1
|
Liu L, Oh C, Lim MA, Zheng S, Piao Y, Ohm S, Shan Y, Piao S, Shen S, Kim YI, Won HR, Chang JW, Kim MG, Kim DH, Kim JW, Jung SN, Koo BS. Dual blockage of P-cadherin and c-Met synergistically inhibits the growth of head and neck cancer. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01061-w. [PMID: 40392501 DOI: 10.1007/s13402-025-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/26/2025] [Indexed: 05/22/2025] Open
Abstract
PURPOSE P-cadherin (CDH3) is a transmembrane protein that plays a crucial role in maintaining the structural integrity of epithelial tissue and homeostasis. Its role in carcinogenesis remains a subject of debate, as its behavior can vary depending on the molecular context and the specific tumor cell model under study. In this study, we explored the role of P-cadherin in head and neck squamous cell carcinoma (HNSCC) and the mechanisms underlying its function. METHODS We analyzed P-cadherin expression in HNSCC patients using The Cancer Genome Atlas (TCGA), The Chungnam National University Hospital (CNUH) cohort and Gene Expression Omnibus (GEO) database. For in vitro functional analysis, we conducted proliferation, migration, invasion, and western blot assays after either suppressing or overexpressing P-cadherin. For in vivo functional analysis, we utilized mouse xenograft models. RESULTS P-cadherin was significantly overexpressed in tumor samples compared to normal samples in the TCGA-HNSCC and CNUH-HNSCC cohorts. P-cadherin knockdown resulted in decreased proliferation, migration, and invasion compared to control cells, while P-cadherin overexpression increased cell proliferation and migration in HNSCC cells. We discovered that c-Met functions as an upstream regulator of P-cadherin. Surprisingly, we found that P-cadherin knockdown increased the phosphorylation of c-Met and STAT3. Combining P-cadherin siRNA with the c-Met inhibitor SU11274 or c-Met siRNA resulted in a more effective reduction in HNSCC cell growth, both in vitro and in vivo, compared to either treatment alone. CONCLUSION Our study uncovered a previously unknown aspect of P-cadherin-mediated c-Met regulation. The enhanced activation of c-Met/STAT3 following P-cadherin inhibition could be responsible for the survival of resistant tumor cells. Therefore, dual inhibition of P-cadherin and c-Met may be an effective approach for treating HNSCC.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Sicong Zheng
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yudan Piao
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Sun Ohm
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Yujuan Shan
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuyu Piao
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Shan Shen
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Young Il Kim
- Department of Radiation Oncology, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea
| | - Ho-Ryun Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Min-Gyu Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Doh Hoon Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.
| | - Bon Seok Koo
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
2
|
Dykstra GD, Kawasaki M, Burbick CR, McConnel CS, Ambrosini YM. From in vitro development to accessible luminal interface of neonatal bovine-derived intestinal organoids. BMC Vet Res 2025; 21:319. [PMID: 40325425 PMCID: PMC12054211 DOI: 10.1186/s12917-025-04773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Intestinal organoids provide physiologically relevant in vitro models that bridge the gap between conventional cell culture and animal studies. Although these systems have been developed for adult cattle, their use in neonatal calves-who are particularly vulnerable to enteric disease-has not been well established. Neonatal diarrhea remains a major health concern in modern agriculture, yet age-appropriate models for studying its pathogenesis are lacking. Given that host-pathogen interactions vary with developmental stage, there is a need for culture systems that reflect the distinct biology of the neonatal gut. In this study, we developed intestinal organoids and organoid-derived monolayers from 14-day-old dairy calves to enable research on early-life intestinal function and disease. RESULTS Organoids were successfully established from five intestinal sections of 14-day-old dairy calves using customized growth media and characterized by immunofluorescence and gene expression analyses. They remained viable for over 300 days of cryopreservation and were serially passaged at least 15 times. Rectal organoid-derived monolayers were further assessed by electron microscopy and barrier function assays, demonstrating stable transepithelial electrical resistance and controlled paracellular permeability. CONCLUSIONS Optimized methods for adult bovine intestinal organoids and rectal organoid-derived monolayers are applicable to neonatal intestinal epithelial stem cells. Organoids cultured from 14-day-old calves captured key aspects of the multicellularity and functionality of the native epithelium. Future work should focus on adapting monolayer culture methods for additional gut regions, particularly the proximal gastrointestinal tract. Neonatal rectal monolayers represent a promising platform for advancing veterinary research, agricultural innovation, and studies of zoonotic disease.
Collapse
Affiliation(s)
- Gerald D Dykstra
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Minae Kawasaki
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Claire R Burbick
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.
| |
Collapse
|
3
|
Zhang XQ, Li JM, Wang FQ, Ren YH, Wu SX, Wu Y, Tang Y. The clinical significance and biological function of tropomyosin 3 in ulcerative colitis. Tissue Cell 2025; 93:102770. [PMID: 39938429 DOI: 10.1016/j.tice.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a lifelong chronic inflammatory disease that is characterized by the absence of specific markers for diagnosis and prognosis. TPM3 is an integral component of the thin filament, responsible for the structural stability of actin filaments and modulation of cytoskeletal function. This study investigated the regulatory role of TPM3 in UC and its potential mechanisms. METHODS At the clinical level, TPM3 levels were assessed in serum and mucosal tissues of UC and other enteric disease. At the cellular level, the effects of TMP3 overexpressing lentivirus on Caco-2 cell phenotype and the barrier of IL-1β-induced UC model were explored. At the animal level, the effects of TMP3 overexpressing lentivirus on symptoms and colonic damage in a DSS-induced UC model were explored. RESULTS TPM3 expression in serum of UC patients was significantly lower than that of other enteric disease, and TPM3 levels in the intestinal mucosa showed a negative correlation with the Mayo score of UC patients. TPM3 overexpression alleviates IL-1β-induced apoptosis and inhibition of invasion and migration in UC model in vitro. In monolayer Caco-2 cells, TPM3 overexpression rescued the IL-1β-induced decrease in transepithelial electrical resistance and tight junction markers (ZO-1 and Occludin) and increase in permeability. In animal experiments, TPM3 overexpression increased body weight and colon length and decreased disease activity index in a DSS-induced UC model. In tissue staining, it alleviated pathological damage and upregulated Occuludin and TPM3 levels in the colon. CONCLUSION TPM3 levels correlated with UC disease course and TPM3 overexpression alleviated symptoms/phenotypes and barrier damage in UC models in vivo and in vitro. TPM3 may serve as a potential novel biomarker for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xue-Qin Zhang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Jian-Mei Li
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Feng-Qian Wang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yan-Hui Ren
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Shi-Xian Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yao Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yuan Tang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China.
| |
Collapse
|
4
|
Shi H, Sun J, Sun Y, Wu J, Jiang G, Xu Z, Shi X, Fang M. Intestinal Epithelial Cell-specific Knockout of METTL3 Aggravates Intestinal Inflammation in CLP Mice by Weakening the Intestinal Barrier. Curr Pharm Biotechnol 2025; 26:80-91. [PMID: 38482615 DOI: 10.2174/0113892010271970240202054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 11/30/2024]
Abstract
BACKGROUND Many studies have demonstrated that the expression of methyltransferase- like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation. OBJECTIVES Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis. MATERIALS AND METHODS Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis. RESULTS METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways. CONCLUSION This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO- 1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.
