1
|
Zaver SA, Sarkar MK, Egolf S, Zou J, Tiwaa A, Capell BC, Gudjonsson JE, Simpson CL. Targeting SERCA2 in organotypic epidermis reveals MEK inhibition as a therapeutic strategy for Darier disease. JCI Insight 2023; 8:e170739. [PMID: 37561594 PMCID: PMC10561730 DOI: 10.1172/jci.insight.170739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Mutation of the ATP2A2 gene encoding sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) was linked to Darier disease more than 2 decades ago; however, there remain no targeted therapies for this disorder causing recurrent skin blistering and infections. Since Atp2a2-knockout mice do not phenocopy its pathology, we established a human tissue model of Darier disease to elucidate its pathogenesis and identify potential therapies. Leveraging CRISPR/Cas9, we generated human keratinocytes lacking SERCA2, which replicated features of Darier disease, including weakened intercellular adhesion and defective differentiation in organotypic epidermis. To identify pathogenic drivers downstream of SERCA2 depletion, we performed RNA sequencing and proteomics analysis. SERCA2-deficient keratinocytes lacked desmosomal and cytoskeletal proteins required for epidermal integrity and exhibited excess MAPK signaling, which modulates keratinocyte adhesion and differentiation. Immunostaining patient biopsies substantiated these findings, with lesions showing keratin deficiency, cadherin mislocalization, and ERK hyperphosphorylation. Dampening ERK activity with MEK inhibitors rescued adhesive protein expression and restored keratinocyte sheet integrity despite SERCA2 depletion or chemical inhibition. In sum, coupling multiomic analysis with human organotypic epidermis as a preclinical model, we found that SERCA2 haploinsufficiency disrupts critical adhesive components in keratinocytes via ERK signaling and identified MEK inhibition as a treatment strategy for Darier disease.
Collapse
Affiliation(s)
- Shivam A. Zaver
- Division of Dermatology, Department of Medicine, and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Shaun Egolf
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Afua Tiwaa
- Division of Dermatology, Department of Medicine, and
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Cory L. Simpson
- Division of Dermatology, Department of Medicine, and
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Zaver SA, Sarkar MK, Egolf S, Zou J, Tiwaa A, Capell BC, Gudjonsson JE, Simpson CL. Targeting SERCA2 in organotypic epidermis reveals MEK inhibition as a therapeutic strategy for Darier disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531620. [PMID: 36945477 PMCID: PMC10028894 DOI: 10.1101/2023.03.07.531620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Mutation of the ATP2A2 gene encoding sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) was linked to Darier disease more than two decades ago; however, there remain no targeted therapies for this disorder causing recurrent skin blistering and infections. Since Atp2a2 knockout mice do not phenocopy its pathology, we established a human tissue model of Darier disease to elucidate its pathogenesis and identify potential therapies. Leveraging CRISPR/Cas9, we generated human keratinocytes lacking SERCA2, which replicated features of Darier disease, including weakened intercellular adhesion and defective differentiation in organotypic epidermis. To identify pathogenic drivers downstream of SERCA2 depletion, we performed RNA sequencing and proteomic analysis. SERCA2-deficient keratinocytes lacked desmosomal and cytoskeletal proteins required for epidermal integrity and exhibited excess MAP kinase signaling, which modulates keratinocyte adhesion and differentiation. Immunostaining patient biopsies substantiated these findings with lesions showing keratin deficiency, cadherin mis-localization, and ERK hyper-phosphorylation. Dampening ERK activity with MEK inhibitors rescued adhesive protein expression and restored keratinocyte sheet integrity despite SERCA2 depletion or chemical inhibition. In sum, coupling multi-omic analysis with human organotypic epidermis as a pre-clinical model, we found that SERCA2 haploinsufficiency disrupts critical adhesive components in keratinocytes via ERK signaling and identified MEK inhibition as a treatment strategy for Darier disease.
Collapse
|
3
|
Baur R, Gandhi J, Marshall NB, Lukomska E, Weatherly LM, Shane HL, Hu G, Anderson SE. Dermal exposure to the immunomodulatory antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice. Toxicol Sci 2021; 184:223-235. [PMID: 34515797 DOI: 10.1093/toxsci/kfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triclosan is an antimicrobial chemical used in healthcare settings that can be absorbed through the skin. Exposure to triclosan has been positively associated with food and aeroallergy and asthma exacerbation in humans and, although not directly sensitizing, has been demonstrated to augment the allergic response in a mouse model of asthma. The skin barrier and microbiome are thought to play important roles in regulating inflammation and allergy and disruptions may contribute to development of allergic disease. To investigate potential connections of the skin barrier and microbiome with immune responses to triclosan, SKH1 mice were exposed dermally to triclosan (0.5-2%) or vehicle for up to 7 consecutive days. Exposure to 2% triclosan for 5-7 days on the skin was shown to increase trans-epidermal water loss levels. Seven days of dermal exposure to triclosan decreased filaggrin 2 and keratin 10 expression, but increased filaggrin and keratin 14 protein along with the danger signal S100a8 and interleukin-4. Dermal exposure to triclosan for 7 days also altered the alpha and beta diversity of the skin and gut microbiome. Specifically, dermal triclosan exposure increased the relative abundance of the Firmicutes family, Lachnospiraceae on the skin but decreased the abundance of Firmicutes family, Ruminococcaceae in the gut. Collectively, these results demonstrate that repeated dermal exposure to the antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice, suggesting that these changes may contribute to the increase in allergic immune responses following dermal exposure to triclosan.
Collapse
Affiliation(s)
- Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV.,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jasleen Gandhi
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Nikki B Marshall
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV.,WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| |
Collapse
|
4
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Shahrokh S, Razzaghi Z, Mansouri V, Ahmadi N. The Impact of Proteomic Investigations on the Development and Improvement of Skin Laser Therapy: A Review Article. J Lasers Med Sci 2019; 10:S90-S95. [PMID: 32021680 DOI: 10.15171/jlms.2019.s16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Different molecular approaches have contributed to finding various responses of skin to external and internal tensions such as laser irradiation and many important mediators of skin disease have been identified through these approaches. However, different essential signals of skin biomarker pathways and proteins are partially detected or completely unknown. In the present study, the impact of proteomics on the evaluation of laser therapy for the treatment of skin diseases is investigated. Methods: The keywords of "Proteomics", "Laser therapy", "Skin", and "Skin disease" were searched in Google Scholar, Scopus and PubMed search engines. After screening, 53 documents were included in the study. Results: The global assessments revealed that different proteins in different signaling pathways of skin metabolism in terms of health or illness after laser therapy are expressed differentially. The results indicated that the application of proteomics is a useful method for promoting the results of laser interventions. Conclusion: This kind of research dealt with the practical proteomics of skin diseases and skin laser therapy.
