1
|
Chaudhary R, Weiskirchen R, Ehrlich M, Henis YI. Dual signaling pathways of TGF-β superfamily cytokines in hepatocytes: balancing liver homeostasis and disease progression. Front Pharmacol 2025; 16:1580500. [PMID: 40260391 PMCID: PMC12009898 DOI: 10.3389/fphar.2025.1580500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily (TGF-β-SF) comprises over 30 cytokines, including TGF-β, activins/inhibins, bone morphogenetic proteins (BMPs), and growth differentiation factors (GDFs). These cytokines play critical roles in liver function and disease progression. Here, we discuss Smad-dependent (canonical) and non-Smad pathways activated by these cytokines in a hepatocellular context. We highlight the connection between the deregulation of these pathways or the balance between them and key hepatocellular processes (e.g., proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)). We further discuss their contribution to various chronic liver conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and hepatocellular carcinoma (HCC). In MASLD and MASH, TGF-β signaling contributes to hepatocyte lipid accumulation, cell death and fibrosis progression through both Smad and non-Smad pathways. In HCC, TGF-β and other TGF-β-SF cytokines have a dual role, acting as tumor suppressors or promoters in early vs. advanced stages of tumor progression, respectively. Additionally, we review the involvement of non-Smad pathways in modulating hepatocyte responses to TGF-β-SF cytokines, particularly in the context of chronic liver diseases, as well as the interdependence with other key pathways (cholesterol metabolism, insulin resistance, oxidative stress and lipotoxicity) in MASLD/MASH pathogenesis. The perspectives and insights detailed in this review may assist in determining future research directions and therapeutic targets in liver conditions, including chronic liver diseases and cancer.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoav I. Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
3
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
5
|
Sharma S, Ehrlich M, Zhang M, Blobe GC, Henis YI. NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting. Commun Biol 2024; 7:112. [PMID: 38242992 PMCID: PMC10799020 DOI: 10.1038/s42003-024-05798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Manqi Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
6
|
Chaudhary R, Goodman LS, Wang S, Asimakopoulos A, Weiskirchen R, Dooley S, Ehrlich M, Henis YI. Cholesterol modulates type I/II TGF-β receptor complexes and alters the balance between Smad and Akt signaling in hepatocytes. Commun Biol 2024; 7:8. [PMID: 38168942 PMCID: PMC10761706 DOI: 10.1038/s42003-023-05654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-β (TGF-β) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-β signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-β receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-β or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-β or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-β signaling to Smad2/3 vs. pAkt (by TGF-β or EGF) has potential implications for hepatic diseases and malignancies.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Laureen S Goodman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
7
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
9
|
Horst B, Pradhan S, Chaudhary R, Listik E, Quintero-Macias L, Choi AS, Southard M, Liu Y, Whitaker R, Hempel N, Berchuck A, Nixon AB, Lee NY, Henis YI, Mythreye K. Hypoxia-induced inhibin promotes tumor growth and vascular permeability in ovarian cancers. Commun Biol 2022; 5:536. [PMID: 35654828 PMCID: PMC9163327 DOI: 10.1038/s42003-022-03495-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, a driver of tumor growth and metastasis, regulates angiogenic pathways that are targets for vessel normalization and ovarian cancer management. However, toxicities and resistance to anti-angiogenics can limit their use making identification of new targets vital. Inhibin, a heteromeric TGFβ ligand, is a contextual regulator of tumor progression acting as an early tumor suppressor, yet also an established biomarker for ovarian cancers. Here, we find that hypoxia increases inhibin levels in ovarian cancer cell lines, xenograft tumors, and patients. Inhibin is regulated primarily through HIF-1, shifting the balance under hypoxia from activins to inhibins. Hypoxia regulated inhibin promotes tumor growth, endothelial cell invasion and permeability. Targeting inhibin in vivo through knockdown and anti-inhibin strategies robustly reduces permeability in vivo and alters the balance of pro and anti-angiogenic mechanisms resulting in vascular normalization. Mechanistically, inhibin regulates permeability by increasing VE-cadherin internalization via ACVRL1 and CD105, a receptor complex that we find to be stabilized directly by inhibin. Our findings demonstrate direct roles for inhibins in vascular normalization via TGF-β receptors providing new insights into the therapeutic significance of inhibins as a strategy to normalize the tumor vasculature in ovarian cancer. Hypoxia increases levels of the heteromeric TGFβ ligand inhibin in ovarian cancer and inhibin promotes tumor growth, endothelial cell invasion and permeability.
Collapse
|
10
|
Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol 2022; 10:846723. [PMID: 35359452 PMCID: PMC8961331 DOI: 10.3389/fcell.2022.846723] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling plays a critical role in the development and tissue homeostasis in metazoans, and deregulation of TGF-β signaling leads to many pathological conditions. Mounting evidence suggests that TGF-β signaling can actively alter metabolism in diverse cell types. Furthermore, metabolic pathways, beyond simply regarded as biochemical reactions, are closely intertwined with signal transduction. Here, we discuss the role of TGF-β in glucose, lipid, amino acid, redox and polyamine metabolism with an emphasis on how TGF-β can act as a metabolic modulator and how metabolic changes can influence TGF-β signaling. We also describe how interplay between TGF-β signaling and cell metabolism regulates cellular homeostasis as well as the progression of multiple diseases, including cancer.