Collapse
Affiliation(s)
- Hongzhou Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, 210000, China
| | - Yaya Sun
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Junjie Wu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Guangqing Jiang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Zhaiyue Xu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Miao Fang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| |
Collapse
|
5
|
Swanson GR, Garg K, Shaikh M, Keshavarzian A. Increased Intestinal Permeability and Decreased Resiliency of the Intestinal Barrier in Alcoholic Liver Disease. Clin Transl Gastroenterol 2024; 15:e00689. [PMID: 38334953 PMCID: PMC11042778 DOI: 10.14309/ctg.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Only 20%-30% of individuals with alcohol use disorder (AUD) develop alcoholic liver disease (ALD). While the development of gut-derived endotoxemia is understood to be a required cofactor, increased intestinal permeability in ALD is not completely understood. METHODS We recruited 178 subjects-58 healthy controls (HCs), 32 with ALD, 53 with AUD but no liver disease (ALC), and 35 with metabolic dysfunction-associated steatotic liver disease (MASLD). Intestinal permeability was assessed by a sugar cocktail as a percentage of oral dose. The permeability test was repeated after an aspirin challenge in a subset. RESULTS Five-hour urinary lactulose/mannitol ratio (primarily representing small intestinal permeability) was not statistically different in HC, ALC, ALD, and MASLD groups ( P = 0.40). Twenty-four-hour urinary sucralose (representing whole gut permeability) was increased in ALD ( F = 5.3, P < 0.01) and distinguished ALD from ALC; 24-hour sucralose/lactulose ratio (primarily representing colon permeability) separated the ALD group ( F = 10.2, P < 0.01) from the MASLD group. After aspirin challenge, intestinal permeability increased in all groups and ALD had the largest increase. DISCUSSION In a group of patients, we confirmed that (i) the ALD group has increased intestinal permeability compared with the HC, ALC, or MASLD group. In addition, because small bowel permeability (lactulose/mannitol ratio) is normal, the disruption of intestinal barrier seems to be primarily in the large intestine; (ii) decreased resiliency of intestinal barrier to injurious agents (such as NSAID) might be the mechanism for gut leak in subset of AUD who develop ALD.
Collapse
Affiliation(s)
- Garth R. Swanson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, USA;
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA;
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA;
| | - Kanika Garg
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, USA;
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA;
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA;
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA;
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, USA;
- Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
6
|
Maltabe VA, Melidoni AN, Beis D, Kokkinopoulos I, Paschalidis N, Kouklis P. VE-CADHERIN is expressed transiently in early ISL1 + cardiovascular progenitor cells and facilitates cardiac differentiation. Stem Cell Reports 2023; 18:1827-1840. [PMID: 37541259 PMCID: PMC10545488 DOI: 10.1016/j.stemcr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023] Open
Abstract
Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.
Collapse
Affiliation(s)
- Violetta A Maltabe
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Anna N Melidoni
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Experimental Surgery Clinical and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 11527 Athens, Greece; Laboratory of Biochemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Kokkinopoulos
- Developmental Biology and Immunobiology Laboratories, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece.
| |
Collapse
|
7
|
Quansah E, Gardey E, Ramoji A, Meyer-Zedler T, Goehrig B, Heutelbeck A, Hoeppener S, Schmitt M, Waldner M, Stallmach A, Popp J. Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients. Sci Rep 2023; 13:2681. [PMID: 36792686 PMCID: PMC9931702 DOI: 10.1038/s41598-023-29649-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.
Collapse
Affiliation(s)
- Elsie Quansah
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena, Erlanger Allee 101, 07747, Jena, Germany.
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Bianca Goehrig
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Astrid Heutelbeck
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Maximillian Waldner
- Department of Medicine, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
8
|
Bohere J, Eldridge-Thomas BL, Kolahgar G. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. eLife 2022; 11:e72836. [PMID: 36269226 PMCID: PMC9586559 DOI: 10.7554/elife.72836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.
Collapse
Affiliation(s)
- Jerome Bohere
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
10
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
11
|
Keller HR, Ligons DL, Li C, Hwang S, Luckey MA, Prakhar P, Liman N, Crossman A, Lazarevic V, Park YK, Park JH. The molecular basis and cellular effects of distinct CD103 expression on CD4 and CD8 T cells. Cell Mol Life Sci 2021; 78:5789-5805. [PMID: 34129058 DOI: 10.1007/s00018-021-03877-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Integrin CD103 mediates the adhesion and tissue retention of T cells by binding to E-cadherin which is abundant on epithelial cells. Notably, CD103 is highly expressed on CD8 T cells but conspicuously absent on most CD4 T cells. The mechanism controlling such lineage-specific expression of CD103 remains unclear. Using a series of genetically engineered mouse models, here, we demonstrate that the regulatory mechanism of CD103 expression is distinct between CD4 and CD8 T cells, and that the transcription factor Runx3 plays an important but not an essential role in this process. We further found that the availability of integrin β7 which heterodimerizes with CD103 was necessary but also constrained the surface expression of CD103. Notably, the forced surface expression of CD103 did not significantly alter the thymic development of conventional T cells but severely impaired the generation of MHC-II-restricted TCR transgenic T cells, revealing previously unappreciated aspects of CD103 in the selection and maturation of CD4 T cells. Unlike its effect on CD4 T cell development, however, CD103 overexpression did not significantly affect CD4 T cells in peripheral tissues. Moreover, the frequency and number of CD4 T cells in the small intestine epithelium did not increase even though E-cadherin is highly expressed in this tissue. Collectively, these results suggest that most mature CD4 T cells are refractory to the effects of CD103 expression, and that they presumably utilize CD103-independent pathways to control their tissue retention and residency.
Collapse
Affiliation(s)
- Hilary R Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, PA, 18840, USA
| | - Davinna L Ligons
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - SuJin Hwang
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yoo Kyoung Park
- Department of Medical Nutrition-AgeTech-Service Convergence Major, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
13
|
He Y, Chen L, Chen K, Sun Y. Immunohistochemical analysis of HNF4A and β-catenin expression to predict low-grade dysplasia in the colitis-neoplastic sequence. Acta Biochim Biophys Sin (Shanghai) 2021; 53:94-101. [PMID: 33300557 DOI: 10.1093/abbs/gmaa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Animal studies indicated that P1 promoter-driven hepatocyte nuclear factor 4 alpha (HFN4A) prevents carcinogenesis in colitis. But the function of total HNF4A protein has not been fully investigated, and it was assumed to be involved in the colitis-neoplastic sequence. The aim of this study was to determine the clinical value of total P1-/P2-driven HNF4A combined with β-catenin in the colitis-neoplastic sequence. A total of 69 samples, including 4 normal colon tissues, 16 sporadic colorectal cancer (CRC) tissues, 35 inflammatory bowel disease (IBD) tissues, and 14 IBD-associated low-grade dysplasia tissues, were collected to assess P1-/P2-driven HNF4A and β-catenin expressions by immunohistochemical assay. In addition, a colonic epithelial cell line Caco2 with stable P1-/P2-driven HNF4A knockdown was constructed. β-Catenin expression and skeleton structure were determined in the transfected cells by western blot analysis and immunofluorescence assay respectively. Increased expression of nuclear P1-/P2-driven HNF4A was observed in the colitis-associated colorectal neoplasm and sporadic CRC samples, compared with that in colitis samples. The parallel alterations between cytoplasmic β-catenin and nuclear P1-/P2-driven HNF4A were also verified. Silencing of P1-/P2-driven HNF4A expression in Caco2 cells decreased β-catenin expression and F-actin formation. Our results confirmed the elevated expressions of nuclear P1-/P2-driven HNF4A and cytoplasmic β-catenin in the colitis-neoplastic sequence, and both of them may be used as potential biomarkers to predict low-grade dysplasia.
