1
|
Gao Y, Kong L, Liu S, Liu K, Zhu J. Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Front Mol Neurosci 2021; 14:779385. [PMID: 34975399 PMCID: PMC8716720 DOI: 10.3389/fnmol.2021.779385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The effective conduction of action potential in the peripheral nervous system depends on the structural and functional integrity of the node of Ranvier and paranode. Neurofascin (NF) plays an important role in the conduction of action potential in a saltatory manner. Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP), anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which interferes with the conduction of action potential and is considered the main pathogenic factor of CIDP. In this study, we describe the assembling mechanism and anatomical structure of the node of Ranvier and the necessary cell adhesion molecules for its physiological function. The main points of this study are that we summarized the recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier function and its impact on clinical manifestations and analyzed the possible mechanisms underlying the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Ying Gao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingxin Kong
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
2
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
3
|
Long-term Changes in the Central Amygdala Proteome in Rats with a History of Chronic Cocaine Self-administration. Neuroscience 2020; 443:93-109. [PMID: 32540363 DOI: 10.1016/j.neuroscience.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
The central nucleus of the amygdala (CeA) is a striatum-like structure that contains mainly inhibitory circuits controlling a repertoire of (mal)adaptive behaviors related to pain, anxiety, motivation, and addiction. Neural activity in the CeA is also necessary for the expression of persistent and robust drug seeking, also termed 'incubation of drug craving.' However, neuroadaptations within this brain region supporting incubated drug craving have not been characterized. Here, we conducted a comprehensive analysis of protein expression in the CeA of male rats after prolonged (45-day) abstinence from extended-access cocaine self-administration using a quantitative proteomic approach. The proteomic analysis identified 228 unique proteins altered in cocaine rats relative to animals that received saline. Out of the identified proteins, 160 were downregulated, while 68 upregulated. Upregulation of tyrosine hydroxylase and downregulation of neural cell-adhesion protein contactin-1 were validated by immunoblotting. Follow-up analysis by the Ingenuity Pathway Analysis tool revealed alterations in protein networks associated with several neurobehavioral disorders, cellular function and morphology, as well as axogenesis, long-term potentiation, and receptor signaling pathways. This study suggests that chronic cocaine self-administration, followed by a prolonged abstinence results in reorganization of specific protein signaling networks within the CeA that may underlie incubated cocaine craving and identifies potential novel 'druggable' targets for the treatment of cocaine use disorder (CUD).
Collapse
|
4
|
Bekku Y, Salzer JL. Independent anterograde transport and retrograde cotransport of domain components of myelinated axons. J Cell Biol 2020; 219:e201906071. [PMID: 32289157 PMCID: PMC7265310 DOI: 10.1083/jcb.201906071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/28/2020] [Accepted: 03/25/2020] [Indexed: 12/02/2022] Open
Abstract
Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and assemble locally. Here, we have dynamically imaged, in pairwise combinations, the vesicular transport of fluorescently tagged components of the nodes of Ranvier and other myelinated axonal domains in sensory neurons cultured alone or together with Schwann cells at the onset of myelination. In general, most proteins are transported independently in the anterograde direction. In contrast, there is substantial cotransport of proteins from distinct domains in the retrograde direction likely due to coendocytosis along the axon. Early myelination did not substantially change these patterns of transport, although it increased the overall numbers of axonal transport vesicles. Our results indicate domain components are transported in separate vesicles for local assembly, not as preformed complexes, and implicate endocytosis along axons as a mechanism of clearance.
Collapse
Affiliation(s)
| | - James L. Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
5
|
Kvarnung M, Shahsavani M, Taylan F, Moslem M, Breeuwsma N, Laan L, Schuster J, Jin Z, Nilsson D, Lieden A, Anderlid BM, Nordenskjöld M, Syk Lundberg E, Birnir B, Dahl N, Nordgren A, Lindstrand A, Falk A. Ataxia in Patients With Bi-Allelic NFASC Mutations and Absence of Full-Length NF186. Front Genet 2019; 10:896. [PMID: 31608123 PMCID: PMC6769111 DOI: 10.3389/fgene.2019.00896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The etiology of hereditary ataxia syndromes is heterogeneous, and the mechanisms underlying these disorders are often unknown. Here, we utilized exome sequencing in two siblings with progressive ataxia and muscular weakness and identified a novel homozygous splice mutation (c.3020-1G > A) in neurofascin (NFASC). In RNA extracted from fibroblasts, we showed that the mutation resulted in inframe skipping of exon 26, with a deprived expression of the full-length transcript that corresponds to NFASC isoform NF186. To further investigate the disease mechanisms, we reprogrammed fibroblasts from one affected sibling to induced pluripotent stem cells, directed them to neuroepithelial stem cells and finally differentiated to neurons. In early neurogenesis, differentiating cells with selective depletion of the NF186 isoform showed significantly reduced neurite outgrowth as well as fewer emerging neurites. Furthermore, whole-cell patch-clamp recordings of patient-derived neuronal cells revealed a lower threshold for openings, indicating altered Na+ channel kinetics, suggesting a lower threshold for openings as compared to neuronal cells without the NFASC mutation. Taken together, our results suggest that loss of the full-length NFASC isoform NF186 causes perturbed neurogenesis and impaired neuronal biophysical properties resulting in a novel early-onset autosomal recessive ataxia syndrome.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mansoureh Shahsavani
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Nicole Breeuwsma
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Loora Laan
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Jens Schuster
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
6
|
Stengel H, Vural A, Brunder AM, Heinius A, Appeltshauser L, Fiebig B, Giese F, Dresel C, Papagianni A, Birklein F, Weis J, Huchtemann T, Schmidt C, Körtvelyessy P, Villmann C, Meinl E, Sommer C, Leypoldt F, Doppler K. Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/5/e603. [PMID: 31454780 PMCID: PMC6705632 DOI: 10.1212/nxi.0000000000000603] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Objective To identify and characterize patients with autoantibodies against different neurofascin (NF) isoforms. Methods Screening of a large cohort of patient sera for anti-NF autoantibodies by ELISA and further characterization by cell-based assays, epitope mapping, and complement binding assays. Results Two different clinical phenotypes became apparent in this study: The well-known clinical picture of subacute-onset severe sensorimotor neuropathy with tremor that is known to be associated with IgG4 autoantibodies against the paranodal isoform NF-155 was found in 2 patients. The second phenotype with a dramatic course of disease with tetraplegia and almost locked-in syndrome was associated with IgG3 autoantibodies against nodal and paranodal isoforms of NF in 3 patients. The epitope against which these autoantibodies were directed in this second phenotype was the common Ig domain found in all 3 NF isoforms. In contrast, anti–NF-155 IgG4 were directed against the NF-155–specific Fn3Fn4 domain. The description of a second phenotype of anti–NF-associated neuropathy is in line with some case reports of similar patients that were published in the last year. Conclusions Our results indicate that anti–pan-NF-associated neuropathy differs from anti–NF-155-associated neuropathy, and epitope and subclass play a major role in the pathogenesis and severity of anti–NF-associated neuropathy and should be determined to correctly classify patients, also in respect to possible differences in therapeutic response.