Collapse
|
11
|
Szilágyi SS, Amsalem-Zafran AR, Shapira KE, Ehrlich M, Henis YI. Competition between type I activin and BMP receptors for binding to ACVR2A regulates signaling to distinct Smad pathways. BMC Biol 2022; 20:50. [PMID: 35177083 PMCID: PMC8855587 DOI: 10.1186/s12915-022-01252-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Activins and bone morphogenetic proteins (BMPs) play critical, sometimes opposing roles, in multiple physiological and pathological processes and diseases. They signal to distinct Smad branches; activins signal mainly to Smad2/3, while BMPs activate mainly Smad1/5/8. This gives rise to the possibility that competition between the different type I receptors through which activin and BMP signal for common type II receptors can provide a mechanism for fine-tuning the cellular response to activin/BMP stimuli. Among the transforming growth factor-β superfamily type II receptors, ACVR2A/B are highly promiscuous, due to their ability to interact with different type I receptors (e.g., ALK4 vs. ALK2/3/6) and with their respective ligands [activin A (ActA) vs. BMP9/2]. However, studies on complex formation between these full-length receptors situated at the plasma membrane, and especially on the potential competition between the different activin and BMP type I receptors for a common activin type II receptor, were lacking. Results We employed a combination of IgG-mediated patching-immobilization of several type I receptors in the absence or presence of ligands with fluorescence recovery after photobleaching (FRAP) measurements on the lateral diffusion of an activin type II receptor, ACVR2A, to demonstrate the principle of competition between type I receptors for ACVR2. Our results show that ACVR2A can form stable heteromeric complexes with ALK4 (an activin type I receptor), as well as with several BMP type I receptors (ALK2/3/6). Of note, ALK4 and the BMP type I receptors competed for binding ACVR2A. To assess the implications of this competition for signaling output, we first validated that in our cell model system (U2OS cells), ACVR2/ALK4 transduce ActA signaling to Smad2/3, while BMP9 signaling to Smad1/5/8 employ ACVR2/ALK2 or ACVR2/ALK3. By combining ligand stimulation with overexpression of a competing type I receptor, we showed that differential complex formation of distinct type I receptors with a common type II receptor balances the signaling to the two Smad branches. Conclusions Different type I receptors that signal to distinct Smad pathways (Smad2/3 vs. Smad1/5/8) compete for binding to common activin type II receptors. This provides a novel mechanism to balance signaling between Smad2/3 and Smad1/5/8. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01252-z.
Collapse
Affiliation(s)
- Szabina Szófia Szilágyi
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ayelet R Amsalem-Zafran
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Keren E Shapira
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
12
|
Szilágyi SS, Gutman O, Henis YI. Complex Formation Among TGF-β Receptors in Live Cell Membranes Measured by Patch-FRAP. Methods Mol Biol 2022; 2488:23-34. [PMID: 35347680 DOI: 10.1007/978-1-0716-2277-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Signaling by receptors from the transforming growth factor-β (TGF-β) superfamily plays critical roles in multiple physiological and pathological processes. Their signaling requires complex formation between type I and type II receptors with Ser/Thr kinase activity, whereby the type II receptor phosphorylates and activates the relevant type I receptor(s), which transduces downstream signaling. It is therefore important to study complex formation among receptors from this family. In the current chapter, we use the type I (ALK5) and type II TGF-β receptors (TβRI and TβRII) as an example for measuring complex formation among cell-surface receptors in live cells by patch-FRAP, a variation of fluorescence recovery after photobleaching (FRAP).
Collapse
Affiliation(s)
- Szabina Szófia Szilágyi
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Zi Z. Molecular Engineering of the TGF-β Signaling Pathway. J Mol Biol 2019; 431:2644-2654. [PMID: 31121181 DOI: 10.1016/j.jmb.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.
Collapse
Affiliation(s)
- Zhike Zi
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
16
|
Villarreal MM, Kim SK, Barron L, Kodali R, Baardsnes J, Hinck CS, Krzysiak TC, Henen MA, Pakhomova O, Mendoza V, O'Connor-McCourt MD, Lafer EM, López-Casillas F, Hinck AP. Binding Properties of the Transforming Growth Factor-β Coreceptor Betaglycan: Proposed Mechanism for Potentiation of Receptor Complex Assembly and Signaling. Biochemistry 2016; 55:6880-6896. [PMID: 27951653 PMCID: PMC5551644 DOI: 10.1021/acs.biochem.6b00566] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Transforming
growth factor (TGF) β1, β2, and β3
(TGF-β1–TGF-β3, respectively) are small secreted
signaling proteins that each signal through the TGF-β type I
and type II receptors (TβRI and TβRII, respectively).
However, TGF-β2, which is well-known to bind TβRII several
hundred-fold more weakly than TGF-β1 and TGF-β3, has an
additional requirement for betaglycan, a membrane-anchored nonsignaling
receptor. Betaglycan has two domains that bind TGF-β2 at independent
sites, but how it binds TGF-β2 to potentiate TβRII binding
and how the complex with TGF-β, TβRII, and betaglycan
undergoes the transition to the signaling complex with TGF-β,
TβRII, and TβRI are not understood. To investigate the
mechanism, the binding of the TGF-βs to the betaglycan extracellular
domain, as well as its two independent binding domains, either directly
or in combination with the TβRI and TβRII ectodomains,
was studied using surface plasmon resonance, isothermal titration
calorimetry, and size-exclusion chromatography. These studies show
that betaglycan binds TGF-β homodimers with a 1:1 stoichiometry
in a manner that allows one molecule of TβRII to bind. These
studies further show that betaglycan modestly potentiates the binding
of TβRII and must be displaced to allow TβRI to bind.
These findings suggest that betaglycan functions to bind and concentrate
TGF-β2 on the cell surface and thus promote the binding of TβRII
by both membrane-localization effects and allostery. These studies
further suggest that the transition to the signaling complex is mediated
by the recruitment of TβRI, which simultaneously displaces betaglycan
and stabilizes the bound TβRII by direct receptor–receptor
contact.
Collapse
Affiliation(s)
| | | | | | - Ravi Kodali
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Jason Baardsnes
- National Research Council, Human Health Therapeutics Portfolio , Montréal, Quebec, Canada
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Morkos A Henen
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | - Valentín Mendoza
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, Mexico
| | | | | | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, Mexico
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
17
|
Ruan H, Yu J, Yuan J, Li N, Fang X. Nanoscale Distribution of Transforming Growth Factor Receptor on Post-Golgi Vesicle Revealed by Super-resolution Microscopy. Chem Asian J 2016; 11:3359-3364. [DOI: 10.1002/asia.201600436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hefei Ruan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Jianqiang Yu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
18
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
19
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Amsalem AR, Marom B, Shapira KE, Hirschhorn T, Preisler L, Paarmann P, Knaus P, Henis YI, Ehrlich M. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Mol Biol Cell 2016; 27:716-30. [PMID: 26739752 PMCID: PMC4750929 DOI: 10.1091/mbc.e15-08-0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
The cytoplasmic extension of the long-form isoform of BMPRII, unique among TGF-β superfamily receptors, is found to regulate the translation of BMPRII and its clathrin-mediated endocytosis. Both processes reduce its cell surface levels. The higher expression of BMPRII-SF at the plasma membrane results in enhanced activation of Smad signaling. The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.
