1
|
Du C, Guo W, Wang M, Zhou Z, Zhou T, Liu M, Dong N, Wu Q. O-glycosylation is essential for cell surface expression of the transcobalamin receptor CD320. J Biol Chem 2024; 300:107997. [PMID: 39551142 DOI: 10.1016/j.jbc.2024.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
CD320 is a cell surface receptor that mediates vitamin B12 uptake in most tissues. To date, the mechanisms that regulate CD320 expression on the cell surface are not fully understood. In this work, we studied CD320 expression in transfected human embryonic kidney (HEK) 293 and hepatoma HepG2 cells. By glycosidase and trypsin digestion, monensin and brefeldin treatment, western blotting, flow cytometry, and lectin binding, we found that CD320 underwent N- and O-glycosylation and sialylation, resulting in a ∼70-kDa band that formed a high-molecular-weight complex on the cell surface. Site-directed mutagenesis altering Asn126, Asn195, and Asn213 residues, individually or together, abolished N-glycosylation in CD320 but did not block its intracellular trafficking and expression on the cell surface in HEK293 and HepG2 cells. In contrast, treatment of the cells with Ben-gal, a structural analog of GalNAc-α-1-O-Ser/Thr, inhibited O-glycosylation and cell surface expression of CD320 and decreased vitamin B12 uptake. Analysis of CD320 deletion mutants indicated that O-glycosylation sites in a Ser/Thr-rich region near the transmembrane domain were important for CD320 expression on the cell surface. These results reveal an important role of O-glycans, but not N-glycans, in the intracellular trafficking and cell surface expression of CD320, providing new insights into the cellular mechanisms in regulating CD320 function and vitamin B12 metabolism.
Collapse
Affiliation(s)
- Chunyu Du
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenjun Guo
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Dhandapani L, Salzer MC, Duran JM, Zaffagnini G, De Guirior C, Martínez-Zamora MA, Böke E. Comparative analysis of vertebrates reveals that mouse primordial oocytes do not contain a Balbiani body. J Cell Sci 2021; 135:273712. [PMID: 34897463 DOI: 10.1242/jcs.259394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Oocytes spend the majority of their lifetime in a primordial state. The cellular and molecular biology of primordial oocytes is largely unexplored; yet, studying these is necessary to understand the mechanisms through which oocytes maintain cellular fitness for decades, and why they eventually fail with age. Here, we develop enabling methods for live-imaging based comparative characterization of Xenopus, mouse and human primordial oocytes. We show that primordial oocytes in all three vertebrate species contain active mitochondria, Golgi apparatus and lysosomes. We further demonstrate that human and Xenopus oocytes have a Balbiani body characterized by a dense accumulation of mitochondria in their cytoplasm. However, despite previous reports, we did not find a Balbiani body in mouse oocytes. Instead, we demonstrate what was previously used as a marker for the Balbiani body in mouse primordial oocytes is in fact a ring-shaped Golgi apparatus that is not functionally associated with oocyte dormancy. Our work provides the first insights into the organisation of the cytoplasm in mammalian primordial oocytes, and clarifies relative advantages and limitations of choosing different model organisms for studying oocyte dormancy.
Collapse
Affiliation(s)
- Laasya Dhandapani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Juan M Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cristian De Guirior
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Angeles Martínez-Zamora
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Corrotte M, Fernandes MC, Tam C, Andrews NW. Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 2012; 13:483-94. [PMID: 22212686 DOI: 10.1111/j.1600-0854.2011.01323.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/15/2022]
Abstract
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes.
Collapse
Affiliation(s)
- Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematics and Natural Sciences, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
4
|
van den Broek LAGM, Vermaas DJ, Heskamp BM, van Boeckel CAA, Tan MCAA, Bolscher JGM, Ploegh HL, van Kemenade FJ, de Goede REY, Miedema F. Chemical modification of azasugars, inhibitors of N-glycoprotein-processing glycosidases and of HIV-I infection: Review and structure-activity relationships. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19931120204] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Shamu CE, Story CM, Rapoport TA, Ploegh HL. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol 1999; 147:45-58. [PMID: 10508854 PMCID: PMC2164983 DOI: 10.1083/jcb.147.1.45] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1999] [Accepted: 08/25/1999] [Indexed: 11/22/2022] Open
Abstract
The human cytomegalovirus protein, US11, initiates the destruction of MHC class I heavy chains by targeting them for dislocation from the ER to the cytosol and subsequent degradation by the proteasome. We report the development of a permeabilized cell system that recapitulates US11-dependent degradation of class I heavy chains. We have used this system, in combination with experiments in intact cells, to identify and order intermediates in the US11-dependent degradation pathway. We find that heavy chains are ubiquitinated before they are degraded. Ubiquitination of the cytosolic tail of heavy chain is not required for its dislocation and degradation, suggesting that ubiquitination occurs after at least part of the heavy chain has been dislocated from the ER. Thus, ubiquitination of the heavy chain does not appear to be the signal to start dislocation. Ubiquitinated heavy chains are associated with membrane fractions, suggesting that ubiquitination occurs while the heavy chain is still bound to the ER membrane. Our results support a model in which US11 co-opts the quality control process by which the cell destroys misfolded ER proteins in order to specifically degrade MHC class I heavy chains.
