protein-actin fusion.
Collapse
Affiliation(s)
- R Neujahr
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Zang JH, Cavet G, Sabry JH, Wagner P, Moores SL, Spudich JA. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol Biol Cell 1997; 8:2617-29. [PMID: 9398680 PMCID: PMC25732 DOI: 10.1091/mbc.8.12.2617] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the role of myosin in cytokinesis in Dictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (DeltaBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing DeltaBLCBS-myosin were previously shown to divide in suspension (Uyeda et al., 1996). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, DeltaBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a DeltaBLCBS-myosin is similar to that in wild-type cells.
Collapse
Affiliation(s)
- J H Zang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yumura S, Uyeda TQ. Transport of myosin II to the equatorial region without its own motor activity in mitotic Dictyostelium cells. Mol Biol Cell 1997; 8:2089-99. [PMID: 9348544 PMCID: PMC25674 DOI: 10.1091/mbc.8.10.2089] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fluorescently labeled myosin moved and accumulated circumferentially in the equatorial region of dividing Dictyostelium cells within a time course of 4 min, followed by contraction of the contractile ring. To investigate the mechanism of this transport process, we have expressed three mutant myosins that cannot hydrolyze ATP in myosin null cells. Immunofluorescence staining showed that these mutant myosins were also correctly transported to the equatorial region, although no contraction followed. The rates of transport, measured using green fluorescent protein-fused myosins, were indistinguishable between wild-type and mutant myosins. These observations demonstrate that myosin is passively transported toward the equatorial region and incorporated into the forming contractile ring without its own motor activity.
Collapse
Affiliation(s)
- S Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Japan
| | | |
Collapse
|
40
|
Abstract
Dictyostelium myoB, a member of the myosin I family of motor proteins, is important for controlling the formation and retraction of membrane projections by the cell's actin cortex (Novak, K.D., M.D. Peterson, M.C. Reedy, and M.A. Titus. 1995. J. Cell Biol. 131:1205-1221). Mutants that express a three- to sevenfold excess of myoB (myoB+ cells) were generated to further analyze the role of myosin I in these processes. The myoB+ cells move with an instantaneous velocity that is 35% of the wild-type rate and exhibit a 6-8-h delay in initiation of aggregation when placed under starvation conditions. The myoB+ cells complete the developmental cycle after an extended period of time, but they form fewer fruiting bodies that appear to be small and abnormal. The myoB+ cells are also deficient in their ability both to form distinct F-actin filled projections such as crowns and to become elongate and polarized. This defect can be attributed to the presence of at least threefold more myoB at the cortex of the myoB+ cells. In contrast, threefold overexpression of a truncated myoB that lacks the src homology 3 (SH3) domain (myoB/SH3- cells) or myoB in which the consensus heavy chain phosphorylation site was mutated to an alanine (S332A-myoB) does not disturb normal cellular function. However, there is an increased concentration of myoB in the cortex of the myoB/SH3- and S332A-myoB cells comparable to that found in the myoB+ cells. These results suggest that excess full-length cortical myoB prevents the formation of the actin-filled extensions required for locomotion by increasing the tension of the F-actin cytoskeleton and/or retracting projections before they can fully extend. They also demonstrate a role for the phosphorylation site and SH3 domain in mediating the in vivo activity of myosin I.
Collapse
Affiliation(s)
- K D Novak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
41
|
Dembinsky A, Rubin H, Ravid S. Autophosphorylation of Dictyostelium myosin II heavy chain-specific protein kinase C is required for its activation and membrane dissociation. J Biol Chem 1997; 272:828-34. [PMID: 8995370 DOI: 10.1074/jbc.272.2.828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP. cAMP stimulation of Dictyostelium cells leads to translocation of MHC-PKC from the cytosol to the membrane fraction, as well as causing an increase in both MHC-PKC phosphorylation and its kinase activity. MHC-PKC undergoes autophosphorylation with each mole of kinase incorporating about 20 mol of phosphate. The MHC-PKC autophosphorylation sites are thought to be located within a domain at the COOH-terminal region of MHC-PKC that contains a cluster of 21 serine and threonine residues. Here we report that deletion of this domain abolished the ability of the enzyme to undergo autophosphorylation in vitro. Furthermore, after this deletion, cAMP-dependent autophosphorylation of MHC-PKC as well as cAMP-dependent increases in kinase activity and subcellular localization were also abolished. These results provide evidence for the role of autophosphorylation in the regulation of MHC-PKC and indicate that this MHC-PKC autophosphorylation is required for the kinase activation in response to cAMP and for subcellular localization.