Collapse
Affiliation(s)
- Ayelet R Amsalem
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Barak Marom
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren E Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Livia Preisler
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev 2015; 27:13-34. [PMID: 26690041 DOI: 10.1016/j.cytogfr.2015.11.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family (TGFβ), which signal through hetero-tetrameric complexes of type I and type II receptors. In humans there are many more TGFβ ligands than receptors, leading to the question of how particular ligands can initiate specific signaling responses. Here we review structural features of the ligands and receptors that contribute to this specificity. Ligand activity is determined by receptor-ligand interactions, growth factor prodomains, extracellular modulator proteins, receptor assembly and phosphorylation of intracellular signaling proteins, including Smad transcription factors. Detailed knowledge about the receptors has enabled the development of BMP-specific type I receptor kinase inhibitors. In future these may help to treat human diseases such as fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- David Yadin
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Thomas D Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany.
| |
Collapse
|
23
|
Probing the dynamics of growth factor receptor by single-molecule fluorescence imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:95-102. [DOI: 10.1016/j.pbiomolbio.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
|
24
|
Tazat K, Hector-Greene M, Blobe GC, Henis YI. TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Mol Biol Cell 2015; 26:3535-45. [PMID: 26269580 PMCID: PMC4591696 DOI: 10.1091/mbc.e15-04-0203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023] Open
Abstract
Study of the TβRIII interaction with the signaling TGF-β receptors shows that TβRIII homo-oligomerization is indirect, depending largely on interactions with GIPC scaffolds. TβRI and II bind independently to TβRIII, competing with TβRI-TβRII complex formation and inhibiting Smad2/3 signaling by a mechanism independent of TβRIII ectodomain shedding. Transforming growth factor-β (TGF-β) receptor oligomerization has important roles in signaling. Complex formation among type I and type II (TβRI and TβRII) TGF-β receptors is well characterized and is essential for signal transduction. However, studies on their interactions with the type III TGF-β coreceptor (TβRIII) in live cells and their effects on TGF-β signaling are lacking. Here we investigated the homomeric and heteromeric interactions of TβRIII with TβRI and TβRII in live cells by combining IgG-mediated patching/immobilization of a given TGF-β receptor with fluorescence recovery after photobleaching studies on the lateral diffusion of a coexpressed receptor. Our studies demonstrate that TβRIII homo-oligomerization is indirect and depends on its cytoplasmic domain interactions with scaffold proteins (mainly GIPC). We show that TβRII and TβRI bind independently to TβRIII, whereas TβRIII augments TβRI/TβRII association, suggesting that TβRI and TβRII bind to TβRIII simultaneously but not as a complex. TβRIII expression inhibited TGF-β–mediated Smad2/3 signaling in MDA-MB-231 cell lines, an effect that depended on the TβRIII cytoplasmic domain and did not require TβRIII ectodomain shedding. We propose that independent binding of TβRI and TβRII to TβRIII competes with TβRI/TβRII signaling complex formation, thus inhibiting TGF-β–mediated Smad signaling.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel )
| |
Collapse
|
25
|
Pomeraniec L, Hector-Greene M, Ehrlich M, Blobe GC, Henis YI. Regulation of TGF-β receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell 2015; 26:3117-27. [PMID: 26157163 PMCID: PMC4551323 DOI: 10.1091/mbc.e15-02-0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022] Open
Abstract
Endoglin is a modulator of TGF-β signaling in endothelial cells. We show that it forms stable homodimers serving as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind endoglin differentially, with TβRII recruiting ALK5. Signaling data indicate a role for this receptor complex in balancing TGF-β signaling between Smad1/5/8 and Smad2/3. Complex formation among transforming growth factor-β (TGF-β) receptors and its modulation by coreceptors represent an important level of regulation for TGF-β signaling. Oligomerization of ALK5 and the type II TGF-β receptor (TβRII) has been thoroughly investigated, both in vitro and in intact cells. However, such studies, especially in live cells, are missing for the endothelial cell coreceptor endoglin and for the ALK1 type I receptor, which enables endothelial cells to respond to TGF-β by activation of both Smad2/3 and Smad1/5/8. Here we combined immunoglobulin G–mediated immobilization of one cell-surface receptor with lateral mobility studies of a coexpressed receptor by fluorescence recovery after photobleaching (FRAP) to demonstrate that endoglin forms stable homodimers that function as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind to endoglin with differential dependence on TβRII, which plays a major role in recruiting ALK5 to the complex. Signaling data indicate a role for the quaternary receptor complex in regulating the balance between TGF-β signaling to Smad1/5/8 and to Smad2/3.