Collapse
Affiliation(s)
- C E Shamu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
6
|
Majoul I, Sohn K, Wieland FT, Pepperkok R, Pizza M, Hillemann J, Söling HD. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 1998; 143:601-12. [PMID: 9813083 PMCID: PMC2148140 DOI: 10.1083/jcb.143.3.601] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Revised: 08/24/1998] [Indexed: 01/01/2023] Open
Abstract
A cholera toxin mutant (CTX-K63) unable to raise cAMP levels was used to study in Vero cells the retrograde transport of the toxin A subunit (CTX-A-K63), which possesses a COOH-terminal KDEL retrieval signal. Microinjected GTP-gamma-S inhibits the internalization as well as Golgi-ER transport of CTX-A-K63. The appearance of CTX-A-K63 in the Golgi induces a marked dispersion of Erd2p and p53 but not of the Golgi marker giantin. Erd2p is translocated under these conditions most likely to the intermediate compartment as indicated by an increased colocalization of Erd2p with mSEC13, a member of the mammalian coat protein II complex. IgGs as well as Fab fragments directed against Erd2p, beta-COP, or p23, a new member of the p24 protein family, inhibit or block retrograde transport of CTX-A-K63 from the Golgi without affecting its internalization or its transport to the Golgi. Anti-Erd2p antibodies do not affect the binding of CTX-A to Erd2p, but inhibit the CTX-K63-induced translocation of Erd2p and p53.
Collapse
Affiliation(s)
- I Majoul
- Abteilung Klinische Biochemie, Universität Göttingen, D-37070 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Kassessinoff TA, Gabet A, Beaven MA, Sagi-Eisenberg R. Inositol polyphosphates regulate the membrane interactions of the endosomal p100, G-protein-related protein. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1394:111-20. [PMID: 9767143 DOI: 10.1016/s0005-2760(98)00099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protein, p100, was previously identified as a G-protein related protein that cycles on and off the cytoplasmic face of the endosome membrane (Traub et al., Biochem. J. 280 (1991) 171-178). Here we present evidence that the inositol polyphosphates, inositol 1,4, 5-trisphosphate (IP3) and inositol hexakisphosphate (IP6), release p100 from light-density microsomal membranes and inhibit rebinding of p100 through receptors, which are specific for IP3 or for IP6. These receptors can be co-extracted with p100 from the microsomes by 0.5 M Tris-HCl and, in the soluble state, they exhibit similar binding activity towards the inositol polyphosphates as do untreated microsomes. Soluble p100 self-aggregates and this aggregation is blocked by both IP3 and IP6. Stimulation of permeabilized rat basophilic leukemia (RBL-2H3) cells with carbachol, via transfected muscarinic m1 receptors, results in increased levels of inositol polyphosphates and the quantitative release of p100 into the cytosol. This effect is reversible and cytosolic p100 rebinds to the membrane as the levels of inositol polyphosphates decline. These findings suggest that p100 may belong to a family of IP-binding proteins whose intracellular localization is determined by extracellular signals.
Collapse
Affiliation(s)
- T A Kassessinoff
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
8
|
Kok JW, Babia T, Klappe K, Egea G, Hoekstra D. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem J 1998; 333 ( Pt 3):779-86. [PMID: 9677340 PMCID: PMC1219644 DOI: 10.1042/bj3330779] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degreesC, or in streptolysin O-permeabilized cells by manipulating the intracellular environment. In both cases, Cer transfer was not inhibited, as demonstrated by the biosynthesis of ceramide monohexosides and sphingomyelin (SM) de novo from metabolically (with [14C]serine) labelled Cer. This assay is based on the knowledge that Cer is synthesized, starting from serine and palmitoyl-CoA, at the ER, whereas glycosphingolipids and SM are synthesized in the (early) Golgi apparatus. Formation of [14C]glycosphingolipids and [14C]SM was observed under conditions that block vesicle-mediated vesicular stomatitis virus glycoprotein transport. These results indicate that [14C]Cer is transferred from ER to Golgi by a non-vesicular mechanism.