Collapse
Affiliation(s)
- A Dembinsky
- Department of Biochemistry, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
42
|
Emoto K, Kobayashi T, Yamaji A, Aizawa H, Yahara I, Inoue K, Umeda M. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc Natl Acad Sci U S A 1996; 93:12867-72. [PMID: 8917511 PMCID: PMC24012 DOI: 10.1073/pnas.93.23.12867] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1996] [Accepted: 08/26/1996] [Indexed: 02/03/2023] Open
Abstract
Ro09-0198 is a tetracyclic polypeptide of 19 amino acids that recognizes strictly the structure of phosphatidylethanolamine (PE) and forms a tight equimolar complex with PE on biological membranes. Using the cyclic peptide coupled with fluorescence-labeled streptavidin, we have analyzed the cell surface localization of PE in dividing Chinese hamster ovary cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membrane-bound cyclic peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced scrambling of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex treatment had no effect on furrowing, rearrangement of microtubules, and nuclear reconstitution, but specifically inhibited both actin filament disassembly at the cleavage furrow and subsequent membrane fusion. These results suggest that the redistribution of the plasma membrane phospholipids is a crucial step for cytokinesis and the cell surface PE may play a pivotal role in mediating a coordinate movement between the contractile ring and plasma membrane to achieve successful cell division.
Collapse
Affiliation(s)
- K Emoto
- Department of Inflammation Research, Tokyo Metropolitan Institute of Medical Science (RINSHOKEN), Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Motor proteins perform a wide variety of functions in all eukaryotic cells. Recent advances in the structural and mutagenic analysis of the myosin motor has led to insights into how these motors transduce chemical energy into mechanical work. This review focuses on the analysis of the effects of myosin mutations from a variety of organisms on the in vivo and in vitro properties of this ubiquitous motor and illustrates the positions of these mutations on the high-resolution three-dimensional structure of the myosin motor domain.
Collapse
Affiliation(s)
- K M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
44
|
Dembinsky A, Rubin H, Ravid S. Chemoattractant-mediated increases in cGMP induce changes in Dictyostelium myosin II heavy chain-specific protein kinase C activities. J Cell Biol 1996; 134:911-21. [PMID: 8769416 PMCID: PMC2120953 DOI: 10.1083/jcb.134.4.911] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP (Abu-Elneel et al. 1996. J. Biol. Chem. 271:977- 984). Recent studies have indicated that cAMP-induced cGMP accumulation plays a role in the regulation of myosin II phosphorylation and localization (Liu, G., and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This report describes the roles of cAMP and cGMP in the regulation of MHC-PKC membrane association, phosphorylation, and activity (hereafter termed MHC-PKC activities). cAMP stimulation of Dictyostelium cells resulted in translocation of MHC-PKC from the cytosol to the membrane fraction, as well as increasing in MHC-PKC phosphorylation and in its kinase activity. We present evidence that MHC is phosphorylated by MHC-PKC in the cell cortex which leads to myosin II dissociation from the cytoskeleton. Use of Dictyostelium mutants that exhibit aberrant cAMP-induced increases in cGMP accumulation revealed that MHC-PKC activities are regulated by cGMP. Dictyostelium streamer F mutant (stmF), which produces a prolonged peak of cGMP accumulation upon cAMP stimulation, exhibits prolonged increases in MHC-PKC activities. In contrast, Dictyostelium KI-10 mutant that lacks the normal cAMP-induced cGMP response, or KI-4 mutant that shows nearly normal cAMP-induced cGMP response but has aberrant cGMP binding activity, show no changes in MHC-PKC activities. We provide evidence that cGMP may affect MHC-PKC activities via the activation of cGMP-dependent protein kinase which, in turn, phosphorylates MHC-PKC. The results presented here indicate that cAMP-induced cGMP accumulation regulates myosin II phosphorylation and localization via the regulation of MHC-PKC.