Collapse
Affiliation(s)
- Leslie Pomeraniec
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
26
|
Hirschhorn T, di Clemente N, Amsalem AR, Pepinsky RB, Picard JY, Smorodinsky NI, Cate RL, Ehrlich M. Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II. J Cell Sci 2015; 128:1352-64. [PMID: 25663701 DOI: 10.1242/jcs.160143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The levels and intracellular localization of wild-type transforming growth factor β superfamily (TGFβ-SF) receptors are tightly regulated by endocytic trafficking, shedding and degradation. In contrast, a main regulatory mechanism of mutation-bearing receptors involves their intracellular retention. Anti-Müllerian hormone receptor II (AMHRII, also known as AMHR2) is the type-II receptor for anti-Müllerian hormone (AMH), a TGFβ-SF ligand that mediates Müllerian duct regression in males. Here, we studied AMHRII processing and identified novel mechanisms of its constitutive negative regulation. Immunoblot analysis revealed that a significant portion of AMHRII was missing most of its extracellular domain (ECD) and, although glycosylated, was unfolded and retained in the endoplasmic reticulum. Exogenous expression of AMHRII, but not of type-II TGF-β receptor (TβRII, also known as TGFR2), resulted in its disulfide-bond-mediated homo-oligomerization and intracellular retention, and in a decrease in its AMH-binding capacity. At the plasma membrane, AMHRII differed from TβRII, forming high levels of non-covalent homomeric complexes, which exhibited a clustered distribution and restricted lateral mobility. This study identifies novel mechanisms of negative regulation of a type-II TGFβ-SF receptor through cleavage, intracellular retention and/or promiscuous disulfide-bond mediated homo-oligomerization.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| | - Nathalie di Clemente
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013 Paris, France CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France
| | - Ayelet R Amsalem
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - R Blake Pepinsky
- Biogen-Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Jean-Yves Picard
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France
| | - Nechama I Smorodinsky
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| | - Richard L Cate
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| |
Collapse
|
27
|
Luo W, Xia T, Xu L, Chen YG, Fang X. Visualization of the post-Golgi vesicle-mediated transportation of TGF-β receptor II by quasi-TIRFM. JOURNAL OF BIOPHOTONICS 2014; 7:788-798. [PMID: 23606367 DOI: 10.1002/jbio.201300020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live-cell fluorescence imaging techniques, in particular quasi-total internal reflection fluorescence microscopy, to imaging fluorescent protein-tagged Tβ RII and monitoring its secretion process. We observed punctuate-like Tβ RII-containing post-Golgi vesicles formed in MCF7 cells. Single-particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF-β ligand, these receptor-containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post-Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII-containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post-Golgi vesicle-trafficking and protein transportation.
Collapse
Affiliation(s)
- Wangxi Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | | | | | | | | |
Collapse
|
28
|
Ashley SL, Jegal Y, Moore TA, van Dyk LF, Laouar Y, Moore BB. γ-Herpes virus-68, but not Pseudomonas aeruginosa or influenza A (H1N1), exacerbates established murine lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 307:L219-30. [PMID: 24879051 DOI: 10.1152/ajplung.00300.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often do worse following infection, but the cause of the decline is not fully understood. We previously demonstrated that infection with a murine gamma herpes virus (γHV-68) could exacerbate established lung fibrosis following administration of fluorescein isothiocyanate (McMillan et al. Am J Respir Crit Care Med 177: 771-780, 2008). In the present study, we anesthetized mice and injected saline or bleomycin intratracheally on day 0. On day 14, mice were anesthetized again and infected with either a Gram-negative bacteria (Pseudomonas aeruginosa), or with H1N1 or γHV-68 viruses. Measurements were then made on days 15, 21, or 35. We demonstrate that infection with P. aeruginosa does not exacerbate extracellular matrix deposition post-bleomycin. Furthermore, fibrotic mice are effectively able to clear P. aeruginosa infection. In contrast, bleomycin-treated mice develop worse lung fibrosis when infected with γHV-68, but not when infected with H1N1. The differential ability of γHV-68 to cause increased collagen deposition could not be explained by differences in inflammatory cell recruitment or whole lung chemokine and cytokine responses. Alveolar epithelial cells from γHV-68-infected mice displayed increased expression of TGFβ receptor 1, increased SMAD3 phosphorylation, and evidence of apoptosis measured by cleaved poly-ADP ribose polymerase (PARP). The ability of γHV-68 to augment fibrosis required the ability of the virus to reactivate from latency. This property appears unique to γHV-68, as the β-herpes virus, cytomegalovirus, did not have the same effect.
Collapse
Affiliation(s)
- Shanna L Ashley
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yangjin Jegal
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Korea
| | - Thomas A Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan;
| | - Linda F van Dyk
- Departments of Microbiology and Immunology, University of Colorado, Denver, Colorado; and
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Shapira KE, Hirschhorn T, Barzilay L, Smorodinsky NI, Henis YI, Ehrlich M. Dab2 inhibits the cholesterol-dependent activation of JNK by TGF-β. Mol Biol Cell 2014; 25:1620-8. [PMID: 24648493 PMCID: PMC4019493 DOI: 10.1091/mbc.e13-09-0537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
TGF-β signals through Smad-dependent and non-Smad pathways, depending on cell context. In ovarian cancer cells, the clathrin adaptor Dab2 enhances internalization of the type I TGF-β receptor, restricts its lateral mobility, and inhibits TGF-β–mediated, cholesterol-dependent JNK activation. Transforming growth factor-β (TGF-β) ligands activate Smad-mediated and noncanonical signaling pathways in a cell context–dependent manner. Localization of signaling receptors to distinct membrane domains is a potential source of signaling output diversity. The tumor suppressor/endocytic adaptor protein disabled-2 (Dab2) was proposed as a modulator of TGF-β signaling. However, the molecular mechanism(s) involved in the regulation of TGF-β signaling by Dab2 were not known. Here we investigate these issues by combining biophysical studies of the lateral mobility and endocytosis of the type I TGF-β receptor (TβRI) with TGF-β phosphoprotein signaling assays. Our findings demonstrate that Dab2 interacts with TβRI to restrict its lateral diffusion at the plasma membrane and enhance its clathrin-mediated endocytosis. Small interfering RNA–mediated knockdown of Dab2 or Dab2 overexpression shows that Dab2 negatively regulates TGF-β–induced c-Jun N-terminal kinase (JNK) activation, whereas activation of the Smad pathway is unaffected. Moreover, activation of JNK by TGF-β in the absence of Dab2 is disrupted by cholesterol depletion. These data support a model in which Dab2 regulates the domain localization of TβRI in the membrane, balancing TGF-β signaling via the Smad and JNK pathways.