Collapse
Affiliation(s)
- Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gene Editing–Mediated Disruption of Epidermolytic Ichthyosis–Associated KRT10 Alleles Restores Filament Stability in Keratinocytes. J Invest Dermatol 2019; 139:1699-1710.e6. [DOI: 10.1016/j.jid.2019.03.1146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
|
7
|
Wild-type and SAMP8 mice show age-dependent changes in distinct stem cell compartments of the interfollicular epidermis. PLoS One 2019; 14:e0215908. [PMID: 31091266 PMCID: PMC6519801 DOI: 10.1371/journal.pone.0215908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/10/2019] [Indexed: 11/19/2022] Open
Abstract
Delayed wound healing and reduced barrier function with an increased risk of cancer are characteristics of aged skin and one possible mechanism is misregulation or dysfunction of epidermal stem cells during aging. Recent studies have identified heterogeneous stem cell populations within the mouse interfollicular epidermis that are defined by territorial distribution and cell division frequency; however, it is unknown whether the individual stem cell populations undergo distinct aging processes. Here we provide comprehensive characterization of age-related changes in the mouse epidermis within the specific territories of slow-cycling and fast-dividing stem cells using old wild-type, senescence-accelerated mouse prone 1 (SAMP1) and SAMP8 mice. During aging, the epidermis exhibits structural changes such as irregular micro-undulations and overall thinning of the tissue. We also find that, in the old epidermis, proliferation is preferentially decreased in the region where fast-dividing stem cells reside whereas the lineage differentiation marker appears to be more affected in the slow-cycling stem cell region. Furthermore, SAMP8, but not SAMP1, exhibits precocious aging similar to that of aged wild-type mice, suggesting a potential use of this model for aging study of the epidermis and its stem cells. Taken together, our study reveals distinct aging processes governing the two epidermal stem cell populations and suggests a potential mechanism in differential responses of compartmentalized stem cells and their niches to aging.
Collapse
|
8
|
Confalonieri M, Buratti E, Grassi G, Bussani R, Chilosi M, Farra R, Abrami M, Stuani C, Salton F, Ficial M, Confalonieri P, Zandonà L, Romano M. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease. PLoS One 2017; 12:e0172130. [PMID: 28199407 PMCID: PMC5310884 DOI: 10.1371/journal.pone.0172130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.
Collapse
Affiliation(s)
- Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rossana Bussani
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Marco Chilosi
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Miriam Ficial
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Lorenzo Zandonà
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 2015; 78:51-60. [DOI: 10.1016/j.jdermsci.2015.01.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 01/05/2023]
|
10
|
Loss of Keratin K2 Expression Causes Aberrant Aggregation of K10, Hyperkeratosis, and Inflammation. J Invest Dermatol 2014; 134:2579-2588. [DOI: 10.1038/jid.2014.197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
|
11
|
Pan TL, Wang PW, Aljuffali IA, Hung YY, Lin CF, Fang JY. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics. Food Chem Toxicol 2013; 65:105-14. [PMID: 24384410 DOI: 10.1016/j.fct.2013.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yi-Yun Hung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Abstract
BACKGROUND The stratum corneum (SC) is the outermost region of the epidermis and plays key roles in cutaneous barrier function in mammals. The SC is composed of 'bricks', represented by flattened, protein-enriched corneocytes, and 'mortar', represented by intercellular lipid-enriched layers. As a result of this 'bricks and mortar' structure, the SC can be considered as a 'rampart' that encloses water and solutes essential for physiological homeostasis and that protects mammals from physical, chemical and biological assaults. STRUCTURES AND FUNCTIONS The corneocyte cytoskeleton contains tight bundles of keratin intermediate filaments aggregated with filaggrin monomers, which are subsequently degraded into natural moisturizing compounds by various proteases, including caspase 14. A cornified cell envelope is formed on the inner surface of the corneocyte plasma membrane by transglutaminase-catalysed cross-linking of involucrin and loricrin. Ceramides form a lipid envelope by covalently binding to the cornified cell envelope, and extracellular lamellar lipids play an important role in permeability barrier function. Corneodesmosomes are the main adhesive structures in the SC and are degraded by certain serine proteases, such as kallikreins, during desquamation. CLINICAL RELEVANCE The roles of the different SC components, including the structural proteins in corneocytes, extracellular lipids and some proteins associated with lipid metabolism, have been investigated in genetically engineered mice and in naturally occurring hereditary skin diseases, such as ichthyosis, ichthyosis syndrome and atopic dermatitis in humans, cattle and dogs.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
13
|
Pan X, Hobbs RP, Coulombe PA. The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 2013; 25:47-56. [PMID: 23270662 PMCID: PMC3578078 DOI: 10.1016/j.ceb.2012.10.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022]
Abstract
Intermediate filaments are assembled from a diverse group of evolutionary conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. Genetic mutations in intermediate filament proteins account for a large number of diseases, ranging from skin fragility conditions to cardiomyopathies and premature aging. Keratins, the epithelial-specific intermediate filaments, are now recognized as multi-faceted effectors in their native context. In this review, we emphasize the recent progress made in defining the role of keratins towards the regulation of cytoarchitecture, cell growth and proliferation, apoptosis, and cell motility during embryonic development, in normal adult tissues, and in select diseases such as cancer.
Collapse
Affiliation(s)
- Xiaoou Pan
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan P. Hobbs
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pierre A. Coulombe
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
NAHER LUTFUN, KIYOSHIMA TAMOTSU, KOBAYASHI IEYOSHI, WADA HIROKO, NAGATA KENGO, FUJIWARA HIROAKI, OOKUMA YUKIKOF, OZEKI SATORU, NAKAMURA SEIJI, SAKAI HIDETAKA. STAT3 signal transduction through interleukin-22 in oral squamous cell carcinoma. Int J Oncol 2012; 41:1577-86. [PMID: 22922995 PMCID: PMC3583669 DOI: 10.3892/ijo.2012.1594] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-22 is a member of the IL-10 family. Its main targets are epithelial cells, not immune cells. We examined IL-22 signal transduction in oral squamous cell carcinoma (OSCC) cells. Immunohistochemical staining revealed that IL-22R was expressed more highly in OSCC compared to normal regions. An IL-22R signal was also observed in metastatic OSCC cells in the lymph node. RT-PCR showed that the human OSCC cell lines MISK81-5, HSC-3, HSC-4, SAS and SQUU-B expressed IL-22 receptor chains. Immunoblotting showed that IL-22 induced a transient tyrosine phosphorylation of STAT3 (pY705-STAT3) in MISK81-5 cells. The change in the serine phosphorylation of STAT3 was subtle during the examination periods. Simultaneously, pY705-STAT3 activation in HSC-3 cells was undetectable after IL-22 stimulation. Immunocytochemistry demonstrated that IL-22 induced the translocation of phosphorylated STAT3 into the nucleus of MISK81-5 cells. IL-22 temporarily upregulated the expression of anti-apoptotic and mitogenic genes such as Bcl-x, survivin and c-Myc, as well as SOCS3. IL-22 transiently activated ERK1/2 and induced a delayed phosphorylation of p38 MAP kinase, but negligibly involved the activation of NF-κB in MISK81-5 cells. MISK81-5 and SQUU-B cells treated with IL-22 showed mild cellular proliferation. MISK81-5, HSC-4 and SAS cells treated with IL-22 downregulated the keratinocyte differentiation-related genes compared with unstimulated cells. Conversely, STAT3 suppression by STAT3 siRNA strongly disrupted the downregulation of these genes by IL-22, but it did not significantly affect the activation of ERK1/2 by IL-22. The OSCC cells used in this study upregulated the expression of SERPINB3/4 (SCCA1/2), well-known SCC markers, following treatment with IL-22. These results indicate that IL-22 differentially activates the STAT3 signaling system depending on the type of OSCC. IL-22 may therefore play a role in tumor growth, cell differentiation and progression through STAT3-dependent and -independent pathways.