Collapse
Affiliation(s)
- Helena Stengel
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Atay Vural
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Anna-Michelle Brunder
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Annika Heinius
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Luise Appeltshauser
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Bianca Fiebig
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Florian Giese
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Christian Dresel
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Aikaterini Papagianni
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Frank Birklein
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Joachim Weis
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Tessa Huchtemann
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Christian Schmidt
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Peter Körtvelyessy
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Carmen Villmann
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Edgar Meinl
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Claudia Sommer
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Frank Leypoldt
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey
| | - Kathrin Doppler
- From the Department of Neurology (H.S., A.M.B., L.A., B.F., A.P., C.S., K.D.), University Hospital Würzburg; Institute of Clinical Neuroimmunology (A.V., E.M.), Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried; Universitätsklinikum Schleswig-Holstein Campus Kiel (A.H., F.L.), Neuroimmunology Section, Institute of Clinical Chemistry, Kiel/Lübeck; Department of Neurology (F.G.), University Hospital Halle; Department of Neurology (C.D., F.B.), University Hospital Mainz, Mainz; University Hospital Aachen (J.W.), Institute of Neuropathology, Aachen; Department of Neurology (T.H., P.K.), University Hospital Magdeburg; Institute for Pharmacology and Toxicology (C.S.), Otto-von-Guericke University; German Center for Neurodegenerative Diseases (P.K.), Magdeburg; Institute for Clinical Neurobiology (C.V.), University Hospital Würzburg; Department of Neurology (F.L.), Universitätsklinikum Schleswig-Holstein, Kiel, Germany; and Research Center for Translational Medicine (A.V), Koç University, Istanbul, Turkey.
| |
Collapse
|
7
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
8
|
Ebel J, Beuter S, Wuchter J, Kriebel M, Volkmer H. Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin. ADVANCES IN NEUROBIOLOGY 2014; 8:231-47. [DOI: 10.1007/978-1-4614-8090-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Yamasaki R. Anti-neurofascin antibody in combined central and peripheral demyelination. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ryo Yamasaki
- Department of Neurological Therapeutics; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
11
|
Volkmer H, Schreiber J, Rathjen FG. Regulation of adhesion by flexible ectodomains of IgCAMs. Neurochem Res 2012; 38:1092-9. [PMID: 23054071 DOI: 10.1007/s11064-012-0888-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023]
Abstract
To perform their diverse biological functions the adhesion activities of the cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) might be regulated by local clustering, proteolytical shedding of their ectodomains or rapid recycling to and from the plasma membrane. Another form of regulation of adhesion might be obtained through flexible ectodomains of IgCAMs which adopt distinct conformations and which in turn modulate their adhesion activity. Here, we discuss variations in the conformation of the extracellular domains of CEACAM1 and CAR that might influence their binding and signaling activities. Furthermore, we concentrate on alternative splicing of single domains and short segments in the extracellular regions of L1 subfamily members that might affect the organization of the N-terminal located Ig-like domains. In particular, we discuss variations of the linker sequence between Ig-like domains 2 and 3 (D2 and D3) that is required for the horseshoe conformation.
Collapse
Affiliation(s)
- Hansjürgen Volkmer
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | |
Collapse
|
12
|
Mualla R, Nagaraj K, Hortsch M. A phylogenetic analysis of the L1 family of neural cell adhesion molecules. Neurochem Res 2012; 38:1196-207. [PMID: 23011207 DOI: 10.1007/s11064-012-0892-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
L1-type genes form one of several distinct gene families that encode adhesive proteins, which are predominantly expressed in developing and mature metazoan nervous systems. These proteins have a multitude of different important cellular functions in neuronal and glial cells. L1-type gene products are transmembrane proteins with a characteristic extracellular domain structure consisting of six immunoglobulin and three to five fibronectin type III protein folds. As reported here, L1-type proteins can be identified in most metazoan phyla with the notable exception of Porifera (sponges). This puts the origin of L1-type genes at a point in time when primitive cellular neural networks emerged, approximately 1,200 to 1,500 million years ago. Subsequently, several independent gene duplication events generated multiple paralogous L1-type genes in some phyla, allowing for a considerable diversification of L1 structures and the emergence of new functional features and molecular interactions. One such evolutionary newer feature is the appearance of RGD integrin-binding motifs in some vertebrate L1 family members.
Collapse
Affiliation(s)
- Rula Mualla
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
13
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
14
|
Labasque M, Devaux JJ, Lévêque C, Faivre-Sarrailh C. Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. J Biol Chem 2011; 286:42426-42434. [PMID: 22009740 DOI: 10.1074/jbc.m111.266353] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cell adhesion molecules (CAMs) of the immunoglobulin superfamily (Ig-CAMs) play a crucial role in the organization of the node of Ranvier in myelinated axons. In the peripheral nervous system, Gliomedin (Gldn) secreted by Schwann cell microvilli binds NgCAM-related CAM (NrCAM) and Neurofascin-186 (NF186) and direct the nodal clustering of voltage-gated sodium channels (Nav). NF186 is the single axonal Gldn partner to ensure Nav clustering at nodes, whereas NrCAM is only required in glial cells (Feinberg, K., Eshed-Eisenbach, Y., Frechter, S., Amor, V., Salomon, D., Sabanay, H., Dupree, J. L., Grumet, M., Brophy, P. J., Shrager, P., and Peles, E. (2010) Neuron 65, 490-502). The olfactomedin domain of Gldn is implicated in the interaction with nodal Ig-CAMs. However, the interacting modules of NrCAM or NF186 involved in Gldn association are unknown. Here, we report that fibronectin type III-like (FnIII) domains of both Ig-CAMs mediate their interaction with Gldn in pulldown and cell binding assays. Using surface plasmon resonance assays, we determined that NrCAM and NF186 display similar affinity constant for their association with Gldn (K(D) of 0.9 and 5.7 nm, respectively). We characterized the FnIII domains 1 and 2 of NF186 as interacting modules that ensure association with Gldn. We found that the soluble FnIII domains of NF186 (FnIII-Fc) bind on Schwann cells and inhibit Gldn and Nav clustering at heminodes, the precursors of mature nodes in myelinating cultures. Our study reveals the unexpected importance of FnIII domains of Ig-CAMs in the organization of nodes of Ranvier in peripheral axons. Thus, NF186 utilizes distinct modules to organize the multimeric nodal complex.
Collapse
Affiliation(s)
- Marilyne Labasque
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France
| | - Jérôme J Devaux
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France
| | | | - Catherine Faivre-Sarrailh
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France.