Collapse
Affiliation(s)
- J W Kok
- University of Groningen, Department of Physiological Chemistry, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Thomson AB, De Pover A, Keelan M, Jarocka-Cyrta E, Clandinin MT. Inhibition of lipid absorption as an approach to the treatment of obesity. Methods Enzymol 1997; 286:3-44. [PMID: 9309643 DOI: 10.1016/s0076-6879(97)86003-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A reduction in fat intake may be achieved by making educated choices to reduce total calorie intake, to consume a lower quantity of total fats, or to modify the ratio of saturated-to-polyunsaturated lipids. Leptin agonists or NPY or CCK antagonists may prove to be useful to diminish appetite and thereby reduce the total intake of food. But eating has such cultural, social, and hedonistic attributes that such a single-pronged approach is unlikely to be successful. The use of fat substitutes may prove to be popular to provide a wide range of snack food options, but these are likely to be of minimal use in weight reduction programs because of their distribution of additives in only a limited number of foods. The inhibitors of lipid digestion will be modestly successful in the short term; their long-term success will be influenced by gastrointestinal adverse effects and the need to consume fat-soluble vitamin supplements to prevent the development of fat-soluble vitamin deficiencies. The inhibition of lipid absorption is an attractive targeted approach for the treatment of obesity, since this would reduce the uptake of visible as well as invisible fats, which would potentially offer convenient dosing, and could also be a means to inhibit secondarily the uptake of carbohydrate calories.
Collapse
Affiliation(s)
- A B Thomson
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
10
|
Kok JW, Nikolova-Karakashian M, Klappe K, Alexander C, Merrill AH. Dihydroceramide biology. Structure-specific metabolism and intracellular localization. J Biol Chem 1997; 272:21128-36. [PMID: 9261117 DOI: 10.1074/jbc.272.34.21128] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study utilized fluorescent analogs to characterize the intracellular transport and metabolism of dihydroceramide (DH-Cer), an intermediate in de novo sphingolipid biosynthesis. When 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoyl-DH-Cer (C6-NBD-DH-Cer) was incubated with HT29, NRK, BHK, or HL-60 cells, it was efficiently converted to dihydrosphingomyelin and dihydroglucosylceramide, and a number of other sphingolipids, with the nature of the products depending on the cell line. In addition, complex sphingolipids were formed that contained a desaturated (sphingosine) backbone, indicating that DH-Cer (and/or its metabolites) were substrates for the desaturase(s) that introduce the 4,5-trans double bond. Based on the kinetics and inhibitor studies, double bond addition did not appear to occur with the complex sphingolipids directly, but rather, during turnover and resynthesis. The conversion of C6-NBD-DH-Cer to more complex sphingolipids was highly stereoselective for the natural D,erythro isomer of C6-NBD-DH-Cer. Interestingly, the stereochemistry of the sphingoid base backbone also affected the localization of fluorescent sphingolipids: the D,erythro species appeared in the Golgi apparatus, whereas other stereo-isomers accumulated in the endoplasmic reticulum. In addition to C6-NBD-Cer and C6-NBD-DH-Cer, C6-NBD-4-D-hydroxy-DH-Cer gave rise to formation of complex sphingolipids and localized at the Golgi apparatus. These studies indicate that dihydroceramide is used as the initial backbone of complex (glyco)sphingolipids, perhaps to avoid build up of ceramide as an intermediate since this is such a potent bioactive compound. The stereoselectivity in transport and metabolism suggests that trafficking of ceramide is protein-directed rather than simply a consequence of vesicular membrane flow.