Collapse
Affiliation(s)
- LUTFUN NAHER
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
- Department of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - TAMOTSU KIYOSHIMA
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - IEYOSHI KOBAYASHI
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - HIROKO WADA
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - KENGO NAGATA
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - HIROAKI FUJIWARA
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - YUKIKO F. OOKUMA
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
- Department of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582
| | - SATORU OZEKI
- Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka 814-0193,
Japan
| | - SEIJI NAKAMURA
- Department of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - HIDETAKA SAKAI
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| |
Collapse
|
15
|
Pan TL, Wang PW, Lee WR, Fang CL, Chen CC, Huang CM, Fang JY. Systematic evaluations of skin damage irradiated by an erbium:YAG laser: histopathologic analysis, proteomic profiles, and cellular response. J Dermatol Sci 2010; 58:8-18. [PMID: 20219327 DOI: 10.1016/j.jdermsci.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/15/2010] [Accepted: 02/04/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND The erbium:yttrium-aluminum-garnet (Er:YAG) laser is used for surgical resurfacing. It has ablative properties with water as its main chromophore. OBJECTIVE This study attempted to establish the cutaneous effect and cellular response to Er:YAG laser irradiation using different fluences (7.5 and 15 J/cm(2)). METHODS Female nude mouse was used as the animal model in the study. Physiological parameters were examined and histology was evaluated at 4, 24 and 96 h after laser exposure. A proteomic analysis and immunoblotting were also used to determine the mechanisms of the laser's effect on the skin. RESULTS Both fluences were associated with a significant increase in transepidermal water loss (TEWL), erythema (a*), and the skin pH at 4 and 24h. In contrast, at 96 h, the levels of these parameters had generally decreased to the baseline. The histology examined by light microscopy and transmission electron microscopy (TEM) showed vacuolization, hydropic degeneration and epidermal necrosis of laser-irradiated skin. The higher fluence (15 J/cm(2)) exhibited more-severe disruption of the skin. Bulous and scarring were observed in skin treated with the higher fluence during the recovery period. p53 and p21 proteins were significantly activated in skin following exposure to the laser. However, proliferating cell nuclear antigen and cytokeratin expressions were downregulated by the low fluence (7.5 J/cm(2)). CONCLUSION Both proliferation and apoptosis occurred when the laser-irradiated the skin.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The skin forms an effective barrier between the organism and the environment preventing invasion of pathogens and fending off chemical and physical assaults, as well as the unregulated loss of water and solutes. In this review we provide an overview of several components of the physical barrier, explaining how barrier function is regulated and altered in dermatoses. The physical barrier is mainly localized in the stratum corneum (SC) and consists of protein-enriched cells (corneocytes with cornified envelope and cytoskeletal elements, as well as corneodesmosomes) and lipid-enriched intercellular domains. The nucleated epidermis also contributes to the barrier through tight, gap and adherens junctions, as well as through desmosomes and cytoskeletal elements. During epidermal differentiation lipids are synthesized in the keratinocytes and extruded into the extracellular domains, where they form extracellular lipid-enriched layers. The cornified cell envelope, a tough protein/lipid polymer structure, resides below the cytoplasmic membrane on the exterior of the corneocytes. Ceramides A and B are covalently bound to cornified envelope proteins and form the backbone for the subsequent addition of free ceramides, free fatty acids and cholesterol in the SC. Filaggrin is cross-linked to the cornified envelope and aggregates keratin filaments into macrofibrils. Formation and maintenance of barrier function is influenced by cytokines, 3',5'-cyclic adenosine monophosphate and calcium. Changes in epidermal differentiation and lipid composition lead to a disturbed skin barrier, which allows the entry of environmental allergens, immunological reaction and inflammation in atopic dermatitis. A disturbed skin barrier is important for the pathogenesis of contact dermatitis, ichthyosis, psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Ehrhardt Proksch
- Department of Dermatology, University Hospitals of Schleswig-Holstein, Kiel, Germany.
| | | | | |
Collapse
|
17
|
Chen J, Roop DR. Genetically engineered mouse models for skin research: taking the next step. J Dermatol Sci 2008; 52:1-12. [PMID: 18511240 DOI: 10.1016/j.jdermsci.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/23/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Genetically engineered mouse models are invaluable to investigators in nearly all areas of biomedical research. The use of genetically engineered mice has allowed researchers to explore fundamental functions of genes in a mammal that shares substantial similarities with human physiology and pathology. Genetically engineered mice are often used as animal models of human diseases that are vital tools in investigating disease development and in developing and testing novel therapies. Gene targeting in embryonic stem cells allows endogenous genes to be specifically altered. As knowledge regarding precise genetic abnormalities underlying a variety of dermatological conditions continues to emerge, the ability to introduce corresponding alterations in endogenous gene loci in mice, often at a single base pair level, has become essential for detailed studies of these genetic diseases. In this review, we provide examples of mouse models harboring modified endogenous gene(s), generated using the technique commonly referred to as the "knock-in" approach, to exemplify the important and sometimes superior role of this methodology in dermatological research.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Dermatology and Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
18
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
19
|
Abstract
Psoriasis is a chronic inflammatory disorder that is mediated by elements of the innate and adaptive immune systems. Its characteristic features in the skin consist of inflammatory changes in both dermis and epidermis, with abnormal keratinocyte differentiation and proliferation. Despite the elucidation of many aspects of psoriasis pathogenesis, some puzzling questions remain to be answered. A major question currently debated is whether psoriasis is a primary abnormality of the epidermal keratinocyte or a reflection of dysregulated bone marrow-derived immunocytes. In this review we will focus on understanding the role of the innate immune system in psoriasis and how this provides a rational solution to address the origin of this multifactorial disease. Innate immunity is nonspecific and genetically based. It protects the body against the constant risk of pathogens through the use of rapidly mobilized defenses that are able to recognize and kill a variety of threats (bacteria, fungi, viruses, etc). The key mechanisms of innate immune responses are the existence of receptors to recognize pathogens and the production of factors that kill pathogens, such as antimicrobial peptides and proteins. Any combination of excessive sensitivity of the innate detection system, or dysregulation of the response system, can manifest both an epidermal phenotype and an abnormal T-cell function. Thus, the multidimensional action of the innate immune system, its triggers, and its recently understood role in T-cell function argue for an important role for innate mechanisms of recognition and response in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Amanda S Büchau
- Department of Medicine, Division of Dermatology, University of California at San Diego School of Medicine, San Diego, CA 92161, USA
| | | |
Collapse
|
20
|
Hass R, Kirchner M, Hollwitz B, Scharf A. 2D‐DIGE analysis revealed reduced cytokeratin signaling in placenta with preeclampsia. SIGNAL TRANSDUCTION 2006; 6:190-197. [DOI: 10.1002/sita.200500072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractPreeclampsia represents a severe pregnancy disorder associated with premature delivery and fetal growth retardation which also involves certain imbalances of the placental maturation and the placental integration into the surrounding tissues. To characterize possible differences in the development of normal and preeclamptic placentae, two‐dimensional SDS‐PAGE of 10 normal placental protein homogenates was performed and compared to the protein pattern of homogenates from 10 preeclamptic placentae. Thus, acidic proteins particularly of about 56 kDa were identified in normal placentae which were nearly undetectable in protein homogenates of preeclamptic placentae. Peptide mass finger printing by MALDI identified cytokeratins, especially cytokeratin‐10 as one of the differentially expressed protein. Quantitative data were obtained by two‐dimensional difference‐gel electrophoresis (2D DIGE). Labeling of normal and preeclamptic placental proteins with the fluorophors Cy5 and Cy3, respectively, and subsequent separation of these mixed samples by 2D DIGE revealed a differentially expressed protein spot at a 12.8‐fold higher fluorescence intensity in normal placentae as compared to preeclamptic placentae. MALDI analysis of this differentially expressed protein spot identified cytokeratin. In order to verify these results in individual placenta probes, cytokeratin‐10 Western blots were performed in 3 normal and preeclamptic placental homogenates of different gestational ages, respectively. Whereas a marked 56 kDa cytokeratin‐10 expression appeared in all normal placentae, there was only little if any detectable cytokeratin‐10 present in the preeclamptic placentae, respectively. These findings suggest that preeclampsia is accompanied by a significantly reduced cytokeratin signaling provided by 2D‐DIGE‐coupled MALDI analysis which represents a suitable technique to identify e. g. disease‐related alterations in protein patterns.