Collapse
Affiliation(s)
- Keren E Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lior Barzilay
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nechama I Smorodinsky
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2013; 2:195-214. [PMID: 24527343 PMCID: PMC3857355 DOI: 10.1089/wound.2013.0429] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
SIGNIFICANCE Wound healing is an intricate biological process in which the skin, or any other tissue, repairs itself after injury. Normal wound healing relies on the appropriate levels of cytokines and growth factors to ensure that cellular responses are mediated in a coordinated manner. Among the many growth factors studied in the context of wound healing, transforming growth factor beta (TGF-β) is thought to have the broadest spectrum of effects. RECENT ADVANCES Many of the molecular mechanisms underlying the TGF-β/Smad signaling pathway have been elucidated, and the role of TGF-β in wound healing has been well characterized. Targeting the TGF-β signaling pathway using therapeutic agents to improve wound healing and/or reduce scarring has been successful in pre-clinical studies. CRITICAL ISSUES Although TGF-β isoforms (β1, β2, β3) signal through the same cell surface receptors, they display distinct functions during wound healing in vivo through mechanisms that have not been fully elucidated. The challenge of translating preclinical studies targeting the TGF-β signaling pathway to a clinical setting may require more extensive preclinical research using animal models that more closely mimic wound healing and scarring in humans, and taking into account the spatial, temporal, and cell-type-specific aspects of TGF-β isoform expression and function. FUTURE DIRECTIONS Understanding the differences in TGF-β isoform signaling at the molecular level and identification of novel components of the TGF-β signaling pathway that critically regulate wound healing may lead to the discovery of potential therapeutic targets for treatment of impaired wound healing and pathological scarring.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| | - Sarah McLean
- Department of Physiology and Pharmacology, Western University, London, Canada
| | | | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Danielpour D. Transforming Growth Factor-Beta in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Differential regulation of Smad3 and of the type II transforming growth factor-β receptor in mitosis: implications for signaling. PLoS One 2012; 7:e43459. [PMID: 22927969 PMCID: PMC3425481 DOI: 10.1371/journal.pone.0043459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 01/17/2023] Open
Abstract
The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis.
Collapse
|
33
|
Shapira KE, Gross A, Ehrlich M, Henis YI. Coated pit-mediated endocytosis of the type I transforming growth factor-β (TGF-β) receptor depends on a di-leucine family signal and is not required for signaling. J Biol Chem 2012; 287:26876-89. [PMID: 22707720 DOI: 10.1074/jbc.m112.362848] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of transforming growth factor-β (TGF-β) receptor endocytosis in signaling have been investigated in numerous studies, mainly through the use of endocytosis inhibitory treatments, yielding conflicting results. Two potential sources for these discrepancies were the pleiotropic effects of a general blockade of specific internalization pathways and the scarce information on the regulation of the endocytosis of the signal-transducing type I TGF-β receptor (TβRI). Here, we employed extracellularly tagged myc-TβRI (wild type, truncation mutants, and a series of endocytosis-defective and endocytosis-enhanced mutants) to directly investigate the relationship between TβRI endocytosis and signaling. Our findings indicate that TβRI is targeted for constitutive clathrin-mediated endocytosis via a di-leucine (Leu(180)-Ile(181)) signal and an acidic cluster motif. Using Smad-dependent transcriptional activation assays and following Smad2/3 nuclear translocation in response to TGF-β stimulation, we show that TβRI endocytosis is dispensable for TGF-β signaling and may play a role in signal termination. Alanine replacement of Leu(180)-Ile(181) led to partial constitutive activation of TβRI, resulting in part from its retention at the plasma membrane and in part from potential alterations of TβRI regulatory interactions in the vicinity of the mutated residues.
Collapse
Affiliation(s)
- Keren E Shapira
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
34
|
Abstract
TGF-β signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity and migration. Its dysfunctions can result in various kinds of diseases, such as cancer and tissue fibrosis. TGF-β signaling is tightly regulated at different levels along the pathway, and modulation of TGF-β receptor activity is a critical step for signaling regulation. This review focuses on our recent understanding of regulation of TGF-β receptor activity.
Collapse
Affiliation(s)
- Fei Huang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, THU-PKU Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | | |
Collapse
|
35
|
Ehrlich M, Gutman O, Knaus P, Henis YI. Oligomeric interactions of TGF-β and BMP receptors. FEBS Lett 2012; 586:1885-96. [PMID: 22293501 DOI: 10.1016/j.febslet.2012.01.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) cytokines participate in a multiplicity of ways in the regulation of numerous physiological and pathological processes. Their wide-ranging biological functions are controlled by several mechanisms, including regulation of transcription, complex formation among the signaling receptors (oligomerization) and with co-receptors, binding of the receptors to scaffolding proteins or their targeting to specific membrane domains. Here, we address the generation of TGF-β and BMP receptor homo- and hetero-oligomers and its roles as a mechanism capable of fast regulation of signaling by these crucial cytokines. We examine the available biochemical, biophysical and structural evidence for the ternary structure of these complexes, and the possible roles of homomeric and heteromeric receptor oligomers in signaling.
Collapse
Affiliation(s)
- Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
36
|
Yang Y, Xia T, Zhang W, Fang X. Single-molecule fluorescence imaging of membrane-bound proteins for studies of cell signal transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Homomeric and heteromeric complexes among TGF-β and BMP receptors and their roles in signaling. Cell Signal 2011; 23:1424-32. [PMID: 21515362 DOI: 10.1016/j.cellsig.2011.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/04/2011] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β (TGF-β) ligands and bone morphogenetic proteins (BMPs) play myriad roles in many biological processes and diseases. Their pluripotent activities are subject to multiple levels of regulation, including receptor oligomerization, endocytosis, association with co-receptors, cellular scaffolds or membrane domains, as well as transcriptional control. In this review, we focus on TGF-β and BMP receptor homomeric and heteromeric complex formation and their modulation by ligand binding, which regulate signaling on a near-immediate timescale. We discuss the current structural, biochemical and biophysical evidence for the oligomerization of these receptors, and the potential roles of distinct oligomeric interactions in signaling.
