1
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
2
|
Solís-Lemus JA, Sánchez-Sánchez BJ, Marcotti S, Burki M, Stramer B, Reyes-Aldasoro CC. Comparative Study of Contact Repulsion in Control and Mutant Macrophages Using a Novel Interaction Detection. J Imaging 2020; 6:36. [PMID: 34460738 PMCID: PMC8321020 DOI: 10.3390/jimaging6050036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, a novel method for interaction detection is presented to compare the contact dynamics of macrophages in the Drosophila embryo. The study is carried out by a framework called macrosight, which analyses the movement and interaction of migrating macrophages. The framework incorporates a segmentation and tracking algorithm into analysing the motion characteristics of cells after contact. In this particular study, the interactions between cells is characterised in the case of control embryos and Shot mutants, a candidate protein that is hypothesised to regulate contact dynamics between migrating cells. Statistical significance between control and mutant cells was found when comparing the direction of motion after contact in specific conditions. Such discoveries provide insights for future developments in combining biological experiments with computational analysis.
Collapse
Affiliation(s)
- José Alonso Solís-Lemus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Besaiz J Sánchez-Sánchez
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London SE1 1UL, UK; (B.J.S.-S.); (S.M.); (M.B.); (B.S.)
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London SE1 1UL, UK; (B.J.S.-S.); (S.M.); (M.B.); (B.S.)
| | - Mubarik Burki
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London SE1 1UL, UK; (B.J.S.-S.); (S.M.); (M.B.); (B.S.)
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London SE1 1UL, UK; (B.J.S.-S.); (S.M.); (M.B.); (B.S.)
| | - Constantino Carlos Reyes-Aldasoro
- GiCentre, Departmen t of Computer Science, School of Mathematics, Computer Science and Engineering, City, University of London, London EC1V 0HB, UK
| |
Collapse
|
3
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Smyth JT, Schoborg TA, Bergman ZJ, Riggs B, Rusan NM. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules. Open Biol 2016; 5:rsob.150067. [PMID: 26289801 PMCID: PMC4554919 DOI: 10.1098/rsob.150067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zane J Bergman
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Blake Riggs
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Bergman ZJ, Mclaurin JD, Eritano AS, Johnson BM, Sims AQ, Riggs B. Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo. PLoS One 2015; 10:e0117859. [PMID: 25689737 PMCID: PMC4331435 DOI: 10.1371/journal.pone.0117859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.
Collapse
Affiliation(s)
- Zane J. Bergman
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Justin D. Mclaurin
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Anthony S. Eritano
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Brittany M. Johnson
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Amanda Q. Sims
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Blake Riggs
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
- * E-mail:
| |
Collapse
|
6
|
Riparbelli MG, Giordano R, Ueyama M, Callaini G. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 2012; 7:e30045. [PMID: 22291901 PMCID: PMC3264553 DOI: 10.1371/journal.pone.0030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.
Collapse
Affiliation(s)
| | - Rosanna Giordano
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | - Giuliano Callaini
- Department of Evolutionary Biology, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
7
|
Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 2009; 5:e1000343. [PMID: 19300496 PMCID: PMC2652114 DOI: 10.1371/journal.ppat.1000343] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/20/2009] [Indexed: 01/24/2023] Open
Abstract
Wolbachia is a bacteria endosymbiont that rapidly infects insect populations through a mechanism known as cytoplasmic incompatibility (CI). In CI, crosses between Wolbachia-infected males and uninfected females produce severe cell cycle defects in the male pronucleus resulting in early embryonic lethality. In contrast, viable progeny are produced when both parents are infected (the Rescue cross). An important consequence of CI–Rescue is that infected females have a selective advantage over uninfected females facilitating the rapid spread of Wolbachia through insect populations. CI disrupts a number of prophase and metaphase events in the male pronucleus, including Cdk1 activation, chromosome condensation, and segregation. Here, we demonstrate that CI disrupts earlier interphase cell cycle events. Specifically, CI delays the H3.3 and H4 deposition that occurs immediately after protamine removal from the male pronucleus. In addition, we find prolonged retention of the replication factor PCNA in the male pronucleus into metaphase, indicating progression into mitosis with incompletely replicated DNA. We propose that these CI-induced interphase defects in de novo nucleosome assembly and replication are the cause of the observed mitotic condensation and segregation defects. In addition, these interphase chromosome defects likely activate S-phase checkpoints, accounting for the previously