Collapse
|
21
|
McGowan KA, Aradhya S, Fuchs H, de Angelis MH, Barsh GS. A Mouse Keratin 1 Mutation Causes Dark Skin and Epidermolytic Hyperkeratosis. J Invest Dermatol 2006; 126:1013-6. [PMID: 16528356 DOI: 10.1038/sj.jid.5700241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemical mutagenesis in the mouse has increased the utility of phenotype-driven genetics as a means for studying different organ systems, developmental pathways, and pathologic processes. From a large-scale screen for dominant phenotypes in mice, a novel class of pigmentation mutants was identified by dark skin (Dsk). We describe a Dsk mutant, Dsk12, which models the human disease, epidermolytic hyperkeratosis (EHK). At 2 days of age, mutant animals exhibit intraepidermal blisters and erosions at sites of trauma, and by 2 weeks of age develop significant hyperkeratosis. We identified a missense mutation in mutant animals that predicts an S194P amino acid substitution in the 1A domain of Keratin 1, a known target for human mutations that cause EHK. Dsk12 recapitulates the gross pathologic, histologic, and genetic aspects of the human disorder, EHK.
Collapse
Affiliation(s)
- Kelly A McGowan
- Departments of Genetics, Stanford University School of Medicine, Beckman Center B281, Stanford, CA 94305-5323, USA.
| | | | | | | | | |
Collapse
|
22
|
Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36:1309-23. [PMID: 16619290 DOI: 10.1002/eji.200535503] [Citation(s) in RCA: 720] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-22 is an IFN-IL-10 cytokine family member, which is produced by activated Th1 and NK cells and acts primarily on epithelial cells. Here we demonstrate that IL-22, in contrast to its relative IFN-gamma, regulates the expression of only a few genes in keratinocytes. This is due to varied signal transduction. Gene expressions regulated by IL-22 should enhance antimicrobial defense [psoriasin (S100A7), calgranulin A (S100A8), calgranulin B (S100A9)], inhibit cellular differentiation (e.g., profilaggrin, keratins 1 and 10, kallikrein 7), and increase cellular mobility [e.g., matrix metalloproteinease 1 (MMP1, collagenase 1), MMP3 (stromelysin 1), desmocollin 1]. In contrast, IFN-gamma favored the expression of MHC pathway molecules, adhesion molecules, cytokines, chemokines, and their receptors. The IL-22 effects were transcriptional and either independent of protein synthesis and secretion, or mediated by a secreted protein. Inflammatory conditions, but not keratinocyte differentiation, amplified the IL-22 effects. IL-22 application in mice enhanced cutaneous S100A9 and MMP1 expression. High IL-22 levels in psoriatic skin were associated with strongly up-regulated cutaneous S100A7, S100A8, S100A9, and MMP1 expression. Psoriatic patients showed strongly elevated IL-22 plasma levels, which correlated with the disease severity. Expression of IL-22 and IL-22-regulated genes was reduced by anti-psoriatic therapy. In summary, despite similarities, IFN-gamma primarily amplifies inflammation, while IL-22 may be important in the innate immunity and reorganization of epithelia.
Collapse
Affiliation(s)
- Kerstin Wolk
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Dermatological diseases range from minor cosmetic problems to life-threatening conditions, as seen in some severe disorders of keratinization and cornification. These disorders are commonly due to abnormal epidermal differentiation processes, which result in disturbed barrier function of human skin. Elucidation of the cellular differentiation programs that regulate the formation and homeostasis of the epidermis is therefore of great importance for the understanding and therapy of these disorders. Much of the barrier function of human epidermis against the environment is provided by the cornified cell envelope (CE), which is assembled by transglutaminase (TGase)-mediated cross-linking of several structural proteins and lipids during the terminal stages of normal keratinocyte differentiation. The major constituents of the stratum corneum and the current knowledge on the formation of the stratum corneum will be briefly reviewed here. The discovery of mutations that underlie several human diseases caused by genetic defects in the protein or lipid components of the CE, and recent analyses of mouse mutants with defects in the structural components of the CE, catalyzing enzymes, and lipid processing, have highlighted their essential function in establishing the epidermal barrier. In addition, recent findings have provided evidence that a disturbed protease-antiprotease balance could cause faulty differentiation processes in the epidermis and hair follicle. The importance of regulated proteolysis in epithelia is well demonstrated by the recent identification of the SPINK5 serine proteinase inhibitor as the defective gene in Netherton syndrome, cathepsin C mutations in Papillon-Lefevre syndrome, cathepsin L deficiency infurless mice, targeted ablation of the serine protease Matriptase/MTSP1, targeted ablation of the aspartate protease cathepsin D, and the phenotype of targeted epidermal overexpression of stratum corneum chymotryptic enzyme in mice. Notably, our recent findings on the role of cystatin M/E and legumain as a functional dyad in skin and hair follicle cornification, a paradigm example of the regulatory functions exerted by epidermal proteases, will be discussed.
Collapse
Affiliation(s)
- Patrick L J M Zeeuwen
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Reichelt J, Breiden B, Sandhoff K, Magin TM. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur J Cell Biol 2005; 83:747-59. [PMID: 15679119 DOI: 10.1078/0171-9335-00429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we present strong evidence that the targeted deletion of keratin 10 (K10) alters sebocyte differentiation in mice, mediated by an increased proliferation and differentiation of cells located in the periphery of the glands. This was not accompanied by the induction of the proliferation-associated keratins K6, K16 and K17. Sebaceous gland cells of K10-/- mice showed an accelerated turnover and secreted more sebum including wax esters, triglycerides, and cholesterol esters. The levels of the major epidermal lipids ceramides and cholesterol were also increased, whereas glycosylceramides and sphingomyelin were decreased which was not based on altered sphingolipid biosynthesis. The amount of Cer(OS), covalently bound to the cornified envelope, remained unchanged, as well as the amount of loricrin and involucrin. In agreement with the unaltered expression of beta-catenin and its targets cyclin D1 and c-Myc, we conclude that the altered composition of the suprabasal intermediate filament cytoskeleton in K10-/- mice increased the differentiation of epidermal stem cells towards the sebocyte lineage.