| |
Collapse
|
15
|
Xu X, Warrington AE, Wright BR, Bieber AJ, Van Keulen V, Pease LR, Rodriguez M. A human IgM signals axon outgrowth: coupling lipid raft to microtubules. J Neurochem 2011; 119:100-12. [PMID: 21824142 DOI: 10.1111/j.1471-4159.2011.07416.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mouse and human IgMs support neurite extension from primary cerebellar granule neurons. In this study using primary hippocampal and cortical neurons, we demonstrate that a recombinant human IgM, rHIgM12, promotes axon outgrowth by coupling membrane domains (lipid rafts) to microtubules. rHIgM12 binds to the surface of neuron and induces clustering of cholesterol and ganglioside GM1. After cell binding and membrane fractionation, rHIgM12 gets segregated into two pools, one associated with lipid raft fractions and the other with the detergent-insoluble cytoskeleton-containing pellet. Membrane-bound rHIgM12 co-localized with microtubules and co-immuno precipitated with β3-tubulin. rHIgM12-membrane interaction also enhanced the tyrosination of α-tubulin indicating a stabilization of new neurites. When presented as a substrate, rHIgM12 induced axon outgrowth from primary neurons. We now demonstrate that a recombinant human mAb can induce signals in neurons that regulate membrane lipids and microtubule dynamics required for axon extension. We propose that the pentameric structure of the IgM is critical to cross-link membrane lipids and proteins resulting in signaling cascades.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Thaxton C, Pillai AM, Pribisko AL, Dupree JL, Bhat MA. Nodes of Ranvier act as barriers to restrict invasion of flanking paranodal domains in myelinated axons. Neuron 2011; 69:244-57. [PMID: 21262464 DOI: 10.1016/j.neuron.2010.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/16/2022]
Abstract
Accumulation of voltage-gated sodium (Na(v)) channels at nodes of Ranvier is paramount for action potential propagation along myelinated fibers, yet the mechanisms governing nodal development, organization, and stabilization remain unresolved. Here, we report that genetic ablation of the neuron-specific isoform of Neurofascin (Nfasc(NF¹⁸⁶)) in vivo results in nodal disorganization, including loss of Na(v) channel and ankyrin-G (AnkG) enrichment at nodes in the peripheral nervous system (PNS) and central nervous system (CNS). Interestingly, the presence of paranodal domains failed to rescue nodal organization in the PNS and the CNS. Most importantly, using ultrastructural analysis, we demonstrate that the paranodal domains invade the nodal space in Nfasc(NF¹⁸⁶) mutant axons and occlude node formation. Our results suggest that Nfasc(NF¹⁸⁶)-dependent assembly of the nodal complex acts as a molecular boundary to restrict the movement of flanking paranodal domains into the nodal area, thereby facilitating the stereotypic axonal domain organization and saltatory conduction along myelinated axons.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | |
Collapse
|
17
|
Chen L, Zhou S. "CRASH"ing with the worm: insights into L1CAM functions and mechanisms. Dev Dyn 2010; 239:1490-501. [PMID: 20225255 DOI: 10.1002/dvdy.22269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The L1 family of cell adhesion molecules (L1CAMs) in vertebrates has long been studied for its roles in nervous system development and function. Members of this family have been associated with distinct neurological disorders that include CRASH, autism, 3p syndrome, and schizophrenia. The conservation of L1CAMs in Drosophila and Caenorhabditis elegans allows the opportunity to take advantage of these simple model organisms and their accessible genetic manipulations to dissect L1CAM functions and mechanisms of action. This review summarizes the discoveries of L1CAMs made in C. elegans, showcasing this simple model organism as a powerful system to uncover L1CAM mechanisms and roles in healthy and diseased states.
Collapse
Affiliation(s)
- Lihsia Chen
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
18
|
Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, Rasband MN, Bhat MA, Dupree JL. Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis. Brain 2010; 133:389-405. [PMID: 20129933 PMCID: PMC2822635 DOI: 10.1093/brain/awp341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 01/08/2023] Open
Abstract
Stability of the myelin-axon unit is achieved, at least in part, by specialized paranodal junctions comprised of the neuronal heterocomplex of contactin and contactin-associated protein and the myelin protein neurofascin 155. In multiple sclerosis, normal distribution of these proteins is altered, resulting in the loss of the insulating myelin and consequently causing axonal dysfunction. Previously, this laboratory reported that mice lacking the myelin-enriched lipid sulphatide are characterized by a progressive deterioration of the paranodal structure. Here, it is shown that this deterioration is preceded by significant loss of neurofascin 155 clustering at the myelin paranode. Interestingly, prolonged electrophoretic separation revealed the existence of two neurofascin 155 bands, neurofascin 155 high and neurofascin 155 low, which are readily observed following N-linked deglycosylation. Neurofascin 155 high is observed at 7 days of age and reaches peak expression at one month of age, while neurofascin 155 low is first observed at 14 days of age and constantly increases until 5 months of age. Studies using conditional neurofascin knockout mice indicated that neurofascin 155 high and neurofascin 155 low are products of the neurofascin gene and are exclusively expressed by oligodendrocytes within the central nervous system. Neurofascin 155 high is a myelin paranodal protein while the distribution of neurofascin 155 low remains to be determined. While neurofascin 155 high levels are significantly reduced in the sulphatide null mice at 15 days, 30 days and 4 months of age, neurofascin 155 low levels remain unaltered. Although maintained at normal levels, neurofascin 155 low is incapable of preserving paranodal structure, thus indicating that neurofascin 155 high is required for paranodal stability. Additionally, comparisons between neurofascin 155 high and neurofascin 155 low in human samples revealed a significant alteration, specifically in multiple sclerosis plaques.
Collapse
Affiliation(s)
- Anthony D. Pomicter
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Seema M. Shroff
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Babette Fuss
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Carmen Sato-Bigbee
- 2 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Peter J. Brophy
- 3 Centre for Neuroscience Research, University of Edinburgh, Edinburgh, Scotland, UK
| | - Matthew N. Rasband
- 4 Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Manzoor A. Bhat
- 5 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeffrey L. Dupree
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
19
|
Kirschbaum K, Kriebel M, Kranz EU, Pötz O, Volkmer H. Analysis of non-canonical fibroblast growth factor receptor 1 (FGFR1) interaction reveals regulatory and activating domains of neurofascin. J Biol Chem 2009; 284:28533-42. [PMID: 19666467 PMCID: PMC2781396 DOI: 10.1074/jbc.m109.004440] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/15/2009] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are important for many different mechanisms, including cell migration, proliferation, differentiation, and survival. Here, we show a new link between FGFR1 and the cell adhesion molecule neurofascin, which is important for neurite outgrowth. After overexpression in HEK293 cells, embryonal neurofascin isoform NF166 was able to associate with FGFR1, whereas the adult isoform NF186, differing from NF166 in additional extracellular sequences, was deficient. Pharmacological inhibitors and overexpression of dominant negative components of the FGFR signaling pathway pointed to the activation of FGFR1 after association with neurofascin in neurite outgrowth assays in chick tectal neurons and rat PC12-E2 cells. Both extra- and intracellular domains of embryonal neurofascin isoform NF166 were able to form complexes with FGFR1 independently. However, the cytosolic domain was both necessary and sufficient for the activation of FGFR1. Cytosolic serine residues 56 and 100 were shown to be essential for the neurite outgrowth-promoting activity of neurofascin, whereas both amino acid residues were dispensable for FGFR1 association. In conclusion, the data suggest a neurofascin intracellular domain, which activates FGFR1 for neurite outgrowth, whereas the extracellular domain functions as an additional, regulatory FGFR1 interaction domain in the course of development.
Collapse
Affiliation(s)
| | | | | | - Oliver Pötz
- Biochemistry, Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | | |
Collapse
|
20
|
Thaxton C, Bhat MA. Myelination and regional domain differentiation of the axon. Results Probl Cell Differ 2009; 48:1-28. [PMID: 19343313 DOI: 10.1007/400_2009_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During evolution, as organisms increased in complexity and function, the need for the ensheathment and insulation of axons by glia became vital for faster conductance of action potentials in nerves. Myelination, as the process is termed, facilitates the formation of discrete domains within the axolemma that are enriched in ion channels, and macromolecular complexes consisting of cell adhesion molecules and cytoskeletal regulators. While it is known that glia play a substantial role in the coordination and organization of these domains, the mechanisms involved and signals transduced between the axon and glia, as well as the proteins regulating axo-glial junction formation remain elusive. Emerging evidence has shed light on the processes regulating myelination and domain differentiation, and key molecules have been identified that are required for their assembly and maintenance. This review highlights these recent findings, and relates their significance to domain disorganization as seen in several demyelinating disorders and other neuropathies.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Cell and Molecular Physiology, Curriculum in Neurobiology, UNC-Neuroscience Center and Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
21
|
Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 2008; 507:1795-810. [PMID: 18260140 PMCID: PMC2665264 DOI: 10.1002/cne.21639] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons.