Collapse
Affiliation(s)
- A Dembinsky
- Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
45
|
Patterson B, Spudich JA. Cold-sensitive mutations of Dictyostelium myosin heavy chain highlight functional domains of the myosin motor. Genetics 1996; 143:801-10. [PMID: 8725228 PMCID: PMC1207338 DOI: 10.1093/genetics/143.2.801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dictyostelium provides a powerful environment for characterization of myosin II function. It provides well-established biochemical methods for in vitro analysis of myosin's properties as well as an array of molecular genetic tools. The absence of myosin function results in an array of phenotypes that can be used to genetically manipulate myosin function. We have previously reported methods for the isolation and identification of rapid-effect cold-sensitive myosin II mutations in Dictyostelium. Here, we report the development and utilization of a rapid method for localizing these point mutations. We have also sequenced 19 mutants. The mutations show distinct clustering with respect to three-dimensional location and biochemically characterized functional domains of the protein. We conclude that these mutants represent powerful tools for understanding the mechanisms driving this protein motor.
Collapse
Affiliation(s)
- B Patterson
- Department of Biochemistry and Developmental Biology, Stanford University, California 94305, USA
| | | |
Collapse
|
46
|
Egelhoff TT, Naismith TV, Brozovich FV. Myosin-based cortical tension in Dictyostelium resolved into heavy and light chain-regulated components. J Muscle Res Cell Motil 1996; 17:269-74. [PMID: 8793728 DOI: 10.1007/bf00124248] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cortical tension in most nonmuscle cells is due largely to force production by conventional myosin (myosin II) assembled into the cytoskeleton. Cytoskeletal contraction in smooth muscle and nonmuscle cells is influenced by the degree of myosin filament assembly, and by activation of myosin motor function via regulatory light chain phosphorylation. Recombinant Dictyostelium discoideum cell lines have been generated bearing altered myosin heavy chains, resulting in either constitutive motor function or constitutive assembly into the cytoskeleton. Analysis of these cells allowed stiffening responses to agonists, measured on single cells, to be resolved into an regulatory light chain-mediated component reflecting activation of motor function, and a myosin heavy chain phosphorylation-regulated component reflecting assembly of filaments into the cytoskeleton. These two components can account for all of the cortical stiffening response seen during tested in vivo contractile events.
Collapse
Affiliation(s)
- T T Egelhoff
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
47
|
Abu-Elneel K, Karchi M, Ravid S. Dictyostelium myosin II is regulated during chemotaxis by a novel protein kinase C. J Biol Chem 1996; 271:977-84. [PMID: 8557714 DOI: 10.1074/jbc.271.2.977] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from Dictyostelium discoideum has been implicated in the regulation of myosin II assembly in response to the chemoattractant, cAMP (Ravid, S., and Spudich, J. A. (1989) J. Biol. Chem. 264, 15144-15150). Here we report that elimination of MHC-PKC results in the abolishment of MHC phosphorylation in response to cAMP. Cells devoid of MHC-PKC exhibit substantial myosin II overassembly, as well as aberrant cell polarization, chemotaxis, and morphological differentiation. Cells overexpressing the MHC-PKC contain highly phosphorylated MHC and exhibit impaired myosin II localization and no apparent cell polarization and chemotaxis. The results presented here provide direct evidence that MHC-PKC phosphorylates MHC in response to cAMP and plays an important role in the regulation of myosin II localization during chemotaxis.
Collapse
Affiliation(s)
- K Abu-Elneel
- Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
48
|
Chu Q, Fukui Y. In vivo dynamics of myosin II in Dictyostelium by fluorescent analogue cytochemistry. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:254-68. [PMID: 8913645 DOI: 10.1002/(sici)1097-0169(1996)35:3<254::aid-cm7>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We used fluorescent analogue cytochemistry to study in vivo dynamics of myosin II in Dictyostelium discoideum. We labeled myosin with biotin or tetramethyl-rhodamine iodoacetamide (IATR). The labeled myosin shows normal activities as reversible filament assembly and Ca2+ and actin-activatable Mg(2+)-ATPase. We used the biotin-myosin as a probe examining the effects of microinjection on the amoebae and the ability to associate with endogenous actin cytoskeleton. The biotin-myosin incorporates into certain actin populations and localizes to the cortex with the highest accumulation in the posterior end of polarized amoebae. The dynamics in live amoebae were probed by TR-myosin. We monitored the dynamics for a long period to determined the dynamic reorganization corresponding specific cellular behaviors. The TR-myosin converges into a discrete actin- and myosin-rich structure located at the posterior end ("myosin-organizing center"). The rod-shaped TR-myosin exhibits linear orderly arrays emanating from the organizing center which extend about two-thirds of the cell length. The myosin arrays show a dynamic reorganization when the amoebae move. To examine if the observed myosin dynamics are related to filamentous (F-) actin, we disrupted the F-actin by cytochalasin D. The ratioed image of TR-myosin (vs. FITC-dextran) demonstrates that myosin in these cells accumulates in the cortex but does not form the organizing center. Overall, the results suggest that the filamentous myosin organizes into orderly arrays in the live cytoplasm and its translocation occurs by means of F-actin cables, converging into the organizing center.