Collapse
|
38
|
Marom B, Heining E, Knaus P, Henis YI. Formation of stable homomeric and transient heteromeric bone morphogenetic protein (BMP) receptor complexes regulates Smad protein signaling. J Biol Chem 2011; 286:19287-96. [PMID: 21471205 DOI: 10.1074/jbc.m110.210377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type I and type II bone morphogenetic protein receptors (BMPRI and BMPRII) are present at the plasma membrane as monomers and homomeric and heteromeric complexes, which are modulated by ligand binding. The complexes of their extracellular domains with ligand were shown to form heterotetramers. However, the dynamics of the oligomeric interactions among the full-length receptors in live cell membranes were not explored, and the roles of BMP receptor homodimerization were unknown. Here, we investigated these issues by combining patching/immobilization of an epitope-tagged BMP receptor at the cell surface with measurements of the lateral diffusion of a co-expressed, differently tagged BMP receptor by fluorescence recovery after photobleaching (FRAP). These studies led to several novel conclusions. (a) All homomeric complexes (without or with BMP-2) were stable on the patch/FRAP time scale (minutes), whereas the heterocomplexes were transient, a difference that may affect signaling. (b) Patch/FRAP between HA- and myc-tagged BMPRII combined with competition by untagged BMPRIb showed that the heterocomplexes form at the expense of homodimers. (c) Stabilization of BMPRII·BMPRIb heterocomplexes (but not homomeric complexes) by IgG binding to same-tag receptors elevated phospho-Smad formation both without and with BMP-2. These findings suggest two mechanisms that may suppress the tendency of preformed BMP receptor hetero-oligomers to signal without ligand: (a) competition between homo- and heterocomplex formation, which reduces the steady-state level of the latter, and (b) the transient nature of the heterocomplexes, which limits the time during which BMPRI can be phosphorylated by BMPRII in the heterocomplex.
Collapse
Affiliation(s)
- Barak Marom
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
39
|
TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO J 2011; 30:1263-76. [PMID: 21423151 DOI: 10.1038/emboj.2011.54] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/04/2011] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF)-βs are dimeric polypeptides that have vital roles in regulating cell growth and differentiation. They signal by assembling a receptor heterotetramer composed of two TβRI:TβRII heterodimers. To investigate whether the two heterodimers bind and signal autonomously, one of the TGF-β protomers was substituted to block receptor binding. The substituted dimer, TGF-β3 WD, bound the TβRII extracellular domain and recruited the TβRI with affinities indistinguishable from TGF-β3, but with one-half the stoichiometry. TGF-β3 WD was further shown to retain one-quarter to one-half the signalling activity of TGF-β3 in three established assays for TGF-β function. Single-molecule fluorescence imaging with GFP-tagged receptors demonstrated a measurable increase in the proportion of TβRI and TβRII dimers upon treatment with TGF-β3, but not with TGF-β3 WD. These results provide evidence that the two TβRI:TβRII heterodimers bind and signal in an autonomous manner. They further underscore how the TGF-βs diverged from the bone morphogenetic proteins, the ancestral ligands of the TGF-β superfamily that signal through a RI:RII:RII heterotrimer.
Collapse
|
40
|
Blair CR, Stone JB, Wells RG. The type III TGF-β receptor betaglycan transmembrane-cytoplasmic domain fragment is stable after ectodomain cleavage and is a substrate of the intramembrane protease γ-secretase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:332-9. [PMID: 21167215 DOI: 10.1016/j.bbamcr.2010.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 11/20/2022]
Abstract
The Type III TGF-β receptor, betaglycan, is a widely expressed proteoglycan co-receptor for TGF-β superfamily ligands. The full-length protein undergoes ectodomain cleavage with release of a soluble ectodomain fragment. The fate of the resulting transmembrane-cytoplasmic fragment, however, has never been explored. We demonstrate here that the transmembrane-cytoplasmic fragment is stable in transfected cells and in cell lines expressing endogenous betaglycan. Production of this fragment is inhibited by the ectodomain shedding inhibitor TAPI-2. Treatment of cells with inhibitors of the intramembrane protease γ-secretase stabilizes this fragment, suggesting that it is a substrate of γ-secretase. Expression of the transmembrane-cytoplasmic fragment as well as γ-secretase inhibitor stabilization are independent of TGF-β1 or -β2 and are unaffected by mutation of the cytoplasmic domain serines that undergo phosphorylation. γ-Secretase inhibition or the expression of a transmembrane-cytoplasmic fragment in HepG2 cells blunted TGF-β2 signaling. Our findings thus suggest that the transmembrane-cytoplasmic fragment remaining after betaglycan ectodomain cleavage is stable and a substrate of γ-secretase, which may have significant implications for the TGF-β signaling response.
Collapse
Affiliation(s)
- Cheyne R Blair
- Cellular and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
41
|
Zhang W, Yuan J, Yang Y, Xu L, Wang Q, Zuo W, Fang X, Chen YG. Monomeric type I and type III transforming growth factor-β receptors and their dimerization revealed by single-molecule imaging. Cell Res 2010; 20:1216-23. [PMID: 20625381 DOI: 10.1038/cr.2010.105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor-β (TGF-β) binds with two transmembrane serine/threonine kinase receptors, type II (TβRII) and type I receptors (TβRI), and one accessory receptor, type III receptor (TβRIII), to transduce signals across cell membranes. Previous biochemical studies suggested that TβRI and TβRIII are preexisted homo-dimers. Using single-molecule microscopy to image green fluorescent protein-labeled membrane proteins, for the first time we have demonstrated that TβRI and TβRIII could exist as monomers at a low expression level. Upon TGF-β1 stimulation, TβRI follows the general ligand-induced receptor dimerization model for activation, but this process is TβRII-dependent. The monomeric status of the non-kinase receptor TβRIII is unchanged in the presence of TGF-β1. With the increase of receptor expression, both TβRI and TβRIII can be assembled into dimers on cell surfaces.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ahn JY, Park S, Yun YS, Song JY. Inhibition of type III TGF-β receptor aggravates lung fibrotic process. Biomed Pharmacother 2010; 64:472-6. [PMID: 20359848 DOI: 10.1016/j.biopha.2010.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates cell proliferation, death, development or differentiation. In addition, TGF-β is considered a key mediator in fibrogenic processes, and signals either directly or indirectly through types I, II and III (TβRI, II, and III) receptor complexes. The type III TGF-β (TβRIII or betaglycan) is a transmembrane proteoglycan without a functional kinase domain, and is considered as a coreceptor to increase the affinity of ligand binding to TβRII. Little is studied on TGF-β and TβRIII (or betaglycan) signaling, while it is well known about TGF-β ligand and TβRII signaling. In this study, we investigated the effects of TβRIII expression on TGF-β induced differentiation, in view of the finding that TβRIII is significantly downregulated during TGF-β-induced differentiation in fibroblasts. TGF-beta induced alpha-SMA and Procollagen Type I expression were markedly inhibited in fibroblasts stably expressing TβRIII. Endogenous TβRIII expression did not alter the TβRI or TβRII levels, but inhibited Smad 2/3, Akt and ERK phosphorylation. The molecular mechanism of TβRIII action in TGF-β-induced differentiation is associated with both Smad-dependent and Smad-independent pathways. Our results suggest that TβRIII is a novel molecular target for regulation of TGF-β signaling in myofibroblast differentiation.