Collapse
Affiliation(s)
- Yiping He
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Lee JS, Wang RX, Alexeev EE, Colgan SP. Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes 2021; 13:1-20. [PMID: 33583319 PMCID: PMC7889129 DOI: 10.1080/19490976.2021.1880241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) coincides with profound shifts in microbiota and host metabolic energy supply and demand. The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic luminal microbiota and host lamina propria, with the microbiota and epithelium participating in an intricate energy exchange necessary for homeostasis. Maintenance and restoration of the barrier requires high energy flux and places significant demands on available substrates to generate ATP. It is recently appreciated that components of the microbiota contribute significantly to a multitude of biochemical pathways within and outside of the mucosa. Decades-old studies have appreciated that byproducts of the microbiota provide essential sources of energy to the intestinal epithelium, especially the colon. More recent work has unveiled the existence of numerous microbial-derived metabolites that support energy procurement within the mucosa. It is now appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places significant demands on energy acquisition within the mucosa. Here, we review the topic of host- and microbial-derived components that influence tissue energetics in health and during disease.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Erica E. Alexeev
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
- Department of Gastroenterology, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
15
|
Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients. Acta Physiol (Oxf) 2021; 231:e13492. [PMID: 32419327 DOI: 10.1111/apha.13492] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and Ulcerative colitis (UC) have a complex and multifactorial pathogenesis which is incompletely understood. A typical feature closely associated with clinical symptoms is impaired intestinal epithelial barrier function. Mounting evidence suggests that desmosomes, which together with tight junctions (TJ) and adherens junctions (AJ) form the intestinal epithelial barrier, play a distinct role in IBD pathogenesis. This is based on the finding that desmoglein (Dsg) 2, a cadherin-type adhesion molecule of desmosomes, is required for maintenance of intestinal barrier properties both in vitro and in vivo, presumably via Dsg2-mediated regulation of TJ. Mice deficient for intestinal Dsg2 show increased basal permeability and are highly susceptible to experimental colitis. In several cohorts of IBD patients, intestinal protein levels of Dsg2 are reduced and desmosome ultrastructure is altered suggesting that Dsg2 is involved in IBD pathogenesis. In addition to its adhesive function, Dsg2 contributes to enterocyte cohesion and intestinal barrier function. Dsg2 is also involved in enterocyte proliferation, barrier differentiation and induction of apoptosis, in part by regulation of p38MAPK and EGFR signalling. In IBD, the function of Dsg2 appears to be compromised via p38MAPK activation, which is a critical pathway for regulation of desmosomes and is associated with keratin phosphorylation in IBD patients. In this review, the current findings on the role of Dsg2 as a novel promising target to prevent loss of intestinal barrier function in IBD patients are discussed.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Kevin Boerner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Faculty of Medicine Ludwig Maximilians University Munich Munich Germany
| |
Collapse
|
16
|
Solis CJ, Hamilton MK, Caruffo M, Garcia-Lopez JP, Navarrete P, Guillemin K, Feijoo CG. Intestinal Inflammation Induced by Soybean Meal Ingestion Increases Intestinal Permeability and Neutrophil Turnover Independently of Microbiota in Zebrafish. Front Immunol 2020; 11:1330. [PMID: 32793187 PMCID: PMC7393261 DOI: 10.3389/fimmu.2020.01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Intestinal inflammation is a condition shared by several intestinal chronic diseases, such as Crohn's disease and ulcerative colitis, with severely detrimental consequences in the long run. Current mammalian models have considerably increased understanding of this pathological condition, highlighting the fact that, in most of the cases, it is a highly complex and multifactorial problem and difficult to deal with. Thus, there is an increasingly evident need for alternative animal models that could offer complementary approaches that have not been exploited in rodents, thereby contributing to a different view on the disease. Here, we report the effects of a soybean meal-induced intestinal inflammation model on intestinal integrity and function as well as on neutrophil recruitment and microbiota composition in zebrafish. We find that the induced intestinal inflammation process is accompanied by an increase in epithelial permeability in addition to changes in the mRNA levels of different tight junction proteins. Conversely, there was no evidence of damage of epithelial cells nor an increase in their proliferation. Of note, our results show that this intestinal inflammatory model is induced independently of the presence of microbiota. On the other hand, this inflammatory process affects intestinal physiology by decreasing protein absorption, increasing neutrophil replacement, and altering microbiota composition with a decrease in the diversity of cultivable bacteria.
Collapse
Affiliation(s)
- Camila J. Solis
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | | | - Mario Caruffo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Juan P. Garcia-Lopez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Paola Navarrete
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
17
|
Chen MK, Chen ZJ, Xiao KH, Qin ZK, Ye YL, Wen WJ, Bian J, Xue KY, Zhou QZ, Guo WB, Zhou JH, Xia M, Li X, Liu CD. Predictive value of cadherin-11 for subsequent recurrence and progression in non-muscle invasive bladder cancer. Jpn J Clin Oncol 2020; 50:456-464. [PMID: 31894237 DOI: 10.1093/jjco/hyz186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cadherin-11 (CDH11) is a type II cadherin and reported to function as an oncogene in various cancers. Our present study aims to investigate the role of CDH11 in bladder cancer (BCA). METHODS Bioinformatics analysis was performed in four independent microarray data including 56 non-muscle-invasive bladder cancer (NMIBC) and 132 muscle-invasive bladder cancer (MIBC) tissues from Gene Expression Omnibus to screen out differentially expressed genes. Next, we detected CDH11 expression in BCA specimens and cell lines by qPCR and western blotting assays. Immunohistochemical analyses were performed in 209 paraffin-embedded BCA samples and 30 adjacent normal bladder tissues. RESULTS Bioinformatics analysis revealed that CDH11 had a higher expression level in MIBC tissues than in NMIBC, which was consistent with our clinical BCA specimens and cell lines at both mRNA and protein levels. Immunohistochemical analysis demonstrated that over-expression of CDH11 was closely related to the histological grade, pT status, tumour size and poor outcomes of BCA patients. What's more, CDH11 (area under curve (AUC) = 0.673 and 0.735) had a better predictive value than E-cadherin (AUC = 0.629 and 0.629) and a similar discrimination with the European Organization for Research and Treatment of Cancer (EORTC) score system (AUC = 0.719 and 0.667) in evaluating potential recurrence and progression of NMIBC. Moreover, combination of CDH11 and EORTC score system was the best predictive model in predicting recurrence of NMIBC (AUC = 0.779) among the three models. CONCLUSIONS CDH11 was a reliable therapeutic target in BCA and a useful index to predict the possibilities of recurrence and progression in NMIBC patients.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kang-Hua Xiao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Ke Qin
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Lin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Jie Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bing Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cancer Research institute, Southern Medical University, Guangzhou, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn’s Disease. Clin Rev Allergy Immunol 2020; 60:164-174. [DOI: 10.1007/s12016-020-08795-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Potential Roles and Functions of Listerial Virulence Factors during Brain Entry. Toxins (Basel) 2020; 12:toxins12050297. [PMID: 32380697 PMCID: PMC7291126 DOI: 10.3390/toxins12050297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Although it rarely induces disease in humans, Listeria monocytogenes (Lm) is important due to the frequency of serious pathological conditions—such as sepsis and meningitis—it causes in those few people that do get infected. Virulence factors (VF) of Lm—especially those involved in the passage through multiple cellular barriers of the body, including internalin (Inl) family members and listeriolysin O (LLO)—have been investigated both in vitro and in vivo, but the majority of work was focused on the mechanisms utilized during penetration of the gut and fetoplacental barriers. The role of listerial VF during entry into other organs remain as only partially solved puzzles. Here, we review the current knowledge on the entry of Lm into one of its more significant destinations, the brain, with a specific focus on the role of various VF in cellular adhesion and invasion.