Collapse
Affiliation(s)
- J W Kok
- Department of Physiological Chemistry, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands. j.w.kok.@med.rug.nl
| | | | | | | | | |
Collapse
|
11
|
Ivessa NE, Gravotta D, De Lemos-Chiarandini C, Kreibich G. Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 1997; 272:20828-34. [PMID: 9252408 DOI: 10.1074/jbc.272.33.20828] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In cells exposed to brefeldin A (BFA), enzymes of the Golgi apparatus are redistributed to the endoplasmic reticulum (ER) by retrograde membrane flow, where they may cause modifications on resident ER proteins. We have used a truncated form of the rough ER-specific type I transmembrane glycoprotein ribophorin I as a probe to detect Golgi glycosyltransferases relocated to the ER in a BFA-dependent fashion. This polypeptide (RI332) comprises the 332 amino-terminal amino acids of ribophorin I and behaves like a luminal ER protein when expressed in HeLa cells. Upon treatment of the cells with BFA, RI332 becomes quantitatively O-glycosylated by Golgi glycosyltransferases that are transported back to the ER. Here we demonstrate that pretreatment of the cells with lovastatin, an inhibitor of HMG-CoA reductase, abrogates this modification and that mevalonate, the product formed in the step inhibited by the drug, is able to counteract the effect of lovastatin. We also show by immunofluorescence using mannosidase II as a Golgi marker that the BFA-induced retrograde transport of Golgi enzymes is blocked by lovastatin, although electron microscopy indicates that BFA causes disassembly of the Golgi apparatus into swollen vesicles and tubules. Our observations support the role of a prenylated protein, such as the geranylgeranylated small G protein Rab6, in the retrograde transport from the Golgi apparatus to the ER, since lovastatin acts by inhibiting its prenylation.
Collapse
Affiliation(s)
- N E Ivessa
- Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
12
|
Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 1997; 94:6904-9. [PMID: 9192664 PMCID: PMC21257 DOI: 10.1073/pnas.94.13.6904] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1997] [Accepted: 04/21/1997] [Indexed: 02/04/2023] Open
Abstract
In its attempt to evade cytotoxic T cell recognition, human cytomegalovirus encodes several genes that target MHC class I molecules at different points in their assembly pathway. We show here that the human cytomegalovirus US6 gene encodes a 22-kDa glycoprotein that binds the transporter-associated with antigen processing (TAP)/class I complex and inhibits translocation of peptide from the cytosol to the endoplasmic reticulum. Major histocompatibility complex class I molecules are therefore unable to load TAP-dependent peptides, resulting in the retention of MHC class I molecules in the endoplasmic reticulum, with a consequent reduction in class I at the cell surface. Interferon-gamma treatment of US6 transfected cells overcomes this inhibition of peptide translocation and restores class I at the cell surface to wild type levels. The functional consequence of TAP inhibition is that US6 transfected cells are unable to present endogenous antigen to cytotoxic T lymphocytes and are therefore resistant to cytotoxic T lymphocyte lysis.
Collapse
Affiliation(s)
- P J Lehner
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
13
|
Winitz D, Shachar I, Elkabetz Y, Amitay R, Samuelov M, Bar-Nun S. Degradation of distinct assembly forms of immunoglobulin M occurs in multiple sites in permeabilized B cells. J Biol Chem 1996; 271:27645-51. [PMID: 8910354 DOI: 10.1074/jbc.271.44.27645] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein degradation is essential for quality control which retains and eliminates abnormal, unfolded, or partially assembled subunits of oligomeric proteins. The localization of this nonlysosomal pre-Golgi degradation to the endoplasmic reticulum (ER) has been mostly deduced from kinetic studies and carbohydrate analyses, while direct evidence for degradation within the ER has been provided by in vitro reconstitution of this process. In this article, we took advantage of the transport incompetence of permeabilized cells to directly demonstrate that the selective degradation of secretory IgM (sIgM) in B lymphocytes is transport-dependent. We show that, upon permeabilization of the plasma membrane with either streptolysin O or digitonin, sIgM is not degraded unless transport is allowed. Nevertheless, upon complete reduction of interchain disulfide bonds with thiols, the free mu heavy chains are degraded by a transport-independent quality control mechanism within the ER. This latter degradation is nonselective to the secretory heavy chain mus, and the membrane heavy chain mum, which is normally displayed on the surface of the B cell, is also eliminated. Moreover, the degradation of free mus is no longer restricted to B lymphocytes, and it takes place also in the ER of plasma cells which normally secrete polymers of sIgM. Conversely, when assembled with the light chain, the degradation is selective to sIgM, is restricted to B lymphocytes, and is a transport-dependent post-ER event.
Collapse
Affiliation(s)
- D Winitz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Weidman PJ. Anterograde transport through the Golgi complex: do Golgi tubules hold the key? Trends Cell Biol 1995; 5:302-5. [PMID: 14732088 DOI: 10.1016/s0962-8924(00)89046-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biochemical studies have suggested that anterograde protein transport through the Golgi complex is mediated by coatomer-coated vesicles that bud from one compartment and then transfer to, and fuse with, the next. However, recent genetic studies have shown that coatomer mutations block retrograde, but not anterograde, transport in yeast, calling into question the role of coatomer vesicles in anterograde transport. Peggy Weidman proposes that these findings might be explained if anterograde transport occurs by transient fusion of Golgi tubules and if coatomers have related, but separable, functions in tubule and vesicle dynamics.