Collapse
Affiliation(s)
- Julia Reichelt
- Institut für Physiologische Chemie, Universität Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- E Birgitte Lane
- Cancer Research UK, Cell Structure Research Group, University of Dundee School of Life Sciences, Dundee DD1 5EH, Scotland
| | | |
Collapse
|
26
|
Magin TM, Hesse M, Meier-Bornheim R, Reichelt J. Developing Mouse Models to Study Intermediate Filament Function. Methods Cell Biol 2004; 78:65-94. [PMID: 15646616 DOI: 10.1016/s0091-679x(04)78004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Thomas M Magin
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
27
|
Peters T, Sedlmeier R, Büssow H, Runkel F, Lüers GH, Korthaus D, Fuchs H, Hrabé de Angelis M, Stumm G, Russ AP, Porter RM, Augustin M, Franz T. Alopecia in a novel mouse model RCO3 is caused by mK6irs1 deficiency. J Invest Dermatol 2003; 121:674-80. [PMID: 14632181 DOI: 10.1046/j.1523-1747.2003.12491.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reduced coat 3 (Rco3) is a new spontaneous autosomal recessive mutation with defects in hair structure and progressive alopecia. Here we describe chromosomal mapping and molecular identification of the Rco3 mutation. The murine Rco3 locus maps to a 2-Mb interval on chromosome 15 encompassing the keratin type II gene cluster. Recently, mK6irs1 was described as a type II keratin expressed in Henle's and Huxley's layer of the murine inner root sheath. Genomic sequencing revealed a 10-bp deletion in exon 1 of mK6irs1 resulting in a frameshift after 58 amino acid residues and, therefore, the absence of 422 carboxy-terminal amino acid residues containing the complete alpha-helical rod domain. Henle's and Huxley's layers show no immunoreactivity with mK6irs1-specific antibodies and the absence of intermediate filament formation in electron microscopic images. These results indicate that the expression of functional mK6irs1 is indispensable for intermediate filament formation in the inner root sheath and highlights the importance of the keratinization of the inner root sheath in the normal formation of the hair shaft.
Collapse
Affiliation(s)
- T Peters
- Ingenium Pharmaceuticals AG, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hapiak V, Hresko MC, Schriefer LA, Saiyasisongkhram K, Bercher M, Plenefisch J. mua-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Dev Biol 2003; 263:330-42. [PMID: 14597206 DOI: 10.1016/j.ydbio.2003.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locomotion in Caenorhabditis elegans requires force transmission through a network of proteins linking the skeletal muscle, via an intervening basal lamina and epidermis (hypodermis), to the cuticle. Mutations in mua-6 result in hypodermal rupture, muscle detachment from the bodywall, and progressive paralysis. It is shown that mua-6 encodes the cytoplasmic intermediate filament (cIF) A2 protein and that a MUA-6/IFA-2::GFP fusion protein that rescues the presumptive mua-6 null allele localizes to hypodermal hemidesmosomes. This result is consistent with what is known about the function of cIFs in vertebrates. Although MUA-6/IFA-2 is expressed embryonically, and plays an essential postembryonic role in tissue integrity, it is not required for embryonic development of muscle-cuticle linkages nor for the localization of other cIFs or hemidesmosome-associated proteins in the embryo. Finally, the molecular lesion in the mua-6(rh85) allele suggests that the head domain of the MUA-6/IFA-2 is dispensable for its function.
Collapse
Affiliation(s)
- Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | |
Collapse
|
29
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Akiyama M, Takizawa Y, Sawamura D, Matsuo I, Shimizu H. Disruption of the suprabasal keratin network by mutation M150T in the helix initiation motif of keratin 10 does not affect cornified cell envelope formation in human epidermis. Exp Dermatol 2003; 12:638-45. [PMID: 14705805 DOI: 10.1034/j.1600-0625.2003.00021.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keratin 10 (K10) is known to be tightly bound to the cornified cell envelope (CCE) and this binding is thought to play an important role in enhancing the structural integrity of the cornified cells. Bullous congenital ichthyosiform erythroderma (BCIE) is a genetic disorder of keratinization caused by gene mutations in the conserved sequences of keratin 1 (K1) or K10, which leads to abnormal suprabasal keratin network assembly. In BCIE patients' skin, the keratin network abnormalities make the upper spinous and granular keratinocytes fragile and result in blister formation. However, the exact pathomechanism of the hyperkeratosis seen in BCIE is still unknown. The involvement of the CCE in the pathomechanism of hyperkeratosis in BCIE is controversial. Abnormal CCE assembly may cause hyperkeratosis as reported in cases of lamellar ichthyosis. Binding of K10 to CCE is thought to be a vital connection between the suprabasal keratin filament network and CCE. We hypothesize that abnormal suprabasal keratin assembly caused by either K1 or K10 mutations can disrupt CCE formation, resulting in the hyperkeratosis observed in BCIE. To clarify whether K10 and keratin network defects affect CCE formation in vivo, the ultrastructural and immunohistological features of CCE were studied in the epidermis of two Japanese BCIE patients from two independent families carrying an identical missense mutation M150T in the helix initiation motif of K10. Ultrastructurally, a 15-nm-thick, dense, normal-appearing CCE was formed at the cell periphery of the keratinized epidermal cells. Light and electron microscopic immunolabeling revealed that the major CCE precursor proteins, involucrin and loricrin, were normally distributed and restricted to CCE of the epidermis. Immunofluorescent labeling showed that epidermal TGases, TGase 1, TGase 2 and TGase 3, were expressed normally in the epidermis. These findings suggest that a normal CCE is formed during the process of human epidermal keratinization, even if the suprabasal keratin filament network is disrupted as with this particular K10 mutation, M150T in BCIE.
Collapse
Affiliation(s)
- M Akiyama
- Departament of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Abstract
A large number of mutations in keratin genes underlie inherited tissue fragility disorders of epithelia. The genotype-phenotype correlations emerging from these studies provide a rich source of information about the function of keratins that would have taken decades to achieve by a purely transgenic approach. Human disease studies are being supplemented by engineered mouse mutant studies, which give access to the effects of genetic alterations unlikely to occur naturally. Evidence is emerging that the great diversity of keratins might be required to enable cells to adapt their structure in response to different signalling pathways.
Collapse
Affiliation(s)
- Rebecca M Porter
- Cancer Research UK Cell Structure Research Group, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
32
|
Kimyai-Asadi A, Kotcher LB, Jih MH. The molecular basis of hereditary palmoplantar keratodermas. J Am Acad Dermatol 2002; 47:327-43; quiz 344-6. [PMID: 12196741 DOI: 10.1067/mjd.2002.124814] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, the gene defects causing many types of hereditary palmoplantar keratoderma have been discovered. These genes encode a variety of proteins involved in the terminal differentiation of keratinocytes and the formation of the cornified cell envelope. In this article, we review the molecular defects underlying various palmoplantar keratodermas with particular attention to the role of these molecules in the terminal differentiation of palmoplantar epidermis. Of the proteins involved in keratodermas, loricrin, keratins, and desmosomal proteins provide the protein structure of the cornified cell envelope. Connexins form intercellular gap junctions, which regulate ionic calcium signals necessary for the expression of the proteins that form the cornified cell envelope. Cathepsins likely mediate enzymatic processes necessary for the formation and dissolution of the cornified cell envelope. The clinical phenotypes produced by various mutations affecting these proteins are discussed vis-à-vis data from genetic, cellular, and molecular experiments.
Collapse
Affiliation(s)
- Arash Kimyai-Asadi
- Ronald O. Perelman Department of Dermatology, The New York University School of Medicine, New York, USA
| | | | | |
Collapse
|
33
|
Porter RM, Jahoda CAB, Lunny DP, Henderson G, Ross J, McLean WHI, Whittock NV, Wilson NJ, Reichelt J, Magin TM, Lane EB. Defolliculated (dfl): a dominant mouse mutation leading to poor sebaceous gland differentiation and total elimination of pelage follicles. J Invest Dermatol 2002; 119:32-7. [PMID: 12164921 DOI: 10.1046/j.1523-1747.2002.01806.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Defolliculated is a novel spontaneous mouse mutation that maps to chromosome 11 close to the type I keratin locus. Histology shows abnormal differentiation of the sebaceous gland, with the sebocytes producing little or no sebum and undergoing abnormal cornification. The hair follicles fail to regress during catagen leading to abnormally long follicles. In contrast the hair shafts are shorter than normal, suggesting altered differentiation or proliferation of matrix cells during anagen. The shafts emerge from the follicle with cornified material still attached. The dermis contains increased numbers of immune cells, including T cells (CD4-positive), macrophages, and mast cells, at all time points examined. Complete elimination of all pelage and tail follicles occurs after two to three hair cycles, apparently by necrosis. Defolliculated may be a useful model for determining further functions of the sebaceous gland, and for understanding the regulation of catagen and hair follicle immunology.