Collapse
|
20
|
Neelam S, Niederkorn JY. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Invest Ophthalmol Vis Sci 2020; 61:25. [PMID: 32305043 PMCID: PMC7401639 DOI: 10.1167/iovs.61.4.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/28/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Severing corneal nerves during orthotopic corneal transplantation elicits the elaboration of the neuropeptide substance P (SP), which induces the generation of CD11c+ contrasuppressor (CS) cells. CS cells disable T regulatory cells (Tregs) that are induced when antigens enter the anterior chamber (AC), either by direct injection or by orthotopic corneal transplantation. This study examined the crucial cell surface molecules on Tregs that are adversely affected by CS cells that are generated by severing corneal nerves. Methods CS cells were induced by producing shallow 2.0-mm circular incisions in the corneal epithelium in BALB/c mice. CD8+ Tregs were generated by injecting ovalbumin into the AC. The effects of CS cells and SP on the expression and function of two cell surface molecules (CD103 and the receptor of interferon-γ) that are crucial for the induction and function of CD8+ Tregs were analyzed. Results SP converted CD11c+, but not CD11c- , dendritic cells (DCs) to CS cells. Severing corneal nerves resulted in a 66% reduction in the expression of CD103 on CD8+ AC-associated immune deviation (ACAID) Tregs, and a 50% reduction in the interferon-γ receptor (IFN-γR). These effects could be mimicked in vitro by coculturing CS cells with CD8+ ACAID Tregs. Conclusions The elaboration of SP in response to corneal nerve ablation converts CD11c+ DCs to CS cells. CS cells disable CD8+ ACAID Tregs by downregulating two crucial cell surface molecules, CD103 and IFN-γR, by an SP-dependent pathway. Blocking this pathway may provide a means of restoring ocular immune privilege in corneas subjected to corneal nerve injury.
Collapse
Affiliation(s)
- Sudha Neelam
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
21
|
Hoffecker IT, Arima Y, Iwata H. Tuning intercellular adhesion with membrane-anchored oligonucleotides. J R Soc Interface 2019; 16:20190299. [PMID: 31662069 DOI: 10.1098/rsif.2019.0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adhesive interactions between cells play an integral role in development, differentiation and regeneration. Existing methods for controlling cell-cell cohesion and adhesion by manipulating protein expression are constrained by biological interdependencies, e.g. coupling of cadherins to actomyosin force-feedback mechanisms. We use oligonucleotides conjugated to PEGylated lipid anchors (ssDNAPEGDPPE) to introduce artificial cell-cell adhesion that is largely decoupled from the internal cytoskeleton. We describe cell-cell doublets with a mechanical model based on isotropic, elastic deformation of spheres to estimate the adhesion at the cell-cell interface. Physical manipulation of adhesion by modulating the PEG-lipid to ssDNAPEGDPPE ratio, and conversely treating with actin-depolymerizing cytochalasin D, resulted in decreases and increases in doublet contact area, respectively. Our data are relevant to the ongoing discussion over mechanisms of tissue surface tension and in agreement with models based on opposing cortical and cohesive forces. PEG-lipid modulation of doublet geometries resulted in a well-defined curve indicating continuity, enabling prescriptive calibration for controlling doublet geometry. Our study demonstrates tuning of basic doublet adhesion, laying the foundation for more complex multicellular adhesion control independent of protein expression.
Collapse
Affiliation(s)
- Ian T Hoffecker
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna väg 9, Solna 171 65, Sweden
| | - Yusuke Arima
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University CE41, 744 Motoka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,The Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| |
Collapse
|
22
|
Glutamine protects both transcellular and paracellular pathways of chick intestinal calcium absorption under oxidant conditions. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110553. [PMID: 31437565 DOI: 10.1016/j.cbpa.2019.110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
Glutamine (GLN) avoids the inhibition of the intestinal Ca2+ absorption caused by menadione (MEN) through oxidative stress. The purpose of this study was to elucidate whether molecules of transcellular and/or paracellular pathways of intestinal Ca2+ absorption are involved in the GLN action and underlying mechanisms. One-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN + MEN treated. The morphology of intestinal villi, the intestinal Ca2+ absorption and the molecules involved in the transcellular and paracellular pathways were analyzed. Markers of autophagy and inflammation were also evaluated. The data demonstrated that GLN protected both transcellular and paracellular pathways. GLN avoided morphological changes in the intestine caused by MEN. GLN protected the gene expression of transporters involved in the transcellular pathway and the gene and protein expression of molecules belonging to the paracellular pathways altered by MEN. GLN increased the LC3-II protein expression and the number of acidic vesicular organelles, markers of autophagy, and blocked an increase in the NFkB protein expression in the nuclei and in the IL-6 gene expression caused by MEN. In conclusion, GLN protects both transcellular and paracellular pathways of intestinal Ca2+ absorption by increasing autophagy and blocking inflammation.