Collapse
Affiliation(s)
- Q Chu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | |
Collapse
|
49
|
Kolman MF, Futey LM, Egelhoff TT. Dictyostelium myosin heavy chain kinase A regulates myosin localization during growth and development. J Biophys Biochem Cytol 1996; 132:101-9. [PMID: 8567716 PMCID: PMC2120697 DOI: 10.1083/jcb.132.1.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphorylation of the Dictyostelium myosin II heavy chain (MHC) has a key role in regulating myosin localization in vivo and drives filament disassembly in vitro. Previous molecular analysis of the Dictyostelium myosin II heavy chain kinase (MHCK A) gene has demonstrated that the catalytic domain of this enzyme is extremely novel, showing no significant similarity to the known classes of protein kinases (Futey, L. M., Q. G. Medley, G. P. Côté, and T. T. Egelhoff. 1995. J. Biol. Chem. 270:523-529). To address the physiological roles of this enzyme, we have analyzed the cellular consequences of MHCK A gene disruption (mhck A- cells) and MHCK A overexpression (MHCK A++ cells). The mhck A- cells are viable and competent for tested myosin-based contractile events, but display partial defects in myosin localization. Both growth phase and developed mhck A- cells show substantially reduced MHC kinase activity in crude lysates, as well as significant overassembly of myosin into the Triton-resistant cytoskeletal fractions. MHCK A++ cells display elevated levels of MHC kinase activity in crude extracts, and show reduced assembly of myosin into Triton-resistant cytoskeletal fractions. MHCK A++ cells show reduced growth rates in suspension, becoming large and multinucleated, and arrest at the mound stage during development. These results demonstrate that MHCK A functions in vivo as a protein kinase with physiological roles in regulating myosin II localization and assembly in Dictyostelium cells during both growth and developmental stages.
Collapse
Affiliation(s)
- M F Kolman
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
50
|
Arhets P, Gounon P, Sansonetti P, Guillén N. Myosin II is involved in capping and uroid formation in the human pathogen Entamoeba histolytica. Infect Immun 1995; 63:4358-67. [PMID: 7591071 PMCID: PMC173620 DOI: 10.1128/iai.63.11.4358-4367.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The redistribution and capping of surface receptors on the human pathogen Entamoeba histolytica was observed in the presence of concanavalin A (ConA). Capping was correlated with plasma membrane folding towards the rear of the amoeba and with uroid formation. The uroid is thought to play a role in the escape of amoebae from the host immune response. To localize myosin II during capping, amoebae were incubated in the presence of ConA and then analyzed by microscopy. Myosin II was three times more concentrated within the uroid compared with the rest of the cell, suggesting that the release of caps may depend upon mechanical contraction driven by myosin II activity. The use of drugs that disrupt cytoskeletal structure or that inhibit myosin heavy chain phosphorylation demonstrated that inhibition of capping prevents uroid formation. Biochemical analysis allowed the identification of two ConA receptors which have been previously described as major pathogenic antigens of this parasite: the 96-kDa antigen, which carries alcohol dehydrogenase 2 activity and binds extracellular matrix proteins, and the Gal-GalNAc-inhibitable surface lectin, which is involved in amoeba-cell interactions and in the degradation of complement particles attached to the parasite.
Collapse
Affiliation(s)
- P Arhets
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U389, Paris, France
| | | | | | | |
Collapse
|