Collapse
Affiliation(s)
- Ji-Yeon Ahn
- Laboratory of Radiation Sensitization & Protection, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci U S A 2009; 106:15679-83. [PMID: 19720988 DOI: 10.1073/pnas.0908279106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) elicits its signals through two transmembrane serine/threonine kinase receptors, type II (TbetaRII) and type I receptors. It is generally believed that the initial receptor dimerization is an essential event for receptor activation. However, previous studies suggested that TGF-beta signals by binding to the preexisting TbetaRII homodimer. Here, using single molecule microscopy to image green fluorescent protein (GFP)-labeled TbetaRII on the living cell surface, we demonstrated that the receptor could exist as monomers at the low expression level in resting cells and dimerize upon TGF-beta stimulation. This work reveals a model in which the activation of serine-threonine kinase receptors is also accomplished via dimerization of monomers, suggesting that receptor dimerization is a general mechanism for ligand-induced receptor activation.
Collapse
|
44
|
Rojas A, Padidam M, Cress D, Grady WM. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1165-73. [PMID: 19339207 PMCID: PMC2700179 DOI: 10.1016/j.bbamcr.2009.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 12/26/2022]
Abstract
TGF-beta is a pluripotent cytokine that mediates its effects through a receptor composed of TGF-beta receptor type II (TGFBR2) and type I (TGFBR1). The TGF-beta receptor can regulate Smad and nonSmad signaling pathways, which then ultimately dictate TGF-beta's biological effects. We postulated that control of the level of TGFBR2 is a mechanism for regulating the specificity of TGF-beta signaling pathway activation and TGF-beta's biological effects. We used a precisely regulatable TGFBR2 expression system to assess the effects of TGFBR2 expression levels on signaling and TGF-beta mediated apoptosis. We found Smad signaling and MAPK-ERK signaling activation levels correlate directly with TGFBR2 expression levels. Furthermore, p21 levels and TGF-beta induced apoptosis appear to depend on relatively high TGFBR2 expression and on the activation of the MAPK-ERK and Smad pathways. Thus, control of TGFBR2 expression and the differential activation of TGF-beta signaling pathways appears to be a mechanism for regulating the specificity of the biological effects of TGF-beta.
Collapse
Affiliation(s)
- Andres Rojas
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - Malla Padidam
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - Dean Cress
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| |
Collapse
|
45
|
The extracellular domain of the TGFβ type II receptor regulates membrane raft partitioning. Biochem J 2009; 421:119-31. [DOI: 10.1042/bj20081131] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-surface TGFβ (transforming growth factor β) receptors partition into membrane rafts and the caveolin-positive endocytic compartment by an unknown mechanism. In the present study, we investigated the determinant in the TGFβ type II receptor (TβRII) that is necessary for membrane raft/caveolar targeting. Using subcellular fractionation and immunofluorescence microscopy techniques, we demonstrated that the extracellular domain of TβRII mediates receptor partitioning into raft and caveolin-positive membrane domains. Pharmacological perturbation of glycosylation using tunicamycin or the mutation of Mgat5 [mannosyl(α-1,6)-glycoprotein β-1,6-N-acetylglucosaminyltransferase V] activity interfered with the raft partitioning of TβRII. However, this was not due to the glycosylation state of TβRII, as a non-glycosylated TβRII mutant remained enriched in membrane rafts. This suggested that other cell-surface glycoproteins associate with the extracellular domain of TβRII and direct their partitioning in membrane raft domains. To test this we analysed a GMCSF (granulocyte/macrophage colony-stimulating factor)–TβRII chimaeric receptor, which contains a glycosylated GMCSF extracellular domain fused to the transmembrane and intracellular domains of TβRII. This chimaeric receptor was found to be largely excluded from membrane rafts and caveolin-positive structures. Our results indicate that the extracellular domain of TβRII mediates receptor partitioning into membrane rafts and efficient entrance into caveolin-positive endosomes.
Collapse
|
46
|
Rechtman MM, Nakaryakov A, Shapira KE, Ehrlich M, Henis YI. Different domains regulate homomeric and heteromeric complex formation among type I and type II transforming growth factor-beta receptors. J Biol Chem 2009; 284:7843-52. [PMID: 19147499 DOI: 10.1074/jbc.m809215200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) binds to and signals via two serine-threonine kinase receptors, type I (TbetaRI) and type II (TbetaRII). The oligomerization of TGF-beta receptors modulates ligand binding and receptor trafficking and may contribute to signal diversification. However, numerous features of the molecular domains that determine the homo- and hetero-oligomerization of full-length receptors at the cell surface and the mode of these interactions remain unclear. Here, we address these questions through computerized immunofluorescence co-patching and patch/fluorescence recovery after photobleaching measurements of different combinations of epitope-tagged receptors and their mutants in live cells. We show that TbetaRI and TbetaRII are present on the plasma membrane both as monomers and homo- and hetero-oligomers. The homodimerization of TbetaRII depends on a cytoplasmic juxtamembrane region (amino acid residues 200-220). In contrast, the cytoplasmic domain of TbetaRI is dispensable for its homodimerization. TbetaRI.TbetaRII hetero-oligomerization depends on the cytoplasmic domain of TbetaRI and on a C-terminal region of TbetaRII (residues 419-565). TGF-beta1 elevates TbetaRII homodimerization to some degree and strongly enhances TbetaRI.TbetaRII heteromeric complex formation. Both ligand-induced effects depend on the region encompassed between residues 200-242 of TbetaRII. Furthermore, the kinase activity of TbetaRI is also necessary for the latter effect. All forms of the homo- and hetero-oligomers, whether constitutively present on the membrane or formed upon TGF-beta1 stimulation, were stable in the time-scale of our patch/FRAP measurements. We suggest that the different forms of receptor oligomerization may serve as a basis for the heterogeneity of TGF-beta signaling responses.