Collapse
Affiliation(s)
- Douglas S Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Basak S, Raju K, Babiarz J, Kane-Goldsmith N, Koticha D, Grumet M. Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development. Dev Biol 2007; 311:408-22. [PMID: 17936266 DOI: 10.1016/j.ydbio.2007.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.
Collapse
Affiliation(s)
- Sayantani Basak
- W. M. Keck Center for Collaborative Neuroscience and Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
23
|
Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL. Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. ACTA ACUST UNITED AC 2007; 177:857-70. [PMID: 17548513 PMCID: PMC2064285 DOI: 10.1083/jcb.200612012] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Axon initial segments (AISs) and nodes of Ranvier are sites of action potential generation and propagation, respectively. Both domains are enriched in sodium channels complexed with adhesion molecules (neurofascin [NF] 186 and NrCAM) and cytoskeletal proteins (ankyrin G and βIV spectrin). We show that the AIS and peripheral nervous system (PNS) nodes both require ankyrin G but assemble by distinct mechanisms. The AIS is intrinsically specified; it forms independent of NF186, which is targeted to this site via intracellular interactions that require ankyrin G. In contrast, NF186 is targeted to the node, and independently cleared from the internode, by interactions of its ectodomain with myelinating Schwann cells. NF186 is critical for and initiates PNS node assembly by recruiting ankyrin G, which is required for the localization of sodium channels and the entire nodal complex. Thus, initial segments assemble from the inside out driven by the intrinsic accumulation of ankyrin G, whereas PNS nodes assemble from the outside in, specified by Schwann cells, which direct the NF186-dependent recruitment of ankyrin G.
Collapse
Affiliation(s)
- Yulia Dzhashiashvili
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
24
|
Maier O, Baron W, Hoekstra D. Reduced raft-association of NF155 in active MS-lesions is accompanied by the disruption of the paranodal junction. Glia 2007; 55:885-95. [PMID: 17405145 DOI: 10.1002/glia.20510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurofascin155 (NF155) is required for the establishment of the paranodal axo-glial junction, the predominant interaction site between myelin and axon. It has been shown that the distribution of NF155 is altered in demyelinating diseases such as multiple sclerosis (MS). However, little is known about the biochemical mechanisms underlying these changes. We therefore compared NF155 in postmortem tissue of active and chronic inactive MS lesions with white matter from healthy controls. Although NF155 showed a very similar expression in all control white matter samples, a strong individual variation was observed in MS-lesions with NF155-levels reduced in most samples. At the same time an NF155-fragment was increased in MS-lesions, suggesting that NF155 is subject to protein degradation in lesion sites. Interestingly, the association of NF155 to membrane microdomains (rafts) was reduced in all lesions, irrespective of the amount of NF155, indicating that membrane association of NF155 was generally affected. Therefore, myelin fractionation experiments were performed to analyze the fate of paranodal proteins during demyelination. Although NF155 was enriched in heavy myelin from both control white matter and active MS-lesions, association of Caspr1/paranodin with heavy myelin was abolished in MS-lesions, demonstrating that paranodal junctions are disrupted. In conclusion, the data support the hypothesis that efficient raft-association of NF155 is essential for the assembly of the paranodal junction and demonstrate that reduced association of NF155 to lipid rafts is accompanied by the disassembly of the paranodal junction and thus contributes to the demyelination process in MS.
Collapse
Affiliation(s)
- Olaf Maier
- Department of Cell Biology/Section Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
25
|
Bechara A, Falk J, Moret F, Castellani V. Modulation of semaphorin signaling by Ig superfamily cell adhesion molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 600:61-72. [PMID: 17607947 DOI: 10.1007/978-0-387-70956-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During axon navigation, growth cones continuously interact with molecular cues in their environment, some of which control adherence and bundle assembly, others axon elongation and direction. Growth cone responses to these different environmental cues are tightly coordinated during the development of neuronal projections. Several recent studies show that axon sensitivity to guidance cues is modulated by extracellular and intracellular signals. This regulation may enable different classes of cues to combine their effects and may also represent important means for diversifying pathway choices and for compensating for the limited number of guidance cues. This chapter focuses on the modulation exerted by Ig Super-family cell adhesion molecules (IgSFCAMs) on guidance cues of the class III secreted semaphorins.
Collapse
Affiliation(s)
- Ahmad Bechara
- Centre de Génétique Moléculaire et Cellulaire UMR CNRS 5534, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
26
|
Niere M, Braun B, Gass R, Sturany S, Volkmer H. Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. Biomaterials 2006; 27:3432-40. [PMID: 16497371 DOI: 10.1016/j.biomaterials.2006.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/24/2006] [Indexed: 12/27/2022]
Abstract
Current therapeutical approaches for the treatment of severe lesions in the peripheral nervous system rely on the use of autologous tissue or the body's own Schwann cells. However, these approaches are limited and alternative strategies for peripheral nerve regeneration are required. Here we evaluate combinations of a variety of neuronal regeneration factors including engineered cell adhesion molecules and growth factors in embryonic model neurons to test the possible improvement of artificial nerve guides by cooperative mechanisms. Cell adhesion molecules L1 and neurofascin synergistically promote neurite elongation. The outgrowth promoting properties of both proteins can be combined and further increased within one chimeric protein. Addition of growth and differentiation factor 5 (GDF-5) further enhances neurite outgrowth in a substrate-independent manner. This effect is not due to a protective mode of action of GDF-5 against pro-apoptotic stimuli. Consequently, the study supports the idea that different modes of action of pro-regenerative factors may contribute synergistically to neurite outgrowth and emphasizes the applicability of combinations of proteins specifically involved in development of the nervous system for therapeutical approaches.
Collapse
Affiliation(s)
- Marc Niere
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Pruss T, Kranz EU, Niere M, Volkmer H. A regulated switch of chick neurofascin isoforms modulates ligand recognition and neurite extension. Mol Cell Neurosci 2006; 31:354-65. [PMID: 16314110 DOI: 10.1016/j.mcn.2005.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/30/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neural cell adhesion molecule neurofascin regulates the induction of neurite outgrowth, the establishment of synaptic connectivity and myelination. Neurofascin isoforms are generated by spatially and temporally controlled alternative splicing. Isoform NF166 is predominantly expressed in dorsal root ganglia from embryonal day 5 (E5) to E8, and a further neurofascin isoform NF185 appears at E9. Expression of neurofascin and its binding partner axonin-1 on sensory fibers implies functional interactions for neurite outgrowth. E7 sensory neurons require NF166-axonin-1 interactions for neurite extension, accordingly. The contribution of NF166-axonin-1 interaction for neurite outgrowth decreases in parallel with the appearance of NF185 on sensory neurons at E9. This finding may be explained by (1) alleviated intrinsic capability to use axonin-1 as a cellular receptor and (2) reduced binding of axonin-1 to NF185. Finally, NF166, but not NF185, serves as a cellular receptor for neurite induction via homophilic interactions with a neurofascin substrate.