Collapse
|
23
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
24
|
Verma AK, Kandikattu HK, Manohar M, Shukla A, Upparahalli Venkateshaiah S, Zhu X, Mishra A. Intestinal overexpression of IL-18 promotes eosinophils-mediated allergic disorders. Immunology 2019; 157:110-121. [PMID: 30779114 DOI: 10.1111/imm.13051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
Baseline eosinophils reside in the gastrointestinal tract; however, in several allergic disorders, excessive eosinophils accumulate in the blood as well in the tissues. Recently, we showed in vitro that interleukin (IL)-18 matures and transforms IL-5-generated eosinophils into the pathogenic eosinophils that are detected in human allergic diseases. To examine the role of local induction of IL-18 in promoting eosinophil-associated intestinal disorders, we generated enterocyte IL-18-overexpressing mice using the rat intestinal fatty acid-binding promoter (Fabpi) and analysed tissue IL-18 overexpression and eosinophilia by performing real-time polymerase chain reaction, Enzyme-Linked Immunosorbent Assay and anti-major basic protein immunostaining. Herein we show that Fabpi-IL-18 mice display highly induced IL-18 mRNA and protein in the jejunum. IL-18 overexpression in enterocytes promotes marked increases of eosinophils in the blood and jejunum. Our analysis shows IL-18 overexpression in the jejunum induces a specific population of CD101+ CD274+ tissue eosinophils. Additionally, we observed comparable tissue eosinophilia in IL-13-deficient-Fabpi-IL-18 mice, and reduced numbers of tissue eosinophils in eotaxin-deficient-Fabpi-IL-18 and IL-5-deficient-Fabpi-IL-18 mice compared with Fabpi-IL-18 transgenic mice. Notably, jejunum eosinophilia in IL-5-deficient-Fabpi-IL-18 mice is significantly induced compared with wild-type mice, which indicates the direct role of induced IL-18 in the tissue accumulation of eosinophils and mast cells. Furthermore, we also found that overexpression of IL-18 in the intestine promotes eosinophil-associated peanut-induced allergic responses in mice. Taken together, we provide direct in vivo evidence that induced expression of IL-18 in the enterocytes promotes eotaxin-1, IL-5 and IL-13 independent intestinal eosinophilia, which signifies the clinical relevance of induced IL-18 in eosinophil-associated gastrointestinal disorders (EGIDs) to food allergens.
Collapse
Affiliation(s)
- Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anshi Shukla
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiang Zhu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
25
|
Jin Y, Ibrahim D, Magness ST, Blikslager AT. Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity. Am J Physiol Gastrointest Liver Physiol 2018; 315:G966-G979. [PMID: 30285466 PMCID: PMC6336945 DOI: 10.1152/ajpgi.00087.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adherens junctions (AJs), together with tight junctions (TJs), form an apical junctional complex that regulates intestinal epithelial cell-to-cell adherence and barrier homeostasis. Within the AJ, membrane-bound E-cadherin binds β-catenin, which functions as an essential intracellular signaling molecule. We have previously identified a novel protein in the region of the apical junction complex, chloride channel protein-2 (ClC-2), that we have used to study TJ regulation. In this study, we investigated the possible effects of ClC-2 on the regulation of AJs in intestinal mucosal epithelial homeostasis and tumorigenicity. Mucosal homeostasis and junctional proteins were examined in wild-type (WT) and ClC-2 knockout (KO) mice as well as associated colonoids. Tumorigenicity and AJ-associated signaling were evaluated in a murine colitis-associated tumor model and in a colorectal cancer cell line (HT-29). Colonic tissues from ClC-2 KO mice had altered ultrastructural morphology of intercellular junctions with reduced colonocyte differentiation, whereas jejunal tissues had minimal changes. Colonic crypts from ClC-2 KO mice had significantly higher numbers of less-differentiated forms of colonoids compared with WT. Furthermore, the absence of ClC-2 resulted in redistribution of AJ proteins and increased β-catenin activity. Downregulation of ClC-2 in colorectal cells resulted in significant increases in proliferation associated with disruption of AJs. Colitis-associated tumors in ClC-2 KO mice were significantly increased, associated with β-catenin transcription factor activation. The absence of ClC-2 results in less differentiated colonic crypts and increased tumorigenicity associated with colitis via dysregulation of AJ proteins and activation of β-catenin-associated signaling. NEW & NOTEWORTHY Disruption of adherens junctions in the absence of chloride channel protein-2 revealed critical functions of these junctional structures, including maintenance of colonic homeostasis and differentiation as well as driving tumorigenicity by regulating β-catenin signaling.
Collapse
Affiliation(s)
- Younggeon Jin
- 1Department of Clinical Sciences, Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Dina Ibrahim
- 1Department of Clinical Sciences, Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Scott T. Magness
- 1Department of Clinical Sciences, Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,2Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Anthony T. Blikslager
- 1Department of Clinical Sciences, Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
26
|
Desai A, Geraghty S, Dean D. Effects of blocking integrin β1 and N-cadherin cellular interactions on mechanical properties of vascular smooth muscle cells. J Biomech 2018; 82:337-345. [PMID: 30503562 DOI: 10.1016/j.jbiomech.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023]
Abstract
Experimental measurements of cellular mechanical properties have shown large variability in whole-cell mechanical properties between cells from a single population. This heterogeneity has been observed in many cell populations and with several measurement techniques but the sources are not yet fully understood. Cell mechanical properties are directly related to the composition and organization of the cytoskeleton, which is physically coupled to neighboring cells through adherens junctions and to underlying matrix through focal adhesion complexes. This high level of heterogeneity may be attributed to varying cellular interactions throughout the sample. We tested the effect of cell-cell and cell-matrix interactions on the mechanical properties of vascular smooth muscle cells (VSMCs) in culture by using antibodies to block N-cadherin and integrin β1 interactions. VSMCs were cultured on substrates of varying stiffness with and without tension. Under each of these conditions, cellular mechanical properties were characterized by performing atomic force microscopy (AFM) and cellular structure was analyzed through immunofluorescence imaging. As expected, VSMC mechanical properties were greatly affected by the underlying culture substrate and applied tension. Interestingly, the cell-to-cell variation in mechanical properties within each sample decreased significantly in the antibody conditions. Thus, the cells grown with blocking antibodies were more homogeneous in their mechanical properties on both glass and soft substrates. This suggests that diversified adhesion binding between cells and the ECM is responsible for a significant amount of mechanical heterogeneity that is observed in 2D cell culture studies.