described delays in Cdk1 activation. These results have important implications for the mechanism of Rescue and other Wolbachia-induced phenotypes. Wolbachia are among the most successful of all intracellular bacteria, infecting an estimated 65% of insect species. Wolbachia are also present in filarial nematodes and are the cause of African river blindness. Wolbachia's success is due in part to its ability to induce a conditional form of sterility known as cytoplasmic incompatibility (CI), endowing infected females with a tremendous selective advantage. CI results in the severe reduction in progeny from crosses between uninfected females and Wolbachia-infected males. However, Wolbachia-infected females can mate with either infected or uninfected males with no reduction in progeny. CI may drive speciation and is intensively being pursued as a means to control insect-borne human disease. In spite of its biological and medical significance, the molecular basis of CI is not understood. We take advantage of newly generated chromatin reagents to demonstrate that prior to the well-documented defects in chromosome condensation and segregation, CI produces a delay in recruiting the replication-independent histone H3.3/H4 complex to the male pronucleus. There is great interest in histone H3.3 because of its general role in transcription and in remodeling of the sperm chromatin following fertilization. In addition, these findings may provide insight into other Wolbachia–host interactions such as CI–Rescue and male-killing.
Collapse
|
8
|
Narbonne-Reveau K, Lilly M. The Cyclin-dependent kinase inhibitor Dacapo promotes genomic stability during premeiotic S phase. Mol Biol Cell 2009; 20:1960-9. [PMID: 19211840 DOI: 10.1091/mbc.e08-09-0916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21(Cip1)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap(-/-) females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap(-/-) ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap(-/-) DNA damage phenotype. Importantly, the DNA damage observed in dap(-/-) ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap(-/-) ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.
Collapse
Affiliation(s)
- Karine Narbonne-Reveau
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Zhang G, Breuer M, Förster A, Egger-Adam D, Wodarz A. Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions. J Cell Sci 2009; 122:535-45. [PMID: 19174464 DOI: 10.1242/jcs.040352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of the mitotic spindle is controlled by the microtubule organizing activity of the centrosomes and by the effects of chromatin-associated Ran-GTP on the activities of spindle assembly factors. In this study we show that Mars, a Drosophila protein with sequence similarity to vertebrate hepatoma upregulated protein (HURP), is required for the attachment of the centrosome to the mitotic spindle. More than 80% of embryos derived from mars mutant females do not develop properly due to severe mitotic defects during the rapid nuclear divisions in early embryogenesis. Centrosomes frequently detach from spindles and from the nuclear envelope and nucleate astral microtubules in ectopic positions. Consistent with its function in spindle organization, Mars localizes to nuclei in interphase and associates with the mitotic spindle, in particular with the spindle poles, during mitosis. We propose that Mars is an important linker between the spindle and the centrosomes that is required for proper spindle organization during the rapid mitotic cycles in early embryogenesis.
Collapse
Affiliation(s)
- Gang Zhang
- Abteilung Stammzellbiologie, DFG Research Center for Molecular Physiology of the Brain (CMPB), Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Crest J, Oxnard N, Ji JY, Schubiger G. Onset of the DNA replication checkpoint in the early Drosophila embryo. Genetics 2006; 175:567-84. [PMID: 17151243 PMCID: PMC1800604 DOI: 10.1534/genetics.106.065219] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila embryo is a promising model for isolating gene products that coordinate S phase and mitosis. We have reported before that increasing maternal Cyclin B dosage to up to six copies (six cycB) increases Cdk1-Cyclin B (CycB) levels and activity in the embryo, delays nuclear migration at cycle 10, and produces abnormal nuclei at cycle 14. Here we show that the level of CycB in the embryo inversely correlates with the ability to lengthen interphase as the embryo transits from preblastoderm to blastoderm stages and defines the onset of a checkpoint that regulates mitosis when DNA replication is blocked with aphidicolin. A screen for modifiers of the six cycB phenotypes identified 10 new suppressor deficiencies. In addition, heterozygote dRPA2 (a DNA replication gene) mutants suppressed only the abnormal nuclear phenotype at cycle 14. Reduction of dRPA2 also restored interphase duration and checkpoint efficacy to control levels. We propose that lowered dRPA2 levels activate Grp/Chk1 to counteract excess Cdk1-CycB activity and restore interphase duration and the ability to block mitosis in response to aphidicolin. Our results suggest an antagonistic interaction between DNA replication checkpoint activation and Cdk1-CycB activity during the transition from preblastoderm to blastoderm cycles.