Collapse
Affiliation(s)
- Rebecca M Porter
- Cancer Research UK Cell Structure Research Group, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, U.K.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J Cell Sci 2002; 115:2639-50. [PMID: 12077355 DOI: 10.1242/jcs.115.13.2639] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the past, keratins have been established as structural proteins. Indeed,mutations in keratin 10 (K10) and other epidermal keratins lead to severe skin fragility syndromes. Here, we present adult K10-/- mice, which reveal a novel connection between the regulation of cell proliferation and K10. Unlike most keratin mutant mice, the epidermis of adult K10-/-mice showed no cytolysis but displayed hyperproliferation of basal keratinocytes and an increased cell size. BrdU labelling revealed a shortened transition time for keratinocytes migrating outwards and DAPI staining of epidermal sheets uncovered an impaired organization of epidermal proliferation units. These remarkable changes were accompanied by the induction of c-Myc,cyclin D1, 14-3-3σ and of wound healing keratins K6 and K16. The phosphorylation of Rb remained unaltered. In line with the downregulation of K10 in squamous cell carcinomas and its absence in proliferating cells in vivo, our data suggest that the tissue-restricted expression of some members of the keratin gene family not only serves structural functions. Our results imply that the altered composition of the suprabasal cytoskeleton is able to alter the proliferation state of basal cells through the induction of c-Myc. A previous model based on transfection of K10 in immortalized human keratinocytes suggested a direct involvement of K10 in cell cycle control. While those experiments were performed in human cultured keratinocytes, our data establish, that in vivo, K10 acts by an indirect control mechanism in trans.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Physiological Chemistry and Bonner Forum Biomedizin, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | | |
Collapse
|
35
|
Abstract
Alexander disease is a rare but often fatal disease of the central nervous system. Infantile, juvenile and adult forms have been described that present with different clinical signs, but are unified by the characteristic presence in astrocytes of Rosenthal fibers-protein aggregates that contain glial fibrillary acidic protein (GFAP) and small stress proteins. The chance discovery that mice expressing a human GFAP transgene formed abundant Rosenthal fibers suggested that mutations in the GFAP gene are a cause of Alexander disease. Sequencing results from several laboratories have indeed now identified GFAP coding mutations in most cases of the disease, including both the infantile and juvenile forms. These mutations have been found in the 1A, 2A and 2B segments of the conserved central rod domain of GFAP, and also in the variable tail region. All changes detected are heterozygous missense mutations, and none has been found in any parent of a patient that has been tested. This indicates that most cases of Alexander disease arise through de novo, dominant, GFAP mutations. Many of these mutations are homologous to ones described in other intermediate filament diseases. These other diseases have been attributed to a dominant loss of function, as the intermediate filament network is usually disrupted and a similar phenotype is observed in mice in which the corresponding intermediate filament gene has been inactivated. However, astrocytes of Alexander disease patients have normal appearing intermediate filaments, and GFAP null mice do not display the symptoms or pathology of Alexander disease. Thus, Alexander disease likely results from a dominant gain of function. Drawing upon the homology of many of the Alexander disease mutations to those found in other intermediate filament diseases, it is suggested that the gain of function is due to a partial block of filament assembly that leads to accumulation of an intermediate that participates in toxic interactions.
Collapse
Affiliation(s)
- Rong Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | | | |
Collapse
|
36
|
Schmuth M, Yosipovitch G, Williams ML, Weber F, Hintner H, Ortiz-Urda S, Rappersberger K, Crumrine D, Feingold KR, Elias PM. Pathogenesis of the permeability barrier abnormality in epidermolytic hyperkeratosis. J Invest Dermatol 2001; 117:837-47. [PMID: 11676820 DOI: 10.1046/j.0022-202x.2001.01471.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epidermolytic hyperkeratosis is a dominantly inherited ichthyosis, frequently associated with mutations in keratin 1 or 10 that result in disruption of the keratin filament cytoskeleton leading to keratinocyte fragility. In addition to blistering and a severe disorder of cornification, patients typically display an abnormality in permeability barrier function. The nature and pathogenesis of the barrier abnormality in epidermolytic hyperkeratosis are unknown, however. We assessed here, first, baseline transepidermal water loss and barrier recovery kinetics in patients with epidermolytic hyperkeratosis. Whereas baseline transepidermal water loss rates were elevated by approximately 3-fold, recovery rates were faster in epidermolytic hyperkeratosis than in age-matched controls. Electron microscopy showed no defect in either the cornified envelope or the adjacent cornified-bound lipid envelope, i.e., a corneocyte scaffold abnormality does not explain the barrier abnormality. Using the water-soluble tracer, colloidal lanthanum, there was no evidence of tracer accumulation in corneocytes, despite the fragility of nucleated keratinocytes. Instead, tracer, which was excluded in normal skin, moved through the extracellular stratum corneum domains. Increasing intercellular permeability correlated with decreased quantities and defective organization of extracellular lamellar bilayers. The decreased lamellar material, in turn, could be attributed to incompletely secreted lamellar bodies within granular cells, demonstrable not only by several morphologic findings, but also by decreased delivery of a lamellar body content marker, acid lipase, to the stratum corneum interstices. Yet, after acute barrier disruption a rapid release of preformed lamellar body contents was observed together with increased organelle contents in the extracellular spaces, accounting for the accelerated recovery kinetics in epidermolytic hyperkeratosis. Accelerated recovery, in turn, correlated with a restoration in calcium in outer stratum granulosum cells in epidermolytic hyperkeratosis after barrier disruption. Thus, the baseline permeability barrier abnormality in epidermolytic hyperkeratosis can be attributed to abnormal lamellar body secretion, rather than to corneocyte fragility or an abnormal cornified envelope/cornified-bound lipid envelope scaffold, a defect that can be overcome by external applications of stimuli for barrier repair.
Collapse
Affiliation(s)
- M Schmuth
- Internal Medicine, University of California, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hereditary skin blistering disorders comprise a group of genodermatoses whose common primary feature is the formation of blisters following minor trauma. Examples of such conditions include epidermolysis bullosa and several bullous forms of ichthyosis. Distinct mutations in various genes encoding intra- and extra-cellular structural components of the skin reflect the clinical heterogeneity of these disorders. Several animal models are currently used to study the role of these molecules in the disease process. Some of these models will find their place in evaluating new therapeutic strategies for this devastating group of diseases.