Collapse
Affiliation(s)
- Aesha Desai
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Sandra Geraghty
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
27
|
Ahmed I, Roy BC, Raach RMT, Owens SM, Xia L, Anant S, Sampath V, Umar S. Enteric infection coupled with chronic Notch pathway inhibition alters colonic mucus composition leading to dysbiosis, barrier disruption and colitis. PLoS One 2018; 13:e0206701. [PMID: 30383855 PMCID: PMC6211731 DOI: 10.1371/journal.pone.0206701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Intestinal mucus layer disruption and gut microflora modification in conjunction with tight junction (TJ) changes can increase colonic permeability that allows bacterial dissemination and intestinal and systemic disease. We showed previously that Citrobacter rodentium (CR)-induced colonic crypt hyperplasia and/or colitis is regulated by a functional cross-talk between the Notch and Wnt/β-catenin pathways. In the current study, mucus analysis in the colons of CR-infected (108 CFUs) and Notch blocker Dibenzazepine (DBZ, i.p.; 10μmol/Kg b.w.)-treated mice revealed significant alterations in the composition of trace O-glycans and complex type and hybrid N-glycans, compared to CR-infected mice alone that preceded/accompanied alterations in 16S rDNA microbial community structure and elevated EUB338 staining. While mucin-degrading bacterium, Akkermansia muciniphila (A. muciniphila) along with Enterobacteriaceae belonging to Proteobacteria phyla increased in the feces, antimicrobial peptides Angiogenin-4, Intelectin-1 and Intelectin-2, and ISC marker Dclk1, exhibited dramatic decreases in the colons of CR-infected/DBZ-treated mice. Also evident was a loss of TJ and adherens junction protein immuno-staining within the colonic crypts that negatively impacted paracellular barrier. These changes coincided with the loss of Notch signaling and exacerbation of mucosal injury. In response to a cocktail of antibiotics (Metronidazole/ciprofloxacin) for 10 days, there was increased survival that coincided with: i) decreased levels of Proteobacteria, ii) elevated Dclk1 levels in the crypt and, iii) reduced paracellular permeability. Thus, enteric infections that interfere with Notch activity may promote mucosal dysbiosis that is preceded by changes in mucus composition. Controlled use of antibiotics seems to alleviate gut dysbiosis but may be insufficient to promote colonic crypt regeneration.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Badal C. Roy
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rita-Marie T. Raach
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sarah M. Owens
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Lijun Xia
- Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma, United States of America
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, Missouri, United States of America
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N, Halbgebauer R, Groß R, Barth T, Lechel A, Walter BM, Kraus JM, Wiegreffe C, Grimm J, Scheffold A, Schneider MR, Peuker K, Zeißig S, Britsch S, Rose-John S, Vettorazzi S, Wolf E, Tannapfel A, Steinestel K, Reber SO, Walther P, Kestler HA, Radermacher P, Barth TF, Huber-Lang M, Kleger A, Seufferlein T. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. J Clin Invest 2018; 128:5056-5072. [PMID: 30320600 DOI: 10.1172/jci97912] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Ann K Ellwanger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christiane Schwerdt
- Waldkrankenhaus "Rudolph Elle" Eisenberg, Lehrstuhl für Orthopädie Uniklinik Jena, Jena, Germany
| | - Lucas Bettac
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Ninel Azoitei
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rüdiger Groß
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tabea Barth
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benjamin M Walter
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | | | - Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Kenneth Peuker
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Sebastian Zeißig
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | | | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
29
|
Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H. Stem Cells in Repair of Gastrointestinal Epithelia. Physiology (Bethesda) 2018; 32:278-289. [PMID: 28615312 DOI: 10.1152/physiol.00005.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Among the endodermal tissues of adult mammals, the gastrointestinal (GI) epithelium exhibits the highest turnover rate. As the ingested food moves along the GI tract, gastric acid, digestive enzymes, and gut resident microbes aid digestion as well as nutrient and mineral absorption. Due to the harsh luminal environment, replenishment of new epithelial cells is essential to maintain organ structure and function during routine turnover and injury repair. Tissue-specific adult stem cells in the GI tract serve as a continuous source for this immense regenerative activity. Tissue homeostasis is achieved by a delicate balance between gain and loss of cells. In homeostasis, temporal tissue damage is rapidly restored by well-balanced tissue regeneration, whereas prolonged imbalance may result in diverse pathologies of homeostasis and injury repair. Starting with a summary of the current knowledge of GI tract homeostasis, we continue with providing models of acute injury and chronic diseases. Finally, we will discuss how primary organoid cultures allow new insights into the mechanisms of homeostasis, injury repair, and disease, and how this novel 3D culture system has the potential to translate into the clinic.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands; and.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
31
|
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029314. [PMID: 28507021 DOI: 10.1101/cshperspect.a029314] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Aaron Buckley
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
32
|
Liu Y, Chidgey M, Yang VW, Bialkowska AB. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon. Am J Physiol Gastrointest Liver Physiol 2017; 313:G478-G491. [PMID: 28864500 PMCID: PMC5792213 DOI: 10.1152/ajpgi.00172.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models (Villin-CreERT2;Klf5fl/fl designated as Klf5ΔIND and Villin-Cre;Klf5fl/fl as Klf5ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2, which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2, a gene encoding a major component of desmosome structures.NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function, which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes.
Collapse
Affiliation(s)
- Yang Liu
- 1Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York;
| | - Martyn Chidgey
- 3Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Vincent W. Yang
- 1Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York; ,2School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | | |
Collapse
|
33
|
Liang J, Balachandra S, Ngo S, O'Brien LE. Feedback regulation of steady-state epithelial turnover and organ size. Nature 2017; 548:588-591. [PMID: 28847000 DOI: 10.1038/nature23678] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/25/2017] [Indexed: 12/27/2022]
Abstract
Epithelial organs undergo steady-state turnover throughout adult life, with old cells being continually replaced by the progeny of stem cell divisions. To avoid hyperplasia or atrophy, organ turnover demands strict equilibration of cell production and loss. However, the mechanistic basis of this equilibrium is unknown. Here we show that robustly precise turnover of the adult Drosophila intestine arises through a coupling mechanism in which enterocyte apoptosis breaks feedback inhibition of stem cell division. Healthy enterocytes inhibit stem cell division through E-cadherin, which prevents secretion of mitogenic epidermal growth factors (EGFs) by repressing transcription of the EGF maturation factor rhomboid. Individual apoptotic enterocytes promote divisions by loss of E-cadherin, which releases cadherin-associated β-catenin (Armadillo in Drosophila) and p120-catenin to induce rhomboid. Induction of rhomboid in the dying enterocyte triggers activation of the EGF receptor (Egfr) in stem cells within a discrete radius. When we blocked apoptosis, E-cadherin-controlled feedback suppressed divisions, and the organ retained the same number of cells. When we disrupted feedback, apoptosis and divisions were uncoupled, and the organ developed either hyperplasia or atrophy. Together, our results show that robust cellular balance hinges on the obligate coupling of divisions to apoptosis, which limits the proliferative potential of a stem cell to the precise time and place at which a replacement cell is needed. In this way, localized cell-cell communication gives rise to tissue-level homeostatic equilibrium and constant organ size.
Collapse
Affiliation(s)
- Jackson Liang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
34
|
van Dijk IA, Ferrando ML, van der Wijk AE, Hoebe RA, Nazmi K, de Jonge WJ, Krawczyk PM, Bolscher JGM, Veerman ECI, Stap J. Human salivary peptide histatin-1 stimulates epithelial and endothelial cell adhesion and barrier function. FASEB J 2017; 31:3922-3933. [PMID: 28522595 DOI: 10.1096/fj.201700180r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
Histatins are multifunctional histidine-rich peptides secreted by the salivary glands and exclusively present in the saliva of higher primates, where they play a fundamental role in the protection of the oral cavity. Our previously published results demonstrated that histatin-1 (Hst1) promotes cell-substrate adhesion in various cell types and hinted that it could also be involved in cell-cell adhesion, a process of fundamental importance to epithelial and endothelial barriers. Here we explore the effects of Hst1 on cellular barrier function. We show that Hst1 improved endothelial barrier integrity, decreased its permeability for large molecules, and prevented translocation of bacteria across epithelial cell layers. These effects are mediated by the adherens junction protein E-cadherin (E-cad) and by the tight junction protein zonula occludens 1, as Hst1 increases the levels of zonula occludens 1 and of active E-cad. Hst1 may also promote epithelial differentiation as Hst1 induced transcription of the epithelial cell differentiation marker apolipoprotein A-IV (a downstream E-cad target). In addition, Hst1 counteracted the effects of epithelial-mesenchymal transition inducers on the outgrowth of oral cancer cell spheroids, suggesting that Hst1 affects processes that are implicated in cancer progression.-Van Dijk, I. A., Ferrando, M. L., van der Wijk, A.-E., Hoebe, R. A., Nazmi, K., de Jonge, W. J., Krawczyk, P. M., Bolscher, J. G. M., Veerman, E. C. I., Stap, J. Human salivary peptide histatin-1 stimulates epithelial and endothelial cell adhesion and barrier function.