Collapse
Affiliation(s)
- Maya Mouler Rechtman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
47
|
Malka Y, Hornakova T, Royer Y, Knoops L, Renauld JC, Constantinescu SN, Henis YI. Ligand-independent homomeric and heteromeric complexes between interleukin-2 or -9 receptor subunits and the gamma chain. J Biol Chem 2008; 283:33569-77. [PMID: 18829468 DOI: 10.1074/jbc.m803125200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling via interleukin-2 (IL-2) and interleukin-9 receptors (IL-2R and IL-9R) involves heteromeric interactions between specific interleukin receptor subunits, which bind Janus kinase 1 (JAK1) and the JAK3 binding common gamma chain (gamma c). The potential existence and roles of homomeric and heteromeric complexes before ligand binding and their modulation by ligand and JAK3 are unclear. Using computerized antibody-mediated immunofluorescence co-patching of epitope-tagged receptors at the surface of live cells, we demonstrate that IL-2Rbeta, IL-9Ralpha, and gamma c each display a significant fraction of ligand-independent homomeric complexes (24-28% co-patching), whereas control co-patching levels with unrelated receptors are very low (7%). Heteromeric complex formation of IL2-Rbeta or IL-9Ralpha with gamma c is also observed in the absence of ligand (15-30%). Ligand binding increases this hetero-oligomerization 2-fold but does not affect homo-oligomerization. Co-expression of IL-2Ralpha does not affect the hetero-oligomerization of IL-2Rbeta and gamma c. Recruitment of gamma c into heterocomplexes is partly at the expense of its homo-oligomerization, suggesting that a functional role of the latter may be to keep the receptors inactive in the absence of ligand. At the same time, the preformed complexes between gamma c and IL-2Rbeta or IL-9Ralpha promote signaling by the JAK3 A572V mutant without ligand, supporting a pathophysiological role for the constitutive oligomerization in triggering ligand-independent activation of JAK3 (and perhaps other JAK mutants) mutants identified in several human cancers.
Collapse
Affiliation(s)
- Yaniv Malka
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
49
|
Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L, Stambolsky P, Henis YI, Rotter V. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 2007; 27:8228-42. [PMID: 17875924 PMCID: PMC2169171 DOI: 10.1128/mcb.00374-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both transforming growth factor beta (TGF-beta) and p53 have been shown to control normal cell growth. Acquired mutations either in the TGF-beta signaling pathway or in the p53 protein were shown to induce malignant transformation. Recently, cross talk between wild-type p53 and the TGF-beta pathway was observed. The notion that mutant p53 interferes with the wild-type p53-induced pathway and acts by a "gain-of-function" mechanism prompted us to investigate the effect of mutant p53 on the TGF-beta-induced pathway. In this study, we show that cells expressing mutant p53 lost their sensitivity to TGF-beta1, as observed by less cell migration and a reduction in wound healing. We found that mutant p53 attenuates TGF-beta1 signaling. This was exhibited by a reduction in SMAD2/3 phosphorylation and an inhibition of both the formation of SMAD2/SMAD4 complexes and the translocation of SMAD4 to the cell nucleus. Furthermore, we found that mutant p53 attenuates the TGF-beta1-induced transcription activity of SMAD2/3 proteins. In searching for the mechanism that underlies this attenuation, we found that mutant p53 reduces the expression of TGF-beta receptor type II. These data provide important insights into the molecular mechanisms that underlie mutant p53 "gain of function" pertaining to the TGF-beta signaling pathway.
Collapse
Affiliation(s)
- Eyal Kalo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Murphy SJ, Shapira KE, Henis YI, Leof EB. A unique element in the cytoplasmic tail of the type II transforming growth factor-beta receptor controls basolateral delivery. Mol Biol Cell 2007; 18:3788-99. [PMID: 17634290 PMCID: PMC1995729 DOI: 10.1091/mbc.e06-10-0930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF)-beta receptors stimulate diverse signaling processes that control a wide range of biological responses. In polarized epithelia, the TGFbeta type II receptor (T2R) is localized at the basolateral membranes. Sequential cytoplasmic truncations resulted in receptor missorting to apical surfaces, and they indicated an essential targeting element(s) near the receptor's C terminus. Point mutations in the full-length receptor confirmed this prediction, and a unique basolateral-targeting region was elucidated between residues 529 and 538 (LTAxxVAxxR) that was distinct, but colocalized within a clinically significant signaling domain essential for TGFbeta-dependent activation of the Smad2/3 cascade. Transfer of a terminal 84 amino-acid fragment, containing the LTAxxVAxxR element, to the apically sorted influenza hemagglutinin (HA) protein was dominant and directed basolateral HA expression. Although delivery to the basolateral surfaces was direct and independent of any detectable transient apical localization, fluorescence recovery after photobleaching demonstrated similar mobility for the wild-type receptor and a missorted mutant lacking the targeting motif. This latter finding excludes the possibility that the domain acts as a cell membrane retention signal, and it supports the hypothesis that T2R sorting occurs from an intracellular compartment.
Collapse
Affiliation(s)
- Stephen J. Murphy
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Keren E. Shapira
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I. Henis
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward B. Leof
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| |
Collapse
|