Collapse
Affiliation(s)
- Thomas Pruss
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, NMI, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | | | |
Collapse
|
28
|
Maier O, van der Heide T, Johnson R, de Vries H, Baron W, Hoekstra D. The function of neurofascin155 in oligodendrocytes is regulated by metalloprotease-mediated cleavage and ectodomain shedding. Exp Cell Res 2006; 312:500-11. [PMID: 16360652 DOI: 10.1016/j.yexcr.2005.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/27/2005] [Accepted: 11/09/2005] [Indexed: 02/02/2023]
Abstract
Formation of the paranodal axo-glial junction requires the oligodendrocyte-specific 155-kDa isoform of neurofascin (NF155). Here, we report the presence of two peptides in cultured oligodendrocytes, which are recognized by distinct NF155-specific antibodies and correspond to a membrane anchor of 30 kDa and a 125 kDa peptide, which is shed from the cells, indicating that it consists of the NF155 ectodomain. Transfection of OLN-93 cells with NF155 verified that both peptides originate from NF155 cleavage, and we present evidence that metalloproteases mediate NF155 processing. Interestingly, metalloprotease activity is required for NF155 transport into oligodendrocyte processes supporting the functional significance of NF155 cleavage. To further characterize NF155 cleavage and function, we transfected MDCK cells with NF155. Although ectodomain shedding was observed in polarized and non-polarized MDCK cells, surface localization of NF155 was restricted to the lateral membrane of polarized cells consistent with a role in cell-cell adhesion. Aggregation assays performed with OLN-93 cells confirmed that NF155 accelerates cell-cell adhesion in a metalloprotease-dependent manner. The physiological relevance of NF155 processing is corroborated by the presence of NF155 cleavage products in heavy myelin, suggesting a role of NF155 ectodomain shedding for the generation and/or stabilization of the nodal/paranodal architecture.
Collapse
Affiliation(s)
- Olaf Maier
- University Medical Center Groningen, University of Groningen, Department of Cell Biology/Section Membrane Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M. Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 2005; 30:137-48. [PMID: 16061393 DOI: 10.1016/j.mcn.2005.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 06/10/2005] [Accepted: 06/28/2005] [Indexed: 01/06/2023] Open
Abstract
Neurofascin (NF) is a neural cell adhesion molecule in the L1-family containing six Ig domains and multiple fibronectin type III (FnIII) repeats in its extracellular region. NF has many splicing variants and two of these are exemplars that have different cellular patterns of expression during development. NF186, which is expressed on neurons, contains an unusual mucin-like region and NF155, which is expressed on glia, contains a unique FnIII repeat with an RGD motif. Analysis of Fc fusion proteins representing different extracellular regions of NF indicate that NF186 inhibits cell adhesion and neurite outgrowth, and the inhibition is associated with the region containing the mucin-like domain. NF155 promotes neural cell adhesion and neurite outgrowth, and the RGD motif in its third FnIII repeat is critical for cell spreading and neurite outgrowth. The results suggest that different splicing variants of NF expressed on neurons and glia play distinct roles during neural development.
Collapse
Affiliation(s)
- Darshan Koticha
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
30
|
Davey F, Hill M, Falk J, Sans N, Gunn-Moore FJ. Synapse associated protein 102 is a novel binding partner to the cytoplasmic terminus of neurone-glial related cell adhesion molecule. J Neurochem 2005; 94:1243-53. [PMID: 15992371 DOI: 10.1111/j.1471-4159.2005.03271.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurone glial-related cell adhesion molecule (NrCAM) is a member of the L1 family of transmembrane cell adhesion receptors which are involved in the development and function of the mammalian nervous system. How these receptors interact with intracellular signalling pathways is not understood. To date the only identified binding partner to the cytoplasmic terminus of NrCAM is ankyrin G. We screened a developing rat brain cDNA yeast two-hybrid library with the cytoplasmic domain of NrCAM to identify further intracellular binding partners. We identified synapse associated protein 102 (SAP102) as a new binding partner for NrCAM. The interaction was confirmed biochemically using glutathione S-transferase (GST)-pull-down and tandem affinity purification, and also immunocytochemically as NrCAM and SAP102 co-localized in COS-7 and cerebellar granule cells. Binding was specific to NrCAM as neither neurofascin nor L1 bound SAP102, and this interaction was reliant on the last three amino acids of NrCAM. Additionally, NrCAM constructs whose last three amino acids had been deleted appeared to have a dominant negative effect on neurite extension of cerebellar granule cells. This is the first interaction reported for NrCAM, and its association with SAP102 suggests that it is part of a larger complex which can interact with many different signalling pathways.
Collapse
Affiliation(s)
- Fleur Davey
- Bute Medical Building, School of Biology, University of St Andrews, UK
| | | | | | | | | |
Collapse
|
31
|
Maier O, van der Heide T, van Dam AM, Baron W, de Vries H, Hoekstra D. Alteration of the extracellular matrix interferes with raft association of neurofascin in oligodendrocytes. Potential significance for multiple sclerosis? Mol Cell Neurosci 2005; 28:390-401. [PMID: 15691718 DOI: 10.1016/j.mcn.2004.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 09/09/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022] Open
Abstract
Remyelination, as potential treatment for demyelinating diseases like multiple sclerosis (MS), requires the formation of new axoglial interactions by differentiating oligodendrocyte progenitor cells. Since the oligodendrocyte-specific isoform of neurofascin, NF155 (neurofascin isoform of 155 kDa), may be important for establishing axoglial interactions, we analyzed whether its expression is changed in chronic relapsing experimental allergic encephalomyelinitis (EAE). Although overall expression of NF155 was not changed, immunoreactivity of NF155 was dramatically increased in EAE lesion sites indicating an enhanced accessibility of NF155 epitopes. As this may be due to infiltrating plasma components, for example, fibronectin, we analyzed whether fibronectin affects the intracellular distribution and membrane association of NF155 in primary oligodendrocytes. In oligodendrocytes cultivated on polylysine, NF155 was recruited to membrane microdomains (rafts) during development and became enriched in secondary and tertiary processes. Fibronectin perturbed localization and raft association of NF155 and inhibited the morphological differentiation of oligodendrocytes. Consistent with the in vitro data, raft association of NF155 was reduced in spinal cord of EAE rats. The results suggest that the association of NF155 to microdomains in the oligodendrocyte membrane is required for its participation in intermolecular interactions, which are important for myelination and/or myelin integrity.
Collapse
Affiliation(s)
- Olaf Maier
- Department of Membrane Cell Biology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Schmidt H, Werner M, Heppenstall PA, Henning M, Moré MI, Kühbandner S, Lewin GR, Hofmann F, Feil R, Rathjen FG. cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons. J Cell Biol 2002; 159:489-98. [PMID: 12417579 PMCID: PMC2173065 DOI: 10.1083/jcb.200207058] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 09/23/2002] [Accepted: 09/24/2002] [Indexed: 01/12/2023] Open
Abstract
Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the alpha isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A-induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.
Collapse
Affiliation(s)
- Hannes Schmidt
- Developmental Neurobiology Group, Medical Research Council, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Robertson A, MacColl GS, Nash JA, Boehm MK, Perkins SJ, Bouloux PM. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1. Biochem J 2001; 357:647-59. [PMID: 11463336 PMCID: PMC1221995 DOI: 10.1042/0264-6021:3570647] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to the large basic surfaces. We predict that two of the three missense mutants increase the binding of anosmin-1 to an extracellular target, possibly by enhancing heparan sulphate binding, and that this critically affects the function of anosmin-1.