Collapse
Affiliation(s)
- Irene A van Dijk
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands; .,Department of Oral Biochemistry, University of Amsterdam and Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Maria Laura Ferrando
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Eva van der Wijk
- Department of Ophthalmology, Ocular Angiogenesis Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Ocular Angiogenesis Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, University of Amsterdam and Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, University of Amsterdam and Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, University of Amsterdam and Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Jan Stap
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Abstract
Mucosal barriers separate self from non-self and are essential for life. These barriers, which are the first line of defense against external pathogens, are formed by epithelial cells and the substances they secrete. Rather than an absolute barrier, epithelia at mucosal surfaces must allow selective paracellular flux that discriminates between solutes and water while preventing the passage of bacteria and toxins. In vertebrates, tight junctions seal the paracellular space; flux across the tight junction can occur through two distinct routes that differ in selectivity, capacity, molecular composition and regulation. Dysregulation of either pathway can accompany disease. A third, tight-junction-independent route that reflects epithelial damage can also contribute to barrier loss during disease. In this Cell Science at a Glance article and accompanying poster, we present current knowledge on the molecular components and pathways that establish this selectively permeable barrier and the interactions that lead to barrier dysfunction during disease.
Collapse
Affiliation(s)
- Marion M France
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| | - Jerrold R Turner
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| |
Collapse
|
36
|
Schmidt A, Lv Z, Großhans J. ELMO and Sponge specify subapical restriction of Canoe and formation of the subapical domain in early Drosophila embryos. Development 2017; 145:dev.157909. [DOI: 10.1242/dev.157909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Canoe/Afadin and the GTPase Rap1 specify the subapical domain during cellularization in Drosophila embryos. The timing of domain formation is unclear. The subapical domain may gradually mature or emerge synchronously with basal and lateral domain. The mechanism for activation of Rap1 by potential guanyl nucleotide exchange factors (GEF) or GTPase activating proteins (GAP) is unknown. Here, we retraced the emergence of the subapical domain at the onset of cellularization by in vivo imaging with CanoeYFP in comparison to the lateral and basal markers, ScribbledGFP and CherrySlam. CanoeYFP accumulates at a subapical position at about the same time as the lateral marker ScribbledGFP but a few minutes prior to basal CherrySlam. Furthermore, we show that the unconventional GEF complex ELMO-Sponge is subapically enriched and is required for subapical restriction of Canoe. The localization dynamics of ELMO-Sponge suggests a patterning mechanism for positioning the subapical region adjacent to the apical region. While marking the disc-like apical regions before cellularization, ELMO-Sponge redistributes to a ring-like pattern surrounding the apical region at the onset of cellularization.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016; 4:e1251384. [PMID: 28123927 DOI: 10.1080/21688370.2016.1251384] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Beside digesting nutrients and absorbing solutes and electrolytes, the intestinal epithelium with its barrier function is in charge of a tightly controlled antigen trafficking from the intestinal lumen to the submucosa. This trafficking dictates the delicate balance between tolerance and immune response causing inflammation. Loss of barrier function secondary to upregulation of zonulin, the only known physiological modulator of intercellular tight junctions, leads to uncontrolled influx of dietary and microbial antigens. Additional insights on zonulin mechanism of action and the recent appreciation of the role that altered intestinal permeability can play in the development and progression of chronic inflammatory disorders has increased interest of both basic scientists and clinicians on the potential role of zonulin in the pathogenesis of these diseases. This review focuses on the recent research implicating zonulin as a master regulator of intestinal permeability linked to the development of several chronic inflammatory disorders.
Collapse
Affiliation(s)
- Craig Sturgeon
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Boston, MA, USA; Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Boston, MA, USA; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
38
|
Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis. Infect Immun 2016; 84:798-810. [PMID: 26755160 PMCID: PMC4771346 DOI: 10.1128/iai.01374-15] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/28/2015] [Indexed: 12/24/2022] Open
Abstract
Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis.
Collapse
|
39
|
Prager M, Buettner J, Buening C. Genes involved in the regulation of intestinal permeability and their role in ulcerative colitis. J Dig Dis 2015; 16:713-22. [PMID: 26512799 DOI: 10.1111/1751-2980.12296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified single nucleotide polymorphisms in genes that might influence intestinal barrier function (HNF4A, ECM1, CDH1 and LAMB1) to increase the risk for ulcerative colitis (UC). The aim of our study was to detect causative sequence alterations and provide a functional link to a disturbed intestinal permeability (IP) in UC. METHODS A total of 19 UC patients with increased IP (lactulose/mannitol ratio measured by sugar drink test) were identified from a large database, and exon/intron boundaries, coding and promoter regions of HNF4A, ECM1, CDH1 and LAMB1 were sequenced. Variants with putative protein alterations were studied for an association with IP in 82 UC patients. A case-control analysis including a genotype phenotype correlation was performed in 743 patients with inflammatory bowel disease (IBD) and 473 healthy controls. RESULTS In UC patients, we identified 11 missense-mutations, 12 synonymous mutations, one putative promoter variant and three variants in introns close to the intron/exon boundaries (CDH1, HNF4A). For several variants prediction tools revealed damaging protein alterations. None of the studied variants, however, showed an association with an increased IP in UC. In the case-control analysis, the frequency of all investigated variants did not differ between UC or Crohn's disease and healthy controls. Furthermore, no significant association was found to a distinct phenotype. CONCLUSIONS Despite our large sequencing approach, we could not identify protein altering variants in the genes HNF4A, ECM1, CDH1 and LAMB1 which could explain an impaired intestinal barrier function in UC. The functional relevance of these genes in IBD remains unknown.
Collapse
Affiliation(s)
- Matthias Prager
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte
| | - Janine Buettner
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte
| | - Carsten Buening
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte.,Krankenhaus Waldfriede, Department of Internal Medicine, Berlin, Germany
| |
Collapse
|
40
|
Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine. Histochem Cell Biol 2015; 145:81-92. [PMID: 26496923 DOI: 10.1007/s00418-015-1374-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Abstract
The membrane protein palmitoylated (MPP) family belongs to the membrane-associated guanylate kinase (MAGUK) family. MPP1 interacts with the protein 4.1 family member, 4.1R, as a membrane skeletal protein complex in erythrocytes. We previously described the interaction of another MPP family, MPP6, with 4.1G in the mouse peripheral nervous system. In the present study, the immunolocalization of MPP6 in the mouse small intestine was examined and compared with that of E-cadherin, zonula occludens (ZO)-1, and 4.1B, which we previously investigated in intestinal epithelial cells. The immunolocalization of MPP6 was also assessed in the small intestines of 4.1B-deficient (-/-) mice. In the small intestine, Western blotting revealed that the molecular weight of MPP6 was approximately 55-kDa, and MPP6 was immunostained under the cell membranes in the basolateral portions of almost all epithelial cells from the crypts to the villi. The immunostaining pattern of MPP6 in epithelial cells was similar to that of E-cadherin, but differed from that of ZO-1. In intestinal epithelial cells, the immunostained area of MPP6 was slightly different from that of 4.1B, which was restricted to the intestinal villi. The immunolocalization of MPP6 in small intestinal epithelial cells was similar between 4.1B(-/-) mice and 4.1B(+/+) mice. In the immunoprecipitation study, another MAGUK family protein, calcium/calmodulin-dependent serine protein kinase (CASK), was shown to molecularly interact with MPP6. Thus, we herein showed the immunolocalization and interaction proteins of MPP6 in the mouse small intestine, and also that 4.1B in epithelial cells was not essential for the sorting of MPP6.