Collapse
Affiliation(s)
- P J Weidman
- Dept of Biochemistry and Molecular Biology, St Louis University Medical School, St Louis, MO 63104, USA
| |
Collapse
|
15
|
Hidalgo J, Muñiz M, Velasco A. Trimeric G proteins regulate the cytosol-induced redistribution of Golgi enzymes into the endoplasmic reticulum. J Cell Sci 1995; 108 ( Pt 4):1805-15. [PMID: 7615693 DOI: 10.1242/jcs.108.4.1805] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptolysin O-permeabilized cells incubated with a high concentration (5-10 mg/ml) of cytosolic proteins and ATP-generating system exhibit redistribution into the endoplasmic reticulum (ER) of Golgi integral proteins (mannosidase II, galactosyltransferase, TGN 38), detected by immunofluorescence. In addition, mannosidase II is detected in the ER of cells exposed to a high concentration of cytosolic proteins and processed for immunolectron microscopy by immunoperoxidase. The redistribution process requires ATP and is not affected by previous microtubule depolymerization. Ultrastructural observations indicate that Golgi disassembly occurs by budding of coated vesicles. This stage of the process is inhibited by GTP-gamma S, AIF(3–5), transducin beta gamma subunits, and mastoparan, indicating the involvement of trimeric G proteins. At a later stage, vesicles lose their coats and fuse with the ER. This part of the process does not occur in cells incubated at either 15 degrees C or 20 degrees C, or exposed to N-ethylmaleimide. In cells treated with either cholera or pertussis toxin Golgi redistribution into the ER shows a 50-fold lower requirement for cytosolic factors than in untreated cells. These data suggest a regulatory role for both alpha s and alpha i trimeric G proteins in the normal Golgi-ER retrograde transport taking place in intact cells.
Collapse
Affiliation(s)
- J Hidalgo
- Department of Cell Biology, Faculty of Biology, University of Seville, Spain
| | | | | |
Collapse
|
16
|
Abstract
During budding in Saccharomyces cerevisiae, maternal vacuole material is delivered into the growing daughter cell via tubular or vesicular structures. One of the late steps in vacuole inheritance is the fusion in the bud of vesicles derived from the maternal vacuole. This process has been reconstituted in vitro and requires isolated vacuoles, a physiological temperature, cytosolic factors, and ATP (Conradt, B., J. Shaw, T. Vida, S. Emr, and W. Wickner. 1992. J. Cell Biol. 119:1469-1479). We now report a simple and reliable assay to quantify vacuole-to-vacuole fusion in vitro. This assay is based on the maturation and activation of vacuole membrane-bound pro-alkaline phosphatase by vacuolar proteinase A after vacuole-to-vacuole fusion. In vitro fusion allowed maturation of 30 to 60% of pro-alkaline phosphatase. Vacuoles prepared from a mutant defective in vacuole inheritance in vivo (vac2-1) were inactive in this assay. Vacuole fusion in vitro required a vacuole membrane potential. Inhibition by nonhydrolyzable guanosine derivatives, mastoparans, and benzalkonium chloride suggest that GTP-hydrolyzing G proteins may play a key role in the in vitro fusion events.
Collapse
Affiliation(s)
- A Haas
- Molecular Biology Institute, University of California, Los Angeles 90024-1570
| | | | | |
Collapse
|
17
|
Pimplikar SW, Ikonen E, Simons K. Basolateral protein transport in streptolysin O-permeabilized MDCK cells. J Cell Biol 1994; 125:1025-35. [PMID: 8195286 PMCID: PMC2120047 DOI: 10.1083/jcb.125.5.1025] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have reconstituted polarized protein transport in streptolysin O-permeabilized MDCK cells from the TGN to the basolateral surface and to the apical surface. These transport steps are dependent on temperature, energy and exogenously supplied cytosol. Using this in vitro system we show that a whole tail peptide (WT peptide) corresponding to the cytoplasmic tail of a basolaterally sorted protein, the vesicular stomatitis virus glycoprotein (VSV G) inhibits the TGN to basolateral transport but does not affect any other transport step. Inhibition of VSV G transport to basolateral surface by WT peptide did not result in missorting of the protein to the apical surface. Mutation of the single tyrosine residue in the WT peptide reduced its inhibitory potency four- to fivefold. These results suggest that the VSV G tail physically interacts with a component of the sorting machinery. Using a cross-linking approach, we have identified proteins that associate with the cytoplasmic tail domain of VSV G. One of these polypeptides, Tin-2 (Tail interacting protein-2), associates with VSV G in the TGN, the site of protein sorting, but not in the ER nor at the cell surface. Tin-2 does not associate with apically targeted hemagglutinin. WT peptide that inhibited the basolateral transport of VSV G also inhibited the association of Tin-2 with VSV G. Together, these properties make Tin-2 a candidate basolateral sorter. The results demonstrate the usefulness of the SLO-permeabilized cell system in dissecting the sorting machinery.