Collapse
Affiliation(s)
- Justin Crest
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | | | | | |
Collapse
|
11
|
Pérez-Mongiovi D, Malmanche N, Bousbaa H, Sunkel C. Maternal expression of the checkpoint protein BubR1 is required for synchrony of syncytial nuclear divisions and polar body arrest inDrosophila melanogaster. Development 2005; 132:4509-20. [PMID: 16162651 DOI: 10.1242/dev.02028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spindle checkpoint is a surveillance mechanism that regulates the metaphase-anaphase transition during somatic cell division through inhibition of the APC/C ensuring proper chromosome segregation. We show that the conserved spindle checkpoint protein BubR1 is required during early embryonic development. BubR1 is maternally provided and localises to kinetochores from prophase to metaphase during syncytial divisions similarly to somatic cells. To determine BubR1 function during embryogenesis, we generated a new hypomorphic semi-viable female sterile allele. Mutant females lay eggs containing undetectable levels of BubR1 show early developmental arrest,abnormal syncytial nuclear divisions, defects in chromosome congression,premature sister chromatids separation, irregular chromosome distribution and asynchronous divisions. Nuclei in BubR1 mutant embryos do not arrest in response to spindle damage suggesting that BubR1 performs a checkpoint function during syncytial divisions. Furthermore, we find that in wild-type embryos BubR1 localises to the kinetochores of condensed polar body chromosomes. This localisation is functional because in mutant embryos, polar body chromatin undergoes cycles of condensation-decondensation with additional rounds of DNA replication. Our results suggest that BubR1 is required for normal synchrony and progression of syncytial nuclei through mitosis and to maintain the mitotic arrest of the polar body chromosomes after completion of meiosis.
Collapse
Affiliation(s)
- Daniel Pérez-Mongiovi
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
12
|
Lin SX, Maxfield FR. Fluorescence imaging in living animals. Focus on "Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy". Am J Physiol Cell Physiol 2004; 287:C257-9. [PMID: 15238357 DOI: 10.1152/ajpcell.00235.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sharron X Lin
- Dept. of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
13
|
Abstract
The development of the early Drosophila embryo is marked by the separation of two nuclear lineages, yolk and somatic nuclei, each having its own division program despite residing in a common cytoplasm. We show that the failure of nuclear division of the yolk nuclei is a consequence of dysfunction in bipolar spindle organization during mitosis 10 and 11. Yolk spindle organization defects are directly correlated to centrosome behaviour, which is abnormal in at least three sequential aspects. First, the yolk centrosomes do not migrate properly along the nuclear envelope during nuclear cycles 10 and 11 and give rise to non-functional monopolar spindles. Second, the centrosomes detached from the poles spindle at the end of nuclear cycle 11, leaving the spindles anastral. Third, the free centrosomes duplicate in the absence of nuclear division during last mitoses and early gastrulation, but do not separate properly. In spite of their reduced nucleating properties, beyond the nuclear cycle 12, the yolk centrosomes contain typical centrosomal antigens, suggesting that their structural organization has not been changed after they disperse in the cytoplasm. Our findings also demonstrate that the centrosome dynamics are spatially and temporally regulated in the yolk region. This observation is consistent with the presence of rate-limiting levels of maternally provided key molecular components, needed for centrosome duplication and positioning. The presence of normal and abnormal centrosomes in the same cytoplasm provides an useful model for investigating the common regulators of the nucleus and centrosome cycle which ensure precise spindle pole duplication.