Collapse
Affiliation(s)
- M J Arin
- Dept of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
38
|
Wojcik SM, Longley MA, Roop DR. Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b. J Cell Biol 2001; 154:619-30. [PMID: 11489919 PMCID: PMC2196416 DOI: 10.1083/jcb.200102079] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The murine genome is known to have two keratin 6 (K6) genes, mouse K6 (MK6)a and MK6b. These genes display a complex expression pattern with constitutive expression in the epithelia of oral mucosa, hair follicles, and nail beds. We generated mice deficient for both genes through embryonic stem cell technology. The majority of MK6a/b-/- mice die of starvation within the first two weeks of life. This is due to a localized disintegration of the dorsal tongue epithelium, which results in the build up of a plaque of cell debris that severely impairs feeding. However, approximately 25% of MK6a/b-/- mice survive to adulthood. Remarkably, the surviving MK6a/b-/- mice have normal hair and nails. To our surprise, we discovered MK6 staining both in the hair follicle and the nail bed of MK6a/b-/- mice, indicating the presence of a third MK6 gene. We cloned this previously unknown murine keratin gene and found it to be highly homologous to human K6hf, which is expressed in hair follicles. We therefore termed this gene MK6 hair follicle (MK6hf). The presence of MK6hf in the MK6a/b-/- follicles and nails offers an explanation for the absence of hair and nail defects in MK6a/b-/- animals.
Collapse
Affiliation(s)
- S M Wojcik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
Reichelt J, Büssow H, Grund C, Magin TM. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell 2001; 12:1557-68. [PMID: 11408568 PMCID: PMC37324 DOI: 10.1091/mbc.12.6.1557] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10(-/-) mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10(-/-) mice suggests that there is a considerable redundancy in the keratin gene family.
Collapse
Affiliation(s)
- J Reichelt
- Institute of Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | |
Collapse
|
40
|
Peters B, Kirfel J, Büssow H, Vidal M, Magin TM. Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell 2001; 12:1775-89. [PMID: 11408584 PMCID: PMC37340 DOI: 10.1091/mbc.12.6.1775] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5(-/-) mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14(-/-) mice. In contrast to the K14(-/-) mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5(-/-) mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.
Collapse
Affiliation(s)
- B Peters
- Institut fuer Genetik, Abteilung Molekulargenetik, Rheinische Friedrich-Wilhelms-Universitaet, 53117 Bonn, Germany
| | | | | | | | | |
Collapse
|
41
|
Peters B, Kaiser HW, Magin TM. Skin-specific expression of ank-3(93), a novel ankyrin-3 splice variant. J Invest Dermatol 2001; 116:216-23. [PMID: 11179996 DOI: 10.1046/j.1523-1747.2001.01210.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription-polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-3(93). Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-3(93) was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-3(93)was restricted to mouse skin. Reverse transcription-polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-3(93), which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family.
Collapse
Affiliation(s)
- B Peters
- Institute of Genetics and Bonner Forum Biomedizin, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | | | |
Collapse
|
42
|
del Mar Lorente M, Marcos-Gutiérrez C, Pérez C, Schoorlemmer J, Ramírez A, Magin T, Vidal M. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 2000; 127:5093-100. [PMID: 11060235 DOI: 10.1242/dev.127.23.5093] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The products of the Polycomb group (PcG) of genes act as transcriptional repressors involved in the maintenance of homeotic gene expression patterns throughout development, from flies to mice. Biochemical and molecular evidence suggests that the mouse Ring1A gene is a member of the PcG of genes. However, genetic evidence is needed to establish PcG function for Ring1A, since contrary to all other murine PcG genes, there is no known Drosophila PcG gene encoding a homolog of the Ring1A protein. To study Ring1A function we have generated a mouse line lacking Ring1A and mouse lines overexpressing Ring1A. Both Ring1A(−/−)and Ring1A(+/−) mice show anterior transformations and other abnormalities of the axial skeleton, which indicates an unusual sensitivity of axial skeleton patterning to Ring1A gene dosage. Ectopic expression of Ring1A also results in dose-dependent anterior transformations of vertebral identity, many of which, interestingly, are shared by Ring1A(−/−) mice. In contrast, the alterations of Hox gene expression observed in both type of mutant mice are subtle and involve a reduced number of Hox genes. Taken together, these results provide genetic evidence for a PcG function of the mouse Ring1A gene.
Collapse
Affiliation(s)
- M del Mar Lorente
- Developmental and Cell Biology, Centro de Investigaciones Biológicas, Velázquez 144, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Hesse M, Franz T, Tamai Y, Taketo MM, Magin TM. Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J 2000; 19:5060-70. [PMID: 11013209 PMCID: PMC302090 DOI: 10.1093/emboj/19.19.5060] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been reported previously that keratin 8 (K8)-deficient mice of one strain die from a liver defect at around E12.5, while those of another strain suffer from colorectal hyperplasia. These findings have generated considerable confusion about the function of K8, K18 and K19 that are co-expressed in the mouse blastocyst and internal epithelia. To resolve this issue, we produced mice doubly deficient for K18 and K19 leading to complete loss of keratin filaments in early mouse development. These embryos died at around day E9.5 with 100% penetrance. The absence of keratins caused cytolysis restricted to trophoblast giant cells, followed by haematomas in the trophoblast layer. Up to that stage, embryonic development proceeded unaffected in the absence of keratin filaments. K18/19-deficient mouse embryos die earlier than any other intermediate filament knockouts reported so far, suggesting that keratins, in analogy to their well established role in epidermis, are essential for the integrity of a specialized embryonic epithelium. Our data also offer a rationale to explore the involvement of keratin mutations in early abortions during human pregnancies.
Collapse
Affiliation(s)
- M Hesse
- Institut für Genetik, Abteilung Molekulargenetik and Bonner Forum Biomedizin, Universität Bonn, 53117 Bonn, Anatomisches Institut, Universität Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
44
|
Jensen JM, Schütze S, Neumann C, Proksch E. Impaired cutaneous permeability barrier function, skin hydration, and sphingomyelinase activity in keratin 10 deficient mice. J Invest Dermatol 2000; 115:708-13. [PMID: 10998148 DOI: 10.1046/j.1523-1747.2000.00103.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Point mutations in the suprabasal cytokeratins 1 (K1) or 10 (K10) in humans have been shown to be the cause of the congenital ichthyosis epidermolytic hyperkeratosis. Recently, a K10 deficient mouse model was established serving as a model for epidermolytic hyperkeratosis. Homozygotes suffered from severe skin fragility and died shortly after birth. Heterozygotes developed hyperkeratosis with age. To see whether phenotypic abnormalities in the mouse model were associated with changes in skin barrier function and skin water content we studied basal transepidermal water loss and capacity for barrier repair after experimental barrier disruption as well as stratum corneum hydration. Also, we determined the activities of acid and neutral sphingomyelinase key enzymes of the tumor necrosis factor and interleukin-1 signal transduction pathways generating the ceramides most important for epidermal permeability barrier homeostasis. Neonatal homozygotes showed an 8-fold increase in basal transepidermal water loss compared with wild type controls. Adult heterozygotes exhibited delayed barrier repair after experimental barrier disruption. Stratum corneum hydration was reduced in homozygous and heterozygous mice. Acid sphingomyelinase activity, which is localized in the epidermal lamellar bodies and generates ceramides for extracellular lipid lamellae in the stratum corneum permeability barrier, was reduced in homozygous as well as heterozygous animals. Neutral sphingomyelinase activity, which has a different location and generates ceramides involved in cell signaling, was increased. The reduction in acid sphingomyelinase activity may explain the recently described decreased ratio of ceramides to total lipids in K10 deficient mice. In summary, our results demonstrate the crucial role of the keratin filament for permeability barrier function and stratum corneum hydration.