Collapse
Affiliation(s)
- S W Pimplikar
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Wilson BS, Nuoffer C, Meinkoth JL, McCaffery M, Feramisco JR, Balch WE, Farquhar MG. A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J Cell Biol 1994; 125:557-71. [PMID: 8175881 PMCID: PMC2119990 DOI: 10.1083/jcb.125.3.557] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Golgi apparatus is a dynamic organelle whose structure is sensitive to vesicular traffic and to cell cycle control. We have examined the potential role for rab1a, a GTPase previously associated with ER to Golgi and intra-Golgi transport, in the formation and maintenance of Golgi structure. Bacterially expressed, recombinant rab1a protein was microinjected into rat embryonic fibroblasts, followed by analysis of Golgi morphology by fluorescence and electron microscopy. Three recombinant proteins were tested: wild-type rab, mutant rab1a(S25N), a constitutively GDP-bound form (Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch, 1994. J. Cell Biol. 125: 225-237), and mutant rab1a(N124I) defective in guanine nucleotide binding. Microinjection of wild-type rab1a protein or a variety of negative controls (injection buffer alone or activated ras protein) did not affect the appearance of the Golgi, as visualized by immunofluorescence of alpha-mannosidase II (Man II), used as a Golgi marker. In contrast, microinjection of the mutant forms promoted the disassembly of the Golgi stacks into dispersed vesicular structures visualized by immunofluorescence. When S25N-injected cells were analyzed by EM after immunoperoxidase labeling, Man II was found in isolated ministacks and large vesicular elements that were often surrounded by numerous smaller unlabeled vesicles resembling carrier vesicles. Golgi disassembly caused by rab1a mutants differs from BFA-induced disruption, since beta-COP remains membrane associated, and Man II does not redistribute to the ER. BFA can still cause these residual Golgi elements to fuse and disperse, albeit at a slower rate. Moreover, BFA recovery is incomplete in the presence of rab1 mutants or GTP gamma S. We conclude that GTP exchange and hydrolysis by GTPases, specifically rab1a, are required to form and maintain normal Golgi stacks. The similarity of Golgi disassembly seen with rab1a mutants to that occurring during mitosis, may point to a molecular basis involving rab1a for fragmentation of the Golgi apparatus during cell division.
Collapse
Affiliation(s)
- B S Wilson
- Division of Cellular and Molecular Medicine, University of California, San Diego 92093-0651
| | | | | | | | | | | | | |
Collapse
|
19
|
Bossuyt X, Blanckaert N. Effect of GTP on the dolichol pathway for protein glycosylation in rat liver microsomes. Biochem J 1993; 296 ( Pt 3):633-7. [PMID: 8280061 PMCID: PMC1137744 DOI: 10.1042/bj2960633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Incubation of native rat liver microsomes with GTP resulted in enhanced incorporation of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc into lipid acceptors. The stimulation of GlcNAc transfer by GTP was specific for GTP; ATP exerted no effect. The GTP effect was blocked by a non-hydrolysable GTP analogue guanosine 5'-[beta gamma-imido]triphosphate, indicating that GTP hydrolysis was crucial. Though dolichyl pyrophosphate NN'-diacetylchitobiose [Dol-PP-(GlcNAc)2] was the main radiolabelled product formed upon incubation of GTP-treated microsomes with UDP-GlcNAc, GTP selectively stimulated UDP-GlcNAc:dolichyl phosphate (Dol-P) N-acetylglucosaminyl 1-phosphotransferase (N-acetylglucosaminyl 1-phosphotransferase). This conclusion was reached on the basis of experiments in which tunicamycin was used to selectively inhibit N-acetylglucosaminyl 1-phosphotransferase. The enhanced transformation of Dol-P to dolichyl pyrophosphate N-acetylglucosamine (Dol-PP-GlcNAc) by GTP ultimately led to enhanced protein glycosylation. GTP-induced stimulation of GlcNAc incorporation in lipid and protein by GTP was observed also in microsomes fully permeabilized with Staph. aureus alpha-toxin. These findings refute the previous proposal [Godelaine, Beaufay, Wibo and Ravoet (1983) J. Cell Biol. 97, 340-350] that increased membrane permeability constitutes the mechanism whereby GTP activates the reactions of the dolichol pathway.