Collapse
|
14
|
Faruki S, Cole RW, Rieder CL. Separating centrosomes interact in the absence of associated chromosomes during mitosis in cultured vertebrate cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:107-21. [PMID: 12112153 DOI: 10.1002/cm.10036] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We detail here how "free" centrosomes, lacking associated chromosomes, behave during mitosis in PtK(2) homokaryons stably expressing GFP-alpha-tubulin. As free centrosomes separate during prometaphase, their associated astral microtubules (Mts) interact to form a spindle-shaped array that is enriched for cytoplasmic dynein and Eg5. Over the next 30 min, these arrays become progressively depleted of Mts until the two centrosomes are linked by a single bundle, containing 10-20 Mts, that persists for > 60 min. The overlapping astral Mts within this bundle are loosely organized, and their plus ends terminate near its midzone, which is enriched for an ill-defined matrix material. At this time, the distance between the centrosomes is not defined by external forces because these organelles remain stationary when the bundle connecting them is severed by laser microsurgery. However, since the centrosomes move towards one another in response to monastrol treatment, the kinesin-like motor protein Eg5 is involved. From these results, we conclude that separating asters interact during prometaphase of mitosis to form a spindle-shaped Mt array, but that in the absence of chromosomes this array is unstable. An analysis of the existing data suggests that the stabilization of spindle Mts during mitosis in vertebrates does not involve the chromatin (i.e., the RCC1/RanGTP pathway), but instead some other chromosomal component, e.g., kinetochores.
Collapse
Affiliation(s)
- Shamsa Faruki
- Division of Molecular Medicine, Wadsworth Center for Laboratories and Research, Empire State Plaza, Albany, New York, USA
| | | | | |
Collapse
|
15
|
Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 2002; 296:1124-6. [PMID: 12004132 DOI: 10.1126/science.1070536] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bacterium Wolbachia manipulates reproduction in millions of insects worldwide; the most common effect is cytoplasmic incompatibility (CI). We found that CI resulted from delayed nuclear envelope breakdown of the male pronucleus in Nasonia vitripennis. This caused asynchrony between the male and female pronuclei and, ultimately, loss of paternal chromosomes at the first mitosis. When Wolbachia were present in the egg, synchrony was restored, which explains suppression of CI in these crosses. These results suggest that Wolbachia target cell cycle regulatory proteins. A striking consequence of CI is that it alters the normal pattern of reciprocal centrosome inheritance in Nasonia.
Collapse
Affiliation(s)
- Uyen Tram
- Department of Molecular, Cell, and Developmental Biology, 319 Sinsheimer Labs, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
16
|
Tram U, Riggs B, Koyama C, Debec A, Sullivan W. Methods for the study of centrosomes in Drosophila during embryogenesis. Methods Cell Biol 2002; 67:113-23. [PMID: 11550463 DOI: 10.1016/s0091-679x(01)67008-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- U Tram
- University of California, Santa Cruz, Department of Biology, Sinshiemer Laboratories, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
17
|
Su TT, Parry DH, Donahoe B, Chien CT, O'Farrell PH, Purdy A. Cell cycle roles for two 14-3-3 proteins during Drosophila development. J Cell Sci 2001; 114:3445-54. [PMID: 11682604 PMCID: PMC2754241 DOI: 10.1242/jcs.114.19.3445] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila 14-3-3ε and 14-3-3ζ proteins have been shown to function in RAS/MAP kinase pathways that influence the differentiation of the adult eye and the embryo. Because 14-3-3 proteins have a conserved involvement in cell cycle checkpoints in other systems, we asked (1) whether Drosophila 14-3-3 proteins also function in cell cycle regulation, and (2) whether cell proliferation during Drosophila development has different requirements for the two 14-3-3 proteins. We find that antibody staining for 14-3-3 family members is cytoplasmic in interphase and perichromosomal in mitosis. Using mutants of cyclins, Cdk1 and Cdc25string to manipulate Cdk1 activity, we found that the localization of 14-3-3 proteins is coupled to Cdk1 activity and cell cycle stage. Relocalization of 14-3-3 proteins with cell cycle progression suggested cell-cycle-specific roles. This notion is confirmed by the phenotypes of 14-3-3ε and 14-3-3ζ mutants: 14-3-3ε is required to time mitosis in undisturbed post-blastoderm cell cycles and to delay mitosis following irradiation; 14-3-3ζ is required for normal chromosome separation during syncytial mitoses. We suggest a model in which 14-3-3 proteins act in the undisturbed cell cycle to set a threshold for entry into mitosis by suppressing Cdk1 activity, to block mitosis following radiation damage and to facilitate proper exit from mitosis.