Collapse
|
41
|
Kanayama YJ, Kaneko M, Emoto Y, Emoto M. Listeriolysin O, but not Murine E-cadherin, is Involved in Invasion of Listeria monocytogenes into Murine Liver Parenchymal Cells. Open Microbiol J 2015; 9:81-3. [PMID: 26668665 PMCID: PMC4676048 DOI: 10.2174/1874285801509010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022] Open
Abstract
Human E-cadherin and listeriolysin O (LLO) are involved in invasion of Listeria monocytogenes into human liver parenchymal cells (LPC). Yet, it remains to be determined whether murine E-cadherin and LLO participate in invasion of L. monocytogenes into murine LPC. In the present study, involvement of murine E-cadherin and LLO in invasion of L. monocytogenes into murine LPC was investigated. Murine E-cadherin was expressed on murine LPC, but the expression became undetectable by insertion of transgene of Simian virus 40 large T antigen. Although invasion of L. monocytogenes into murine LPC was found regardless of murine E-cadherin expression, infection rate of L. monocytogenes being unable to secrete LLO was lower than that of L. monocytogenes being capable of secreting LLO. Our RESULTS verify that invasion of L. monocytogenes into murine LPC occurs independently of murine E-cadherin and indicate that LLO participates in invasion of L. monocytogenes into murine LPC.
Collapse
Affiliation(s)
| | | | | | - Masashi Emoto
- Laboratory of Immunology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
42
|
Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol 2015; 8:720-30. [PMID: 25943273 DOI: 10.1038/mi.2015.40] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links between intestinal barrier loss and disease extend much further, including documented associations with celiac disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities between IBD and GVHD, mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research directions on the topic are discussed along with implications for treatment.
Collapse
|
43
|
Yao L, Zhao H, Tang H, Song J, Dong H, Zou F, Cai S. Phosphatidylinositol 3-Kinase Mediates β-Catenin Dysfunction of Airway Epithelium in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci 2015; 147:168-77. [PMID: 26089345 DOI: 10.1093/toxsci/kfv120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Yet the role of phosphatidylinositol 3-kinase (PI3K) in dysregulation of airway epithelial adherens junctions in toluene diisocyanate (TDI)-induced asthma has not been addressed. Male BALB/c mice were first dermally sensitized and then challenged with TDI by means of compressed air nebulization. The mice were treated intratracheally with PI3K inhibitor LY294002. Levels of phospho-Akt in airway epithelium and whole lung tissues were markedly increased in TDI group compared with control mice, which decreased after administration of LY294002. The dilated intercellular spaces of airway epithelium induced by TDI were partially recovered by LY294002. Both the protein expression and distribution of adherens junction proteins E-cadherin and β-catenin were altered by TDI. Treatment with LY294002 rescued the distribution of E-cadherin and β-catenin at cell-cell membranes, restored total β-catenin pool, but had no effect on protein level of E-cadherin. At the same time, LY294002 also inhibited phosphorylation of ERK, glycogen synthase kinase3β and tyrosine 654 of β-catenin induced by TDI. In summary, our results showed that the PI3K pathway mediates β-catenin dysregulation in a TDI-induced murine asthma model, which may be associated with increased tyrosine phosphorylation of β-catenin.
Collapse
Affiliation(s)
- Lihong Yao
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Haijin Zhao
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Haixiong Tang
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Jiafu Song
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Hangming Dong
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| |
Collapse
|
44
|
Schey R, Danzer C, Mattner J. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells. Immunobiology 2015; 220:227-235. [PMID: 25466587 PMCID: PMC4273735 DOI: 10.1016/j.imbio.2014.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other.
Collapse
Affiliation(s)
- Regina Schey
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| | - Claudia Danzer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| |
Collapse
|
45
|
Bedzhov I, Zernicka-Goetz M. Cell death and morphogenesis during early mouse development: are they interconnected? Bioessays 2015; 37:372-8. [PMID: 25640415 PMCID: PMC4409078 DOI: 10.1002/bies.201400147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
46
|
8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Strahlenther Onkol 2014; 191:429-36. [DOI: 10.1007/s00066-014-0782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
47
|
E I A, V J, D R H, A T S, A W S, K E, M A I. Expression of p27Kip1 and E-cadherin in Head and Neck Squamous Cell Carcinoma of Indonesian Patients. Open Dent J 2014; 8:136-43. [PMID: 25246990 PMCID: PMC4166792 DOI: 10.2174/1874210601408010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022] Open
Abstract
Cancer cells exhibit characteristic damage of DNA and its expression. The expression of the tumor suppressors E-cadherin and p27Kip1 has been tested on 57 head and neck squamous cell carcinomas (HNSCC) of Indonesian subjects. HNSCC tumor samples including both primary and (unrelated) nodal cases were obtained from the archives of Indonesian hospitals, in accordance with acknowledged ethical requirements. Only modest correlation was found between reduced expression of E-cadherin or p27Kip1 with increased malignancy of primary and nodal growth. The observed strong correlation regardless of malignancy between the expressed levels of E-cadherin and p27Kip1 suggests that also in combination these would not help to better predict the outcome of HNSCC.
Collapse
Affiliation(s)
- Auerkari E I
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia ; Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549 Japan
| | - Joewono V
- Department of Anatomic-Pathology, Faculty of Medicine, University of Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia
| | - Handjari D R
- Department of Anatomic-Pathology, Faculty of Medicine, University of Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia
| | - Sarwono A T
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia
| | - Suhartono A W
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia
| | - Eto K
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549 Japan
| | - Ikeda M A
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549 Japan
| |
Collapse
|
48
|
Defects in the adherens junction complex (E-cadherin/ β-catenin) in inflammatory bowel disease. Cell Tissue Res 2014; 360:749-60. [DOI: 10.1007/s00441-014-1994-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
|
49
|
Walker EM, Thompson CA, Battle MA. GATA4 and GATA6 regulate intestinal epithelial cytodifferentiation during development. Dev Biol 2014; 392:283-94. [PMID: 24929016 PMCID: PMC4149467 DOI: 10.1016/j.ydbio.2014.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/06/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.
Collapse
Affiliation(s)
- Emily M Walker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
50
|
Remodelling of the skin during metamorphosis in the Italian newt (Lissotriton italicus) (Amphibia, Urodela): localization pattern of keratins, stromelysin-3 (MMP-11), and pan-cadherin. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|