Collapse
Affiliation(s)
- X Bossuyt
- Laboratory of Biological Chemistry, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
20
|
Androlewicz MJ, Anderson KS, Cresswell P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci U S A 1993; 90:9130-4. [PMID: 8415666 PMCID: PMC47515 DOI: 10.1073/pnas.90.19.9130] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have investigated the role of the putative peptide transporters associated with antigen processing (TAP) by using a permeabilized-cell system. The main objective was to determine whether these molecules, which bear homology to the ATP-binding cassette family of transporters, translocate antigenic peptides across the endoplasmic reticulum membrane for assembly with major histocompatibility complex (MHC) class I molecules and beta 2-microglobulin light chain. The pore-forming toxin streptolysin O was used to generate permeabilized cells, and peptide translocation was determined by measuring the amount of added radiolabeled peptide bound to endogenous class I molecules. No radiolabeled peptide was associated with MHC class I glycoproteins from unpermeabilized cells. We found that efficient peptide binding to MHC class I molecules in permeabilized cells is both transporter dependent and ATP dependent. In antigen-processing mutant cells lacking a functional transporter, uptake occurs only through a less-efficient transporter and ATP-independent pathway. In addition, short peptides (8-10 amino acids) known to bind MHC class I molecules compete efficiently with a radiolabeled peptide for TAP-dependent translocation, whereas longer peptides and a peptide derived from an endoplasmic reticulum signal sequence do not compete efficiently. This result indicates that the optimal substrates for TAP possess the characteristics of MHC-binding peptides.
Collapse
Affiliation(s)
- M J Androlewicz
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
21
|
Yilla M, Tan A, Ito K, Miwa K, Ploegh H. Involvement of the vacuolar H(+)-ATPases in the secretory pathway of HepG2 cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46739-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Kain S, Jen T, Firestone G. Glucocorticoid-regulated trafficking of mouse mammary tumor virus proteins in permeabilized hepatoma cells. Requirements of intracellular membrane transport for maturation of the cytoplasmic phosphorylated polyprotein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36564-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Liu SH, Chu JC, Ng SY. Streptolysin O-permeabilized cell system for studying trans-acting activities of exogenous nuclear proteins. Nucleic Acids Res 1993; 21:4005-10. [PMID: 8371976 PMCID: PMC309988 DOI: 10.1093/nar/21.17.4005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Efficient transfer of exogenous proteins into culture animal cells can be achieved by Streptolysin O (SLO) permeabilization of plasma membranes. We used this method to establish an in vitro transcription system for early response genes. The promoters of many early response genes contain an essential DNA motif known as the Serum Response Element (SRE). Recent data has shown that this DNA sequence is recognized by Serum Response Factor (SRF) and its associated proteins. Our initial experiments showed that HeLa nuclear extracts induced the transcription of the c-fos gene in serum-starved murine fibroblasts which were permeabilized by either physical method (glass beads) or cytolytic pore-forming protein (SLO). Plasma membrane permeabilization presumably permits passive diffusion of macromolecules into target cells and we showed that a truncated SRF expressed in bacteria was translocated into the nucleus within 30 minutes after SLO permeabilization. HeLa crude extracts were fractionated in order to identify the active nuclear factors. SRF was purified by binding to Wheat Germ Agglutinin (WGA)-agarose but the active factors remained in the WGA-unbound fractions. Our results demonstrate that this permeabilized cell in vitro transcription system is simple, efficient and can be used to test crude nuclear fractions as well as purified proteins expressed in bacteria; it will be an useful tool for the reproduction of transcriptional regulation on chromatin templates in vitro as well as the investigation of the biochemical functions of specific transcription factors or signal transduction effectors.