Collapse
Affiliation(s)
- A Robertson
- Department of Medicine, Royal Free Campus, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
34
|
Agarwala KL, Ganesh S, Tsutsumi Y, Suzuki T, Amano K, Yamakawa K. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochem Biophys Res Commun 2001; 285:760-72. [PMID: 11453658 DOI: 10.1006/bbrc.2001.5214] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DSCAM, a conserved gene involved in neuronal differentiation, is a member of the Ig superfamily of cell adhesion molecules. Herein, we report the functional characterization of a human DSCAM (Down syndrome cell adhesion molecule) paralogue, DSCAML1, located on chromosome 11q23. The deduced DSCAML1 protein contains 10 Ig domains, six fibronectin-III domains, and an intracellular domain, all of which are structurally identical to DSCAM. When compared to DSCAM, DSCAML1 protein showed 64% identity to the extracellular domain and 45% identity to the cytoplasmic domain. In the mouse brain, DSCAML1 is predominantly expressed in Purkinje cells of the cerebellum, granule cells of the dentate gyrus, and in neurons of the cerebral cortex and olfactory bulb. Biochemical and immunofluorescence analyses indicated that DSCAML1 is a cell surface molecule that targets axonal features in differentiated PC12 cells. DSCAML1 exhibits homophilic binding activity that does not require divalent cations. Based on its structural and functional properties and similarities to DSCAM, we suggest that DSCAML1 may be involved in formation and maintenance of neural networks. The chromosomal locus for DSCAML1 makes it an ideal candidate for neuronal disorders (such as Gilles de la Tourette and Jacobsen syndromes) that have been mapped on 11q23.
Collapse
Affiliation(s)
- K L Agarwala
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako-shi, 2-1 Hirosawa, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Schürmann G, Haspel J, Grumet M, Erickson HP. Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. Mol Biol Cell 2001; 12:1765-73. [PMID: 11408583 PMCID: PMC37339 DOI: 10.1091/mbc.12.6.1765] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.
Collapse
Affiliation(s)
- G Schürmann
- Duke University Medical Center, Department of Cell Biology, Durham, North Carolina 27710-3709, USA
| | | | | | | |
Collapse
|
36
|
Koroll M, Rathjen FG, Volkmer H. The neural cell recognition molecule neurofascin interacts with syntenin-1 but not with syntenin-2, both of which reveal self-associating activity. J Biol Chem 2001; 276:10646-54. [PMID: 11152476 DOI: 10.1074/jbc.m010647200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofascin belongs to the L1 subgroup of the immunoglobulin superfamily of cell adhesion molecules and is implicated in axonal growth and fasciculation. We used yeast two-hybrid screening to identify proteins that interact with neurofascin intracellularly and therefore might link it to trafficking, spatial targeting, or signaling pathways. Here, we demonstrate that rat syntenin-1, previously published as syntenin, mda-9, or TACIP18 in human, is a neurofascin-binding protein that exhibits a wide-spread tissue expression pattern with a relative maximum in brain. Syntenin-1 was found not to interact with other vertebrate members of the L1 subgroup such as L1 itself or NrCAM. We confirmed the specificity of the neurofascin-syntenin-1 interaction by ligand-overlay assay, surface plasmon resonance analysis, and colocalization of both proteins in heterologous cells. The COOH terminus of neurofascin was mapped to interact with the second PDZ domain of syntenin-1. Furthermore, we isolated syntenin-2 that may be expressed in two isoforms. Despite their high sequence similarity to syntenin-1, syntenin-2alpha, which interacts with neurexin I, and syntenin-2beta do not bind to neurofascin or several other transmembrane proteins that are binding partners of syntenin-1. Finally, we report that syntenin-1 and -2 both form homodimers and can interact with each other.
Collapse
Affiliation(s)
- M Koroll
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, Berlin D-13092, Germany
| | | | | |
Collapse
|
37
|
Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 2000; 150:657-66. [PMID: 10931875 PMCID: PMC2175192 DOI: 10.1083/jcb.150.3.657] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 06/15/2000] [Indexed: 11/22/2022] Open
Abstract
Two major isoforms of the cell adhesion molecule neurofascin NF186 and NF155 are expressed in the central nervous system (CNS). We have investigated their roles in the assembly of the node of Ranvier and show that they are targeted to distinct domains at the node. At the onset of myelination, NF186 is restricted to neurons, whereas NF155 localizes to oligodendrocytes, the myelin-forming glia of the CNS. Coincident with axon ensheathment, NF155 clusters at the paranodal regions of the myelin sheath where it localizes in apposition to the axonal adhesion molecule paranodin/contactin-associated protein (Caspr1), which is a constituent of the septate junction-like axo-glial adhesion zone. Immunoelectron microscopy confirmed that neurofascin is a glial component of the paranodal axo-glial junction. Concentration of NF155 with Caspr1 at the paranodal junctions of peripheral nerves is also a feature of Schwann cells. In Shiverer mutant mice, which assemble neither compact CNS myelin nor normal paranodes, NF155 (though largely retained at the cell body) is also distributed at ectopic sites along axons, where it colocalizes with Caspr1. Hence, NF155 is the first glial cell adhesion molecule to be identified in the paranodal axo-glial junction, where it likely interacts with axonal proteins in close association with Caspr1.
Collapse
Affiliation(s)
- Steven Tait
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Frank Gunn-Moore
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - J. Martin Collinson
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Jeffery Huang
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Catherine Lubetzki
- INSERM U-495, Biologie des Interactions Neurones/Glie, Hôpital de la Salpetrière, 75651 Paris Cedex 13, France
| | - Liliana Pedraza
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Diane L. Sherman
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - David R. Colman
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Peter J. Brophy
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| |
Collapse
|
38
|
Hortsch M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 2000; 15:1-10. [PMID: 10662501 DOI: 10.1006/mcne.1999.0809] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- M Hortsch
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109-0616, USA
| |
Collapse
|
39
|
Marg A, Sirim P, Spaltmann F, Plagge A, Kauselmann G, Buck F, Rathjen FG, Brümmendorf T. Neurotractin, a novel neurite outgrowth-promoting Ig-like protein that interacts with CEPU-1 and LAMP. J Cell Biol 1999; 145:865-76. [PMID: 10330412 PMCID: PMC2133198 DOI: 10.1083/jcb.145.4.865] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1998] [Revised: 04/07/1999] [Indexed: 11/22/2022] Open
Abstract
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.
Collapse
Affiliation(s)
- A Marg
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hillenbrand R, Molthagen M, Montag D, Schachner M. The close homologue of the neural adhesion molecule L1 (CHL1): patterns of expression and promotion of neurite outgrowth by heterophilic interactions. Eur J Neurosci 1999; 11:813-26. [PMID: 10103075 DOI: 10.1046/j.1460-9568.1999.00496.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The close homologue of L1 (CHL1), a member of the L1 family of neural adhesion molecules, is first expressed at times of neurite outgrowth during brain development, and is detectable in subpopulations of neurons, astrocytes, oligodendrocyte precursors and Schwann cells of the mouse and rat. Aggregation assays with CHL1-transfected cells show that CHL1 does not promote homophilic adhesion or does it mediate heterophilic adhesion with L1. CHL1 promotes neurite outgrowth by hippocampal and small cerebellar neurons in substrate-bound and soluble form. The observation that CHL1 and L1 show overlapping, but also distinct patterns of synthesis in neurons and glia, suggests differential effects of L1-like molecules on neurite outgrowth.