Collapse
Affiliation(s)
- T T Su
- MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The mechanical events of mitosis depend on the action of microtubules and mitotic motors, but whether these spindle components act alone or in concert with a spindle matrix is an important question.
Collapse
Affiliation(s)
- J M Scholey
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
19
|
Affiliation(s)
- W F Rothwell
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
20
|
Su TT, Jaklevic B. DNA damage leads to a Cyclin A-dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Curr Biol 2001; 11:8-17. [PMID: 11166174 DOI: 10.1016/s0960-9822(00)00042-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In response to DNA damage, fission yeast, mammalian cells, and cells of the Drosophila gastrula inhibit Cdk1 to delay the entry into mitosis. In contrast, budding yeast delays metaphase-anaphase transition by stabilization of an anaphase inhibitor, Pds1p. A variation of the second response is seen in Drosophila cleavage embryos; when nuclei enter mitosis with damaged DNA, centrosomes lose gamma-tubulin, spindles lose astral microtubules, chromosomes fail to reach a metaphase configuration, and interphase resumes without an intervening anaphase. The resulting polyploid nuclei are eliminated. RESULTS The cells of the Drosophila gastrula can also delay metaphase-anaphase transition in response to DNA damage. This delay accompanies the stabilization of Cyclin A, a known inhibitor of sister chromosome separation in Drosophila. Unlike in cleavage embryos, gamma-tubulin remains at the spindle poles, and anaphase always occurs after the delay. Cyclin A mutants fail to delay metaphase-anaphase transition after irradiation and show an increased frequency of chromosome breakage in the subsequent anaphase. CONCLUSIONS DNA damage delays metaphase-anaphase transition in Drosophila by stabilizing Cyclin A. This delay may normally serve to preserve chromosomal integrity during segregation. To our knowledge this is the first report of a metazoan metaphase-anaphase transition being delayed in response to DNA damage. Though mitotic progression is modulated in response to DNA damage in both cleaving and gastruating embryos of Drosophila, different mechanisms operate. These differences are discussed in the context of differential cell cycle regulation in cleavage and gastrula stages.
Collapse
Affiliation(s)
- T T Su
- MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
21
|
Yu KR, Saint RB, Sullivan W. The Grapes checkpoint coordinates nuclear envelope breakdown and chromosome condensation. Nat Cell Biol 2000; 2:609-15. [PMID: 10980701 DOI: 10.1038/35023555] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the embryonic Drosophila Grapes/Chk1 checkpoint result in an abbreviated interphase, chromosome condensation defects and metaphase delays. To clarify the relationship between these phenotypes, we simultaneously timed multiple nuclear and cytoplasmic events in mutant grp-derived embryos. These studies support a model in which grp disrupts an S-phase checkpoint, which results in progression into metaphase with incompletely replicated chromosomes. We also show that chromosome condensation is independent of the state of DNA replication in the early embryo. Therefore, grp condensation defects are not a direct consequence of entering metaphase with incompletely replicated chromosomes. Rather, initiation of chromosome condensation (ICC) occurs at the normal time in grp-derived embryos, but the shortened interval between ICC and metaphase does not provide sufficient time to complete condensation. Our results suggest that these condensation defects, rather than incomplete DNA replication, are responsible for the extensive metaphase delays observed in grp-derived embryos. This analysis provides an example of how the loss of a checkpoint can disrupt the timing of multiple events not directly monitored by that checkpoint. These results are likely to apply to vertebrate cells and suggest new strategies for destroying checkpoint-compromised cancer cells.
Collapse
Affiliation(s)
- K R Yu
- Department of Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
22
|
Abstract
When cells enter mitosis with DNA that is unfit to be segregated, the consequences appear to be loss of centrosome function, abnormal spindles and a failure to segregate chromosomes. These defects may result from the workings of a surveillance mechanism that acts to cull irreparable nuclei.