Collapse
Affiliation(s)
- S H Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | | | | |
Collapse
|
24
|
Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46822-0] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Vidugiriene J, Menon AK. Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer. J Biophys Biochem Cytol 1993; 121:987-96. [PMID: 8501124 PMCID: PMC2119682 DOI: 10.1083/jcb.121.5.987] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glycosylated phosphoinositides serve as membrane anchors for numerous eukaryotic cell surface glycoproteins. Recent biochemical and genetic studies indicate that the glycolipids are assembled by sequential addition of components (monosaccharides and phosphoethanolamine) to phosphatidylinositol. The biosynthetic steps are presumed to occur in the ER, but formal proof of this is lacking. We describe experiments designed to establish the subcellular location of the initial steps in glycosyl-phosphatidylinositol (GPI) anchor biosynthesis and to define the transmembrane distribution of early biosynthetic lipid intermediates. The experiments were performed with the thymoma cell line BW5147.3. A subcellular fractionation protocol was used to show that early biosynthetic steps in GPI assembly, i.e., synthesis and deacetylation of N-acetylglucosaminyl phosphatidylinositol, occur in the ER. GPI biosynthetic intermediates were synthesized by incubating the microsomes with UDP-[3H]GlcNAc, and the transmembrane distribution of the labeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). Treatment of the radiolabeled microsomes with PI-PLC showed that > 70% of the N-acetylglucosaminyl phosphatidylinositol and glucosaminyl phosphatidylinositol could be hydrolyzed, indicating that the two lipids were primarily distributed in the cytoplasmic (outer) leaflet of the microsomes. Similar cleavage results were obtained using Streptolysin O-permeabilized thymoma cells. When permeabilized cells were incubated with UDP-[3H]GlcNAc and treated with PI-PLC, approximately 85% of the radiolabeled N-acetylglucosaminyl phosphatidylinositol and glucosaminyl phosphatidylinositol could be cleaved, indicating that they were accessible to the enzyme. The cumulative data indicate that early GPI intermediates are primarily located in the cytoplasmic leaflet of the ER, and are probably synthesized from PI located in the cytoplasmic leaflet and UDP-GlcNAc synthesized in the cytosol.
Collapse
Affiliation(s)
- J Vidugiriene
- Laboratory of Molecular Parasitology, Rockefeller University, New York 10021-6399
| | | |
Collapse
|
26
|
Jäntti J, Kuismanen E. Effect of caffeine and reduced temperature (20 degrees C) on the organization of the pre-Golgi and the Golgi stack membranes. J Cell Biol 1993; 120:1321-35. [PMID: 8449979 PMCID: PMC2119759 DOI: 10.1083/jcb.120.6.1321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the present study we have dissected the transport pathways between the ER and the Golgi complex using a recently introduced (Kuismanen, E., J. Jäntti, V. Mäkiranta, and M. Sariola. 1992. J. Cell Sci. 102:505-513) inhibition of transport by caffeine at 20 degrees C. Recovery of the Golgi complex from brefeldin A (BFA) treatment was inhibited by caffeine at reduced temperature (20 degrees C) suggesting that caffeine inhibits the membrane traffic between the ER and the Golgi complex. Caffeine at 20 degrees C did not inhibit the BFA-induced retrograde movement of the Golgi membranes. Further, incubation of the cells in 10 mM caffeine at 20 degrees C had profound effects on the distribution and the organization of the pre-Golgi and the Golgi stack membranes. Caffeine treatment at 20 degrees C resulted in a selective and reversible translocation of the pre- and cis-Golgi marker protein (p58) to the periphery of the cell. This caffeine-induced effect on the Golgi complex was different from that induced by BFA, since mannosidase II, a Golgi stack marker, remained perinuclearly located and the Golgi stack coat protein, beta-COP, was not detached from Golgi membranes in the presence of 10 mM caffeine at 20 degrees C. Electron microscopic analysis showed that, in the presence of caffeine at 20 degrees C, the morphology of the Golgi stack was altered and accumulation of numerous small vesicles in the Golgi region was observed. The results in the present study suggest that caffeine at reduced temperature (20 degrees C) reveals a functional interface between the pre-Golgi and the Golgi stack.
Collapse
Affiliation(s)
- J Jäntti
- Department of Biochemistry, University of Helsinki, Finland
| | | |
Collapse
|
27
|
Pascale M, Erra M, Malagolini N, Serafini-Cessi F, Leone A, Bonatti S. Post-translational processing of an O-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport to the plasma membrane. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74024-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Saraste J, Kuismanen E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. SEMINARS IN CELL BIOLOGY 1992; 3:343-55. [PMID: 1457777 PMCID: PMC7128811 DOI: 10.1016/1043-4682(92)90020-v] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent results have provided increasing evidence for the existence of an intermediate membrane compartment between the rough endoplasmic reticulum and the Golgi complex which seems to function in protein sorting and the regulation of membrane traffic in the early part of the exocytic pathway. Localization of resident marker proteins has shown that this compartment consists of both peripheral and central elements. The aim of the present review is to combine the data on the pre-Golgi compartment with previous ideas of membrane traffic at the ER-Golgi interface. We propose a model which describes how mobile, endosome-like elements of the pre-Golgi compartment function in the generation of the compositional and functional boundary between the widely distributed ER and the more centrally located Golgi stacks.
Collapse
Affiliation(s)
- J Saraste
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | |
Collapse
|