Collapse
Affiliation(s)
- R Hillenbrand
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
41
|
Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143:1673-90. [PMID: 9852159 PMCID: PMC2132982 DOI: 10.1083/jcb.143.6.1673] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding Sites
- Cell Adhesion Molecules, Neuron-Glia/chemistry
- Cell Adhesion Molecules, Neuron-Glia/genetics
- Cell Adhesion Molecules, Neuron-Glia/physiology
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Chickens
- Contactin 2
- Extracellular Space/physiology
- Ganglia, Spinal/physiology
- Mice
- Mice, Inbred ICR
- Models, Molecular
- Mutagenesis
- Neurites/physiology
- Neurons/cytology
- Neurons/physiology
- Organ Culture Techniques
- Point Mutation
- Polymerase Chain Reaction
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saito H, Mimmack M, Kishimoto J, Keverne EB, Emson PC. Expression of olfactory receptors, G-proteins and AxCAMs during the development and maturation of olfactory sensory neurons in the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:69-81. [PMID: 9733924 DOI: 10.1016/s0165-3806(98)00096-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three mouse olfactory receptors have been cloned and sequenced and were found to be expressed in different zones of the olfactory epithelium. In situ hybridisation (ISH) results showed that each olfactory receptor was expressed at an early stage in development (E12), was not dependent on the maturation of the receptor neurons, and was present long before the onset of odour detection. Cells positive for these same olfactory receptors and the G-protein (Gbeta) were also found in non-neural regions of the nasal epithelium in the earlier stages of development (E12-16). Ncam, and Big-2 expression were, however, restricted to the region of developing olfactory neurons. Ncam expression appeared in advance of the olfactory receptor expression, while Big-2 appeared after olfactory receptor expression and neither were expressed in cells outside the olfactory epithelium. Both showed the highest number of positive cells in the early post-partum period when olfactory detection is functional. Ncam is known to be involved in guidance of the developing olfactory axons and was expressed earlier than any of the olfactory receptors, while Big-2 appears somewhat later (E14) at a time when developing axons reach the olfactory bulb. Moreover the highest periods of expression occur at post-natal day 7 when a proliferation of bulbar glomeruli are observed, suggesting the role of Big-2 to be primarily concerned with synaptogenesis.
Collapse
Affiliation(s)
- H Saito
- Sub-Department of Animal Behaviour, Department of Zoology, University of Cambridge, Madingley, Cambridge CB3 8AA, UK
| | | | | | | | | |
Collapse
|
43
|
Volkmer H, Zacharias U, Nörenberg U, Rathjen FG. Dissection of complex molecular interactions of neurofascin with axonin-1, F11, and tenascin-R, which promote attachment and neurite formation of tectal cells. J Cell Biol 1998; 142:1083-93. [PMID: 9722619 PMCID: PMC2132869 DOI: 10.1083/jcb.142.4.1083] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1998] [Revised: 07/13/1998] [Indexed: 02/08/2023] Open
Abstract
Neurofascin is a member of the L1 subgroup of the Ig superfamily that promotes axon outgrowth by interactions with neuronal NgCAM-related cell adhesion molecule (NrCAM). We used a combination of cellular binding assays and neurite outgrowth experiments to investigate mechanisms that might modulate the interactions of neurofascin. In addition to NrCAM, we here demonstrate that neurofascin also binds to the extracellular matrix glycoprotein tenascin-R (TN-R) and to the Ig superfamily members axonin-1 and F11. Isoforms of neurofascin that are generated by alternative splicing show different preferences in ligand binding. While interactions of neurofascin with F11 are only slightly modulated, binding to axonin-1 and TN-R is strongly regulated by alternatively spliced stretches located in the NH2-terminal half, and by the proline-alanine-threonine-rich segment. In vitro neurite outgrowth and cell attachment assays on a neurofascin-Fc substrate reveal a shift of cellular receptor usage from NrCAM to axonin-1, F11, and at least one additional protein in the presence of TN-R, presumably due to competition of the neurofascin- NrCAM interaction. Thereby, F11 binds to TN-R of the neurofascin/TN-R complex, but not to neurofascin, whereas axonin-1 is not able to bind directly to the neurofascin/TN-R complex as shown by competition binding assays. In conclusion, these investigations indicate that the molecular interactions of neurofascin are regulated at different levels, including alternative splicing and by the presence of interacting proteins.
Collapse
Affiliation(s)
- H Volkmer
- Max-Delbrück-Centrum für Molekulare Medizin, D-13122 Berlin, Germany
| | | | | | | |
Collapse
|
44
|
The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 1998. [PMID: 9651214 DOI: 10.1523/jneurosci.18-14-05311.1998] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell-cell interactions mediated via cell adhesion molecules (CAMs) are dynamically regulated during nervous system development. One mechanism to control the amount of cell surface CAMs is to regulate their recycling from the plasma membrane. The L1 subfamily of CAMs has a highly conserved cytoplasmic domain that contains a tyrosine, followed by the alternatively spliced RSLE (Arg-Ser-Leu-Glu) sequence. The resulting sequence of YRSL conforms to a tyrosine-based sorting signal that mediates clathrin-dependent endocytosis of signal-bearing proteins. The present study shows that L1 associates in rat brain with AP-2, a clathrin adaptor that captures plasma membrane proteins with tyrosine-based signals for endocytosis by coated pits. In vitro assays demonstrate that this interaction occurs via the YRSL sequence of L1 and the mu 2 chain of AP-2. In L1-transfected 3T3 cells, L1 endocytosis is blocked by dominant-negative dynamin that specifically disrupts clathrin-mediated internalization. Furthermore, endocytosed L1 colocalizes with the transferrin receptor (TfR), a marker for clathrin-mediated internalization. Mutant forms of L1 that lack the YRSL do not colocalize with TfR, indicating that the YRSL mediates endocytosis of L1. In neurons, L1 is endocytosed preferentially at the rear of axonal growth cones, colocalizing with Eps15, another marker for the clathrin endocytic pathway. These results establish a mechanism by which L1 can be internalized from the cell surface and suggest that an active region of L1 endocytosis at the rear of growth cones is important in L1-dependent axon growth.
Collapse
|
45
|
Kamiguchi H, Long KE, Pendergast M, Schaefer AW, Rapoport I, Kirchhausen T, Lemmon V. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 1998; 18:5311-21. [PMID: 9651214 PMCID: PMC1226881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cell-cell interactions mediated via cell adhesion molecules (CAMs) are dynamically regulated during nervous system development. One mechanism to control the amount of cell surface CAMs is to regulate their recycling from the plasma membrane. The L1 subfamily of CAMs has a highly conserved cytoplasmic domain that contains a tyrosine, followed by the alternatively spliced RSLE (Arg-Ser-Leu-Glu) sequence. The resulting sequence of YRSL conforms to a tyrosine-based sorting signal that mediates clathrin-dependent endocytosis of signal-bearing proteins. The present study shows that L1 associates in rat brain with AP-2, a clathrin adaptor that captures plasma membrane proteins with tyrosine-based signals for endocytosis by coated pits. In vitro assays demonstrate that this interaction occurs via the YRSL sequence of L1 and the mu 2 chain of AP-2. In L1-transfected 3T3 cells, L1 endocytosis is blocked by dominant-negative dynamin that specifically disrupts clathrin-mediated internalization. Furthermore, endocytosed L1 colocalizes with the transferrin receptor (TfR), a marker for clathrin-mediated internalization. Mutant forms of L1 that lack the YRSL do not colocalize with TfR, indicating that the YRSL mediates endocytosis of L1. In neurons, L1 is endocytosed preferentially at the rear of axonal growth cones, colocalizing with Eps15, another marker for the clathrin endocytic pathway. These results establish a mechanism by which L1 can be internalized from the cell surface and suggest that an active region of L1 endocytosis at the rear of growth cones is important in L1-dependent axon growth.