Collapse
|
23
|
Megraw TL, Li K, Kao LR, Kaufman TC. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 1999; 126:2829-39. [PMID: 10357928 DOI: 10.1242/dev.126.13.2829] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centrosomin is a 150 kDa centrosomal protein of Drosophila melanogaster. To study the function of Centrosomin in the centrosome, we have recovered mutations that are viable but male and female sterile (cnnmfs). We have shown that these alleles (1, 2, 3, 7, 8 and hk21) induce a maternal effect on early embryogenesis and result in the accumulation of low or undetectable levels of Centrosomin in the centrosomes of cleavage stage embryos. Hemizygous cnn females produce embryos that show dramatic defects in chromosome segregation and spindle organization during the syncytial cleavage divisions. In these embryos the syncytial divisions proceed as far as the twelfth cycle, and embryos fail to cellularize. Aberrant divisions and nuclear fusions occur in the early cycles of the nuclear divisions, and become more prominent at later stages. Giant nuclei are seen in late stage embryos. The spindles that form in mutant embryos exhibit multiple anomalies. There is a high occurrence of apparently linked spindles that share poles, indicating that Centrosomin is required for the proper spacing and separation of mitotic spindles within the syncytium. Spindle poles in the mutants contain little or no detectable amounts of the centrosomal proteins CP60, CP190 and (gamma)-tubulin and late stage embryos often do not have astral microtubules at their spindle poles. Spindle morphology and centrosomal composition suggest that the primary cause of these division defects in mutant embryos is centrosomal malfunction. These results suggest that Centrosomin is required for the assembly and function of centrosomes during the syncytial cleavage divisions.
Collapse
Affiliation(s)
- T L Megraw
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
24
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
25
|
González C, Tavosanis G, Mollinari C. Centrosomes and microtubule organisation during Drosophila development. J Cell Sci 1998; 111 ( Pt 18):2697-706. [PMID: 9718363 DOI: 10.1242/jcs.111.18.2697] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Are the microtubule-organising centers of the different cell types of a metazoan interchangeable? If not, what are the differences between them? Do they play any role in the differentiation processes to which these cells are subjected? Nearly one hundred years of centrosome research has established the essential role of this organelle as the main microtubule-organising center of animal cells. But only now are we starting to unveil the answers to the challenging questions which are raised when the centrosome is studied within the context of a pluricellular organism. In this review we present some of the many examples which illustrate how centrosomes and microtubule organisation changes through development in Drosophila and discuss some of its implications.
Collapse
Affiliation(s)
- C González
- European Molecular Biology Laboratory Meyerhofstrasse 1, Germany.
| | | | | |
Collapse
|
26
|
Tanaka H, Takenaka H, Yamao F, Yagura T. Aphidicolin induces alterations in Golgi complex and disorganization of microtubules of HeLa cells upon long-term administration. J Cell Physiol 1998; 176:602-11. [PMID: 9699513 DOI: 10.1002/(sici)1097-4652(199809)176:3<602::aid-jcp17>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment of HeLa cells with aphidicolin at 5 or 0.5 microg/ml induced cell cycle arrest at G1/S or G2/M phase, respectively, and was accompanied by unbalanced cell growth. Long-term administration of aphidicolin (more than 48 h) resulted in noticeable loss of reproductive capacity though cells were viable at the time of treatment. Immunofluorescence with anti-Golgi membrane protein monoclonal antibody (mAbG3A5) showed disfigurement of the characteristic mesh-like configuration when cells were treated for more than 48 h. Interestingly, we found that the fragmented Golgi complex formed a ring around the nucleus in more than 20% of the cells. Immunoelectron microscopy using mAbG3A5 antibody demonstrated that the stack structure of the fragmented Golgi complex in aphidicolin-arrested cells appeared partially broken up and seemed to have converted to a vesicle-like structure. Analysis using an antibody to tubulin and anticentrosome human autoimmune serum showed that alterations in the Golgi complex were induced even by the lower 0.5 microg/ml dose. These alterations were accompanied by both changes in the distribution of microtubules and an increase in the number of centrosomes. These cells lost their distinct perinuclear microtubule organizing center (MTOC). On the other hand, treatment with aphidicolin at 5 microg/ml did not induce multiplication of the centrosome although the loss of distinct MTOC was still evident. No changes took place in the Golgi complex, microtubule, or centrosome of cells treated with 0.5 microg/ml aphidicolin when cycloheximide was added simultaneously to the culture.