Collapse
Affiliation(s)
- J M Jensen
- Department of Dermatology and Institute of Immunology, University of Kiel, Germany
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- T Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-str. 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
46
|
Abstract
Keratin 6 (K6) expression in the epidermis has two components: constitutive expression in the innermost layer of the outer root sheath (ORS) of hair follicles and inducible expression in the interfollicular epidermis in response to stressful stimuli such as wounding. Mice express two K6 isoforms, MK6a and MK6b. To gain insight into the functional significance of these isoforms, we generated MK6a-deficient mice through mouse embryonic stem cell technology. Upon wounding, MK6a was induced in the outer ORS and the interfollicular epidermis including the basal cell layer of MK6a(+/+) mice, whereas MK6b induction in MK6a(-/-) mice was restricted to the suprabasal layers of the epidermis. After superficial wounding of the epidermis by tape stripping, MK6a(-/-) mice showed a delay in reepithelialization from the hair follicle. However, the healing of full-thickness skin wounds was not impaired in MK6a(-/-) animals. Migration and proliferation of MK6a(-/-) keratinocytes were not impaired in vitro. Furthermore, the migrating and the proliferating keratinocytes of full-thickness wounds in MK6a(-/-) animals expressed neither MK6a nor MK6b. These data indicate that MK6a does not play a major role in keratinocyte proliferation or migration but point to a role in the activation of follicular keratinocytes after wounding. This study represents the first report of a keratin null mutation that results in a wound healing defect.
Collapse
Affiliation(s)
- S M Wojcik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
47
|
Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P. Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 2000; 113 ( Pt 13):2455-62. [PMID: 10852824 DOI: 10.1242/jcs.113.13.2455] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that the vimentin intermediate filament network present in most mesenchymally-derived cells is in part responsible for the strength and integrity of these cells, and necessary for any tissue movements that require the generation of significant tractional forces. Surprisingly, we have shown that transgenic KO mice deficient for vimentin are apparently able to undergo embryonic development absolutely normally and go onto develop into adulthood and breed without showing any obvious phenotype. However, fibroblasts derived from these mice are mechanically weak and severely disabled in their capacity to migrate and to contract a 3-D collagen network. To assess whether these functions are necessary for more challenging tissue movements such as those driving in vivo tissue repair processes, we have analysed wound healing ability in wild-type versus vimentin-deficient embryos and adult mice. Wounds in vimentin-deficient adult animals showed delayed migration of fibroblasts into the wound site and subsequently retarded contraction that correlated with a delayed appearance of myofibroblasts at the wound site. Wounds made to vimentin-deficient embryos also failed to heal during the 24 hour culture period it takes for wild-type embryos to fully heal an equivalent wound. By DiI marking the wound mesenchyme and following its fate during the healing process we showed that this impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site. These observations reveal an in vivo phenotype for the vimentin-deficient mouse, and challenge the dogma that key morphogenetic events occurring during development require generation of significant tractional forces by mesenchymal cells.
Collapse
Affiliation(s)
- B Eckes
- Department of Dermatology, University of Cologne, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Corden LD, Mellerio JE, Gratian MJ, Eady RA, Harper JI, Lacour M, Magee G, Lane EB, McGrath JA, McLean WH. Homozygous nonsense mutation in helix 2 of K14 causes severe recessive epidermolysis bullosa simplex. Hum Mutat 2000; 11:279-85. [PMID: 9554744 DOI: 10.1002/(sici)1098-1004(1998)11:4<279::aid-humu5>3.0.co;2-e] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have studied a consanguineous family containing two children with severe, generalized epidermolysis bullosa simplex (EBS). Electron microscopy of skin biopsies from the affected individuals showed that basal keratinocytes were devoid of tonofilament bundles, although some single intermediate filament were visible. Genetic linkage analysis with the microsatellite probe D12S96 excluded the type II keratin gene cluster in this family. However, homozygosity by descent was observed with the polymorphic probes KRT9, KRT10 Ava II, and D17S1787 in both affected children, consistent with a recessive defect in a type I keratin. Immunoreactivity to keratin K5 and K15 was normal, but monoclonal antibodies LL001 and RCK107 against K14 showed no staining, suggesting a deficiency of K14 in these individuals. mRNA extracted from biopsy material was amplified by RT-PCR to obtain full-length K14 cDNA. Direct automated sequencing identified a homozygous nonsense mutation, W305X. A Hinf I restriction enzyme site is created by this nucleotide transition, which was used to confirm the presence of the mutation in this kindred and exclude it from 100 normal chromosomes. This is the fourth kindred with severe recessive EBS for whom a mutation has been found in the K14 gene. In this instance, the premature termination codon is the farthest downstream of the reported cases, occurring in the helix 2 domain and so giving a much longer translation product. Nevertheless, the heterozygous carriers are unaffected by the disease and display no epidermal fragility. We postulate that translation of the potentially dominant-negative truncated K14 might be down-regulated due to instability of the mutant mRNA, as observed in previous cases with similar mutations.
Collapse
Affiliation(s)
- L D Corden
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mecklenburg L, Hetzel U, Ueberschär S. Epidermolytic ichthyosis in a dog: clinical, histopathological, immunohistochemical and ultrastructural findings. J Comp Pathol 2000; 122:307-11. [PMID: 10805985 DOI: 10.1053/jcpa.1999.0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidermolytic hyperkeratosis (EH) in man is a complex of congenital, ichthyosiform skin diseases characterized clinically by blistering and hyperkeratosis. These clinical signs are the result of a collapse of the cytoskeleton, seen ultrastructurally as tonofilament clumping and cytolysis within terminally differentiating epidermal cells. In man, specific mutations in keratin 1, 2e, 9 or 10 underlie the various types of EH. This report describes the clinical, histopathological, immunohistochemical and ultrastructural findings in a 6-month-old dog with severe multifocal hyperkeratosis. The morphological changes were comparable with those of EH in man, indicating that this disease, presumably with a similar underlying pathogenetic mechanism, also occurs in the dog.
Collapse
Affiliation(s)
- L Mecklenburg
- Department of Pathology, School of Veterinary Medicine Hannover, D-30559 Hannover, Bünteweg 17, Germany
| | | | | |
Collapse
|
50
|
Zatloukal K, Stumptner C, Lehner M, Denk H, Baribault H, Eshkind LG, Franke WW. Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1263-74. [PMID: 10751352 PMCID: PMC1876873 DOI: 10.1016/s0002-9440(10)64997-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In alcoholic hepatitis, a severe form of alcohol-induced toxic liver injury, as well as in experimental intoxication of mice with the porphyrinogenic drugs griseofulvin and 3,5-diethoxycarbonyl-1, 4-dihydrocollidine, hepatocytes form cytoplasmic protein aggregates (Mallory bodies; MBs) containing cytokeratins (CKs) and non-CK components. Here we report that mice lacking the CK8 gene and hence CK intermediate filaments in hepatocytes, but still expressing the type I partner, ie, the CK18 gene, do not form MBs but suffer from extensive porphyria and progressive toxic liver damage, leading to the death of a considerable number of animals (7 of 12 during 12 weeks of intoxication). Our observations show that 1) in the absence of CK8 as well as in the situation of a relative excess of CK18 over CK8 no MBs are formed; 2) the loss of CK8 is not compensated by other type II CKs; and 3) porphyria and toxic liver damage are drastically enhanced in the absence of CK8. Our results point to a protective role of CKs in certain types of toxic liver injury and suggest that MBs by themselves are not harmful to hepatocytes but may be considered as a product of a novel defense mechanism in hepatocytes.
Collapse
Affiliation(s)
- K Zatloukal
- Department of Pathology, University of Graz, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|