Collapse
Affiliation(s)
- H Kamiguchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
A neuronal form of the cell adhesion molecule L1 contains a tyrosine-based signal required for sorting to the axonal growth cone. J Neurosci 1998. [PMID: 9570805 DOI: 10.1523/jneurosci.18-10-03749.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neural cell adhesion molecule L1, which is present on axons and growth cones, plays a crucial role in the formation of major axonal tracts such as the corticospinal tract and corpus callosum. L1 is preferentially transported to axons and inserted in the growth cone membrane. However, how L1 is sorted to axons remains unclear. Tyr1176 in the L1 cytoplasmic domain is adjacent to a neuron-specific alternatively spliced sequence, RSLE (Arg-Ser-Leu-Glu). The resulting sequence of YRSLE conforms to a tyrosine-based consensus motif (YxxL) for sorting of integral membrane proteins into specific cellular compartments. To study a possible role of the YRSLE sequence in L1 sorting, chick DRG neurons were transfected with human L1 cDNA that codes for full-length L1 (L1FL), a non-neuronal form of L1 that lacks the RSLE sequence (L1DeltaRSLE), mutant L1 with a Y1176A substitution (L1Y1176A), or L1 truncated immediately after the RSLE sequence (L1DeltaC77). L1FL and L1DeltaC77, both of which possess the YRSLE sequence, were expressed in the axonal growth cone and to a lesser degree in the cell body. In contrast, expression of both L1DeltaRSLE and L1Y1176A was restricted to the cell body and proximal axonal shaft. We also found that L1DeltaRSLE and L1Y1176A were integrated into the plasma membrane in the cell body after missorting. These data demonstrate that the neuronal form of L1 carries the tyrosine-based sorting signal YRSLE, which is critical for sorting L1 to the axonal growth cone.
Collapse
|
47
|
Kamiguchi H, Lemmon V. A neuronal form of the cell adhesion molecule L1 contains a tyrosine-based signal required for sorting to the axonal growth cone. J Neurosci 1998; 18:3749-56. [PMID: 9570805 PMCID: PMC1226933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neural cell adhesion molecule L1, which is present on axons and growth cones, plays a crucial role in the formation of major axonal tracts such as the corticospinal tract and corpus callosum. L1 is preferentially transported to axons and inserted in the growth cone membrane. However, how L1 is sorted to axons remains unclear. Tyr1176 in the L1 cytoplasmic domain is adjacent to a neuron-specific alternatively spliced sequence, RSLE (Arg-Ser-Leu-Glu). The resulting sequence of YRSLE conforms to a tyrosine-based consensus motif (YxxL) for sorting of integral membrane proteins into specific cellular compartments. To study a possible role of the YRSLE sequence in L1 sorting, chick DRG neurons were transfected with human L1 cDNA that codes for full-length L1 (L1FL), a non-neuronal form of L1 that lacks the RSLE sequence (L1DeltaRSLE), mutant L1 with a Y1176A substitution (L1Y1176A), or L1 truncated immediately after the RSLE sequence (L1DeltaC77). L1FL and L1DeltaC77, both of which possess the YRSLE sequence, were expressed in the axonal growth cone and to a lesser degree in the cell body. In contrast, expression of both L1DeltaRSLE and L1Y1176A was restricted to the cell body and proximal axonal shaft. We also found that L1DeltaRSLE and L1Y1176A were integrated into the plasma membrane in the cell body after missorting. These data demonstrate that the neuronal form of L1 carries the tyrosine-based sorting signal YRSLE, which is critical for sorting L1 to the axonal growth cone.
Collapse
Affiliation(s)
- H Kamiguchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
48
|
Collinson JM, Marshall D, Gillespie CS, Brophy PJ. Transient expression of neurofascin by oligodendrocytes at the onset of myelinogenesis: implications for mechanisms of axon-glial interaction. Glia 1998; 23:11-23. [PMID: 9562181 DOI: 10.1002/(sici)1098-1136(199805)23:1<11::aid-glia2>3.0.co;2-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecules (CAMs) must play a crucial role in both the initiation and signalling of axon-glial contact. However, the proteins that permit myelinating oligodendrocytes to recognize the axons that they ensheath in the developing CNS are unknown. By a subtractive cDNA library strategy, we have identified neurofascin as a powerful candidate for such a molecule. Neurofascin is strongly but transiently up-regulated in oligodendrocytes at the onset of myelinogenesis. Once oligodendrocytes have engaged their target axons the protein plays no further part, since the expression of the gene declines precipitously, in contrast to that of the major myelin component proteolipid protein, which remains elevated. After the initial surge of neurofascin expression in oligodendrocytes, there is a shift to a predominantly neuronal localization that persists into adulthood. Hence neurofascin in oligodendrocytes is unlikely to serve a function in the stabilization of the multilamellar sheath around the axon. The major neurofascin isoform of oligodendrocytes contains the third fibronectin type 3 (FNIII) repeat but lacks the mucin-like domain which supports the view that neurofascin isoforms are differentially expressed in the nervous system. Among the genes that are up-regulated during the terminal differentiation of the oligodendrocyte, neurofascin is unique in displaying a transient pattern of expression at the early stages of myelination. We propose that this CAM not only has a role in mediating axon recognition but also signals axonal contact through its links with the actin cytoskeleton.
Collapse
Affiliation(s)
- J M Collinson
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Scotland
| | | | | | | |
Collapse
|
49
|
Wang B, Williams H, Du JS, Terrett J, Kenwrick S. Alternative Splicing of Human NrCAM in Neural and Nonneural Tissues. Mol Cell Neurosci 1998; 10:287-95. [PMID: 9618219 DOI: 10.1006/mcne.1997.0658] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neural cell adhesion molecule NrCAM exists in a variety of isoforms as a result of alternative splicing of individual exons during RNA processing. In this report we demonstrate that many of the alternative splicing events described for chick are conserved in man and describe a novel variant of NrCAM cDNA. Furthermore, we show that NrCAM is expressed at significant levels outside the nervous system; in particular in pancreas, adrenal glands, and placenta and that expression in both brain and other tissues is accompanied by a very variable pattern of exon utilization in fetal and adult cells. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- B Wang
- Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Breen KC, Coughlan CM, Hayes FD. The role of glycoproteins in neural development function, and disease. Mol Neurobiol 1998; 16:163-220. [PMID: 9588627 DOI: 10.1007/bf02740643] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins play key roles in the development, structuring, and subsequent functioning of the nervous system. However, the complex glycosylation process is a critical component in the biosynthesis of CNS glycoproteins that may be susceptible to the actions of toxicological agents or may be altered by genetic defects. This review will provide an outline of the complexity of this glycosylation process and of some of the key neural glycoproteins that play particular roles in neural development and in synaptic plasticity in the mature CNS. Finally, the potential of glycoproteins as targets for CNS disorders will be discussed.
Collapse
Affiliation(s)
- K C Breen
- Neurosciences Institute, Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital Medical School, Scotland, UK
| | | | | |
Collapse
|