Collapse
Affiliation(s)
- H Tanaka
- Department of Chemistry, Faculty of Science, Kwansei Gakuin University, Hyogo, Japan
| | | | | | | |
Collapse
|
27
|
de Saint Phalle B, Sullivan W. Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J Cell Biol 1998; 141:1383-91. [PMID: 9628894 PMCID: PMC2132787 DOI: 10.1083/jcb.141.6.1383] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Revised: 03/27/1998] [Indexed: 02/07/2023] Open
Abstract
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.
Collapse
Affiliation(s)
- B de Saint Phalle
- Department of Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
28
|
Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K, Cohen PT. Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci 1998; 111 ( Pt 10):1331-40. [PMID: 9570751 DOI: 10.1242/jcs.111.10.1331] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein serine/threonine phosphatase 4 (PP4), which localises to centrosomes/spindle pole bodies in human cells, is shown to exhibit a similar localisation in Drosophila cells and embryos and possess a highly conserved (91% identical) amino acid sequence from humans to invertebrates. A homozygous Drosophila melanogaster strain mutant in the PP4 gene at 19C1-2 has been produced using P element mutagenesis. This strain, termed centrosomes minus microtubules (cmm), has reduced amounts of PP4 mRNA, approximately 25% of normal PP4 protein in early embryos and exhibits a semi-lethal phenotype with only 10% viability in certain conditions. Reversion mutagenesis shows that the phenotype is due to the presence of the P element in the PP4 mRNA. In early cmm embryos, nuclear divisions become asynchronous and large regions containing centrosomes with no well defined radiating microtubules are visible. In such areas, most nuclei arrest during mitosis with condensed DNA, and mitotic spindle microtubules are either absent, or aberrant and unconnected to the centrosome. A reduction in the staining of gamma-tubulin at centrosomes in cmm embryos suggests a conformational change or relocation of this protein, which is known to be essential for initiation of microtubule growth. These findings indicate that PP4 is required for nucleation, growth and/or stabilisation of microtubules at centrosomes/spindle pole bodies.
Collapse
Affiliation(s)
- N R Helps
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | | | | | | | | | | |
Collapse
|
29
|
Paoletti A, Bornens M. Organisation and functional regulation of the centrosome in animal cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:285-99. [PMID: 9552423 DOI: 10.1007/978-1-4615-5371-7_23] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular characterisation of centrosomal components is slowly progressing. Recent results indicate that the major aspects of centrosome-mediated microtubule nucleation may soon be understood at the molecular level. In contrast, centrosome reproduction, which is an important aspect of animal cell division, remains terra incognita. The most challenging issue for the future is to understand the molecular mechanisms which control centrosome biogenesis. There is a urgent need to identify with certainty proteins implicated in this process. Comparison between organisms with structurally different centrosomes might be critical for a better understanding of centrosome duplication if a general mechanism has been conserved throughout evolution.
Collapse
Affiliation(s)
- A Paoletti
- Biologie du Cycle Cellulaire et de la Motilité, UMR 144, CNRS-Institut Curie, Paris, France
| | | |
Collapse
|
30
|
Callaini G, Whitfield WG, Riparbelli MG. Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Exp Cell Res 1997; 234:183-90. [PMID: 9223385 DOI: 10.1006/excr.1997.3618] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used immunofluorescence and electron microscopy to examine centrosome dynamics during the first postblastodermic mitoses in the Drosophila embryo. The centrosomal material, as recognized by antibodies against CP190 and gamma-tubulin, does not show the typical shape changes observed in syncytial embryos, but remains compact throughout mitosis. Centrioles, however, behave as during the syncytial mitoses, with each daughter cell inheriting two separated centrioles at the end of telophase. During interphase in epithelial cells that have a distinct G1 phase, two isolated centrioles are found, suggesting that the separation of sister centrioles is tightly coupled to a mitotic oscillator in both the "abbreviated" and the "complete" embryonic division cycles. The centrioles of the Drosophila embryo sharply differed from the sperm basal body, having a cartwheel structure with nine microtubular doublets and a central tubule. This "immature" centriolar morphology was shown to persist throughout embryonic development, clearly demonstrating that these centrioles are able to replicate despite their apparently neotenic structure.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | |
Collapse
|
31
|
Fogarty P, Campbell SD, Abu-Shumays R, Phalle BS, Yu KR, Uy GL, Goldberg ML, Sullivan W. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr Biol 1997; 7:418-26. [PMID: 9197245 DOI: 10.1016/s0960-9822(06)00189-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cell cycle checkpoints maintain the fidelity of the somatic cell cycle by ensuring that one step in the cell cycle is not initiated until a previous step has been completed. The extent to which cell cycle checkpoints play a role in the initial rapid embryonic divisions of higher eukaryotes is unclear. The initial syncytial divisions of Drosophila embryogenesis provide an excellent opportunity to address this issue as they are amenable to both genetic and cellular analysis. In order to study the relevance of cell cycle checkpoints in early Drosophila embryogenesis, we have characterized the maternal-effect grapes (grp) mutation, which may affect feedback control during early syncytial divisions. RESULTS The Drosophila grp gene encodes a predicted serine/threonine kinase and has significant homology to chk1/rad27, a gene required for a DNA damage checkpoint in Schizosaccharomyces pombe. Relative to normal embryos, embryos derived from grp-mutant mothers exhibit elevated levels of DNA damage. During nuclear cycles 12 and 13, alignment of the chromosomes on the metaphase plate was disrupted in grp-derived embryos, and the embryos underwent a progression of cytological events that were indistinguishable from those observed in normal syncytial embryos exposed to X-irradiation. The mutant embryos also failed to progress through a regulatory transition in Cdc2 activity that normally occurs during interphase of nuclear cycle 14. CONCLUSION We propose that the primary defect in grp-derived embryos is a failure to replicate or repair DNA completely before mitotic entry during the late syncytial divisions. This suggests that wild-type grp functions in a developmentally regulated DNA replication/damage checkpoint operating during the late syncytial divisions. These results are discussed with respect to the proposed function of the chk1/rad27 gene.
Collapse
Affiliation(s)
- P Fogarty
- Sinsheimer Laboratories Department of Biology University of California Santa Cruz, California, 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Edgar BA, Datar SA. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev 1996; 10:1966-77. [PMID: 8756353 DOI: 10.1101/gad.10.15.1966] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Drosophila embryos the maternal/zygotic transition (MZT) in cell cycle control normally follows mitosis 13. Here we show that this transition requires degradation of two maternal mRNAs, string and twine, which encode Cdc25 phosphatases. Although twine is essential for meiosis and string is essential for most mitotic cycles, the two genes have mutually complementing, overlapping functions in the female germ line and the early embryo. Deletion of both gene products from the female germ line arrests germ-line development. Reducing the maternal dose of both products can lower the number of early embryonic mitoses to 12, whereas increasing maternal Cdc25(twine) can increase the number of early mitoses to 14. Blocking the activation of zygotic transcription stabilizes maternal string and twine mRNAs and also allows an extra maternal mitosis, which is Cdc25 dependent. We propose that Drosophila's MZT comprises a chain reaction in which (1) proliferating nuclei deplete factors (probably mitotic cyclins) required for cell cycle progression; (2) this depletion causes the elongation of interphases and allows zygotic transcription; (3) new gene products accumulate that promote degradation of maternal mRNAs, including string and twine; and (4) consequent loss of Cdc25 phosphatase activity allows inhibitory phosphorylation of Cdc2 by Dwee1 kinase, effecting G2 arrest. Unlike timing or counting mechanisms, this mechanism can compensate for losses or additions of nuclei by altering the timing and number of the maternal cycles and thus will always generate the correct cell density at the MZT.
Collapse
Affiliation(s)
- B A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | |
Collapse
|